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Abstract

Learning the optimal policy to balance multiple short-term and long-term rewards
has extensive applications across various domains. Yet, there is a noticeable scarcity
of research addressing policy learning strategies in this context. In this paper, we
aim to learn the optimal policy capable of effectively balancing multiple short-term
and long-term rewards, especially in scenarios where the long-term outcomes are
often missing due to data collection challenges over extended periods. Towards this
goal, the conventional linear weighting method, which aggregates multiple rewards
into a single surrogate reward through weighted summation, can only achieve sub-
optimal policies when multiple rewards are related. Motivated by this, we propose a
novel decomposition-based policy learning (DPPL) method that converts the whole
problem into subproblems. The DPPL method is capable of obtaining optimal
policies even when multiple rewards are interrelated. Nevertheless, the DPPL
method requires a set of preference vectors specified in advance, posing challenges
in practical applications where selecting suitable preferences is non-trivial. To
mitigate this, we further theoretically transform the optimization problem in DPPL
into an ε-constraint problem, where ε represents the minimum acceptable levels of
other rewards while maximizing one reward. This transformation provides intuitive
into the selection of preference vectors. Extensive experiments are conducted on
the proposed method and the results validate the effectiveness of the method.

1 Introduction

Learning an optimal policy for balancing multiple short-term and long-term rewards holds extensive
applications across various domains. For instance, content providers can optimize recommendations
to avoid short-term clickbait strategies, ensuring sustained user engagement and revenue growth [1].
IT companies can design web pages catering to immediate user preferences while enhancing long-
term engagement and satisfaction [2]. Economists explore the effects of early childhood interventions
on lifetime earnings, seeking optimal policies (e.g., class size) maximizing short-term test scores
and long-term earnings simultaneously [3]. Policymakers can improve job training program design,
considering both immediate income impacts and subsequent employment status improvements [4, 5].
Medical practitioners can refine drug prescriptions, considering short-term alleviation and long-term
outcomes in chronic diseases like Alzheimer’s and AIDS [6]. Marketing professionals can optimize
incentive strategies to positively influence customer behavior in both short and long terms [7].

Despite the importance of balancing multiple short-term and long-term rewards, policy learning
methods in this area remain largely unexplored. Recent literature [8] employs a linear weighting
method to achieve this goal. It combines multiple rewards into a single surrogate reward by weighted
summation, which is optimized to learn the optimal policy. However, this strategy has several
limitations. First, it can only find optimal solutions in convex regions of objective space and cannot
obtain the optimal solutions in non-convex regions [9]. Second, it achieves the optimal solution only
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when the rewards are independent of each other. When some of the rewards are interrelated, it can
only achieve sub-optimal solutions [10]. Consequently, although the linear weighting method is easy
to implement, the optimality of its solution cannot be guaranteed when balancing multiple objectives.

In this article, we propose a principled policy learning approach for balancing multiple long-term
and short-term rewards (objectives). Specifically, we first formulate it as a multiple-objective
problem (MOP) and aim to seek the Pareto optimal solutions (policies). A solution is Pareto
optimal if improving one objective necessitates worsening other objectives. Then, we propose a
novel decomposition-based policy learning (DPPL) method, which involves (1) introducing a set of
preference vectors, (2) dividing the whole optimization problem into several subproblems based on
the preference vectors, and (3) ultimately achieving different Pareto solutions for the objectives by
solving these subproblems. Compared with the linear weighting method, it can obtain Pareto optimal
solutions in non-convex regions and is applicable to cases where multiple objectives are interrelated.

While the proposed DPPL method can find Pareto optimal policies, it necessitates specifying a set of
preference vectors in advance. In practical applications, decision-makers may encounter the challenge
of determining which preference vector to choose. To mitigate this concern, we further theoretically
transform the optimization problem in DPPL into an ε-constraint problem. This transformation can
assist decision-makers in better understanding and selecting preference vectors.

The contributions of this paper are summarized as follows.

• We formulate the policy learning problem of balancing multiple long-term and short-term rewards
as a multi-objective optimization problem and propose a decomposition-based Pareto policy learning
(DPPL) method to obtain a set of Pareto optimal policies.

• We theoretically establish the connection between the DPPL method and the ϵ-constraint problem,
offering an intuitive interpretation of preference vectors and guiding their selection.

• We conduct extensive experiments to demonstrate the effectiveness of the proposed method.

2 Problem Formulation

Throughout, we employ bold letters for vectors, uppercase letters for random variables, and lowercase
letters for their realization values.

2.1 Notation

We introduce notations to delineate short-term and long-term causal effects. Let A denote the binary
treatment indicator, where A = 1 represents the treated group and A = 0 represents the control group.
X represents the features observed, S = (S1, ..., SI) ∈ RI and Y = (Y1, ..., YJ) ∈ RJ represent the
vector of short-term and long-term outcomes, respectively. Both short-term and long-term outcomes
are observed after the treatment A, and associations among them may exist.

Utilizing the potential outcome framework [11], we denote S(a) = (S1(a), ..., SI(a)) and Y (a) =
(Y1(a), ..., YJ(a)) for a = 0, 1 as the potential short-term and long-term outcomes under treatment
A = a, respectively. We assume that larger short-term and long-term outcomes are preferable. The
observed short-term and long-term outcomes S and Y correspond to the potential outcomes of the
actual treatment, that is, S = S(A) and Y = Y (A).

In real-world applications, long-term outcomes often suffer from missing due to prolonged follow-up
periods and budget constraints. In contrast, collecting short-term outcomes is more manageable.
Therefore, we presume that all short-term outcomes S are observable, while long-term outcomes Y
may be subject to missing. Let R = (R1, ..., RJ) ∈ {0, 1}J denote the indicator for observing the
long-term outcome Y , where Rj = 1 indicates that Yj is observed and Rj = 0 indicates that Yj is
missing. The missingness of Y would lead to identifiability and estimation problems [12–23].

2.2 Formulation

In this article, we aim to learn the Pareto optimal policy for balancing multiple correlated short-
term and long-term rewards, which has a wide range of application scenarios [1, 6, 8, 24]. Let
π : X → {0, 1} be a policy that maps from the individual context X = x to the treatment space
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{0, 1}. For a given policy π(θ) = π(X,θ) parameterized by θ, the policy values for the i-th
short-term outcome Si and the j-th long-term outcome Yj are defined as,

V(θ; si) = E[π(θ)Si(1) + (1− π(θ))Si(0)], i = 1, ..., I

V(θ; yj) = E[π(θ)Yj(1) + (1− π(θ))Yj(0)], j = 1, ..., J,

which are the i-th short-term reward and the j-the long-term reward induced by the policy π(θ).

Conventionally, we convert maximization problems to minimization problems. Let V̄(θ; si) =
−V(θ; si), V̄(θ; yj) = −V(θ; yj). The trade-off among multiple correlated long-term and short-term
rewards can be formulated as a multi-objective optimization (MOP) problem given by

min
θ

V̄(θ) = (V̄(θ; s1), · · · , V̄(θ; sI), V̄(θ; y1), · · · , V̄(θ; yJ))

≜ (V̄1(θ), V̄2(θ), · · · , V̄M (θ))
(1)

where M = I + J and the symbol ≜ means ‘denoted as’. Generally, there is no single solution that
can simultaneously optimize all objectives in problem (1) and thus we resort to the Pareto optimality.
This concept is employed to define the optimal solutions for the MOP problem.
Definition 1. (Pareto optimality)

(a) Pareto dominance. For two points θ1,θ2. θ1 dominates θ2 if and only if V̄m(θ1) ≤
V̄m(θ2),∀ m ∈ {1, ...,M} and V̄m′(θ1) < V̄m′(θ2), ∃ m′ ∈ {1, ...,M}

(b) Pareto optimality. θ∗ is a Pareto optimal point if there is no other solution θ̂ that dominates θ∗.

