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Abstract
Gaussian process factor analysis (GPFA) is a la-
tent variable modeling technique commonly used
to identify smooth, low-dimensional latent trajec-
tories underlying high-dimensional neural record-
ings. Specifically, researchers model spiking rates
as Gaussian observations, resulting in tractable
inference. Recently, GPFA has been extended
to model spike count data. However, due to the
non-conjugacy of the likelihood, the inference
becomes intractable. Prior works rely on either
black-box inference techniques, numerical inte-
gration or polynomial approximations of the like-
lihood to handle intractability. To overcome this
challenge, we propose a conditionally-conjugate
Gaussian process factor analysis (ccGPFA) re-
sulting in both analytically and computationally
tractable inference for modeling neural activity
from spike count data. In particular, we develop a
novel data augmentation based method that ren-
ders the model conditionally conjugate. Conse-
quently, our model enjoys the advantage of simple
closed-form updates using a variational EM algo-
rithm. Furthermore, due to its conditional conju-
gacy, we show our model can be readily scaled
using sparse Gaussian Processes and accelerated
inference via natural gradients. To validate our
method, we empirically demonstrate its efficacy
through experiments.

1. Introduction
In neuroscience, recent advances in recording techniques
have made large-scale neural recordings ubiquitous. Com-
mon techniques such as neural probes enable simultaneous
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recording from activity of population of neurons (Stein-
metz et al., 2021). Analyzing such high-dimensional data
is a challenging statistical problem. A recent line of
works adopts a generative view using latent variable models
(LVMs). These methods assume the activity of a neural pop-
ulation lies in a low-dimensional subspace and thus can be
captured with a small number of latent variables. Such low-
dimensional representations can provide insight through
encoding internal neural activity (Yu et al., 2008) and also
capture relevant information to decode external behaviour
such as motor activities (Glaser et al., 2020).

Generally, these models range from classical techniques
such as principal component analysis (PCA) and factor
analysis (FA) to more advanced methods such as linear
dynamical systems (LDS) (Semedo et al., 2014; Gao et al.,
2015) and Gaussian process (GP) based models (Yu et al.,
2008). Unlike classical methods, GP-based models assume
the latent variables follow a smooth temporal structure. Ex-
tending the idea of factor analysis to time series, Yu et al.
(2008) proposed a novel method called Gaussian process
factor analysis (GPFA). GPFA couples dimensionality re-
duction and temporal smoothness of Gaussian processes
in a probabilistic model. The observations are modeled as
conditionally Gaussian, leading to tractable updates within
expectation-maximization (EM) based inference.

Building on (Yu et al., 2008) for Gaussian observations,
researchers have proposed GPFA variants for count obser-
vation models, such as for Poisson distributions or negative
binomial distributions, and developed corresponding infer-
ence methods, to more accurately model spike count data
(Keeley et al., 2020a;b; Jensen et al., 2021). While models
with discrete distributions of the observations can provide a
better fit than Gaussian observation models, they are non-
conjugate, which makes Bayesian inference intractable.

To deal with this non-conjugacy, Fourier-domain black-box
variational inference (BBVI) (Keeley et al., 2020a) and nu-
merical integration methods (Jensen et al., 2021) have been
proposed, though such approaches have the potential to
result in unstable and inaccurate approximations. Further-
more, such methods may require complicated settings such
as learning rate tuning to ensure convergence and anneal-
ing techniques to effectively balance model exploration and
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model selection. Keeley et al. (2020b) leveraged polyno-
mial approximate log-likelihood (PAL) to obtain a marginal
likelihood. In particular, this method approximates the non-
linear terms in the likelihood using polynomial functions.
While this approach yields conjugacy over the latent process,
it is not a fully Bayesian scheme since it assumes the factor
loading values as parameters and not random variables, mak-
ing it prone to over fitting. Furthermore, in order to get the
polynomial coefficients, the method performs least square
solutions over the entire data, posing scalability issues. In
this work, we present a conditionally-conjugate Gaussian
process factor analysis (ccGPFA) model that can form con-
jugate models for spike count data. It involves augmenting
set of auxiliary variables that render the model conditionally
conjugate. In contrast to commonly applied Pólya-gamma
augmentation (Pillow & Scott, 2012; Klami, 2015; Soulat
et al., 2021), our method does not require that some vari-
ables be fixed or learned as model parameters. Soulat et al.
(2021) attempted such augmentation for a latent variable
model, but relies on moment matching approximations to
learn a parameter that controls dispersion of spike counts.
As demonstrated by the authors, despite its effectiveness
for over-dispersed data, it poses issues for under-dispersed
data. Our approach allows for a conjugate inference for
all of the model variables, including the negative binomial
dispersion parameter. We employ an efficient variational
expectation-maximization (EM) algorithm to derive simple
closed-form updates for the model. In short, our contribu-
tions are summarized as follows

• We implement a data augmentation technique to make
GPFA models conditionally conjugate for spike count
data.

• Leveraging the conditional conjugacy, we develop ef-
ficient coordinate ascent inference updates where the
posterior of all variables, including the dispersion pa-
rameters, are available in closed form.

• To make inference computationally efficient, we extend
the model and inference method, incorporating sparse
Gaussian process priors and accelerating inference via
natural gradients.

• Lastly, we demonstrate the efficiency and efficacy of
our model in experiments.

Related works

The closest related works are (Keeley et al., 2020a;b; Jensen
et al., 2021), which we highlighted in the introduction. We
briefly expand on related works here. See Table 1 for a
summary of key properties and see Appendix A for a longer
discussion.

The standard GPFA model Yu et al. (2008) assumes Gaus-
sian likelihood of the observations. Due to the nature of

spike count data, most subsequent works extend the GPFA
model to handle non-conjugate likelihoods such as Poisson
and negative binomial.

Keeley et al. (2020a) employ techniques such as black-box
variational inference (BBVI) to handle non-conjugacy. De-
spite their flexibility, BBVIs do not exploit the structure of
model, relying on high variance Monte Carlo estimates. In
addition they are sensitive to the choice of hyperparameters
(Locatello et al., 2018).

