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Abstract
Graph Contrastive Learning (GCL) has recently
made progress as an unsupervised graph repre-
sentation learning paradigm. GCL approaches
can be categorized into augmentation-based and
augmentation-free methods. The former relies
on complex data augmentations, while the lat-
ter depends on encoders that can generate distinct
views of the same input. Both approaches may
require negative samples for training. In this pa-
per, we introduce a novel augmentation-free GCL
framework based on graph neural diffusion mod-
els. Specifically, we utilize learnable encoders
governed by Fractional Differential Equations
(FDE). Each FDE is characterized by an order
parameter of the differential operator. We demon-
strate that varying these parameters allows us to
produce learnable encoders that generate diverse
views, capturing either local or global informa-
tion, for contrastive learning. Our model does not
require negative samples for training and is appli-
cable to both homophilic and heterophilic datasets.
We demonstrate its effectiveness across various
datasets, achieving state-of-the-art performance.

1. Introduction
Contrastive learning is a powerful unsupervised learning
technique that has gained significant attention in represen-
tation learning. It focuses on learning meaningful repre-
sentations by distinguishing between similar and dissimilar
feature embeddings generated from different encoders. The
learning process pulls similar instances closer together while
pushing dissimilar ones apart in the feature space. This ap-
proach enables models to capture important patterns without
requiring extensive labeled data. Contrastive learning has
been widely applied in areas such as computer vision, natu-
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ral language processing, and recommender systems. When
this technique is applied to unsupervised learning involving
graph-structured data, it is known as Graph Contrastive
Learning (GCL).

GCL methods can be categorized into augmentation-
based and augmentation-free approaches (see Section 2).
Augmentation-based methods rely on complex data aug-
mentations, while augmentation-free methods depend on
encoders that can generate distinct views of the same input.
Both approaches may require negative samples for training.
We focus on the augmentation-free approach due to its sim-
plicity and independence from the quality of augmentations.
However, the success of an augmentation-free approach
hinges on two factors: (a) the ability of the encoders to
generate high-quality feature embeddings, and (b) the capa-
bility of contrasting encoders to produce distinct views of
the same input. To address these requirements, we propose
a novel GCL framework that utilizes neural diffusion-based
encoders to generate contrasting views of node features.

To explain our main insight regarding applying neural dif-
fusion in GCL, recall that recent works Chamberlain et al.
(2021a;b); Kang et al. (2023); Rusch et al. (2022); Song
et al. (2022); Thorpe et al. (2022) have introduced graph dif-
fusion based on ordinary differential equations (ODE). This
approach is analogous to heat diffusion over a graph and
can be viewed as a continuous substitution for the message
passing of node features in models such as GCN. Diffusions
based on fractional-order differential equations (FDE) with
the differential operator dα

dtα , which generalize ODE-based
diffusions, have been proposed in Kang et al. (2024); Zhao
et al. (2024). The key parameter is the order α ∈ (0, 1]
of the derivative of features with respect to (w.r.t.) time t.
For instance, α = 1 corresponds to the usual derivative
d
dt . FDE allows α to be a real number, e.g., 0 < α < 1,
with the interpretation that it governs how much “non-local”
information (from the past feature evolution history) is in-
corporated in the diffusion. Therefore, we can adjust α to
control whether the features contain more global or local
information. By choosing different α values for different
FDE-based encoders, we can generate features with distinct
views, which is essential for augmentation-free GCL.

The term diffusion has been associated with different mean-
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ings depending on the context. In our paper, it specifically
refers to the dynamic of the features following a prescribed
differential equation. Our main contributions are as follows:

• We introduce a novel augmentation-free GCL model
utilizing neural diffusion-based encoders on graphs.
This model is both simple and flexible, with the fea-
ture view properties primarily governed by a single
parameter within the continuous domain (0, 1].

• We provide a theoretical analysis of the model using
the framework of FDE-based graph neural diffusion
models, offering insights into the features generated
by contrasting encoders. Based on the observations,
we propose a new way to regularize contrastive loss,
avoiding the use of negative samples.

• We conduct extensive numerical experiments on
datasets with varying characteristics (e.g., homophilic
vs. heterophilic) and demonstrate the model’s superior
performance compared to existing benchmarks.

2. Related Works
In this section, we summarize recent advancements in GCL
that are related to our work. Additional details on these
methods can be found in Appendix B.

Augmentation-based GCL models typically use various data
augmentations, such as edge removal and node feature mask-
ing, to create diverse graph views. These models optimize
the loss by maximizing mutual information between the
augmented views (Chen & Kou, 2023; Chen et al., 2022;
Hassani & Khasahmadi, 2020a; Velickovic et al., 2019; Xiao
et al., 2022; You et al., 2020; Zhang et al., 2023; Zhu et al.,
2020; 2021). This approach enhances model robustness and
generalization.

In contrast, augmentation-free methods do not rely on com-
plex augmentations. They directly input the same graph
and features into different encoders to generate contrast-
ing views (Peng et al., 2020; Zhang et al., 2022). Notably,
methods such as GraphACL (Xiao et al., 2023) and SP-
GCL (Wang et al., 2023) strictly avoid augmentations but
still use negative samples. Similarly, PolyGCL (Chen et al.,
2024) applies feature shuffling for negative samples. These
approaches move away from the traditional homophily as-
sumption, enabling more effective learning in heterophilic
and structurally diverse graphs by incorporating advanced
encoding and spectral filtering techniques.

A notable trend in GCL models is the elimination of negative
sample pairs. For instance, BGRL (Thakoor et al., 2022)
and CCA-SSG (Zhang et al., 2021) minimize the need for
augmentations and completely remove negative sampling,
focusing on maximizing correlations between graph views.

AFGRL (Lee et al., 2022) takes this further by eliminating
both augmentations and negative samples, directly using
the original graph to create positive samples. However, its
applicability is primarily limited to homophilic datasets,
posing challenges in handling heterophilic or structurally
diverse graphs.

Our approach neither requires any data augmentation nor
negative sampling, while effectively handling both ho-
mophilic and heterophilic datasets. Therefore, we regard
our model with these characterizations as a “simple” form
of GCL in the title. As highlighted in Section 1, unlike pre-
vious works, we use encoders based on fractional-order
neural diffusion to generate pairs of feature representations
for different views. As far as we are aware of, this is the first
work along this line.

3. Preliminaries
Setup and problem formulation Consider an undirected
graph G = (V, E), where V = {v1, . . . , vN} is a finite set
of N nodes and E ⊂ V × V is the set of edges. The raw
features of the nodes are represented by the matrix X, with
the i-th row corresponding to the feature vector xi of node
vi. The weighted symmetric adjacency matrix A = (aij)
has size N×N , where aij denotes the edge weight between
nodes vi and vj . We denote the complete graph information
by X = (A,X).

In unsupervised feature learning, we aim to learn an encoder
fθ that maps the raw feature xi of each node vi to a refined
feature representation zi = fθ(X , vi) in RF . The resulting
encoded node features Z ∈ RN×F , where each row corre-
sponds to zi, are then utilized for downstream tasks such
as node classification, which is the primary focus of our
paper. In GCL, self-supervision is achieved by encouraging
consistency between features Z1 and Z2 generated from
distinct encoders fθ1 and fθ2 .

Graph neural diffusion models Traditional Graph Neu-
ral Network (GNN) models, such as GCN and GAT (Hamil-
ton et al., 2017; Kipf & Welling, 2017; Veličković et al.,
2018), rely on (discrete) graph message passing for feature
aggregation. In the k-th iteration, the message passing step
is represented as AZ(k−1), where A is the normalized ad-
jacency matrix of A, and Z(k−1) is the output from the
(k − 1)-th iteration.

In contrast, Chamberlain et al. (2021b) has introduced a
continuous analog to message passing, akin to heat diffusion
in physics. The evolution of the learned feature Z(t) is
governed by an ODE:

d

dt
Z(t) = F(W,Z(t)), (1)

with the initial condition Z(0) being either X or its trans-
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formed version. Here, t represents the time parameter analo-
gous to the layer index in GCN, while F(A,Z(t)) denotes
the spatial diffusion. A typical choice for F(W,Z(t)) is
−(I−A)Z(t), where I is the identity matrix.

This formulation is extended in Kang et al. (2024) by incor-
porating fractional-order derivatives. Specifically, for each
order parameter α ∈ (0, 1), there exists a fractional-order
differential operator Dα

t (see Appendix D). This operator
generalizes d

dt (in (1)) such that as α→ 1, Dα
t converges to

d
dt . Therefore, it is reasonable to set D1

t = d
dt , allowing α

to be chosen from the interval (0, 1].