Pareto optimality refers to a condition where improving one objective comes at the expense of
worsening other objectives. The collection of Pareto optimal solutions is called the Pareto set. Our
goal is to derive the set of Pareto optimal solutions (or Pareto optimal policies), each of them providing
a distinct optimal trade-off among all objectives.

2.3 Identification and Estimation of Short-term and Long-term Rewards

The long-term and short-term rewards are causal parameters that cannot be identified without imposing
causal assumptions [25–27]. Therefore, before seeking the Pareto optimal solutions for balancing
multiple long-term and short-term rewards, it is necessary to consider the identification and estimation
of long-term and short-term rewards. The proposed method is based on Assumptions 1 and 2 below.
Assumption 1 (Strong Ignorability).

(a) (S(a),Y(a)) ⊥⊥ A | X for a = 0, 1;

(b) 0 < e(x) ≜ P(A = 1 | X = x) < 1 for all x.

Assumption 1(a) suggests that, given the feature X , treatment assignment A is independent of
the potential outcomes S(a) and Y (a). This implies that confounding bias between the treatment
A and the short/long-term outcomes (S(a),Y (a)) can be eliminated by conditioning on X [28].
Assumption 1(b) ensures that for the subpopulation of X = x, units with both A = 1 and A = 0
exist. These assumptions are widely used in causal inference [11, 27, 29–35].

In addition to confounding bias, we also need to address the selection bias induced by the missingness
of long-term outcomes [8]. Thus, we further invoke the Assumption 2.
Assumption 2 (Missing Mechanism of Long-term Outcome). For a = 0, 1 and j = 1, ..., J ,

(a) Rj ⊥⊥ Yj(a) | X,S(a), A = a;

(b) 0 < rj(x, a, s) ≜ P(Rj = 1 | X = x, A = a,S = s).

Assumption 2(a) can be reformulated as Rj ⊥⊥ Yj | (X,S, A), which means that Rj relies only on
the observed variables (X, A,S). This assumption also ensures that P(Yj = y|X,S, A,Rj = 1) =
P(Yj = y|X,S, A,Rj = 0). This implies that we can utilize the available data to draw conclusions
about the missing long-term outcome. Assumption 2(b) assumes that the long-term outcome for each
unit has a non-zero probability of being observed. Assumptions 1 and 2 ensures the identifiability of
V(θ; si) and V(θ; yj), as shown in Lemma 1.
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Lemma 1 (Identifiability of Short-term and Long-term Rewards). For i = 1, ..., I and j = 1, ..., J ,

(a) under Assumptions 1, the i-th short-term reward V(θ; si) is identifiable.

(b) under Assumptions 1-2, the j-th long-term reward V(θ; yj) is identifiable.

When we have access to only one short-term outcome and one long-term outcome, Lemma 1 reduces
to the identifiability result presented in [8]. In this article, our focus is on achieving the Pareto optimal
policy for multiple short-term and long-term rewards. Therefore, for the estimation of V(θ; si) and
V(θ; yj), we defer it to Appendix A.

3 Pareto Policy Learning for Balancing Short-Term and Long-Term Rewards

In this section, we aim to learn Pareto optimal policies for the MOP problem (1). Section 3.1 gives
the motivation for this work and Section 3.2 introduces the proposed policy learning approach. In
Section 3.3, we theoretically establishe the connection between the linear weighting method, the
MOP problem for a given preference vector, and the ε-constraint problem. This connection offers an
intuitive interpretation and guides practitioners in selecting the preference vector.

3.1 Motivation

For seeking the optimal policy for balancing short-term and long-term rewards, previous work [8]
adopted the linear weighting method. Specifically, the authors formulate the goal as

min
θ

V̄(θ) =
M∑

m=1

ωmV̄m(θ), (2)

where ωm is the pre-specified weight for the m-th objective. The objective function in the optimization
problem (2) is merely a linear combination of multiple objectives from the MOP problem (1). Due to
its intuitiveness and simplicity, the traditional linear weighting method is commonly used for solving
MOP or multi-task learning problems [36–38].

The linear weighting method simply combines multiple objectives into a single surrogate objective
through weighted summation. While simple, it has several limitations. First, the optimal solution is
found only in convex regions and not in non-convex regions [9]. Second, an optimal solution can only
be achieved if the objectives are independent of each other. That is, if some objectives are interrelated,
only a suboptimal solution can be obtained [10]. Thus, it does not guarantee the superiority of the
solution or its solution may deviate from the Pareto optimal solution.

To overcome the limitations of the linear weighting method in [8], we first introduce a decomposition-
based multi-objective optimization algorithm to achieve the Pareto optimal policy. However, this
algorithm relies on pre-specified preference vectors, which are used to express a decision maker’s
degree of preference for multiple conflicting objectives. In practice, the explanation and selection of
preference vectors is a challenging problem. To further tackle this issue, we establish a theoretical
relationship between preference vectors and the ε-constraint method [39]. This relationship provides
a clear interpretation on preference vectors, assisting in selecting more suitable ones.

3.2 Pareto Policy Learning for the MOP Problem

We introduce the decomposition-based Pareto policy learning (DPPL) method, which can generate
the Pareto set containing policies that are optimum from a trade-off perspective. The main idea of the
DPPL method is to first decompose the original MOP problem into several constrained subproblems
based on a predefined set of preference vectors, and then obtain a set of Pareto optimal policies by
solving these subproblems in parallel [40].

For obtaining the Pareto optimal policy for balancing M short-term and long-term objectives, first, we
are given a set of K preference vectors {u1,u2, ...,uK} in RM

+ . Each element of a preference vector
specifies the importance of the corresponding short-term or long-term reward. For each preference
vector uk, the corresponding subproblem is given as

min
θ

V̄(θ) = (V̄1(θ), V̄2(θ), · · · , V̄M (θ))

s.t. Gk′(θ) = (uk′ − uk)
T V̄(θ) ≤ 0, ∀ k′ = 1, ...,K,

(3)

4



where Gk′(θt) ≤ 0 means that objective space2 of the subproblem is restricted in the subregion Ωk,
which is defined by Ωk = {v ∈ RM

+ |uT
k′v ≤ uT

k v,∀ k′ = 1, ...,K}. Geometrically speaking, Ωk

represents the set of v that forms the smallest acute angle with uk, which means that the optimal
solution of the subproblem can be obtained by only searching the subregion. The preference vectors
divide the objective space into different subregions.

Solving the subproblem (3) involves the following two steps:

• Step (a). Find a reasonable initial solution θ0. Specifically, we first randomly generate a solution
θr in the full decision space3, and then iteratively update it with the rule θrt+1

= θrt + ηrdrt ,
where ηr is the step size. For a given θrt , the descent direction drt is updated by solving (4).

(drt , αrt) = arg min
d∈Rn,α∈R

α+
1

2
||d||2, s.t.∇Gk′(θrt)

Td ≤ α, k′ ∈ I(θrt). (4)

where I(θrt) = {k′|Gk′(θrt) ≥ 0, k′ = 1, ...,K} is index set of all activated constraints, which
means V̄(θrt) not in Ωk. The problem (4) aims to find the descent direction drt for each iteration
t and then obtain the initial solution θ0 such that V̄(θ0) in Ωk.

• Step (b). Solving the subproblem (3). The descent direction dt for the t-th iteration is obtained by

(dt, αt) = arg min
d∈Rn,α∈R

α+
1

2
||d||2

s.t. ∇V̄m(θt)
Td ≤ α,m = 1, ...,M.