Keeley et al. (2020b) follow an alternative approach us-
ing a polynomial approximation of the non-linear terms
in the likelihood. This transforms the likelihood into a
quadratic form which makes marginalization of variables
easier. While this approach yields conjugacy over the latent
process, it is not a fully Bayesian scheme since it treats
the factor loading values as parameters and not random
variables, making it prone to overfitting. Furthermore, the
method computes least square solutions over the entire data
to obtain polynomial coefficients and applies expensive
second-order optimization posing scalability issues.

Dowling et al. (2023) combined the Hida-Matern Kernels
and conjuage computational variational inference to develop
latent GP models for neural spikes. However, their method
is unable to model the under/over-dispersed spike count
data. Specifically, they propose non-conjugate inference for
Poisson count models.

Lastly, we note that one of the challenges in latent variable
inference is selecting the number of latent variables. Jensen
et al. (2021) employ an automatic relevance determination
(ARD) prior to select the number of latent dimensions in a
principled way. Gokcen et al. (2023) recently proposed an
extension of standard GPFA (Yu et al., 2008) with ARD for
modeling activity from multiple areas.

2. GPFA Model
In this section, we formally introduce our conditionally-
conjugate Gaussian Process Factor Analysis (ccGPFA)
model for spike count data.

2.1. Negative Binomial Modeling for Spike Counts

We consider the problem of modeling non-negative spike
count data. Let Y ∈ NN×T represent the spike counts of N
simultaneously recorded neurons over an interval partitioned
into T time steps (bins). Let yn,t denote the count for neuron
n at time step t.

We model spike counts with negative binomial distributions
(later we will naturally extend our work to the binomial
distribution). While Poisson distributions are easier to work
with analytically, since the mean and variance are equal they
poorly model over (or under) dispersed data. Conceptually,
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Table 1: Property comparison with relevant GPFA vari-
ants. Cnt – models count data (∼ indicates only Poisson
count model); ARD – automatic relevance determination to
select the number of latents; CF – closed form updates (∼
indicates only some model parameters have closed form);
Scl – computationally scalable; Trl – repeated trials (∼ in-
dicates implementations can process multiple trials are not
designed for repeated trials; see Appendix B.3). † infer-
ence is specialized for approximating the RBF kernel. ‡ is
designed for multi-area.

Work Cnt ARD CF Scl Trl
Yu et al. (2008) ∼ ∼

Keeley et al. (2020a) ∼ ✓
Keeley et al. (2020b) ✓ ✓
Jensen et al. (2021) † ✓ ✓ ✓ ∼
Gokcen et al. (2023) ‡ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

the negative binomial distribution models the number of
successes in repeated i.i.d. binomial trials before a specified
number of failures occur. For the negative binomial distri-
bution, let p̂n,t ∈ [0, 1] denote the success probability for
neuron n at time step (bin) t. Let rn model the specified
number of failures for neuron n. We refer to rn as the dis-
persion parameter since their value can be tuned to account
for the ratio of the variance to the mean. Let r = {rn}Nn=1

denote the set of dispersion parameters for all neurons.

Further, we model the neural spiking activity as arising
from a linear combination of latent processes f = WX +
β1⊤ ∈ RN×T , where W ∈ RN×D(D ≪ N) is a loading
matrix as the combination coefficients, and X ∈ RD×T

represent D-dimensional independent latent processes for
T time steps, and β is a bias term that represents the base
spiking rates of neurons. Assuming the success probability
p̂n,t is a logistic transformation of fn,t, i.e., p̂n,t = efn,t

1+efn,t

and conditioning on X,W ,β, the neural count data Y are
independently generated across neurons and time and their
joint distribution can be factorized as:

p(Y |W ,X,β, r) =
∏
n,t

NegBin(yn,t; rn, p̂n,t) (1)

=
∏
n,t

Γ(yn,t + rn)[e
fn,t ]yn,t

yn,t!Γ(rn)[1 + efn,t ]yn,t+rn
. (2)

In Eq. (2)’s likelihood, it is difficult to find conjugate priors
for the following variables since:

• the dispersion parameter rn appears in two Gamma
functions.

• the variables X,W , and β appear in both the denomi-
nator’s and the numerator’s exponential terms (through
fn,t = [WX + β1⊤]n,t).

2.2. Data Augmentation

In this subsection, we show that by augmenting a set of
auxiliary variables, the likelihood in Eq. (2) can be made
conditionally conjugate. As a result, we can develop an effi-
cient, fully-Bayesian inference procedure for all variables,
including {rn}Nn=1.

Augmentation for {rn}Nn=1 Due to the complex form of
the gamma functions, it is hard to find a conjugate prior for
rn. However, using the following integral representations,
identified in (He et al., 2019), we can transform the gamma
function and reciprocal of the gamma function as follows

Γ(yn,t + rn) ∝
∫ ∞

0

τ
(yn,t+rn)
n,t e−τn,tdτn,t (3)

1

Γ(rn)
= rne

γrn

∫ ∞

0

e−r2nξn,tP-IG(ξn,t|0)dξn,t, (4)

where Eq. (3) represents the marginalization of a gamma
variable τn,t ∼ Γ(yn,t+rn, 1) and Eq. (4) is the convolution
of a Pólya-inverse gamma (P-IG) density. Here, γ ≈ 0.577
denotes Euler’s constant. These representations are equiva-
lent to augmenting the variables τn,t and ξn,t into the like-
lihood. See Appendix F.1 for more details about the P-IG
distribution. As will be shown shortly (see (8)), this yields
conjugacy with respect to rn.

Augmentation for X,W and β Inspired by (Polson
et al., 2013), we also augment Pólya-gamma variables
{ωn,t}N,T

n=1,t=1 into Eq. (2) and obtain a joint distribution

p(yn,t, ωn,t|W ,X,β, rn) =
Γ(yn,t + rn)

yn,t!Γ(rn)
2−(yn,t+rn)

·exp((yn,t − rn
2

)fn,t−
ωn,tf

2
n,t

2
)PG(ωn,t|yn,t+rn, 0),

(5)

where PG(ωn,t|yn,t + rn, 0) denotes the Pólya-gamma dis-
tribution (Polson et al., 2013) with shape and tilting parame-
ters yn,t + rn and 0 respectively.