Mimicking (1), once we fix α, we obtain a new dynamic of
the features Z(t) following an FDE as:

Dα
t Z(t) = F(W,Z(t)). (2)

The exact definition of Dα
t varies slightly in different con-

texts. However, they all share the common trait that Dα
t for

α ∈ (0, 1) is defined by an integral. Intuitively, this implies
that Z(t) depends on Z(t′) for any t′ < t. Therefore, unlike
a solution to (1), the dynamic of Z(t) has “memory”.

In our approach detailed in Section 4, by varying α, we
create a variety of distinct encoders, which are selected for
augmentation-free GCL. In Appendices C and D, we pro-
vide exact definitions of Dα

t and discuss different variants
of ODE- and FDE-based GNN models.

For a final remark, unlike the FLODE model (Maskey et al.,
2023), which integrates fractional graph shift operators into
graph neural ODEs to account for spatial domain rewiring
and space-based long-range interactions during feature up-
dates, the FDE model employs a time-fractional derivative
to update graph node features, enabling a memory-inclusive
process with time-based long-range interactions.

4. The Proposed Model: FD-GCL
In this section, we present our proposed FDE Diffusion-
based GCL model, abbreviated as FD-GCL. We discuss
the theoretical foundation of our approach in Section 4.1,
providing insights on how different choices of the order α
affect the view an encoder generates. Further analysis and
numerical evidence are provided in Section 4.2. Full details
of the FD-GCL model are presented in Section 4.3.

4.1. Encoders with Different Order Parameters

FDE encoders In theory, the evolution of node features
Z(t) is governed by (2). For practical implementations, we
adopt a skip-connection mechanism as described in Cham-
berlain et al. (2021b); Kang et al. (2024). This involves
periodically adding the initial features to the embeddings
after a fixed diffusion time τ . To highlight the influence of
the order parameter α, we denote the resulting time-varying

features, incorporating skip-connections, as Zα(t).

If we use two encoders by solving FDEs with different
orders α1 and α2, the resulting features are Zα1

(t) and
Zα2

(t). As mentioned in Section 1, the effectiveness of
GCL relies on whether Zα1(t) and Zα2(t) are high-quality
feature representations with distinct views. Therefore, it is
essential to analyze how the properties of Zα(t) vary with
different choices of α.

Graph signal processing (GSP) To present our main re-
sult, we need to introduce some concepts from graph sig-
nal processing (GSP) (Shuman et al., 2013). We provide a
concise summary below. Consider the normalized Lapla-
cian L = I − A (as used in the definition of F in (1)).
Since L is symmetric, it can be decomposed orthogonally
as L = UΛU⊺. In this decomposition, the diagonal entries
λ1 ≤ . . . ≤ λN of Λ are the ordered eigenvalues of L (also
called the graph frequencies), and the i-th column ui of U
is the eigenvector corresponding to the eigenvalue λi. Each
ui represents a signal on the graph G.

For small λi, ui is smooth, meaning that signal values are
similar across edges. Conversely, for large λi, ui can be
spiky, highlighting local features. Each signal x (e.g., a
column of the feature matrix X) can be expressed as a
spectral decomposition:

x =

N∑
i=1

ciui, where ci = ⟨x,ui⟩.

In GSP, each ci is referred to as a Fourier coefficient, which
measures the frequency response of x to the basis vector ui.
For convenience, we say x has large smooth components
if |ci| is relatively large for small indices i, and it is energy
concentrated if |ci| is small for most indices i.

The main result We are now ready to state the main re-
sult using the concepts introduced above. A rigorous state-
ment involves additional concepts and assumptions. To keep
the discussion focused and avoid introducing unnecessary
terms, we provide a detailed and rigorous explanation in Ap-
pendix E. We also explain the domain of α in Appendix D.

Theorem 1 (Informal). For 0 < α1 < α2 ≤ 1, the follow-
ing hold for features Zα1(t) and Zα2(t) when t is large:

(a) Zα2
(t) contains more large smooth components as

compared with Zα1
(t).

(b) Zα1
(t) is less energy concentrated as compared with

Zα2
(t).

Moreover, the contrast in (a) and (b) becomes more pro-
nounced as the difference α2 − α1 increases.

3
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Figure 1. The t-SNE visualizations of node features from a single
class, generated by encoders with different FDE order parameters.
For comparison, features are linearly translated to align class av-
erages. The datasets used are Cora (homophilic) and Wisconsin
(heterophilic). The visualizations demonstrate that the two en-
coders produce embeddings with distinct characteristics. A smaller
α produces features with a concentrated core, while features gen-
erated by a larger α are more evenly spaced. Additional results for
other label classes are provided in Appendix G.

In the next subsection, we discuss the implications of The-
orem 1 for our GCL model and provide insights into its
strong performance as demonstrated in Section 5. We also
present numerical evidence to support our claims whenever
possible.

4.2. Contrasting Encoders

Following the setup in Section 4.1, we select 0 < α1 <
α2 ≤ 1 as order parameters for FDE-based encoders, and
obtain continuous sequences of features Zα1(t) and Zα2(t).

Distinct views As mentioned in Section 1, the success of
an augmentation-free GCL hinges on whether different en-
coders generate feature representations with distinct views.
We assert that Zα2(t) encapsulates more global summary
information, while Zα1(t) captures finer local details.

More specifically, by Theorem 1(a), the smooth components
(corresponding to small graph frequencies λi) play a pre-

Figure 2. The PCA components of features for different datasets
and choices of FDE order parameters. We see that for the small
order (α1), the bar chart is comparatively more spread out, which
prevents dimension collapse.

dominant role in Zα2(t). Each such component is spanned
by a vector ui, which is a signal with small variation across
edges. Therefore, the global structural information is en-
coded in such a component. On the other hand, for Zα1

(t),
non-smooth components ui, corresponding to large graph
frequencies λi, have larger coefficients and hence contri-
bution (as compared with Zα2(t)). As such a ui is local in
nature (spiky), Zα1

(t) captures local details as claimed. In
summary, we have the correspondence: α1 ←→ “local”,
and α2 ←→ “global”.

In Fig. 1, we numerically verify that the encoders generate
different views by showing that the embeddings of Zα1

(t)
and Zα2

(t) have distinct characterizations, on Cora (ho-
mophilic) and Wisconsin (heterophilic). Features generated
with α1 form a concentrated core near the average, while
there are deviated features. They can be counterbalanced by
features generated with α2, which are more evenly spaced.

Dimension collapse Dimension collapse occurs when fea-
tures are confined to a low-dimensional subspace within
the full embedding space. This issue should be addressed
and avoided in contrastive learning design. We assert that
if α1 is small, then Zα1

(t) effectively avoids dimension
collapse. According to Theorem 1(b), Zα1

(t) is less energy
concentrated. This implies that the columns of Zα1(t) can
be represented as

∑
1≤i≤N ciui with a relatively bigger

number of large |ci|’s. Consequently, the features do not
collapse into a low-dimensional space. As numerical evi-
dence, we present the principal component analysis (PCA)
decomposition of Zα1

(t) and Zα2
(t) for the Cora, Squirrel

and Wisconsin datasets in Fig. 2. The results verify both
Theorem 1(b) and our claim in this paragraph.
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Encoder quality The model’s performance is expected
to improve if the encoders can effectively cluster nodes of
the same class independently. Our approach benefits from
the proven performance of FDE-based encoders in super-
vised settings (Chamberlain et al., 2021b; Kang et al., 2024).
We numerically verify their unsupervised clustering capa-
bility as follows: For each label class c, we compute the
average intra-class feature distance dintrac among nodes of
class c and the average inter-class feature distance dinterc be-
tween nodes of class c and nodes of other classes. The ratio
rc = dinterc /dintrac serves as a measure of feature clustering
quality, and the larger the better. The results, shown in Fig. 3,
indicate that our proposed encoders generate high-quality
feature embeddings.

Figure 3. The variation in the ratio rc during training. Each curve
represents a label class. The ratio rc for the input features is shown
at epoch 0. We see that the ratio generally increases at the begin-
ning of the training and stabilizes. This suggests that the encoders
indeed have good clustering capabilities (as compared with the
input).

4.3. The FD-GCL Model

We are now in a position to provide the full details of the
proposed FD-GCL model. Recall that we have a graph G
(with adjacency matrix A) and initial node features X, col-

lectively denoted by X = (A,X). Our goal is to learn two
FDE encoders, fθ1 and fθ2 , in an unsupervised manner. We
want to have the following characterization of the views
they generate: fθ1 ←→ “local”, fθ2 ←→ “global”.