∇Gk′(θt)
Td ≤ α, k′ ∈ Iϵ(θt),

(5)

where Iϵ(θ) = {k′|Gk′(θ) ≥ −ϵ}, and the threshold ϵ is a slack variable used to deal with
the solutions near the constraint boundary. We further transform it into a dual problem which
will greatly reduce the dimension of decision space. Based on the KKT conditions, we have
dt = −(

∑M
m=1 λm∇V̄m(θt) +

∑
k′∈Iϵ(θ)

βk′∇Gk′(θt)). Therefore, the dual problem is given as

max
λm,βk′

−1

2
||

M∑
m=1

λm∇V̄m(θt) +
∑

k′∈Iϵ(θ)

βk′∇Gk′(θt)||2

s.t.

M∑
m=1

λm +
∑

k′∈Iϵ(θ)

βk′ = 1, λm ≥ 0, βk′ ≥ 0,∀m = 1, ...,M,∀ k′ ∈ Iϵ(θ).

(6)

where λm ≥ 0 and βk′ ≥ 0 are the Lagrange multipliers for the linear inequality constraints.

Step (a) is to find an initial solution θ0 that is restricted in a subregion of the subproblem (3), and
once a feasible solution is found or a predetermined number of iterations is reached, the step stops.
For an given initial solution θ0, Step (b) is to find the optimal solution θ∗ for the subproblem (3). We
summarize the proposed policy learning approach in Appendix B.
Lemma 2 ([41]). Let (dt, αt) be the solution to the t-th iteration of problem (5).

(a) If θt is Pareto optimal restricted on Ωk, then dt = 0 ∈ Rm and αt = 0.

(b) If θt is not Pareto optimal restricted on Ωk. then
αt ≤ −(1/2)||dt||2 < 0,

∇V̄m(θt)
Tdt ≤ αt,m = 1, ...,M

∇Gk′(θt)
Tdt ≤ αt, k

′ ∈ Iϵ(θt).
(7)

Lemma 2(a) implies that at the t-th iteration, no direction (dt = 0) can simultaneously improve the
performance for all objectives, confirming that the solution θt satisfies Pareto optimality. Lemma
2(b) suggests that if θt does not meet Pareto optimality, then the descent direction dt ̸= 0 serves
as the descent direction for all objectives, such that the solution of the next iteration is closer to the
Pareto optimal solution. Thus, Lemma 2 demonstrates that we always attain Pareto optimal solutions
for each subproblem using the update rule θt+1 = θt + ηrdt. By solving all subproblems, we can
acquire a diverse set of Pareto optimal solutions (or policies) confined to different subregions, even
when the multiple objectives are correlated.

2V̄(θ) is the objective vector, and the space spanned by the objective vectors is called the objective space Ω.
3The parameter vector θ represents the decision variable and the space spanned it is called the decision space.

5



3.3 Deep Analysis of the Preference Vector

The DPPL method in Section 3.2 requires a set of pre-specified preference vectors, posing challenges
in practical applications where selecting suitable preference vectors is non-trivial. To mitigate this
problem, we provide a practical method for decision-makers to select appropriate preference vectors
by theoretically establishing the connection between the DPPL method and the ε-constraint problem.

We first give a brief introduction to the ε-constraint problem [10], which is defined as follows,

min
θ

V̄l(θ), s. t. V̄m(θ) ≤ εm for allm = 1, . . . ,M,m ̸= l, (8)

where εm is pre-specified threshold. Compared to the MOP problem (1) and the linear weighting
objective (2), a notable advantage of the ε-constraint problem is its interpretation on the threshold
εm, which represents the maximum acceptable value (i.e., the acceptable worst-case scenario) for the
m-th objective. In contrast, the weights and the preference vectors in problems (1) and (2) are not
straightforward for relating the resulting values of objectives. Thus, if we can establish the connection
between ε = (ε1, ..., εM ) and the preference vector uk, then we can provide powerful guidance for
choosing appropriate preference vectors.
Theorem 1. For the preference vector uk = (uk1, ..., ukM ) in problem (1), the weights ω =
(ω1, ...., ωM ) in problem (2), and the thresholds ε in problem (8), the following statements hold:

(a) the connection between ε and ω is given as

εm = −E[I(τl(X) +
ωm

ωl
τm(X) > 0) · τm(X) + hm(X)], for m = 1 · · ·M,and m ̸= l, (9)

where τm(X) is the conditional average causal effects for m-th short/long-term outcome,

τm(X) =

{
E[Si(1)− Si(0)|X], if ωm is the weight of V̄(θ, si),
E[Yj(1)− Yj(0)|X], if ωm is the weight of V̄(θ, yj),

I(·) is the indicator function, and

hm(X) =

{
E[Si(0)|X], if ωm is the weight of V̄(θ, si),
E[Yj(0)|X,S, Rj = 1], if ωm is the weight of V̄(θ, yj).

(b) the connection between ω and uk is given as

ωm = λm +
∑

k′∈Iϵ(θ)

βk′(uk′m − ukm), for m = 1, · · · ,M, (10)

where λm and βk′ are defined in Eq. (6), and Iϵ(θ) = {k′|Gk′(θ) ≥ −ϵ} defined in Eq. (4).

Theorem 1 (see Appendix C for proofs) establishes a link between the preference vector uk and ε
through ω in scenarios involving multiple long-term and short-term objectives. Specifically, Theorem
1(a) shows how to estimate the threshold ε for given weights ω, and Theorem 1(b) shows how to
assign weights ω via preference vectors uk. This means that for the subproblem determined by
preference vectors uk, we can ascertain the maximum acceptable threshold ε based on Theorem 1,
thereby offering an intuitive interpretation of the preference vector uk.

There are several practical implications with Theorem 1. On one hand, it assists decision-makers
in better understanding and selecting preference vectors in practical applications. In practice, we
can initially pre-specify a set of preference vectors {u1,u2, ...,uK} in RM

+ , then derive the weights
ω corresponding to each preference vector uk through Eq. (10), and finally substitute the obtained
weight ω into Eq. (9) to calculate the threshold ε. Leveraging the intuitive interpretability of the
threshold ε, decision-makers can select the appropriate preference vectors according to their specific
requirements. On the other hand, it also provides guidance for specifying ε in the ε-constraint
problem (8). Inappropriate selection of ε for this problem may result in an empty feasible region,
yielding empty solutions. By utilizing a set of preference vectors, we can efficiently screen out some
reasonable choices of ε and reduce the cumbersome trial-and-error process of testing different ε.

In conclusion, by establishing the connection between the DPPL method and the ε-constraint problem,
we can harness the advantages of both methods while mitigating their respective weaknesses.
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4 Experiments

Datasets. Following the previous studies [8], we use two widely used datasets: IHDP and JOBS, for
evaluating the performance of the proposed method. The IHDP dataset explores the effectiveness of
high-quality home visiting in promoting children’s future cognitive development and covers a sample
of 747 units, including 139 treated and 608 controlled. In addition, the dataset has 25 characteristics
that provide a comprehensive picture of the children and their mothers. The second dataset, JOBS,
explores the effects of job training on income and employment status. It consists of 2,570 units
(237 treated, 2,333 controlled), with 17 covariates. Note that each unit in both datasets has only one
observed outcome from a single treatment, and neither dataset collects long-term outcomes.

Simulating Outcome. Consider the case of one long-term reward and one short-term reward.
Following the previous data-generation mechanisms [1, 42], for the n-th unit (n = 1, ..., N ), we
simulate the potential short-term outcomes S(0) and S(1) as follows:

Sn(0) ∼ Bern(σ(w0Xn + ϵ0,n)), Sn(1) ∼ Bern(σ(w1Xn + ϵ1,n)),

where σ(·) is the sigmoid function, w0 ∼ N[−1,1](0, 1) follows a truncated normal distribution,
w1 ∼ Unif(−1, 1) follows a uniform distribution, ϵ0,n ∼ N (µ0, σ0) and ϵ1,n ∼ N (µ1, σ1). We set
µ0 = 1, µ1 = 3 and σ0 = σ1 = 1 for the IHDP dataset, and we set µ0 = 0, µ1 = 2 and σ0 = σ1 = 1
for the JOBS dataset. For generating long-term potential outcomes Y (0) and Y (1), we introduce
the time step t: we set the initial value at time step 0 as: Y0,n(0) = Sn(0), Y0,n(1) = Sn(1), then
generate Yt,n(0), Yt,n(1) according to the following equation and we eventually regard the outcome
at the last time step T as the long-term outcome, Yn(0) = YT,n(0), Yn(1) = YT,n(1).