Therefore upon conditioning on the augmented variables
{ωn,t, τn,t, ξn,t}, dropping factors that are constant with
respect to the conditioning variables W , X , and β, and
using notation zn,t =

yn,t−rn
2ωn,t

, the likelihood becomes

p(yn,t|W ,X,β, ωn,t, τn,t, ξn,t, rn)

∝ N (zn,t|fn,t, ω−1
n,t). (6)

Notice that this likelihood is proportional to the probability
density function (pdf) of a corresponding Gaussian vari-
able zn,t with mean fn,t and variance ω−1

n,t. This implies,
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the likelihood is now conditionally conjugate to a Gaus-
sian prior on W ,X and β. Generalizing the above deriva-
tion for all time steps, and writing fn = {fn,t}Tt=1,Ωn =
diag({ωn,t}Tt=1), zn = ({zn,t}Tt=1), we get a multivariate
Gaussian distribution with diagonal covariance (equivalently
factorizing into a product of marginal distributions),

p(Y n|W ,X,β, {ωn,t, τn,t, ξn,t}Tt=1, rn)

∝ N (z⊤
n |f

⊤
n ,Ω

−1
n ). (7)

Furthermore, using Eq. (4), the likelihood p(Y n|·) can be
simplified as a function of its dispersion variable rn,

p(Y n|W ,X,β, {ωn,t, τn,t, ξn,t}Tt=1, rn)

∝ rTn ern
∑

t(log τn,t+γ−log 2− 1
2 fn,t)−r2n

∑
t ξn,t . (8)

Following (He et al., 2019), we identify the above expres-
sion as an un-normalized density of the Power-Truncated-
Normal (PTN) distribution. The authors show that the
gamma distribution can be a conjugate prior for the above
likelihood expression. Importantly, we can efficiently esti-
mate the mean of a PTN distribution which is crucial for
our inference method. See Appendix F.2 for more details
about this distribution.

This result will be important in deriving the closed form
updates for our variational distribution. Detailed steps of
the augmentation is included in Appendix B.

2.3. Priors

In this subsection, we show that the following choices for
prior distributions are indeed (conditionally) conjugate and
ease forthcoming inference updates.

Prior for X We model the prior distribution for the D
latent processes, p(X), as a product of D independent mul-
tivariate Gaussian distributions, each with zero mean and
a covariance matrix Kd induced by a stationary GP kernel
function kd(·, ·; θd),

p(X) =

D∏
d=1

N (Xd|0,Kd), [Kd]t,t′ = kd(t, t
′; θd) (9)

where θd denotes kernel specific parameters. Important ex-
ample kernels include the radial basis kernel and the Matérn
kernel. See Ch. 4.2 of (Rasmussen & Williams, 2006) for
a discussion of different kernels. Any kernel for which
parameters can be efficiently updated through automatic dif-
ferentiation can be used with our method (see Section 3.2).
For simplicity, in the following we consider the radial basis
kernel, for which θd is simply a length scale.

Prior for W The prior distribution for the weights W are
modelled as a product of independent multivariate Gaussian

distributions along the number of latent dimensions D, with
precisions {τd}Dd=1 (varying among the latent processes but
shared across neurons), which in turn are modeled with a
gamma prior distribution,

p(W ) =

N∏
n=1

N (wn|0,diag(
1

τ
))

p(τ ) =

D∏
d=1

G(ad, bd). (10)

This prior over the precision values is a common choice for
automatic relevance determination (ARD) of latent dimen-
sions (Ch. 6.4 in (Bishop, 1999)). For the latent dimensions
where the precision τ is large, the variance will be small and
thus the weights will be concentrated around their (prior)
mean of 0, effectively discarding the latent dimension.

We model the prior over the bias terms β with independent
Gaussian distributions. Similar to placing a prior over the
weights’ precisions, we add gamma priors over the common
precision parameter τβ of the distributions,

p(β) =

N∏
n=1

N (βn|0, τ−1
β ) and p(τβ) = G(c, d), (11)

where c and d are the shape and scale parameters respec-
tively of the gamma distribution.

Following (Bishop, 1999), we fix all shape and scale pa-
rameters of the gamma variables, {ad, bd}, c and d, to 10−5.
These choices yield non-informative priors.

In addition, as revealed in the augmentation step in Eq. (5),
we model priors over the augmented Pólya-gamma (PG)
variables Ω = {ωn,t} with

p(Ω) =

N∏
n=1

T∏
t=1

PG(ωn,t|yn,t + rn, 0). (12)

Prior for rn Following (He et al., 2019), we use the im-
proper Gamma distribution Γ(1, 0) for the prior for rn, i.e
p(rn) ∝ r−1. This choice yields a proper PTN distribution
for its posterior distribution.

To this point we have described marginal prior distributions
of the latent variables. After applying the augmentation, and
the ARD gamma priors, the joint distribution of our model
factorizes as

p(Y |W ,X,β, {ωn,t, τn,t, ξn,t}, {rn})

· p(W |τ )p(X)p(β|τβ)p(τ )p(τβ)
∏
n

p(rn)

·
∏
n,t

p(ωn,t)p(τn,t)p(ξn,t) (13)
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Figure 1: Plate diagram representing our ccGPFA model.
Dashed circles indicate the variable is augmented.

with additional factorizations arising from equations
Eq. (10), Eq. (11). See Figure 1 for a plate diagram of
our model.

3. Inference
In this section, we detail our proposed inference procedure
for our ccGPFA model. We show the key steps of for-
mula derivations here, whereas more details can be seen in
Appendix C. We use the mean-field variational inference
framework to learn the posterior distributions of model vari-
ables. Specifically, we approximate the joint augmented
posterior p(W ,X,β, τ , τβ , {ωn,t, τn,t, ξn,t}, {rn}|Y ) ≈
q(W ,X,β, τ , τβ , {ωn,t, τn,t, ξn,t}, {rn}) as a product of
variational distributions

q(W )
∏
d

q(Xd)q(β)q(τ)q({rn})

· q(τβ)q({ωn,t})q({τn,t})q({ξn,t}). (14)

We note that we impose independence over the set of latent
processes X = {Xd} for tractability.