The pipelines for fθ1 and fθ2 are identical. For convenience,
we use l to denote the encoder index, which can be either
1 or 2. The procedure consists of the following steps (see
Fig. 4 for an illustration):

S1 Apply a linear encoder with a learnable matrix Wl to
X to obtain Yl = XWl. This step typically increases
the feature dimension.

S2 Choose an FDE order parameter αl and set Zαl
(0) =

Yl. Use the FDE-based encoders with skip connections
to obtain Zαl

(t) as described in Section 4.1.

S3 Stop the diffusion at a chosen time T . Apply a non-
linear activation function σ (e.g., ReLU) to Zαl

(T ) to
obtain the final output Zl.

The model parameter θl includes the learnable weight matrix
Wl and the hyperparameters αl and T . Details on how these
hyperparameters are chosen are provided in Appendix F.3.

To learn the model parameters, we apply a contrastive loss
L0 to the final features Z1 and Z2. In this paper, we choose
L0 to be the mean cosine similarity for its simplicity, which
we call cosmean (see (13) in Appendix F.4).

Based on the discussion in Section 4.2, we modify L0 to
avoid issues such as the collapse of the two views to a single
representation. By Fig. 2, we observe that both Zα1(T )
and Zα2

(T ) have pronounced main components. The unit
directional vectors of their respective dominant components
are denoted by c1 and c2. To prevent the aforementioned
collapse, it suffices to penalize the angle between c1 and c2
from being too small. Therefore, our modified loss, named
regularized cosmean, takes the form:

L(Z1,Z2) = L0(Z1,Z2) + η|⟨c1, c2⟩|,

where η is a regularization weight. The added regularization
has the effect of driving the two feature representations apart
and our approach does not need any negative samples. The
contribution of the regularization term is further analyzed
in Section 5.3.

Finally, for downstream tasks, it suffices to take a weighted
average βZ1 + (1 − β)Z2. We either choose β = 0.5 or
tune it based on validation accuracy.

5. Experiments
5.1. Experimental Setup

Datasets and splits We conduct experiments on both
homophilic and heterophilic datasets. The heterophilic

5
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xi

G : X = (A,X) zi

G1 : X = (A,Zα1(0))

zi

G2 : X = (A,Zα2(0))

W1

W2

FDE with α1

FDE with α2

G1 : X = (A,Zα1(T ))

zi

G2 : X = (A,Zα2(T ))

zi

σ

σ

L(Z1,Z2)

Figure 4. The overall proposed contrastive learning framework of FD-GCL. We choose α1 < α2 for the encoders.

datasets include Wisconsin, Cornell, Texas, Actor, Squirrel,
Crocodile, and Chameleon. Additionally, we experiment on
two recently proposed large heterophilic datasets: Roman-
empire (Roman) and arXiv-year. For homophilic datasets,
we use three citation graphs: Cora, Citeseer, and Pubmed, as
well as two co-purchase datasets: Computer and Photo. We
also include a large-scale homophilic dataset, Ogbn-Arxiv
(Arxiv). For all datasets, we use the public and standard
splits as used in the cited papers. Detailed descriptions and
splits of the datasets are provided in Appendix F.1.

Baselines We compare FD-GCL with several recent state-
of-the-art unsupervised learning methods: DGI (Velickovic
et al., 2019), GMI (Peng et al., 2020), MVGRL (Hassani
& Khasahmadi, 2020b), GRACE (Zhu et al., 2020), GCA
(Zhu et al., 2021), CCA-SSG (Zhang et al., 2021), BGRL
(Thakoor et al., 2022), AFGRL (Lee et al., 2022), Local (L)-
GCL (Zhang et al., 2022), HGRL (Chen et al., 2022), DSSL
(Xiao et al., 2022), SP-GCL (Wang et al., 2023), GraphACL
(Xiao et al., 2023), and PolyGCL (Chen et al., 2024). The
detailed descriptions and implementations of these baselines
are given in Appendix F.2.

Evaluation protocol To evaluate the quality of the rep-
resentation, we focus on the node classification task. Fol-
lowing the standard linear evaluation protocol, we train a
linear classifier on the frozen representations and report the
test accuracy as the evaluation metric. Results for graph
classification are reported in Appendix G.3.

Setup For FD-GCL here, we apply the basic GRAND ver-
sion of F in (2), i.e.,−(I−A)Z(t). Other options for F are
explored and evaluated in Appendix C and Appendix G.2.

We initialize model parameters randomly and train the en-

coder using the Adam optimizer. Each experiment is con-
ducted with ten random seeds, and we report the average
performance along with the standard deviation. To ensure
a fair comparison, the best hyperparameter configurations
for all methods are selected based solely on validation set
accuracy. For baselines lacking results on certain datasets or
not utilizing standard public data splits (Chen et al., 2022;
2024; Xiao et al., 2022), we reproduce their outcomes with
the official code of the authors. Additional implementation
details and the hyperparameter search space are provided in
Appendix F.3.

5.2. Overall Performance Comparison

We show the node classification results for homophilic and
heterophilic datasets in Table 1 and Table 2, respectively.
Notably, FD-GCL achieves the best performance across
most datasets, excelling in both homophilic and heterophilic
datasets. Specifically, FD-GCL demonstrates significant rel-
ative improvements on heterophilic datasets compared to
the second-best method, achieving improvements of 9.87%
on Squirrel, 5.2% on Chameleon, 2.16% on Wisconsin,
8.24% on Cornell, 6.22% on Texas, and 1.33% on Actor.
This is while maintaining competitive performance on ho-
mophilic graphs. Contrastive strategies such as CCA-SSG,
GCA, and BGRL, which rely on augmentations, struggle
on heterophilic graphs due to their implicit reliance on the
homophily assumption. Meanwhile, our augmentation-free
FD-GCL consistently outperforms other augmentation-free
methods (e.g., L-GCL, SP-GCL, DSSL, and GraphACL)
across both homophilic and heterophilic datasets. This im-
provement can be attributed to the FDE-based encoders,
which enable more effective representations for diverse
graph structures. The corresponding values of α1 and α2 for

6
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Table 1. Node classification results(%) on homophilic datasets. The best and the second-best result under each dataset are highlighted in
red and blue, respectively. OOM refers to out of memory on an NVIDIA RTX A5000 GPU (24GB).
Method DGI GMI MVGRL GRACE GCA CCA-SSG BGRL AFGRL SP-GCL GraphACL PolyGCL FD-GCL

Cora 82.30±0.60 82.70±0.20 82.90±0.71 80.00±0.41 82.93±0.42 84.00±0.40 82.70±0.60 82.31±0.42 83.16±0.13 84.20±0.31 81.97±0.19 84.50±0.43
Citeseer 71.80±0.70 73.01±0.30 72.61±0.70 71.72±0.62 72.19±0.31 73.10±0.30 71.10±0.80 68.70±0.30 71.96±0.42 73.63±0.22 71.97±0.29 73.72±0.30
Pubmed 76.80±0.60 80.11±0.22 79.41±0.31 79.51±1.10 80.79±0.45 81.00±0.40 79.60±0.50 79.71±0.21 79.16±0.84 82.02±0.15 77.48±0.39 82.02±0.28
Computer 83.95±0.47 82.21±0.34 87.52±0.11 86.51±0.32 87.85±0.31 88.74±0.28 89.69±0.37 89.90±0.31 89.68±0.19 89.80±0.25 86.73±0.34 90.13±0.45
Photo 91.61±0.22 90.72±0.21 91.72±0.10 92.5±0.22 91.70±0.10 93.14±0.14 92.90±0.30 93.25±0.33 92.49±0.31 93.31±0.19 91.67±0.21 94.17±0.86
Arxiv 70.32±0.25 OOM OOM OOM 69.37±0.20 71.21±0.20 71.64±0.24 OOM 68.25±0.22 71.72±0.26 OOM 70.46±0.13

Table 2. Node classification results(%) on heterophilic datasets. The best and the second-best result under each dataset are highlighted in
red and blue, respectively.
Method DGI GCA CCA-SSG BGRL HGRL L-GCL DSSL SP-GCL GraphACL PolyGCL FD-GCL