Yt,n(0) ∼ Bern(σ(β0Xn)+C

t−1∑
t′=0

Yt′,n(0))+ϵ0,n, Yt,n(1) ∼ Bern(σ(β1Xn)+C

t−1∑
t′=0

Yt′,n(0))+ϵ1,n,

where β0 is randomly sampled from {0, 1, 2, 3, 4} with probabilities {0.5, 0.2, 0.15, 0.1, 0.05}, β1 ∼
4 · N[0,4](0, 1), and C = 1/T is a scaling factor. For ϵ0,n and ϵ1,n, we set µ0 = µ1 = 0, σ0 = 1 and
σ1 = 3 for the IHDP dataset and set µ0 = µ1 = 0, σ0 = 1 and σ1 = 1 for the JOBS dataset.

Assumption 2 shows that observing indicator R depends on the feature X , the treatment A, and short-
term outcome S. For a given missing rate r, we select the missing indexes for Y and derive the missing
indicator R according to the following criterion: calculate the mn = 1/D

∑D
d=1(Xnd + sn), n =

1, · · · , N, and choose the index of the row with the smallest rN values in {mn, n = 1, · · · , N} as
the missing indexes. D is the feature dimension and N is the sample size.

Experimental Details. In this paper, preference vectors are used to quantify an individual’s preference
for different objectives in the multi-objective optimization problem. For the case of two-objective,
we randomly generate 10 unit preference vectors (u1,u2, · · · ,u10), where uk = (uk1, uk2), uk1 =
cos(tk), uk2 = sin(tk), tk ∈ (0, 1), which implies that the L2-norm of the preference vectors is
1, ensuring the consistency and comparability of the preference measures. uk1 and uk2 are the
preferences for the short-term objective and the long-term objective, respectively. Each component of
the preference vector uk represents the strength or importance of the decision maker’s preference for
different objectives. Preference vectors are used as weights in the linear weighting method, whereas
our method uses them to divide the original problem (1) into several subproblems.

Evaluation Metrics. We measure the performance of our proposed method by three metrics: long and
short-term rewards, the variance of long and short-term rewards, and the change in welfare. Formally,
the short-term reward of the learned policy π̂(X,θ) is V̂(θ; s) =

∑N
n=1[π̂(Xn,θ)Sn(1) + (1 −

π̂(Xn,θ))Sn(0)], the long-term reward is V̂(θ; y) =
∑N

n=1[π̂(Xn,θ)Yn(1)+(1−π̂(Xn,θ))Yn(0)].
Similar as [42, 43], the welfare changes are defined as ∆Ws =

∑N
n=1 [(Sn(1)− Sn(0)) · π̂(Xn,θ)]

for the short-term reward, ∆Wy =
∑N

n=1 [(Yn(1)− Yn(0)) · π̂(Xn,θ)] for the long-term reward,
∆W = 0.5∆Ws + 0.5∆Wy for the overall balanced-base reward. Among these metrics, ∆W is the
most critical here, as it directly measures the balance reward achieved by the learned policy.

Policy learning with short-term and short-term reward. We choose MLP as the policy model
π(θ), and we average over 50 independent trials of policy learning with the short-term and long-term
reward in IHDP and JOBS. We fix the missing ratio r = 0.2 and the time step T = 4. We measure
the uncertainty of the model by calculating the variance of the long and short-term reward over 50
experiments, and a smaller variance means a more stable model performance.
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Performance Comparison. From our previous analyses, the linear weighting method generally
achieves the sub-optimal policies. The proposed DPPL method can generate a set of Pareto optimal
policies. First, for the long-term reward, the short-term reward, and ∆W , it is not surprising to
observe that for most of the preference vectors, DPPL’s solutions have better performance. Second,
for the variance, our method performs more stable in 50 experiments. Because we will divide
the original problem into several subproblems according to preference vectors, and then solve the
subproblems in a relatively small subregion to obtain the Pareto optimal solution, whereas the linear
weighting method searches the entire objective space. The associated results are displayed in Table 1.
More experimental results with missing ratio r = 0.3 are given in Appendix D.

Table 1: Comparison of our method (OURS) and linear weighting method (LW) on IHDP and
JOBS, with Short-Term Reward (S-REWARDS) and Long-Term Reward (L-REWARDS), ∆W
and Variance (S-VAR and L-VAR) as evaluation metrics. The best result is bolded.

IHDP S-REWARDS L-REWARDS ∆W S-VAR L-VAR

PREFERENCE VECTOR OURS LW OURS LW OURS LW OURS LW OURS LW

1 (1.00, 0.00) 522.840 520.860 386.221 383.950 39.432 37.307 14.573 12.841 52.326 56.093
2 (0.98, 0.17) 521.820 524.660 382.774 387.102 37.199 40.782 13.275 11.079 54.181 59.895
3 (0.94, 0.34) 523.000 521.840 372.418 394.386 32.610 43.014 11.588 13.578 50.138 62.584
4 (0.86, 0.50) 521.060 519.680 382.419 379.174 36.641 34.328 11.512 13.299 52.165 48.457
5 (0.76, 0.64) 523.620 519.840 391.296 390.413 42.360 40.028 12.729 15.594 55.883 48.308
6 (0.64, 0.76) 521.460 517.420 387.015 390.206 39.139 38.714 14.217 15.479 46.342 56.219
7 (0.50, 0.87) 523.800 514.480 383.424 381.321 38.514 32.802 12.797 18.758 55.118 55.167
8 (0.34, 0.94) 521.360 516.800 373.307 400.510 32.235 43.556 11.701 18.618 50.002 60.847
9 (0.17, 0.98) 522.240 515.040 397.640 396.214 42.842 40.529 12.913 18.543 57.288 59.071

10 (0.00, 1.00) 523.600 516.780 387.933 390.387 40.668 38.485 11.531 21.079 60.714 54.246

JOBS S-REWARDS L-REWARDS ∆W S-VAR L-VAR

PREFERENCE VECTOR OURS LW OURS LW OURS LW OURS LW OURS LW

1 (1.00, 0.00) 1613.140 1612.340 1230.918 1223.416 159.381 155.230 54.724 56.502 84.846 88.008
2 (0.98, 0.17) 1618.400 1607.680 1219.517 1223.072 156.310 152.728 54.521 65.927 85.566 86.622
3 (0.94, 0.34) 1614.800 1598.460 1220.316 1223.813 154.910 148.488 61.466 74.649 94.643 98.588
4 (0.86, 0.50) 1612.880 1598.880 1217.305 1225.574 152.444 149.579 59.510 75.431 90.858 79.728
5 (0.77, 0.64) 1613.160 1602.320 1233.604 1227.886 160.734 152.455 59.042 77.481 85.553 85.854
6 (0.64, 0.76) 1612.380 1595.960 1218.100 1219.996 152.592 145.330 58.028 82.032 96.137 94.424
7 (0.50, 0.86) 1608.860 1596.280 1224.763 1230.471 154.163 150.727 58.706 86.083 89.392 92.135
8 (0.34, 0.94) 1613.600 1595.720 1232.958 1217.118 160.631 143.771 57.000 82.996 81.431 86.121
9 (0.17, 0.98) 1614.840 1596.320 1225.607 1224.383 157.575 147.703 58.278 84.221 99.329 82.437

10 (0.00, 1.00) 1610.380 1588.400 1228.679 1223.119 156.882 143.112 59.285 88.393 95.054 85.443

Sensitivity Analysis. We perform the sensitivity analysis of missing ratio r and time step T on JOBS.
Our method achieves better performance in all missing rates r = [0.2, 0.3, 0.4, 0.5] with T = 4, and
r = 0.2 with time step T = [4, 6, 8, 10]. Our method stably outperforms the linear weighting method
under varying r and T , even in scenarios with a high missing ratio or a large time step. This further
illustrates the effectiveness of our method. The associated results are displayed in Figure 1.