Beyond the factorization above, we do not impose any para-
metric distributional assumptions, such as setting q(Xd) to
be a whitened distribution of the GP priors

3.1. Modeling Objective

Nominally, we would like to optimize the variational dis-
tributions to maximize the marginal log-likelihood of the
data log p(Y ). As marginalization of all model vari-
ables is intractable, we instead optimize the variational
distributions to maximize a lower bound of log p(Y ).
Denoting the set of all random variables as Θ =
{W ,X,Ω,β, τ , τβ{ωn,t, τn,t, ξn,t}, {rn}}, the evidence
lower bound (ELBO) L is

log p(Y ) ≥ Eq(Θ)

[
log

p(Y |Θ)p(Θ)

q(Θ)

]
=: L. (15)

This (standard) bound follows from Jensen’s inequality. For
completeness, we show it in Appendix D.

3.2. Closed form updates

In this work, to optimize the approximate posterior dis-
tributions q(Θ), we employ a variational Expectation-
Maximization (variational EM) algorithm. See Algorithm 1
for the high-level pseudocode. In the E-step of this algo-
rithm, we apply sequential updates to the distributions in our
variational family following the factorization in (14). This
step of the algorithm is equivalent to Coordinate Ascent
Variational Inference (CAVI). Following the conditional-
conjugacy shown in Section 2.2, we are able to identify
closed form updates for this step. In the M-step, we max-
imize the the marginal lower bound in (15) with respect
to the model hyperparameters, such as the characteristic
lengthscales {θd} of the latent processes {Xd}.

Expectation step (CAVI): We first show that for our pro-
posed model, we derive closed form coordinate ascent up-
dates that are easy to implement and lead to a computation-
ally efficient procedure. We use the notation E[q(−W )] to
represent an expectation with respect to the joint variational
distribution of all variables in the variational family except
for W . Fixing all variational distributions except one (at a
time), we denote optimal marginal variational distributions
with a super-script ∗.

By a well known property of mean field variational inference
(see Section 10.1 in (Bishop, 2006)), the optimal marginal
variational distribution q∗(W ) (with all others fixed) sat-
isfies q∗(W ) ∝ exp{Eq(−W ) [log p(Y ,Θ)]}, likewise for
other factors in Equation (14). We are able to obtain an-
alytic expressions for those optimal marginal variational
distributions. For the weights W ,

q∗(W ) =

N∏
n=1

N (wn|mn, Sn) with

mn = Sn(E[X]E[Ωn](z
⊤
n − E[βn]1))

Sn = (diag(E[τ ]) + E[X E[Ωn]X
⊤])−1.

For the base spike rate intensity β,

q∗(β) =

N∏
n=1

N (βn|µn, σ
2
n) with

µn = σ2
n(zn − E[wn]E[X])E[Ωn]1

σ2
n = 1/(E[τβ ] + Tr(E[Ωn])).

For the gamma precision variables {τ , τβ},

q∗(τβ) = Γ(c+
N

2
, d+

1

2

N∑
n=1

E[β2
n])

q∗(τ ) =

D∏
d=1

Γ(ad +
N

2
, bd +

1

2

N∑
n=1

E
[
w2

n,d

]
).
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For each of the D latent processes Xd,

q∗(Xd) = N (µ̂d, K̂d) with

µ̂d = K̂d

(
E[Ωn]

∑
n

E[wn,d]
(
z⊤
n − E[βn]1

−
∑
d′ ̸=d

E[wn,d′ ]E[X⊤
d′ ]
))

K̂d = (K−1
d +

∑
n

E[w2
n,d]E[Ωn])

−1.

(16)

For the PG variables Ω = {ωn,t},

q∗(Ω)=

N∏
n=1

⊤∏
t=1

PG(yn,t + rn, cn,t) with cn,t =
√

E[f2n,t].

For the dispersion variables {rn},

q∗(rn) = PTN(p, a, b),with p = T ; a =
∑
t

E[ξn,t];

b =
∑
t

(E[log τn,t] + γ − log 2− 1

2
E[fn,t]). (17)

For brevity, we defer details of update rules for the remain-
ing augmented variables to Appendix C.

Joint analysis of repeated trials For simplicity sake, the
above derivations show update rules for a single trial. How-
ever, it can be shown that the above updates can be seam-
lessly extended to handle repeated trials, such as for vision
experiments with repeated trials under the same visual stim-
ulus. See Appendix B.3 for details.
Non-identifiability In classical GPFA model, there is a
problem of model non-identifiability due to the interaction
of the loading weights and the latent processes (Yu et al.,
2008). Orthonormalization can be applied on latent states
as post processing step. In addition to this, in a negative
binomial GPFA model, the dispersion variable rn and the
latent function fn,t compete to explain the variance of spike
counts as rnefn(1 + efn) represents the variance of a nega-
tive binomial variable. To make inference stable in practice,
we apply clipping of mean values of the latent function,
E[fn,t], in the variational update of dispersion variables to
a given threshold. This is analogous of gradient clipping, a
technique common in the machine learning literature.

Updating hyperparameters In the M-step, we maximize
the ELBO w.r.t the GP kernel parameters {θd}Dd=1. In prac-
tice, we optimize those parameters with respect to the ELBO
(15) using the Adam optimizer algorithm (Kingma & Ba,
2017). We do not derive explicit formulas for the gradi-
ent here. In practice, we use the automatic differentiation
engine in Pytorch (Paszke et al., 2019). We include the
simplification of the ELBO formula in Appendix D.

Algorithm 1 Inference procedure of ccGPFA

Input data Y
Initialize latent variables Z ∈ Θ
Initialize hyperparameters: {θd}
while not converged (w.r.t. ELBO (15)) do

{ Expectation step }
while E-step stopping criterion not reached do

for Z ∈ Θ do
Update q∗(Z)

end for
end while

{Maximization step }
while M-step stopping criterion not reached do

Update length scales {θd}
end while

end while
Return variational q∗(Θ) and hyperparameters {θd}

3.3. Scalable Inference

In Section 3.2, we identified closed form updates for the
expectation step. When the observation length T is large,
evaluating (16) can become challenging due to inverting
T × T covariance matrices. For inference, we use M < T
uniformly-spaced inducing points in modeling the latent
GPs X to improve efficiency (Quinonero-Candela & Ras-
mussen, 2005).

For each latent dimension d, we modify the model by adding
set ofM inducing points on top of the existing T time points.
And for each set of inducing points, we have corresponding
Ud. We first define the joint prior distribution of Xd and
Ud

p

([
Xd

Ud

])
= N

([
0
0

]
,

[
Kd,tt Kd,tm

Kd,mt Kd,mm

])
, (18)

where Kd,tm and Kd,mt denote cross variances between
Xd and Ud.