Squirrel 26.44±1.12 48.09±0.21 46.76±0.36 36.22±1.97 48.31±0.65 52.94±0.88 40.51±0.38 52.10±0.67 54.05±0.13 34.25±0.66 64.92±1.46
Chameleon 60.27±0.70 63.66±0.32 62.41±0.22 64.86±0.63 65.82±0.61 68.74±0.49 66.15±0.32 65.28±0.53 69.12±0.24 46.84±1.53 74.32±1.24
Crocodile 51.25±0.51 60.73±0.28 56.77±0.39 53.87±0.65 61.87±0.45 60.18±0.43 62.98±0.51 61.72±0.21 66.17±0.24 65.95±0.59 68.73±0.77
Actor 28.30±0.76 28.47±0.29 27.82±0.60 28.80±0.54 27.95±0.30 32.55±1.18 28.15±0.31 28.94±0.69 30.03±0.13 34.37±0.69 35.70±1.08
Wisconsin 55.21±1.02 59.55±0.81 58.46±0.96 51.23±1.17 63.90±0.58 65.28±0.52 62.25±0.55 60.12±0.39 69.22±0.40 76.08±3.33 79.22±5.13
Cornell 45.33±6.11 52.31±1.09 52.17±1.04 50.33±2.29 51.78±1.03 52.11±2.37 53.15±1.28 52.29±1.21 59.33±1.48 43.78±3.51 67.57±5.27
Texas 58.53±2.98 52.92±0.46 59.89±0.78 52.77±1.98 61.83±0.71 60.68±1.18 62.11±1.53 59.81±1.33 71.08±0.34 72.16±3.51 78.38±5.80
Roman 63.71±0.63 65.79±0.75 67.35±0.61 68.66±0.39 71.84±0.41 69.74±0.53 71.70±0.54 70.88±0.35 74.91±0.28 72.97±0.25 72.56±0.63
Arxiv-year 39.26±0.72 42.96±0.39 37.38±0.41 43.02±0.62 43.71±0.54 43.92±0.52 45.80±0.57 44.11±0.35 47.21±0.39 43.07±0.23 47.22±0.13

each dataset are reported in Table 8 in Appendix F.3.

5.3. Ablation Studies

The effect of order parameters We evaluate the perfor-
mance of the FD-GCL model under various configurations
of the parameters α1 and α2. Specifically, we consider cases
where α1 and α2 (i) differ significantly, (ii) differ slightly,
and (iii) are equal. The configurations include α1 = α2 = 1,
α1 = α2 = 0.5, and α1 = α2 = 0.1. Additionally, we com-
pare these configurations with a standard 2-layer GCN with
skip connections as the encoder. The experiments are con-
ducted on the Cora (homophilic), Wisconsin (heterophilic),
and Crocodile (heterophilic) datasets, using classification
accuracy as the evaluation metric. The results are shown
in Table 3. The findings suggest that configurations with
distinct α1 and α2 generally outperform those with equal
values. Larger α2 − α1 encourages the FDE-based encoder
to generate more diverse graph views, enhancing the con-
trastive learning process and enabling the model to capture
richer and more discriminative representations. In contrast,
the equality of parameters α1 = α2 may lead to less di-
verse views, potentially limiting the model’s ability to learn
comprehensive representations.

Loss functions To evaluate the performance of FD-GCL
under different contrastive learning paradigms, we com-
pare several widely used contrastive loss functions in terms
of their impact on the final feature representations Z1 and
Z2. Specifically, we assess classification accuracy on two
benchmark datasets: Cora (homophilic) and Wisconsin (het-
erophilic). The contrastive loss functions considered include
Euclidean loss, Cosmean, Barlow Twins loss (Zbontar et al.,

Table 3. Node classification results (%) across different datasets
and parameter configurations.

Method Cora Wisconsin Crocodile

GCN 56.23±0.54 65.10±5.60 62.58±0.85

FD-GCL

α1 = α2 = 1 78.09±0.19 61.57±6.21 63.57±1.01
α1 = α2 = 0.5 81.19±0.12 66.27±3.59 60.32±0.92
α1 = α2 = 0.1 77.52±0.13 77.06±4.64 67.89±0.98
α1 = 0.1, α2 = 0.2 78.65±0.17 74.71±3.77 68.06±1.16
α1 = 0.5, α2 = 1 82.53±0.13 63.33±6.27 68.42±0.71
α1 = 0.01, α2 = 1 84.27±0.27 79.22±5.13 68.99±0.66

2021), VICReg loss (Bardes et al., 2022), and our pro-
posed Regularized Cosmean loss. The results, summarized
in Fig. 5, highlight the effectiveness of the Regularized Cos-
mean loss. Unlike other loss functions, which exhibit perfor-
mance degradation as training progresses, the Regularized
Cosmean loss maintains consistent accuracy across training
epochs, demonstrating superior stability. This consistency
can be attributed to its ability to mitigate dimension col-
lapse, ensuring reliable performance over extended training
periods. Additional details on the definitions of these loss
functions and further comparison results on other datasets
are provided in Appendix F.4.

5.4. Complexity Analysis

The training time complexity of FD-GCL consists of two
components: the learning of FDE encoders and the loss
computation. Suppose the graph consists of N nodes and
|E| edges. The numerical solution of FDE is computed it-
eratively for E := T/h time steps, where h represents the
discretization size and T the integration time. At each step,
the function F (W,Zj) is evaluated, with intermediate re-
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Figure 5. Accuracy vs. training epochs for various loss functions
on the Cora and Wisconsin datasets.

sults {F (W,Zj)}j stored for efficiency. Assuming F cor-
responds to the GRAND model (Chamberlain et al., 2021b),
the cost per evaluation is C = |E|d, where |E| represents the
edge set size and d the dimensionality of the features. The
total complexity for solving the FDE is O

(
E|E|d+ E2

)
.

With fast convolution algorithms (Mathieu et al., 2013), this
can be reduced to O(EC +E logE). Meanwhile, the com-
putation of L costs O(N) time. Thus the overall training
time complexity of FD-GCL is O(EC + E logE +N).

Comparisons of training time and storage with baselines
are summarized in Table 4 and Table 5, respectively. The
results, particularly training time comparisons, support that
our model is simple and efficient. It scales well as the graph
size increases.

Table 4. Training time (s) across different datasets with single train-
ing epoch. OOM refers to out of memory on an NVIDIA RTX
A5000 GPU (24GB).

Method Cora Wisconsin Arxiv

GraphACL 0.22 0.63 927.48
PolyGCL 0.34 0.23 OOM
FD-GCL 0.28 0.30 3.16

Table 5. Storage (MiB) across different datasets. OOM refers to
out of memory on an NVIDIA RTX A5000 GPU (24GB).

Method Cora Wisconsin Arxiv

GraphACL 326 204 6114
PolyGCL 4098 894 OOM
FD-GCL 1020 556 18192

6. Conclusion
We have proposed a simple and effective augmentation-free
graph contrastive learning framework using graph neural
diffusion models governed by fractional differential equa-
tions. By varying the order parameter, our method gener-
ates diverse views that capture both local and global graph
information, eliminating the need for both complex aug-
mentations and negative samples. It achieves state-of-the-art
performance across diverse datasets. Future work could ex-
plore adaptive or data-driven strategies to improve efficiency
and scalability, particularly, in tuning the order parameters.

7. Limitations
While our framework achieves state-of-the-art performance
and removes the need for complex augmentations and nega-
tive samples, it has some limitations. The order parameters
must be tuned manually, which may impede large-scale
or real-time applications. The diffusion process can be ex-
pensive on massive graphs, and generalizability to highly
irregular or evolving topologies remains understudied. Fur-
thermore, performance may degrade in low-data settings,
where there is insufficient data to guide parameter opti-
mization. Future work could address adaptive parameter
selection, scalability improvements, and robust methods for
highly dynamic graphs.

8
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Impact Statement
This paper introduces a pioneering framework for
augmentation-free contrastive learning by means of using
FDE-based graph neural diffusion models, poised to signifi-
cantly influence both the development of GNNs and their
applications across diverse domains. By leveraging continu-
ous dynamics governed by fractional differential equations,
our approach enhances the flexibility and robustness of rep-
resentation learning while eliminating the need for both
complex augmentations and negative samples. The societal
impact of this work depends on a commitment to ethical
standards and responsible use, ensuring that advancements
in contrastive learning lead to positive outcomes without
exacerbating biases, inequality, or misuse in sensitive appli-
cations.
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A. List of Notations
For easy reference, we list the most used notations in Table 6.