(a) r = 0.2 on JOBS (b) r = 0.3 on JOBS (c) r = 0.4 on JOBS (d) r = 0.5 on JOBS

(e) T = 4 on JOBS (f) T = 6 on JOBS (g) T = 8 on JOBS (h) T = 10 on JOBS

Figure 1: Comparison of two methods with different missing ratios {0.2, 0.3, 0.4, 0.5} on JOBS

Interpretation on preference vectors. By Theorem 1, for the set of pre-specified prefer-
ence vectors (u1,u2, · · · ,u10), we transform the optimization subproblem corresponding to
each preference vector into the ε-constraint problem as minθ V̄(θ; y), s.t.V̄(θ; s) ≤ ε(< 0) or
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maxθ V(θ; y), s.t.V(θ; s) ≥ −ε and the threshold −ε are shown in Table 2. This value of −ε is the
minimum value of the short-term reward that the decision maker can accept while maximizing the
long-term reward. Our results show that as the second component of the preference vector increases,
the value of −ε shows a decreasing trend. In essence, this signifies that a decision-maker who
emphasizes the long-term reward must necessarily loosen constraints on the short-term reward. In
practice, decision makers can determine the threshold based on their specific needs for the short-term
reward, and then select the most appropriate preference vector from the set of pre-specify preference
vectors with the help of the intuitive interpretability of the threshold according to Table 2. More
experimental results with different missing ratios {0.3, 0.4, 0.5} are provided in Appendix D.

Table 2: The ε values correspond to each preference vector in IHDP and JOBS datasets, where T = 4
and r = 0.2, obtained according to Theorem 1.

Preference Vector -ε on IHDP -ε on JOBS Preference Vector -ε on IHDP -ε on JOBS

(1.00, 0.00) 0.820 0.878 (0.00, 1.00) 0.522 0.737
(0.98, 0.17) 0.827 0.875 (0.17, 0.98) 0.522 0.716
(0.94, 0.34) 0.826 0.868 (0.34, 0.94) 0.511 0.704
(0.86, 0.50) 0.833 0.868 (0.50, 0.86) 0.557 0.746
(0.77, 0.64) 0.741 0.865 (0.64, 0.76) 0.659 0.808

5 Related Work

Estimation of long-term causal effects. Assessing long-term causal effects is challenging due to
the delayed long-term outcomes, posing significant difficulties in both identification and estimation.
Recently, there has been increasing interest in using short-term surrogates to identify and estimate
long-term causal effects, such as [4, 5, 7, 13, 44, 45]. In contrast to these previous works focusing on
long-term causal effects, this paper aims to balance multiple short-term and long-term causal effects.

Trustworthy policy learning. Trustworthy policy learning ensures that the learned policies or models
are reliable and dependable for practical applications. Traditional policy learning aims to identify
individuals who would maximize the utility function based on their features if treated [46]. Recently,
trustworthy policy learning has focused on ensuring that the learned policy adheres to principles such
as beneficence, non-maleficence, autonomy, justice, no-harm, and explicability [42, 47–49]. Various
counterfactual-based metrics have been suggested to assess a policy’s trustworthiness [42, 50–53]. In
this paper, we complement this series of work by developing a principled policy learning approach
that can effectively balance multiple rewards.

Multi-objective optimization (MOP). MOP aims to find compromises or trade-offs among multiple
possibly contrasting objectives. It is widely used in the field of machine learning such as multi-task
learning [40, 54], neural architecture search [55], and multi-objective reinforcement learning [56–
58]. We extend these works to a new setting by learning the optimal policy for balancing multiple
long-term and short-term rewards. Additionally, we provide a practical method for interpreting and
selecting preference vectors with theoretical guarantees.

6 Conclusion

In this paper, we focus on learning the optimal policy for balancing multiple long-term and short-
term rewards. We reveal the limitations of the previous linear weighting method, which usually
results in sub-optimal policies in practice. To address these limitations, we formulate the policy
learning problem as a multi-objective optimization problem and then propose the novel DPPL
method to learn optimal policies. The DPPL method obtains a set of Pareto optimal policies by
solving a series of subproblems based on pre-specified preference vectors, effectively balancing
multiple objectives. Furthermore, we theoretically establish the connection between the optimization
subproblems in the DPPL method and the ε-constraint problem. This connection aids decision-makers
in better understanding and selecting preference vectors. We conducted extensive experiments on
two benchmark datasets which validate the effectiveness of our proposed method. A limitation of
this work is that it focuses on discrete treatments in identification and estimation (Section 2.3). In
some application scenarios, continuous treatments (e.g., price) are of interest. Further investigation is
required to extend the proposed method to accommodate such cases.
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A Estimation of Short-Term and Long-Term Rewards

For a given policy π(θ), the policy values for the short-term outcome Si and the long-term outcome
Yj are defined as

V(θ; si) = E[π(θ)Si(1) + (1− π(θ))Si(0)], i = 1, ..., I

V(θ; yj) = E[π(θ)Yj(1) + (1− π(θ))Yj(0)], j = 1, ..., J,

Under Assumptions 1-2, the short-term reward V(θ; si) and long-term reward V(θ; yj) are identified
as

V(θ; si) = E[π(θ)µi1(X) + (1− π(θ))µi0(X)],

V(θ; yj) = E[π(θm̃j1(X,S) + (1− π(θ))m̃j0(X,S)].

where µia(X) = E[Si|X, A = a] , m̃ja(X,S) = E[Yj |X,S, A = a,Rj = 1] for a = 0, 1. The
identifiability results are derived using a similar approach to that outlined in Section 5 of [8]. In
addition, for estimating the V(θ; si) and V(θ; yj), [8] proved the efficient bounds of V(θ; si) and
V(θ; yj), which we list them below for the sake of self-containedness.

Lemma A.1 (Efficiency Bounds of V(θ; si) and V(θ; yj), [8]). Let Z = (X, A,S,Y ), under
Assumptions 1-2, we have that

(a) the efficient influence function of V(θ; si) is ϕsi − V(θ; si), where

ϕsi = ϕsi(Z; e, µi0, µi1)

= {π(θ)µi1(X) + (1− π(θ))µi0(X)}

+
π(θ)A(Si − µi1(X))

e(X)
+

(1− π(θ))(1−A)(Si − µi0(X))

1− e(X)
,

and e(X) = P(A = 1|X) is propensity score. The associated semiparametric efficiency bound of
V(θ; si) is Var(ϕsi ).

(b) the efficient influence function of V(θ; yj) is ϕyj − V(θ; yj), where

ϕyj = ϕyj (Z; e, rj ,mj0,mj1, m̃j0, m̃j1)

= {π(θ)mj1(X) + (1− π(θ))mj0(X)}

+
π(θ)ARj(Yj − m̃j1(X,S))

e(X)rj(1,X,S)
+

π(θ)A(m̃j1(X,S)−mj1(X))

e(X)

+
(1− π(θ))(1−A)Rj(Yj − m̃j0(X,S))

(1− e(X))rj(0,X,S)

+
(1− π(θ))(1−A)(m̃j0(X,S)−mj0(X))

1− e(X)
,

mja(X) = E[Yj |X, A = a,Rj = 1] is the regression function for Yj , and rj(A,X,S) =
P[Rj = 1|X,S, A] is selection score. The associated semiparametric efficiency bound of V(θ; yj) is
Var(ϕyj

).