Using a known property of the multivariate Gaussian distri-
bution, the conditional distribution of p(Xd|Ud) is given
by

p(Xd|Ud) = N (UdK
−1
d,mmKd,mt,

Kd,tt −Kd,tmK−1
d,mmKd,mt). (19)

Generalizing for all D latent processes we have

p(X,U) =

D∏
d=1

p

([
Xd

Ud

])
. (20)
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As pointed out in (Luttinen & Ilin, 2009), assuming the
inducing points capture the information in the data well, we
can approximate the joint posterior as

q(X,U) =

D∏
d=1

p(Xd|Ud)q(Ud). (21)

Careful derivations show all prior derived optimal distribu-
tions except for q∗(Xd) will remain the same, even after
adding the inducing point variables. The updates for the
latent processes would be simply marginalizing out U from
the joint distribution q(X,U). Therefore, it suffices to
derive the optimal distributions of the inducing variables.

q∗(Ud) ∝ exp{Eq(−Ud) [log p(Y ,Θ)]} ∝ N (md,Sd),

where

Sd =

(
K−1

d,mm +K−1
d,mmKd,mt

(∑
n

E[w2
n,d]E[Ωn]

)
K⊤

d,mtK
−1
d,mm

)−1

md = Sd

(
K−1

d,mmKd,mt E[Ωn]

)(∑
n

E[wn,d]

(
E[z⊤

n ]

−
∑
d′ ̸=d

E[wn,d′ ]E[X⊤
d′ ] + E[βn]1

))
. (22)

With that we can then identify q∗(Xd)

q∗(Xd) = N (Kd,tmK−1
d,mmmd,

Kd,tt −Kd,tmK−1
d,mm(Kd,mm − Sd)K

−1
d,mmKT

d,tm).

(23)

Using the above update, we effectively avoid an expensive
T × T matrix inversion.

Accelerated Inference via Natural Gradients We note the
above updates still require summations through the entire
data, which could be prohibitive for analysing long, con-
tinuous recordings. To tackle this challenge, we construct
a stochastic version of inference using exponential family
distribution properties to derive stochastic natural gradients
(Hoffman et al., 2013). Unlike other non-conjugate methods,
computing the natural gradients does not require comput-
ing inverse Fisher information matrix. Deferring details
to Appendix E, we provide the update rules for a natural
parameter η of a variational distribution,

η ← (1− step size) ∗ η + step size ∗ ηnew (24)

where the parameter ηnew denotes the noisy natural gradient
that uses a mini-batch from the dataset and is appropriately

scaled. And step size is a learning rate hyperparameter
which can be close to 1 since we work with natural gradients
(Hoffman et al., 2013). However, Adaptive learning rates
(Ranganath et al., 2013) can also be applied.

Using sparse GP with M inducing points and mini-batching
with batch size B, the time complexity of our model is
O(D(M3 +BM2)).

4. Experiments
4.1. Visual Coding Experiment

We first compared our method with other baselines on a drift-
ing gratings recording from visual cortex in mice sourced
from Allen Brain Observatory data.

Dataset We considered a passive observation segment from
the Allen Brain Observatory: Visual Coding Neuropixels
Dataset (Allen Institute, 2019). Specifically, we analysed
a simultaneous recording of 176 neurons from the mouse
primary visual (V1) cortex. The recording was over 75 trials
under a drifting gratings stimulus. Each trial was 2 seconds
long. We binned the spike train data into 15 ms bins. To
evaluate the goodness of fit, we randomly shuffled and split
the data into 50 held-in trials and 25 held-out trials.

Baseline Methods We compared against three common
baselines: GPFA (Yu et al., 2008)1, PAL (Keeley et al.,
2020b)2, and bGPFA (Jensen et al., 2021)3. For our method,
we considered both binomial and negative binomial obser-
vation models. For multiple trial data, (Keeley et al., 2020b)
and our methods fit a GPFA model with shared set of latents
and loading weights across trial. We note that (Yu et al.,
2008) and (Jensen et al., 2021), however, learn different
latent processes for each trial (with a shared covariance ma-
trix; see Appendix B.3 for details). In these experiments, to
evaluate their fitted models on test data, we computed an av-
erage of the latents learned on training data trials. To ensure
fair comparisons in terms of run time, in this experiment
we monitored convergence of the training loglikelihood as
a common stopping criteria. For the baselines (Yu et al.,
2008; Keeley et al., 2020b), this required multiple runs of
the algorithms and manually choosing the best number of
iteration.

Metrics We tested goodness-of-fit of the inferred spike
count probabilities and dispersion parameters by computing
the test log likelihood on held-out trials, computing its mean
and standard error per neuron and time step.

Implementation Notes In these experiments, since the trial

1https://github.com/NeuralEnsemble/elephant implemented in
Python by (Denker et al., 2018)

2https://github.com/skeeley/Count GPFA
3https://github.com/tachukao/mgplvm-pytorch
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Table 2: Performance comparison between our method and
baselines in terms of test negative log likelihood (normalized
by the total number of bins) and run time (in seconds).

Method Test NLL Run time

Yu et al. (2008) 0.3565 ± 0.0013 65.91
Keeley et al. (2020b) 0.3407 ± 0.0010 62.95
Jensen et al. (2021) 0.3504 ± 0.0013 1321.97

Ours (Binomial) 0.3390 ± 0.0011 9.25
Ours (NegBinomial) 0.3333 ± 0.0010 7.67

Figure 2: (Top) inferred mean firing rates by our method of a
neuron across time along with peri-stimulus time histogram;
(Left) orthonormalized latent processes; (Right) loading
weights identified by our method ccGPFA for 10 neurons.

length was short (133 bins), we did not use inducing points
or natural gradients (discussed in Section 3.3) to acceler-
ate inference for our models. The inference procedure is
implemented using as a PyTorch (v2.0.1) as a base library.
We removed non-spiking neurons. See Appendix G.1 for
details.

Results and Discussion We summarize the main results
in terms of goodness of fit on test data and run time in
Table 2. Our methods out-performed all of the baselines in
terms of both accuracy and speed. Both of the models we
fit had lower test negative log likelihoods than any baseline,
with our negative binomial model performing the best. Our
inference procedure ran in under 10 seconds for both, about
1/7 of the time of the fastest and most accurate baseline
(Keeley et al., 2020b).