Table 6. List of notations
Graph G = (V, E)
Nodes v1, . . . , vN

Adjacency (and normalized adj.) matrix A = (aij),A

Normalized Laplacian L = UΛU⊺

Eigenvectors and eigenvalues ui, λi

Encoders fθ, fθ1 , fθ2

Differential order parameters α, α1, α2

Differential operators d/ dt,Dα
t

Initial features X = [x⊺i ]

Learned features Z,Z1,Z2,Zα1
(t),Zα2

(t)

Linear encoder parameters Wl

Loss functions L0,L

B. More on Related Works
B.1. Graph Contrastive Learning without Augmentation

Deep Graph Infomax (DGI) (Velickovic et al., 2019) is a foundational framework in graph contrastive learning, maximizing
mutual information (MI) between local node features and a global graph representation. It employs a readout function
to aggregate node features into a global representation and a discriminator to distinguish positive samples, derived from
the original graph, from negative samples, corrupted graph via shuffled node features. This corruption serves as augmen-
tation, boosting robustness and generalizability. Contrastive Multi-view Representation Learning (MVGRL) (Hassani &
Khasahmadi, 2020a) extends this approach by incorporating multiple graph views derived from different graph diffusion
processes. Its discriminator contrasts node-level and graph-level representations across views, enhancing representation
quality. Cross-Scale Contrastive Graph Knowledge Synergy (CGKS) (Zhang et al., 2023) further builds a graph pyramid of
coarse-grained views and introduces a joint optimization strategy with a pairwise contrastive loss to promote knowledge
transfer across scales.

GRACE (Zhu et al., 2020) adopts a unique strategy by generating two graph views through edge removal and node feature
masking, then maximizing the agreement between their node embeddings. It also leverages both inter-view and intra-view
negative pairs to enrich the learning process. GCA (Zhu et al., 2021) builds on this by introducing adaptive augmentation
for graph-structured data, leveraging priors from both topological and semantic graph information. Unlike prior methods
that rely on two correlated views, ASP (Chen & Kou, 2023) incorporates three distinct views—original, attribute, and
global—into a joint contrastive learning framework, enhancing representation learning across these perspectives.

GraphCL (You et al., 2020) introduces various augmentation strategies specifically designed for graph data. DSSL (Xiao
et al., 2022) and HGRL (Chen et al., 2022) extend unsupervised learning to nonhomophilous graphs by capturing global and
high-order information. HGRL relies on graph augmentations, while DSSL assumes a graph generation process, which may
not always reflect real-world graphs. While these methods have advanced graph contrastive learning, augmentation-based
approaches face limitations. Their performance is sensitive to the choice of augmentation, and no universally optimal strategy
exists. Additionally, augmentation-based GCL methods tends to focus the encoder on capturing low-frequency information
while neglecting high-frequency components, which reduces performance on heterophilic graphs (Liu et al., 2022).

To address these limitations, augmentation-free methods have emerged. Followed by DGI, Graphical Mutual Information
(GMI) (Peng et al., 2020) directly measures mutual information (MI) between input data and representations of nodes and

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Simple Graph Contrastive Learning via Fractional-order Neural Diffusion Networks

edges without relying on data augmentation, providing a more direct approach to optimizing information preservation.
Similarly, L-GCL (Zhang et al., 2022) avoids augmentations but focuses on homophilous graphs. SP-GCL (Wang et al.,
2023), on the other hand, effectively handles heterophilic graphs by capturing both low- and high-frequency components.
GraphACL (Xiao et al., 2023) further eliminates both augmentations and homophily assumptions, ensuring robust and
consistent performance across diverse graph structures. PolyGCL (Chen et al., 2024) leverages polynomial filters with
learnable parameters to generate low-pass and high-pass spectral views, achieving contrastive learning without relying on
complex data augmentations.

B.2. Graph Contrastive Learning without Negative Sample Pairs

Building on the success of BYOL in image data, BGRL (Thakoor et al., 2022) eliminates the need for negative samples in
graph contrastive learning. It generates two graph augmentations using random node feature masking and edge masking
and employs an online encoder and a target encoder. The objective is to maximize the cosine similarity between the online
encoder’s prediction and the target encoder’s embedding. A stop-gradient operation in the target encoder prevents mode
collapse, ensuring stable training.

Augmentation-Free Graph Representation Learning (AFGRL) (Lee et al., 2022) addresses the limitations of augmentation-
dependent methods like BGRL and GCA (Zhu et al., 2021), where representation quality heavily depends on the choice of
augmentation schemes. Building on the BGRL framework, AFGRL eliminates the need for augmentations by generating
positive samples directly from the original graph for each node. This approach captures both local structural information and
global semantics. However, it introduces higher computational costs.

Inspired by Canonical Correlation Analysis (CCA) methods (Hardoon et al., 2004), CCA-SSG (Zhang et al., 2021)
introduces an unsupervised learning framework for graphs without relying on negative sample pairs. It maximizes the
correlation between two augmented views of the same input while decorrelating the feature dimensions within a single
view’s representation.

These advancements highlight promising alternatives to traditional graph contrastive learning methods. Employing
augmentation-free frameworks or innovative masking strategies mitigates challenges associated with negative sample
selection and augmentation dependency, offering robust solutions for graph representation learning.

C. Integer-order Continuous GNNs
Recent works, including GRAND (Chamberlain et al., 2021b), GraphCON (Rusch et al., 2022), GREAD (Choi et al.,
2023), CDE (Zhao et al., 2023), have employed ordinary or partial differential equations (ODEs/PDEs) on graphs for
feature aggregation. These continuous GNN models typically use the usual integer-order derivatives. We shall highlight the
governing differential equation in each of these models.

GRAND: GRAND models heat diffusion on graphs. For the basic GRAND-l model, the governing differential equation for
the diffusion process is:

dZ(t)

dt
= −LZ(t). (3)

More generally, the adjacency matrix can be updated during learning via the attention between node features, and the
resulting model is called GRAND-nl.

GraphCON: GraphCON is governed by a second-order ODE modeling oscillator dynamical systems:

d2Z(t)

dt2
= σ(Fθ(Z(t), t))− γZ(t)− ν

dZ(t)

dt
, (4)

where Fθ(·) represents a learnable 1-neighborhood coupling function, σ is an activation function, and γ and ν are adjustable
parameters.

CDE: CDE is Based on the convection-diffusion equation. It includes a diffusion term and a convection term, and the latter
is to address information propagation from heterophilic neighbors. More specifically, the ODE takes the following form:

dZ(t)

dt
= −LZ(t) + div(V(t) ◦ Z(t)). (5)
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Compared with GRAND, there is an addition of the term involving V. To explain, Vij(t) ∈ Rd is the velocity vector
associated with each edge (i, j) at time t. One has (E be the edge set):

i-th row of (div(V(t) ◦ Z(t))) =
∑

j:(i,j)∈E

Vij(t)⊙ zj(t). (6)

The velocity Vij(t) is given by

Vij(t) = σ (M(zj(t)− zi(t))) , (7)

with M is a learnable matrix and σ is an activation function.

GREAD: GREAD is also proposed to handle heterophilic graphs. It has a similar high-level idea to CDE by adding a
reaction term to the ODE of GRAND, thereby establishing a diffusion-reaction equation for GNNs. The governing equation
for this model is expressed as:

dZ(t)

dt
= −γL(Z(t)) + νr(Z(t)), (8)

where r(Z(t)) is the reaction term, γ and ν are trainable weight parameters.

D. Fractional-order Derivatives and GNNs
Kang et al. (2024); Zhao et al. (2024) extend the ODE-based approaches by incorporating graph neural Fractional-order
Differential Equations (FDEs), generalizing the order of the derivative to positive real number α. The motivation is the
solution to an FDE that encodes historical information and thus retains the “memory” of the evolution.

D.1. Fractional-order Derivatives

Recall that the first-order derivative of a scalar function f(t) is defined as the rate of change of f at a time t:

f ′(t) =
df(t)

dt
= lim

∆t→0

f(t+∆t)− f(t)

∆t

It is local in the sense that f ′(t) is determined by the value of f in a small neighborhood of t.

Fractional-order derivatives Dα
t generalize integer derivatives and the domain of α is extended to any positive real number.

By the relation Dα+1
t = Dα

t D
1
t , it suffices to define Dα

t for the order parameter α ∈ (0, 1). For the encoder design in this
paper, we only consider α ∈ (0, 1]. The domain is large enough for us to choose encoders that generate different views.
Moreover, solving a higher-order FDE requires additional information such as the initial derivative, which is usually not
available.

Although there are different approaches to defining Dα
t , they all share the common characterization that the derivative

is defined using an integral. Hence, the operator is “global” as historical values of the function are used. We show two
approaches below.

The left fractional derivative (Stinga, 2023) of f(t) is defined by the following integral

Dα
t f(t) =

1

Γ(−α)

∫ ∞

0

f(t− τ)− f(t)

τ1+α
dτ,

where Γ(·) is the Gamma function (see (9) below).

On the other hand, the Caputo fractional derivative (Diethelm, 2010) is defined as

Dα
t f(t) =

1

Γ(1− α)

∫ t

0

f ′(τ)

(t− τ)α
dτ.