From Lemma A.1, for a given policy π(θ), it is natural to define the estimators of V(θ; si) and
V(θ; yj) as

V̂(θ; si) =
1

N

N∑
n=1

ϕsi(Zn; ê, µ̂i0, µ̂i1),

V̂(θ; yj) =
1

N

N∑
n=1

ϕyj
(Zn; ê, r̂j , m̂j0, m̂j1, ˆ̃mj0, ˆ̃mj1).

where N is the sample size. All of them can be identified from the observed data.
And ê(x), µ̂ia(x), m̂ja(x), ˆ̃mja(x, s), and r̂j(a,x, s) for a = 0, 1 are the estimators of
e(x), µia(x),mja(x), m̃ja(x, s) and rj(a,x, s) respectively.
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B Algorithm Flowchart for DPPL

Algorithm 1 DPPL Algorithm

1: Input: A set of preference vectors {u1,u2, ...,uK}
(All subproblems can be solved in parallel)

2: for k = 1 to K do
3: randomly generate parameters θ(k)

r

4: find the initial parameters θ(k)
0 from θ

(k)
r using gradient-based method (step a)

5: for t = 1 to T do
6: obtain λ

(k)
tm ≥ 0, β

(k)
tk′ ≥ 0,∀m = 1, ...,M,∀k′ ∈ Iϵ(θ) by solving subproblem (6)

7: calculate direction d
(k)
t = −(

∑M
i=m λ

(k)
tm∇V̄m(θ

(k)
t )+

∑
k′∈Iϵ(θ)

β
(k)
tk′ ∇Gk′(θ

(k)
t )) /d(k)

t =

−(λk
tm +

∑
k′∈Iϵ(θ)

βk
tk′(uk′m − ukm))∇V̄m(θk

t ) (step b)

8: update the parameters θ(k)
t+1 = θ

(k)
t + ηd

(k)
t

9: end for
10: end for
11: Output: The set of solutions for all subproblems with different trade-offs {θ(k)

T |k = 1, . . . ,K}

C Proofs of Theorem 1

For the case of only have one long-term outcome Y and one short-term outcome S, considering the
ε-constraint optimization problem

min
θ

V̄(θ; y), s.t., V̄(θ; s) ≤ ε (A.1)

and the linear weighting optimization problem

min
θ

ω1V̄(θ; y) + ω2V̄(θ; s) (A.2)

which can be reformulated as
min
θ

V̄(θ; y) + λV̄(θ; s).

where λ = ω2/ω1 controls the balance between short-term and long-term rewards. Let
τs(X) = E[S(1) − S(0)|X] and τy(X) = E[Y (1) − Y (0)|X]. When λ = 0, it is equiva-
lent to finding an optimal policy for minimizing V̄(θ; y) alone, π∗

y(θ) = argminπ V̄(θ; y) =
argminπ −E[π(θ)τy(X)] = I(τy(X) ≥ 0). When λ = ∞, it is equivalent to finding an optimal
policy for minimizing the V̄(θ; s) alone, π∗

s (θ) = argminπ V̄(θ; s) = argminπ −E[π(θ)τs(X)] =
I(τs(X) ≥ 0). We have the following theorem:
Theorem C.1. For the weights ω in problem (A.5), and the thresholds ε in problem (A.1), the
following statements hold:

• When ε < −E[π∗
s (θ)S(1) + (1− π∗

s (θ))S(0)], the solution of the constrained optimization
problem is empty.

• When ε ≥ −E[π∗
s (θ)S(1)+(1−π∗

s (θ))S(0)], the relationship between λ and α is described
as follows:

– λ = 0, if ε ≥ −E[π∗
y(θ)S(1) + (1− π∗

y(θ))S(0)].

– λ is the solution of the equation

−E[I(τy(X) + λτs(X) > 0) · τs(X) + µ0(X)] = ε,

if −E[π∗
s (θ)S(1) + (1− π∗

s (θ))S(0)] < ε ≤ −E[π∗
y(θ)S(1) + (1− π∗

y(θ))S(0)].

It is important to note that for a given λ, we could solve the value of ε by solving the equation

−E[I(τy(X) + λτs(X) > 0) · τs(X) + µ0(X)] = ε,

as the left side of the equation is a monotone function of λ and the solution is unique, and all the
quantities such as τs(X), τy(X), and µ0(X) are identifiable.
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Proof. Initially, we recognize that ε cannot be too small so that no policy can satisfy the constraint of
V̄(θ; s) ≤ ε. The optimal policy of minimizing only the V̄(θ; s) is π∗

s (θ) = I(τs(X) ≥ 0). Thus,
ε ≥ −E[π∗

s (θ)S(1) + (1− π∗
s (θ))S(0)].

When ε ≥ −E[π∗
s (θ)S(1) + (1− π∗

s (θ))S(0)]. First, the optimal policy of minimizing only V̄(π; y)
is given as π∗

y(θ) = I(τy(X) ≥ 0). Then, ε ≤ −E[π∗
y(θ)S(1) + (1 − π∗

y(θ))S(0)]. otherwise,
the constraint will be invalid and the constrained optimization problem becomes an unconstrained
optimization problem with λ = 0.

Second, when −E[π∗
s (θ)S(1) + (1− π∗

s (θ))S(0)] ≤ ε ≤ −E[π∗
y(θ)S(1) + (1− π∗

y(θ))S(0)], we
show that the optimal policy π∗(θ) parameterized by θ∗, for the constrained optimization problem

min
θ

V̄(θ; y), s.t., V̄(θ; s) ≤ ε

is obtained only when V̄(θ∗; s) = ε. Below, we prove it with the method of reduction to absurdity. If
−E[π∗

s (θ)S(1)+ (1−π∗
s (θ))S(0)] ≤ ε ≤ −E[π∗

y(θ)S(1)+ (1−π∗
y(θ))S(0)], then there are some

units that satisfies {τs(X) < 0, τy(X) > 0} that not being assigned treatment by π∗(θ); otherwise,
the constraint V̄(θ; s) ≤ ε will be violated. Thus, we could find another treatment policy π̃∗ that
assigns more treatment to the units with {τs(X) < 0, τy(X) > 0}, which yields a lower V̄(θ; y)
but increases the V̄(θ; s). That is, π̃∗ will lead to a V̄(θ; s) closer to ε but has a lower V̄(θ; y) than
π∗, thus, π∗ is not the optimal policy, which contradicts its definition of π∗. Thus, the constrained
optimization problem becomes

min
θ

V̄(θ; y), s.t., V̄(θ; s) = ε.

By introducing the Lagrange multiplier β, π∗ satisfies

π∗ = argmin
π

V̄(θ; y) + βV̄(θ; s) = I(τy(X) + βτs(X) > 0),

where β is the solution of V̄(θ∗; s) = ε, i.e.,

−E[I(τy(X) + βτs(X) > 0)τs(X) + µ0(X)] = ε.

This completes the proof for Theorem C.1.

We can further extend Theorem C.1 to situations where there are multiple long-term rewards and
multiple short-term rewards. More generally, for the ε-constraint optimization problem

min
θ

V̄l(θ), s. t. V̄m(θ) ≤ εm for allm = 1, . . . ,M,m ̸= l, (A.3)

and the linear weighting optimization problem

min
θ

V̄(θ) =
M∑

i=m

ωmV̄m(θ), (A.4)

where ωm is the pre-specified weight for the m-th reward. We have the following theorem:
Theorem 1. For the preference vector uk in problem (1), the weights ω in problem (2), and the
thresholds ε in problem (8), the following statements hold:

(a) the connection between ε and ω is given as

−E[I(τl(X) +
ωm

ωl
τm(X) > 0) · τm(X) + hm(X)] = εm, for m = 1 · · ·M,and m ̸= l,

where τm(X) is the conditional average causal effects for m-th short/long-term outcome,

τm(X) =

{
E[Si(1)− Si(0)|X], if ωm is the weight of V̄(θ, si),
E[Yj(1)− Yj(0)|X], if ωm is the weight of V̄(θ, yj),

and

hm(X) =

{
E[Si(0)|X], if ωm is the weight of V̄(θ, si),
E[Yj(0)|X,S, Rj = 1], if ωm is the weight of V̄(θ, yj),
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and I(·) is the indicator function.