Figure 2 depicts visualizations of our fitted negative bino-

mial model. In Figure 2, the first plot shows a dotted curve
representing the mean firing rate of a neuron, as inferred
by our model. The background peri-stimulus histogram
represents the neuron’s empirical spike rate constructed by
computing the mean number of spikes per bin across train-
ing trials. The plot of the latent Gaussian processes next to it
captures the dominant cyclic pattern also seen in the neural
activity. Furthermore, the Hinton diagram of the weight
coefficients (blue means positive, red means negative; size
proportional to weight magnitude) shows our model effec-
tively eliminated 4 out of the 10 pre-specified set of latents
to yield a concise representation.

We note Jensen et al. (2021)’s bGPFA converges slowly and
in this experiment no latent processes were fully eliminated,
despite employing ARD. We speculate that this may in part
be due to over parameterization in how Jensen et al. (2021)
models repeated trials, with distinct latents for each trial
that have a shared covariance matrix. An additional factor
that may explain why no latents were fully eliminated is that
the whitened parameterization Jensen et al. (2021) employ
constrains the flexibility of the inferred latents, which may
necessitate using more latents to model the data than other
methods without such constraints. Yu et al. (2008)’s GPFA
shows relatively poor performance in terms of log likelihood,
which may partly highlight the importance of count models
instead of a Gaussian model. We also note that Yu et al.
(2008)’s GPFA, like Jensen et al. (2021)’s bGPFA, had
unique latents for each trial, so over-parameterization may
have been a factor as well.

4.2. Primate Behavioral Experiment

In this subsection, we show the effectiveness of our model
on a behavioral decoding task.

Dataset We considered a delayed-reaching task dataset,
MC Maze (Churchland et al., 2010). MC Maze contains
simultaneous recordings of neural and behavior activity (e.g.
reach velocities) while a macaque performs a delayed reach-
ing task. We selected a total of 9 experimental conditions
(i.e. 9 different target locations), all with a single reaching
target and no barrier.

Preprocessing For each experimental condition, there are a
total of 18-19 trials. Each trials were 500 ms long recording
of N = 162 neurons. We binned the spikes into 5 ms bins,
yielding binned spike trains with T = 100 time steps.

Experiment Setup We first fit individual GPFA models
for each condition dataset. Using the inferred parameters,
we computed the firing rates of individual neurons. We
assessed the predictive quality of these firing rates on de-
coding the simultaneously recorded behavior. Specifically,
we conducted a 3-fold cross validation test by splitting the
conditions into train (6 conditions) and test (3 conditions)
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Table 3: MC Maze Performance comparison in terms of
R2 regression scores for predicting behavior.

Method Test R2

Yu et al. (2008) 0.290 ± 0.011
Keeley et al. (2020b) 0.585 ± 0.108
Jensen et al. (2021) 0.327 ± 0.027

Ours (Binomial) 0.576 ± 0.074
Ours (NegBinomial) 0.755 ± 0.028

sets. Using the train set, we fit a linear map from its firing
rates to a simultaneously recorded hand velocities (along
horizontal and vertical dimensions). For the linear map, we
applied a grid search to select the best regularizer (from 50
evenly sampled points between 1e-4 to 1e+4 in logspace)
through 5-fold cross validation with an L2 penalty. We
tested the generalization of the linear maps by computing
R2 score on the test set. We show the mean R2 scores and
their corresponding standard error in Table 3). Since we
only compared performance in regression scores for this
experiment, not run times, we used default stopping criteria
for the baselines. We removed neurons with low spiking in
each condition, imputing zero firing rate if the neuron was
active in other conditions. See Appendix G.1 for details.

Results and Discussion From Table 3, we can observe our
method has a clear performance gain over the baselines.
This implies the latent features our models inferred were
more predictive of the simultaneously recorded behavior.
(Jensen et al., 2021)’s bGFPA was originally developed for
long recordings and models repeated trials as independent.
However, the trials in the experiments are short and sparse.
Therefore, it suffers from the loss of predictive accuracy,
as can be seen from the R2 scores. In contrast (Keeley
et al., 2020b)’s PAL achieves a competitive performance as
it, similar to ours, exploits the i.i.d. nature of the repeated
trials. Our negative binomial ccGPFA model shows the best
predictive performance. The differences with the baselines
highlight the predictive quality of latent processes inferred
by our model.

4.3. Scalability Experiment

We setup a synthetic experiment to explore the scalability
of our model.

Synthetic Dataset We simulated three neural datasets with
N = 100 neurons and varying number of time steps T =
{300, 900, 1500}. We first generated three latent processes
drawn from a zero mean GP with a lengthscale of 10. For
each neuron-latent pair, we generated loading weights from
a standard normal distribution scaled with 0.1. For each
neuron, we randomly sampled its dispersion parameter from
Uniform[1, 10]. We then sampled a total of 10 i.i.d. trials

Table 4: Scalability Experiment Performance comparison
in terms of average test negative loglikelihood (per spike
count per trial) and running times in seconds (in parenthe-
ses). Bin/NegBin stands for our (negative) binomial ccGPFA
model. The suffixes {50, 100, 200} indicate the number of
inducing points used.

Method T=300 T=1500

Keeley et al. (2020b) 1.517 (1658) 1.514 (112644)
Bin 1.458 (19) 1.451 (631)
NegBin 1.416 (10) 1.415 (1422)
Bin-50 1.458 (5) 1.460 (6)
Bin-100 1.458 (6) 1.452 (8)
Bin-200 1.458 (13) 1.452 (15)
NegBin-50 1.416 (12) 1.422 (31)
NegBin-100 1.416 (11) 1.416 (21)
NegBin-200 1.416 (21) 1.415 (55)

from a negative binomial GPFA model Equation (2). We
trained GPFA models on the first 7 trials and tested their
negative log-likelihood results on the remaining 3 trials.
We removed non-spiking neurons. See Appendix G.1 for
details.