One can find other approaches and more discussions in Tarasov (2011).
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D.2. Incorporating FDE

To build a diffusion model based on FDE, it usually suffices to replace the integer order derivative with a fractional-order
derivative in the governing differential equation. For example, the ODE in the GraphCON model (Rusch et al., 2022) is
equivalent to a system of equations:

dY(t)

dt
= σ (Fθ(Z(t), t))− γZ(t)− νY(t)

dZ(t)

dt
= Y(t).

Replacing d/ dt with Dα
t , one obtains its FDE version as

Dα
t Y(t) = σ (Fθ(Z(t), t))− γZ(t)− νY(t)

Dα
t Z(t) = Y(t).

A numerical solver is provided in Kang et al. (2024).

E. Theoretical Discussions
In this section, we provide a rigorous discussion of the formal version of Theorem 1. To do this, we need the Mittag-Leffler
functions, which were introduced by Mittag-Leffler in 1903 in the form of a Maclaurin series. We focus on a special case
defined as follows:

eα(λ, t) =

∞∑
n=0

(−1)n λntαn

Γ(αn+ 1)
, λ > 0, t ≥ 0.

Here, Γ(·) denotes the Gamma function, which is a meromorphic function on C defined by the integral

Γ(z) =

∫ ∞

0

tz−1e−t dt, (9)

for ℜ(z) > 0.

We make the following assumptions regarding the encoder. The function F in (2) is the simple −LX as described after (1).
For Dα

t , we consider the left fractional derivative. For the model, we apply skip-connection after a diffusion of length τ ,
and there are m-iterations so that the total time is T = mτ . We shall consider α ∈ (0, 1), and this a mild assumption, as
we have seen that D1

t = d/ dt is the limit of Dα
t when α→ 1. The following formal version of Theorem 1 analyzes the

(asymptotic) properties of the Fourier coefficients of the output features.

Theorem 2. Suppose G is a connected graph and 0 < α1 < α2 < 1 are the order parameters. For l = 1, 2, let nl ≥ 1 be
the integer such that nlαl < 1 ≤ (nl + 1)αl. Consider a graph signal x with Fourier coefficients {ci, 1 ≤ i ≤ N}. Let
zαl

(T ) be the output features of the encoders with order parameters αl. Its Fourier coefficients are {cαl,i(T ), 1 ≤ i ≤ N}.
Then the following holds:

(a) We have the expression:

cαl,i(T ) =
( nl∑

j=0

bαl,i,jτ
−jαl +O(

1

τ
)
)
ci,

and bαl,i,j > 0.

(b) For fixed l and j, the coefficient bαl,i,j is decreasing w.r.t. i.

(c) For fixed i and j, we have bα1,i,j > bα2,i,j .
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Proof. Let L = UΛU⊺ be the orthogonal eigendecomposition of L. As L is positive semi-definite, its (ordered) eigenvalues
satisfy 0 = λ1 < λ2 ≤ λ3 . . . ≤ λN . Notice we have λ2 > 0 as G is connected. To solve the FDE Dα

t zα(t) = −Lzα(t),
we perform eigendecomposition:

Dα
t zα(t) = −UΛU

⊺
zα(t), and hence Dα

t U
⊺
zα(t) = −ΛU

⊺
zα(t).

Therefore, the spectral decomposition of the dynamics zα(t) follows the equation Dα
t cα(t) = −Λcα(t), where the i-th

entry of cα(t) is cα,i(t).

For consistency, we set eα(0, t) = 1 the constant function independent of α. Therefore, by Stinga (2023), we have the
solution cα,i(t) = eα(λ, t)cα,i(0), 1 ≤ i ≤ N , where cα,i(0) = ci depends only on the input feature. Recall we perform
diffusion for a time τ followed by a skip-connection for m iterations. The coefficients of the spectral decomposition of the
final output features are

cα,i(T ) =
(
1 + . . .+ eα(λ, τ)

(
1 + eα(λ, τ)

))
cα,i(0)

=
(
1 + eα(λ, τ) + . . .+ eα(λ, τ)

m
)
cα,i(0).

(10)

The case cα,i(0) = ci = 0 is trivial as we can set bαl,i,j to be any positive number. We assume cα,i(0) ̸= 0 for the rest of
the proof, and want to estimate 1 + eα(λ, τ) + . . .+ eα(λ, τ)

m for α = α1 and α2.

By Erdelyi et al. (1955), if λ > 0, eαl
(λ, τ) satisfies the following asymptotic estimation:

eαl
(λ, τ) =

nl∑
j=1

1

λj
iΓ(1− jαl)

τ−jαl +O(
1

τ
). (11)

The Gamma function Γ(·) is positive and strictly decreasing on the interval (0, 1] (e.g., Γ(1) = 1! = 1). Therefore, as
1− jαl > 0, the coefficient of τ−jαl in (11) is positive. Moreover, for l = 1, 2 and i ≥ 2, we have

1

λj
iΓ(1− jα1)

>
1

λj
iΓ(1− jα2)

and
1

λj
iΓ(1− jαl)

≥ 1

λj
i+1Γ(1− jαl)

. (12)

Now to compare the solution for l = 1, 2, we express eα1(λ, τ)
k as follows

eα1
(λ, τ)k =

( n2∑
j=1

1

λj
iΓ(1− jα1)

τ−jα1 +

n1∑
j=n2+1

1

λj
iΓ(1− jα1)

τ−jα1

)k

+O(
1

τ
).

As compared with

eα2
(λ, τ)k =

( n2∑
j=1

1

λj
iΓ(1− jα2)

τ−jα2

)k

+O(
1

τ
),

we see that up to O( 1τ ), eα2
(λ, τ)k and hence cα2,i(T )/cα2,i(0) (cf. (10)) consists of a summation of terms τ−jα2 for 1 ≤

j ≤ n2, and the positive coefficient τ−jα2 is smaller than that of τ−jα1 in cα1,i(T )/cα1,i(0). Moreover, cα1,i(T )/cα1,i(0)
has addition terms τ−jα1 , n2 < j ≤ n1 with positive coefficients. This proves (a) and (c). From the second equality in (12),
we obtain the conclusion that bαl,i,j is decreasing w.r.t. i, as claimed in (b).

To explain Theorem 1, t in Theorem 1 corresponds to T = mτ in Theorem 2, and once the number of iterations m is
fixed, τ → ∞ if and only if t → ∞. The signal x in Theorem 2 is a component (i.e., a column) of the feature matrix X.
By Theorem 2, the Fourier coefficients cαl,i(t) of Zαl

(t), l = 1, 2, relative to the Fourier coefficients of the input features,
decreases as the frequency index i increases. Moreover, the decrement for Zα1

(t) is much slower than that of Zα2
(t) as t

increases. The difference in the rate increases accordingly as α2 − α1 becomes larger. As the leading Fourier coefficients
(i = 0) are both the same (= m), the Fourier coefficients of Zα1(t) are more spread, whence the claims of Theorem 1.
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For most datasets studied in the paper, we choose α1 ≤ 0.1 and α2 > 0.5, and thus n2 = 1. By (10) and (11), the following
holds for cα2,i(T ):

cα2,i(T )/cα2,i(0) = 1 +
1

λiΓ(1− α2)
τ−α2 +O(

1

τ
).

For cα1,i(T )/cα1,i(0), we can identify a summand 1/
(
λiΓ(1− α1)

)
· τ−α2 . The ratio between 1/

(
λiΓ(1− α1)

)
· τ−α1

and 1/
(
λiΓ(1− α2)

)
· τ−α2 is at least

√
π/1.07 · τ0.4. This gives us some understanding of how these two sets of Fourier

coefficients differ.

F. Experimental Details
F.1. Details of Datasets

Table 7. Statistics of homophilic and heterophilic graph datasets
Dataset Nodes Edges Classes Node Features Data splits

Cora 2708 5429 7 1433 standard
Citeseer 3327 4732 6 3703 standard
PubMed 19717 88651 3 500 standard

Computer 13752 574418 10 767 10%/10%/80%
Photo 7650 119081 8 745 10%/10%/80%

Ogbn-arxiv 169343 1166243 40 128 standard

Texas 183 309 5 1793 48%/32%/20%
Cornel 183 295 5 1703 48%/32%/20%

Wisconsin 251 466 5 1703 48%/32%/20%
Chameleon 2277 36101 5 2325 48%/32%/20%

Squirrel 5201 217073 5 2089 48%/32%/20%
Crocodile 11631 360040 5 2089 48%/32%/20%

Actor 7600 33391 5 932 48%/32%/20%
Roman 22662 32927 18 300 50%/25%/25%

Arxiv-year 169343 1166243 5 128 50%/25%/25%

Detailed descriptions of the datasets are given below:

Cora, Citeseer, and Pubmed (Kipf & Welling, 2017). These datasets are among the most widely used benchmarks for
node classification. Each dataset represents a citation graph with high homophily, where nodes correspond to documents
and edges represent citation relationships. Node class labels reflect the research field, and node features are derived from
a bag-of-words representation of the abstracts. The public dataset split is used for evaluation, with 20 nodes per class
designated for training, and 500 and 1,000 nodes fixed for validation and testing, respectively.