(b) the connection between ω and uk is given as

ωm = λm +
∑

k′∈Iϵ(θ)

βk′(uk′m − ukm), for m = 1, · · · ,M,

where λm and βk′ are defined in Eq.(6), Iϵ(θ) = {k′|Gk′(θ) ≥ −ϵ}

Proof. First, for the Theorem1(a), combining the TheoremC.1, more generally, for the ε-constraint
problem

min
θ

V̄l(θ), s. t. V̄m(θ) ≤ εm for allm = 1, . . . ,M,m ̸= l, (A.5)

and the linear weighting optimization problem

min
θ

V̄(θ) =
M∑

i=m

ωmV̄m(θ), (A.6)

where ωm is the pre-specified weight for the m-th reward. By mathematical induction, we have:

−E[I(τl(X) + ωm/ωlτm(X) > 0)τm(X) + hm0(X)] = εi,m = 1 · · ·M,and m ̸= l

where τm(X) =

{
τsi = E[Si(1)− Si(0)|X], if ωm is the weight of V̄(θ, si),
τyj

= E[Yj(1)− Yj(0)|X], if ωm is the weight of V̄(θ, yj),

hm0(X) =

{
µi0(X) = E[Si|X, A = 0], if ωm is the weight of V̄(θ, si),
m̃j0(X,S) = E[Yj |X,S, A = a,Rj = 1], if ωm is the weight of V̄(θ, yj),

This completes the proof for Theorem 1(a)

Second, for the Theorem (b), motivated by [40], for constraint problem

(dt, αt) = arg min
d∈Rn,α∈R

α+
1

2
||d||2

s.t. ∇V̄m(θt)
Td ≤ α,m = 1, ...,M.

∇Gk′(θt)
Td ≤ α, k′ ∈ Iϵ(θt),

(A.7)

we have

∇Gk′(θt) = (uk′ − uk)
T∇V̄(θt) =

M∑
m=1

(uk′m − ukm)∇V̄m(θt). (A.8)

Base on KKT conditions, we have

dt = −(

M∑
m=1

λm∇V̄m(θt) +
∑

k′∈Iϵ(θ)

βk′∇Gk′(θt)),

M∑
m=1

λm +
∑

k′∈Iϵ(θ)

βk′ = 1, (A.9)

where λm ≤ 0 and βk′ ≤ 0 are the Lagrange multipliers. Then, the dual problem is given as

max
λm,βk′

−1

2
||

M∑
m=1

λm∇V̄m(θt) +
∑

k′∈Iϵ(θ)

βk′∇Gk′(θt)||2

s.t.

M∑
m=1

λm +
∑

k′∈Iϵ(θ)

βk′ = 1, λm ≥ 0, βk′ ≥ 0,∀m = 1, ...,M,∀ k′ ∈ Iϵ(θ).

(A.10)

Substituting Eq.(A.8) into Eq.A.9, we have
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dt = −(

M∑
m=1

λm∇V̄m(θt) +
∑

k′∈Iϵ(θ)

βk′(

M∑
m=1

(uk′m − ukm)∇V̄m(θt)))

= −(λm +
∑

k′∈Iϵ(θ)

βk′(uk′m − ukm))∇V̄m(θt)

(A.11)

For the problem(A.6), dt is the negative gradient direction. Thus, we have

V̄(θ) =
M∑

m=1

ωmV̄m(θ),where ωm = λm +
∑

k′∈Iϵ(θ)

βk′(uk′m − ukm), (A.12)

where λm and βk′ is obtained from Eq.(A.10). This shows that the DPPL method can be transformed
into the linear weighting method. This completes the proof for Theorem 1(b)

D Additional Experimental Results

D.1 Sensitivity Analysis on Missing Ratio

In the following, we show more experimental result with missing ratio r = 0.3 under IHDP and
JOBS datasets, in table D1.

In additional, We show the corresponding ε value for each preference vector with different missing
ratio {0.3, 0.4, 0.5} under IHDP and JOBS datasets, in tables D2, D3 and D7.

Table D1: Comparison of our method (OURS) and linear weighting method (LW) with 10 preference
vectors on IHDP and JOBS, with Short-Term Reward (S-REWARDS) and Long-Term Reward
(L-REWARDS), ∆W and Variance (S-VAR and L-VAR) as evaluation metrics. The missing ratio
r = 0.3 and T = 4. The best result is bolded.

IHDP S-REWARDS L-REWARDS ∆W S-VAR L-VAR

PREFERENCE VECTOR OURS LW OURS LW OURS LW OURS LW OURS LW

1 (1.00, 0.00) 523.060 520.760 389.485 385.990 41.174 38.277 12.673 13.621 49.054 58.344
2 (0.98, 0.17) 526.880 524.900 376.918 377.275 36.801 35.989 15.593 12.336 60.458 63.531
3 (0.94, 0.34) 522.300 522.440 386.931 393.534 39.517 42.889 14.998 12.181 51.183 59.204
4 (0.86, 0.50) 522.280 523.300 376.800 376.515 34.642 34.559 12.591 15.040 61.746 51.064
5 (0.76, 0.64) 523.480 518.440 380.358 398.327 36.820 43.285 12.959 15.250 59.013 47.264
6 (0.64, 0.76) 525.560 517.800 387.263 390.716 41.313 39.160 13.703 14.991 56.639 49.135
7 (0.50, 0.87) 523.420 517.440 389.624 385.813 41.424 36.528 12.594 18.091 59.317 59.628
8 (0.34, 0.94) 521.880 515.280 383.755 388.985 35.719 35.034 12.690 14.945 48.189 57.030
9 (0.17, 0.98) 520.300 515.800 386.994 399.012 38.549 42.308 13.622 19.584 56.273 58.640

10 (0.00, 1.00) 522.500 514.980 381.171 385.961 36.737 35.372 12.455 19.711 43.415 49.718

JOBS S-REWARDS L-REWARDS ∆W S-VAR L-VAR

PREFERENCE VECTOR OURS LW OURS LW OURS LW OURS LW OURS LW

1 (1.00, 0.00) 1615.540 1612.100 1221.629 1217.543 155.936 152.173 65.386 56.393 98.666 92.897
2 (0.98, 0.17) 1616.240 1600.280 1216.370 1217.547 153.657 146.265 58.903 75.467 87.611 92.085
3 (0.94, 0.34) 1616.380 1595.840 1229.393 1219.475 160.238 145.009 57.370 86.875 95.219 91.009
4 (0.86, 0.50) 1615.700 1592.200 1234.526 1201.847 162.465 134.375 56.556 88.052 89.535 94.647
5 (0.76, 0.64) 1608.600 1595.260 1214.387 1219.359 148.846 144.661 57.526 95.379 79.273 99.852
6 (0.64, 0.76) 1612.120 1591.480 1222.689 1221.671 154.756 143.927 55.446 97.238 94.283 97.522
7 (0.50, 0.87) 1614.240 1588.660 1225.527 1220.786 157.235 142.075 58.574 104.776 85.414 108.986
8 (0.34, 0.94) 1607.880 1585.280 1227.527 1223.203 155.055 141.593 55.923 105.193 85.365 101.940
9 (0.17, 0.98) 1610.600 1584.460 1221.183 1223.446 153.243 141.305 59.996 109.731 92.968 99.344

10 (0.00, 1.00) 1612.740 1590.880 1211.837 1224.826 149.640 145.205 60.330 106.403 92.767 106.106
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Table D2: The ε values corresponding to each preference vector in the two datasets IHDP and JOBS,
where T = 4 and r = 0.3, which are derived according to Theorem 1.