Methods We tested both binomial and negative binomial
likelihood models with/without using sparse GPs as shown
in Section 3.3. We used M = {50, 100, 200} as choices
for the number of inducing points. In the table, we in-
dicate the use of inducing points with a suffix (e.g Ours
(NegBinomial)-200 indicates negative binomial model with
200 inducing points). For comparison we added the (Keeley
et al., 2020b) baseline which showed the most competitive
performance in the previous experiments.

Results and Discussion Due to limited space, we highlight
some results in Section 4.3. See Table 5 in Appendix G.2
for more details. Overall, our negative binomial method
achieves the best test negative likelihood. In addition, we
note our methods that use inducing points show comparable
performance, with large reduction in running times. Keeley
et al. (2020b)’s PAL yields competitive accuracy but takes
orders of magnitude more time than the ccGPFA methods.
For the scalability experiments, we capped the number of
iterations to 1000 for (Keeley et al., 2020b). Despite this
limit, for T = 1500, it took over 31 hours of runtime, in
contrast to our best sparse ccGPFA model which finished
under a minute. This can be partly explained by the ex-
pensive second-order optimization objective used in PAL’s
implementation.

A Python implementation of our algorithm and the above
experiments is publicly available at https://github.
com/yididiyan/ccgpfa/tree/public.
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We include the following in the supplementary material:

• Appendix A: Related Works - Extended Discussion

• Appendix B: Augmentation Details

• Appendix C: Variational distribution updates

• Appendix D: ELBO Expression

• Appendix E: Natural Gradients

• Appendix F: Important Densities

• Appendix G: Experiment Details and Results

A. Related Works – Extended Discussion
In this section, we extend the review of the related work presented in Section 1.

A.1. Latent Variable Models

In general, latent variable models (LVMs) are used to encode neural dynamics from data, which can be later used to decode
stimulus inputs and behavioural variables (Glaser et al., 2020; Schimel et al., 2021). Broadly, in terms of methodology,
LVMs for inferring neural dynamics from data fall into two categories: Gaussian Process based methods (Yu et al., 2008;
Lakshmanan et al., 2015; Keeley et al., 2020b; Jensen et al., 2021) and auto-regressive methods (Yu et al., 2005; Petreska
et al., 2011; Semedo et al., 2014; Pandarinath et al., 2018; Kim et al., 2021). Both lines of works share an underlying
assumption that activity of neurons is driven by a set of shared low-dimensional latent trajectories. The main distinction lies
on the priors placed for the these factors. In addition, the inferred latent state is considered to be discrete-time samples.
Duncker & Sahani (2018) extends the GPFA model to continuous time. Another common simplifying assumption is that the
underlying latent trajectories are assumed independent a priori. Rutten et al. (2020) extends the GPFA model to address the
limitation. In addition, these methods are mostly reserved to observations that are modeled using transformations of linear
combinations of latent states. However, a recent works (Jensen et al., 2022) extend GPFA model to non-Euclidean manifold.
Recently, in (Gokcen et al., 2022; 2023) extend the standard GPFA to model multiple interacting populations populations.

In this work, our focus lies on a non-conjugate extension of the GPFA model arising from modeling count data. The closest
works to ours, (Keeley et al., 2020b; Jensen et al., 2021), employ approximate techniques to handle non-conjugacy. We
present a data augmentation based method to handle non-conjugacy that results in simple closed form solutions. Jensen et al.
(2021) applied variational inference using whitened parameterization tailored to radial basis function (RBF) kernels that
resulted in a scalable procedure.

A.2. Data augmentation

Polson et al. (2013) introduced Pólya-gamma augmentation to yield model likelihood conditionally conjugate, which is
vital in tractable Bayesian inference. This technique has been applied to logistic models (Jankowiak, 2021; Wenzel et al.,
2019), point process models (Zhou et al., 2020), and factor models (Pillow & Scott, 2012; Klami, 2015; Soulat et al., 2021).
However, methods using this technique specifically for negative binomial observation model treat dispersion variables as
hyperparameters despite its importance in spike data. He et al. (2019) presents a rich set of augmentation techniques for
Gamma based models, including for negative binomial regression model. We extend this augmentation for GP based latent
variable model. To the best of our knowledge, our work is the first to utilize this augmentation technique on a latent variable
model as GPFA. In section Section 3.2, we elaborate its practical challenges and solution in its application.

A.3. Sparse Gaussian processes and natural gradients

Sparse Gaussian processes (GP) have been applied to GP models to mitigate computational complexity, resulting in scalable
inference (Quinonero-Candela & Rasmussen, 2005; Titsias, 2009). They are akin to a low-rank approximation of GP
covariances, which results in efficient and scalable inference. In our model, the latent states are sampled at evenly spaced
points in time. Therefore, we used fixed inducing points evenly spaced across time. When employing Gaussian processes
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for modeling a set of n data points, using sparse Gaussian processes (m≪ n inducing points) can lead to a reduction in
computational complexity from O(n3) to O(nm2) by inverting an m×m matrix instead of inverting a larger n× n matrix.

B. Augmentation Details
Here we show detail of the augmentation steps necessary to make a negative binomial GPFA model conditional conjugate
for efficient Bayesian inference.

B.1. NegBinomial

Recall, the likelihood of the observed spike counts Y ∈ NN×T under a negative binomial GPFA model, given in Eq. 2

p(Y |·) ∝
∏
n,t

Γ(yn,t + rn)

Γ(rn)

(efn,t)yn,t

(1 + efn,t)yn,t+rn
. (removing {yn,t!} as constants)

To apply Bayesian inference on model variables X,W , β and {rn}, one must either marginalize them out from the joint
distribution p(Y ,X,W ,β, {rn}) or find prior distributions for which the resulting posterior belongs to a known class of
distributions. The former entails integration in higher dimensions which is analytically and computationally intractable.
And unfortunately, there is also no known conjugate prior for the given model likelihood.