Computer and Photo (McAuley et al., 2015; Thakoor et al., 2022). These datasets are co-purchase graphs from Amazon,
where nodes represent products, and edges connect products frequently bought together. Node features are derived from
product reviews, while class labels correspond to product categories. Following the experimental setup in Zhang et al. (2022),
the nodes are randomly split into training, validation, and testing sets, with proportions of 10%, 10%, and 80%, respectively.

Ogbn-arxiv (Arxiv) (Hu et al., 2020). This dataset is a citation network of Computer Science (CS) papers on arXiv. Each
node represents a paper, and edges indicate citation relationships. Node features are 128-dimensional vectors obtained by
averaging word embeddings from the paper’s title and abstract, generated using the skip-gram model on the MAG corpus.
Consistent with Hu et al. (2020), the public split is used for this dataset.

Texas, Wisconsin and Cornell (Rozemberczki et al., 2021). These datasets are webpage networks collected by Carnegie
Mellon University from computer science departments at various universities. In each network, nodes represent web pages,
and edges denote hyperlinks between them. Node features are derived from bag-of-words representations of the web pages.
The task is to classify nodes into five categories: student, project, course, staff, and faculty.

Chameleon, Crocodile and Squirrel (Rozemberczki et al., 2021). These datasets represent Wikipedia networks, with
nodes corresponding to web pages and edges denoting hyperlinks between them. Node features are derived from prominent
informative nouns on the pages, while node labels reflect the average daily traffic of each web page.
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Actor (Pei et al., 2020). This dataset is an actor-induced subgraph extracted from the film-director-actor-writer network.
Nodes represent actors, and edges indicate their co-occurrence on the same Wikipedia page. Node features are derived from
keywords on the actors’ Wikipedia pages, while labels categorize the actors into five groups based on the content of their
Wikipedia entries.

For Texas, Wisconsin, Cornell, Chameleon, Crocodile, Squirrel, and Actor datasets, we utilize the raw data provided
by Geom-GCN (Pei et al., 2020) with the standard fixed 10-fold split for our experiments. These datasets are available for
download at: https://github.com/graphdml-uiuc-jlu/geom-gcn.

Roman-empire (Roman) (Platonov et al., 2023) is a heterophilous graph derived from the English Wikipedia article on the
Roman Empire. Each node represents a word (possibly non-unique) in the text, with features based on word embeddings.
Node classes correspond to syntactic roles, with the 17 most frequent roles as distinct classes, and all others grouped into
an 18th class. Following Platonov et al. (2023), we use the fixed 10 random splits with a 50%/25%/25% ratio for training,
validation, and testing.

Arxiv-year (Lim et al., 2021) is a citation network derived from a subset of the Microsoft Academic Graph, focusing on
predicting the publication year of papers. Nodes represent papers, and edges indicate citation relationships. Node features
are computed as the average of word embeddings from the titles and abstracts. Following Lim et al. (2021), the dataset is
split into training, validation, and testing sets with a 50%/25%/25% ratio.

F.2. Baselines

DGI (Velickovic et al., 2019): Deep Graph InfoMax (DGI) is a unsupervised learning method that maximizes mutual
information between node embeddings and a global graph representation. It employs a readout function to generate the
graph-level summary and a discriminator to distinguish between positive (original) and negative (shuffled) node-feature
samples, enabling effective graph representation learning.

GMI (Peng et al., 2020): Graphical Mutual Information (GMI) measures the mutual information between input graphs and
hidden representations by capturing correlations in both node features and graph topology. It extends traditional mutual
information computation to the graph domain, ensuring comprehensive representation learning.

MVGRL (Hassani & Khasahmadi, 2020b): Contrastive Multi-View Representation Learning (MVGRL) leverages multiple
graph views generated through graph diffusion processes. It contrasts node-level and graph-level representations across
these views using a discriminator, enabling robust multi-view graph representation learning.

GRACE (Zhu et al., 2020): Graph contrastive representation learning (GRACE) model generates two correlated graph
views by randomly removing edges and masking features. It focuses on contrasting node embeddings across these views
using contrastive loss, maximizing their agreement while incorporating inter-view and intra-view negative pairs, without
relying on injective readout functions for graph embeddings.

GCA (Zhu et al., 2021): Graph Contrastive Learning with Adaptive Augmentation (GCA) enhances graph representation
learning by incorporating adaptive augmentation based on rich topological and semantic priors, enabling more effective
graph-structured data representation.

CCA-SSG (Zhang et al., 2021): Canonical Correlation Analysis inspired Self-Supervised Learning on Graphs (CCA-SSG)
is a graph contrastive learning model that enhances node representations by maximizing the correlation between two
augmented views of the same graph while reducing correlations across feature dimensions within each view.

BGRL (Thakoor et al., 2022): Bootstrapped Graph Latents (BGRL) is a graph representation learning method that predicts
alternative augmentations of the input using simple augmentations, eliminating the need for negative examples.

AFGRL (Lee et al., 2022): Augmentation-Free Graph Representation Learning (AFGRL) builds on the BGRL framework,
avoiding augmentation schemes by generating positive samples directly from the original graph. This approach captures
both local structural and global semantic information, offering an alternative to traditional graph contrastive methods, though
at the cost of increased computational complexity.

L-GCL (Zhang et al., 2022): Localized Graph Contrastive Learning (LOCAL-GCL) is a unsupervised node representation
learning method that samples positive samples from first-order neighborhoods and employs a kernelized negative loss to
reduce training time.
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HGRL (Chen et al., 2022): It is an unsupervised representation learning framework for graphs with heterophily that
leverages original node features and high-order information. It learns node representations by preserving original features
and capturing informative distant neighbors.

DSSL (Xiao et al., 2022): Decoupled self-supervised learning (DSSL) is a flexible, encoder-agnostic representation learning
framework that decouples diverse neighborhood contexts using latent variable modeling, enabling unsupervised learning
without requiring augmentations.

SP-GCL (Wang et al., 2023): Single-Pass Graph Contrastive Learning (SP-GCL) is a single-pass graph contrastive learning
method that leverages the concentration property of node representations, eliminating the need for graph augmentations.

GraphACL (Xiao et al., 2023): Graph Asymmetric Contrastive Learning (GraphACL) is a simple and effective graph
contrastive learning approach that captures one-hop neighborhood context and two-hop monophily similarities in an
asymmetric learning framework, without relying on graph augmentations or homophily assumptions.

PolyGCL (Chen et al., 2024): It is a graph contrastive learning pipeline that leverages polynomial filters with learnable
parameters to generate low-pass and high-pass spectral views, achieving contrastive learning without relying on complex
data augmentations.

F.3. Hyperparameter Choices

We conduct our experiments on a machine equipped with an NVIDIA RTX A5000 GPU with 24 GB of mem-
ory. A small grid search is performed to identify the optimal hyperparameters. Specifically, we search for T in
{1, 1.5, 2, 2.5, 3, 5, 6, 7, 8, 9, 10, 20, 30}, h in {0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 1, 1.5, 2, 3, 5, 10}, and the hidden dimen-
sion d in {256, 512, 1024, 2048, 4096}.

Both α1 and α2 are initially considered tunable over the range (0, 1]. The general idea is to start searching with large
α2 − α1 (suggested by Theorem 1). To simplify the search and maintain a consistent global view, we fix α2 = 1 and tune
α1 over the range (0, 1] with a step of 0.01. Additionally, the learning rate is searched over {0.005, 0.01, 0.015, 0.02} and
weight decay over {0.001, 0.0001, 0.0005, 0.00001}. Weight β (for combining Z1,Z2) is adjusted within the range [0, 1]
with step of 0.05, and and the regularization weight η is tuned within [0, 0.5) with step of 0.01. The optimal configuration of
hyperparameters is determined based on the average accuracy on the validation set. A detailed summary of the selected
hyperparameters for each dataset is provided in Table 8.