IHDP JOBS
PREFERENCEVECTOR -ε -ε

(1.00, 0.00) 0.827 0.865
(0.98, 0.17) 0.818 0.864
(0.94, 0.34) 0.825 0.859
(0.86, 0.50) 0.830 0.858
(0.77, 0.64) 0.800 0.858
(0.64, 0.76) 0.722 0.841
(0.50, 0.86) 0.592 0.738
(0.34, 0.94) 0.549 0.706
(0.17, 0.98) 0.539 0.726
(0.00, 1.00) 0.557 0.779

Table D3: The ε values corresponding to each preference vector in the two datasets IHDP and JOBS,
where T = 4 and r = 0.4, which are derived according to Theorem 1.

IHDP JOBS
PREFERENCEVECTOR -ε -ε

(1.00, 0.00) 0.822 0.877
(0.98, 0.17) 0.824 0.868
(0.94, 0.34) 0.823 0.852
(0.86, 0.50) 0.820 0.841
(0.77, 0.64) 0.813 0.806
(0.64, 0.76) 0.724 0.798
(0.50, 0.86) 0.524 0.703
(0.34, 0.94) 0.512 0.694
(0.17, 0.98) 0.523 0.667
(0.00, 1.00) 0.523 0.666

Table D4: The ε values corresponding to the preference vectors in the two datasets IHDP and JOBS,
where T = 4 and r = 0.5, which are derived according to Theorem 1.

IHDP JOBS
PREFERENCEVECTOR -ε -ε

(1.00, 0.00) 0.820 0.865
(0.98, 0.17) 0.826 0.863
(0.94, 0.34) 0.821 0.869
(0.86, 0.50) 0.816 0.853
(0.77, 0.64) 0.805 0.816
(0.64, 0.76) 0.679 0.781
(0.50, 0.86) 0.522 0.737
(0.34, 0.94) 0.489 0.722
(0.17, 0.98) 0.490 0.723
(0.00, 1.00) 0.541 0.684
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D.2 Sensitivity Analysis on Preference Vector

In the following, we show more experimental result with different numbers of preference vectors
K = {4, 8, 12} under JOBS datasets, in table D5-D7.

Table D5: Comparison of our method (OURS) and linear weighting method (LW) with 4 pref-
erence vectors on JOBS, with Short-Term Reward (S-REWARDS) and Long-Term Reward (L-
REWARDS), ∆W and Variance (S-VAR and L-VAR) as evaluation metrics. The missing ratio
r = 0.2 and T = 4. The best result is bolded.

JOBS S-REWARDS L-REWARDS ∆W S-VAR L-VAR

PREFERENCE VECTOR OURS LW OURS LW OURS LW OURS LW OURS LW

1(1.00, 0.00) 1616.540 1613.940 1226.493 1232.147 158.869 160.396 60.171 57.758 94.783 92.298
2(0.87, 0.50) 1606.920 1599.620 1226.861 1222.933 154.242 148.628 60.608 77.760 78.282 92.699
3(0.50, 0.86) 1612.500 1601.260 1226.470 1213.741 156.837 144.852 58.438 82.862 87.381 94.363
4(0.00, 1.00) 1615.740 1596.360 1224.834 1223.110 157.639 147.087 58.856 86.287 86.425 87.150

Table D6: Comparison of our method (OURS) and linear weighting method (LW) with 8 pref-
erence vectors on JOBS, with Short-Term Reward (S-REWARDS) and Long-Term Reward (L-
REWARDS), ∆W and Variance (S-VAR and L-VAR) as evaluation metrics. The missing ratio
r = 0.2 and T = 4. The best result is bolded.

JOBS S-REWARDS L-REWARDS ∆W S-VAR L-VAR

PREFERENCE VECTOR OURS LW OURS LW OURS LW OURS LW OURS LW

1(1.00, 0.00) 1616.340 1615.940 1233.387 1227.531 162.215 159.088 55.283 57.953 93.105 95.263
2(0.97, 0.22) 1610.820 1605.220 1228.604 1223.384 157.064 151.654 63.065 66.878 85.019 87.506
3(0.90, 0.43) 1606.260 1599.940 1212.864 1226.675 146.914 150.659 60.809 70.123 95.023 97.185
4(0.78, 0.62) 1614.960 1604.000 1226.162 1222.282 157.913 150.493 62.883 78.589 94.868 89.057
5(0.62, 0.78) 1612.320 1594.220 1226.816 1225.956 156.920 147.440 59.959 77.331 81.906 89.562
6(0.43, 0.90) 1611.860 1593.840 1221.652 1215.291 154.108 141.917 60.059 82.969 99.027 90.661
7(0.22, 0.97) 1612.700 1596.060 1215.533 1224.358 151.468 147.561 56.015 89.441 86.439 92.825
8(0.00, 1.00) 1612.580 1592.260 1233.756 1227.061 160.520 147.012 58.113 83.188 88.058 98.805

Table D7: Comparison of our method (OURS) and linear weighting method (LW) with 12 pref-
erence vectors on JOBS, with Short-Term Reward (S-REWARDS) and Long-Term Reward (L-
REWARDS), ∆W and Variance (S-VAR and L-VAR) as evaluation metrics. The missing ratio
r = 0.2 and T = 4. The best result is bolded.

JOBS S-REWARDS L-REWARDS ∆W S-VAR L-VAR

PREFERENCE VECTOR OURS LW OURS LW OURS LW OURS LW OURS LW

1(1.00, 0.00) 1610.800 1614.600 1231.786 1232.158 158.645 160.731 56.774 60.101 89.746 87.940
2(0.98, 0.14) 1609.720 1610.740 1224.605 1222.904 154.515 154.174 59.048 60.887 88.027 92.283
3(0.95, 0.28) 1613.520 1606.320 1228.204 1226.660 158.214 153.842 59.249 65.024 84.400 79.787
4(0.91, 0.41) 1615.600 1598.940 1223.297 1231.718 156.800 152.681 58.106 70.854 98.610 88.081
5(0.84, 0.54) 1614.140 1604.860 1218.585 1220.647 153.714 150.105 61.420 65.414 89.712 95.134
6(0.75, 0.65) 1615.240 1598.960 1227.954 1225.251 158.949 149.457 54.882 76.213 86.061 89.256
7(0.65, 0.75) 1616.380 1596.160 1226.506 1218.845 158.795 144.854 61.503 77.284 91.857 95.620
8(0.54, 0.84) 1613.420 1598.460 1223.097 1229.293 155.610 151.228 58.566 83.100 92.342 97.554
9(0.41, 0.91) 1612.940 1594.320 1222.586 1224.040 155.115 146.532 57.262 84.387 87.325 93.589

10(0.28, 0.95) 1612.980 1596.880 1230.538 1218.671 159.111 145.127 61.465 81.949 92.381 95.530
11(0.14, 0.98) 1612.160 1591.760 1214.424 1224.345 150.644 145.404 58.148 86.692 80.732 90.234
12(0.00,1.00) 1613.040 1592.440 1228.213 1224.288 157.978 145.716 63.826 87.624 84.520 87.628
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4 for the detailed description of simulating outcome and experi-
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zip file to ensure easy reproduction of all reported results.
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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8. Experiments Compute Resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: All experimental results can be easily reproduced on a personal computer.
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• If the authors answer NA or No, they should explain why their work has no societal
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11. Safeguards
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the paper, properly credited and are the license and terms of use explicitly mentioned and
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Answer: [Yes]
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of the data-generating process.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
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13. New Assets
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Answer: [Yes]

Justification: In Section 4, we provide references for the datasets and the simulation setups of
the data-generating process. In addition, we provide the supplemental material for datasets
and codes in a zip file to ensure easy reproduction of all reported results.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and Research with Human Subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We don’t use a crowdsourcing service.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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