Table 8. Details of the hyperparameters tuned by grid search on various datasets
Datasets T h d lr weight decay epochs α1 α2 β η

Cora 20 1 256 0.01 0.0005 30 0.01 1 0.55 0.15
Citeseer 6 0.4 2048 0.015 0.0005 15 0.08 1 0.55 0.15
Pubmed 3 0.5 4096 0.02 0.0005 1 0.75 1 0.85 0.2
Computer 3 0.5 2048 0.005 0.0005 1 0.94 1 0.96 0.15
Photo 3 0.5 4096 0.005 0.0005 1 0.9 1 0.9 0.04
Arxiv 30 3 256 0.01 0.0005 55 0.01 1 0.55 0.2

Squirrel 40 5 4096 0.01 0.0005 20 0.9 1 0.6 0.01
Chameleon 30 5 4096 0.01 0.0005 20 0.9 1 0.9 0.05
Crocodile 20 2 2048 0.01 0.0005 20 0.1 1 0.55 0.01
Actor 1.5 0.15 2048 0.01 0.0005 5 0.01 1 0.55 0.01
Wisconsin 20 2 2048 0.01 0.0005 30 0.01 1 0.6 0.1
Cornell 20 2 2048 0.01 0.0005 30 0.01 1 0.7 0.2
Texas 30 10 2048 0.01 0.0005 30 0.01 1 0.6 0.01
Roman 2 1.5 4096 0.01 0.0005 2 0.001 1 0.5 0.05
Arxiv-year 2 1 512 0.01 0.0005 2 0.99 1 0.15 0.01

F.4. Contrastive Loss Functions

In the absence of explicit negative samples, non-contrastive methods focus on maximizing agreement among positive
samples. Examples include knowledge-distillation approaches, such as BGRL (Thakoor et al., 2022) (Cosine similarity-based
method), and redundancy-reduction methods, including Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al.,
2022). The definitions of Euclidean loss, Cosmean loss, Barlow Twins loss, and VICReg loss are provided below.
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Let Z1 and Z2 denote two feature representations fed into a contrastive loss function. Suppose each feature representation
consists of N samples, where Z1,i and Z2,i represent the feature vectors corresponding to the i-th sample in Z1 and Z2,
respectively.

Euclidean Loss measures the squared ℓ2-norm between two feature representations Z1 and Z2, encouraging them to be as
close as possible. It is defined as:

LEuclidean =
1

N

N∑
i=1

∥Z1,i − Z2,i∥22.

Cosmean Loss measures the cosine similarity between two feature representations Z1 and Z2, encouraging their alignment.
It is mathematically expressed as

LCosmean = 1− 1

N

N∑
i=1

⟨Z1,i,Z2,i⟩
∥Z1,i∥2∥Z2,i∥2

(13)

where ⟨Z1,i,Z2,i⟩ is the inner product of these two vectors Z1,i and Z2,i, and ∥Z1,i∥2 and ∥Z1,i∥2 are their respective
ℓ2-norms. The cosmean loss is minimized when the feature vectors are perfectly aligned in the same direction, achieving
maximum cosine similarity.

Barlow Twins Loss (Zbontar et al., 2021) is designed to encourage similarity between two feature representations Z1 and
Z2, while reducing redundancy across dimensions within each representation. It is defined as:

LBarlow Twins =
∑
i

(
(1−Cii)

2
)
+ λ

∑
i

∑
i̸=j

C2
ii

where C =
Z
⊺

1Z2

N is the cross-correlation matrix of the normalized feature representations Z1 and Z2, and λ is a trade-off
parameter. The first term minimizes the difference between the diagonal elements of C and 1, ensuring the features from
Z1 and Z2 are highly correlated. The second term minimizes the off-diagonal elements, promoting decorrelation between
features and reducing redundancy. By balancing these two objectives, Barlow Twins Loss enables learning robust and diverse
feature representations.

VICReg Loss (Variance-Invariance-Covariance Regularization Loss) (Bardes et al., 2022) is designed to align two feature
representations, Z1 and Z2, while ensuring variance preservation and minimizing redundancy. It consists of three components:
variance regularization, invariance loss, and covariance regularization. The loss is expressed as:

LVICReg = η1Linv + η2Lvar + η3Lcov,

where η1, η2 and η3 are hyper-parameters controlling the relative contributions of each term. The invariance component Linv
is computed as the mean-squared Euclidean distance of the corresponding samples from Z1 and Z2:

Linv =
1

N

N∑
i=1

∥Z1,i − Z2,i∥22.

The variance component Lvar ensures that each feature dimension in Z1 and Z2 has sufficient variance to potentially prevent
collapse. It is given by

Lvar =
1

d

d∑
j=1

max(0, ε−
√

Var(Z1[:, j])) + max(0, ε−
√

Var(Z2[:, j]))

where Z1[:, j] and Z2[:, j] are the j-th feature columns of Z1 and Z2, respectively. Var(Z1[:, j]) =
1
N

∑N
i=1(Z1[i, j]−µ1,j)

2

is the variance of the j-th feature in Z1 (with µ1,j =
1
N

∑N
i=1 Z1[i, j]), and ε is a small positive constant to enforce nonzero

variance. And the covariance regularization term Lcov reduces redundancy by decorrelating different feature dimensions
within each representation. It is expressed as:

Lcov =
1

d

∑
i̸=j

(
Cov(Z1)

2
j,k + Cov(Z2)

2
j,k

)
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where Cov(Zl)j,k = 1
N

∑N
i=1 (Zl,i,j − µl,j) (Zl,i,k − µl,k) represents the off-diagonal elements of the covariance matrix

for Zl, with l = 1, 2. The hyperparameters η1, η2, and η3 control the relative contributions of variance regularization,
invariance loss, and covariance regularization, respectively. By balancing these three terms, VICReg achieves robust feature
alignment while maintaining diversity and decorrelation, making it particularly effective for unsupervised learning tasks.

Fig. 6 presents additional classification accuracy results on two benchmark datasets: Cornell and Squirrel, evaluated
above various contrastive loss functions. Consistent with the findings in the main text, these results further underscore the
effectiveness of our proposed Regularized Cosmean loss. Unlike other loss functions, which tend to experience performance
degradation as training progresses, the Regularized Cosmean loss demonstrates superior stability by maintaining consistent
accuracy across epochs. These results provide additional evidence of its ability to mitigate dimension collapse and ensure
robust performance.
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Figure 6. Accuracy vs. training epochs for various loss functions on the Cornell and Squirrel datasets

G. More Numerical Results
G.1. T-SNE Visualizations of Node Features

In this section, we present additional t-SNE visualizations of node features for each class in the Cora (homophilic) and
Wisconsin (heterophilic) datasets. These visualizations are generated using encoders with different FDE order parameters,
revealing distinct embedding characteristics produced by the two encoders.
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Figure 7. Cora: labels 1 and 2
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Figure 8. Cora: labels 3 and 4
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Figure 9. Cora: labels 5 and 6
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Figure 10. Wisconsin: labels 0 and 1
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Figure 11. Wisconsin: labels 3 and 4

G.2. Node Classification Results for Different Diffusion Equations

We also report node classification results using alternative choices for F in (2), such as CDE (5) and GREAD (8). The
results, presented in Table 9, demonstrate the generalization and flexibility of FD-GCL.

Table 9. Node classification results (%) across different models in FD-GCL. OOM refers to out of memory.

Model Cora Wisconsin Squirrel Roman

FD-GCL
GRAND 84.20±0.22 79.22±5.13 64.92±1.46 72.56±0.63
CDE 71.79±0.14 74.31±4.42 OOM OOM
GREAD 80.36±0.15 73.73±4.74 65.37±2.00 70.97±0.51

G.3. Graph Classification Results

Most existing works on heterophilic graphs primarily address node-level tasks, such as node classification, making empirical
evaluation on graph-level tasks less straightforward. To adapt to graph classification, we employ a non-parametric graph
pooling (readout) function, such as MeanPooling, to derive graph-level representations. We evaluate the performance of
our method on two widely-used graph classification benchmarks: Proteins and DD. The results, summarized in Table 10,
demonstrate that our FD-GCL framework is also effective for graph classification, delivering competitive performance
compared to baseline methods.

Table 10. Graph classification results (%). The best and the second-best result under each dataset are highlighted in red and blue,
respectively.

Method Proteins DD

InfoGraph(Sun et al., 2019) 74.44±0.40 72.85±1.70
MVGRL(Hassani & Khasahmadi, 2020b) 74.02±0.30 75.20±0.40
GraphCL(You et al., 2020) 74.39±0.45 78.62±0.40
JOAO(You et al., 2021) 74.55±0.41 77.32±0.54
JOAO2(You et al., 2021) 75.35±0.09 77.40±1.11
SimGRACE(Xia et al., 2022) 75.35±0.09 77.44±1.11
DRGCL(Ji et al., 2024) 75.20±0.60 78.40±0.70
CI-GCL (Tan et al., 2024) 76.50±0.10 79.63±0.30
FD-GCL 75.40±0.28 78.53±0.36
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