Following (He et al., 2019), we show series of steps to augment the GPFA model to make the likelihood tractable. We first
breakdown the likelihood into three parts.

p(Y |·) ∝
(∏

n,t

Γ(yn,t + rn)︸ ︷︷ ︸
term 1

)(∏
n,t

1

Γ(rn)︸ ︷︷ ︸
term 2

)(∏
n,t

(efn,t)yn,t

(1 + efn,t)yn,t+rn︸ ︷︷ ︸
term 3

)
. (25)

Commonly used Pólya-gamma data augmentation techniques (Polson et al., 2013) apply an integral identity to term 3 into a
tractable form yielding Gaussian likelihood over a transformed variable. Such augmentations treat the dispersion variable rn
as a parameter, making terms 1 and 2 constant upon conditioning. Then rn is optimized in an outer loop using a common
second order optimization techniques (Pillow & Scott, 2012; Soulat et al., 2021). To apply a fully Bayesian inference on the
model, i.e treating rn as a random variable, we have to also deal with terms 1 and 2. And the gamma function does not
admit a natural conjugate prior distribution. To solve this, He et al. (2019) identifies the following integrals.

First, we can express the product of gamma functions in term 1 as follows,∏
n,t

Γ(yn,t + rn) ∝
∏
n,t

∫ ∞

0

τ
(yn,t+rn)−1
n,t e−τn,tdτn,t. (26)

Next, we apply another integral equivalence to the reciprocal gamma function in term 2,∏
n,t

1

Γ(rn)
∝
∏
n,t

∫ ∞

0

rne
−r2nξn,t+γrn P-IG(ξn,t|0)dξn,t (27)

∝
∏
n,t

rne
γrn

∫ ∞

0

e−r2nξn,t P-IG(ξn,t|0)dξn,t, (28)

where (28) follows from pulling out constants and P-IG(0) denotes the PDF of a Polya-Inverse Gamma distribution, a new
class of distributions developed in (He et al., 2019), with tilting parameter 0. In the equation above, γ ≈ 0.577 refers to
Euler’s constant.

Finally, we apply an integral identity to transform term 3,∏
n,t

(efn,t)yn,t

(1 + efn,t)yn,t+rn
=
∏
n,t

2−b exp((a− b/2)fn,t)
∫ ∞

0

exp
{
−
ωn,tf

2
n,t

2

}
PG(ωn,t|b, 0)dωn,t, (29)
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where a = yn,t and b = yn,t + rn. Simplifying the expression by removing terms with only yn,t dependence and setting
κn,t =

yn,t−rn
2 ,

∏
n,t

(efn,t)yn,t

(1 + efn,t)yn,t+rn
∝
∏
n,t

exp(−rn log 2 + κn,tfn,t)

∫ ∞

0

exp
{
−
ωn,tf

2
n,t

2

}
PG(ωn,t|b, 0)dωn,t. (30)

Treating the newly introduced variables as latent auxiliary variables in the model, we identify the joint conditional distribution
p(Y , {τn,t, ξn,t, ωn,t}n=1...N,t=1...T |X,W ,β, {rn}). For simplicity, we omit the conditioning variables.

Gathering the above results, and augmenting the variables into the model,

p(Y , {τn,t, ξn,t, ωn,t}n=1...N,t=1...T |·) ∝
(∏

n,t

τ
(yn,t+rn)−1
n,t e−τn,t

)
×
(∏

n,t

rne
−r2nξn,t+γrn P-IG(ξn,t|0)

)

×
∏
n,t

exp(−rn log 2 + κn,tfn,t) exp
{
−
ωn,tf

2
n,t

2

}
PG(ωn,t). (31)

Conditioning on the augmented variables, we can note the augmented likelihood becomes conditionally conjugate. By
placing Gaussian priors on X,W , and β, their conditional posterior is a Gaussian density up to a constant factor. Similarly,
placing a gamma prior on rn, p(rn) ∼ Γ(a0, b0) yields an exponential conditional posterior. Similar to (He et al., 2019), we
use an improper gamma prior Γ(1, 0).

As a function of fn,t,

pfn,t
(Y |{τn,t, ξn,tωn,t}n=1...N,t=1...T , ·) ∝

∏
n,t

exp(κn,tfn,t −
ωn,tf

2
n,t

2
)

∝
∏
n,t

exp(−1

2
ωn,t(

κn,t
ωn,t

− fn,t)2)

∝ N (zn,t|fn,t, ω−1
n,t). (zn,t =

κn,t

ωn,t
)

And as a function of rn

prn(Y |{τn,t, ξn,tωn,t}n=1...N,t=1...T , ·) ∝ exp{
∑
t

rn log τn,t + log rn − r2nξn,t + γrn − rn log 2−
1

2
rnfn,t}.

This result lays the foundation for closed form variational updates in Appendix C. Unlike the original negative binomial
likelihood, this augmented likelihood ensures conjugacy to all our priors and is fundamental in deriving closed form updates
for all our variables, including the newly augmented ones.

B.2. Binomial GPFA

As mentioned in the main paper, similar augmentation can be applied to a GPFA model with Binomial observations.
Consider the following binomial model, where kn represents the total number of Bernoulli trials and p is the probability of
success, linked to the latent function fn,t via log-odds.

p(yn,t|·) ∝ pyn,t(1− p)kn−yn,t

∝ (efn,t)yn,t

(1 + efn,t)kn
. (32)

By setting a = yn,t and b = kn and applying the integral identity in Equation (29), we can restore conjugacy to the model.
In addition, the common choice of the total number of trials kn is the maximum number of spikes for neuron n over the
length of the recording. Therefore, the value would be fixed and removes the necessity for further augmentation, unlike the
negative binomial GPFA model.
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B.3. Repeated trials

In the following, we extend the problem setup from analysing single trial data to repeated trial data. Let {Y m}m=1...M

denote the spike counts from M repeated trials. Extending Eq. 2 to this setup, our likelihood becomes

p({Y }m|·) ∝
( ∏

m,n,t

Γ(ym,n,t + rn)︸ ︷︷ ︸
1

)( ∏
m,n,t

1

Γ(rn)︸ ︷︷ ︸
2

)(∏
n,t

(efn,t)
∑

m ym,n,t

(1 + efn,t)
∑

m ym,n,t+Mrn︸ ︷︷ ︸
3

)
. (33)

Note that we model the observation across trials as arising from shared set of latents and loading weights.

By setting a =
∑

m ym,n,t and b =
∑

m ym,n,t +Mrn, we can apply the integral identity in Eq. 29. This is equivalent to
augmenting N × T variables. We further augment the model for each product term in 1 and 2 following Eqs. 26 and 28.
After augmentation, the subsequent derivations simply follow.

Prior works handle repeated trials differently. (Yu et al., 2008; Jensen et al., 2021) learned shared parameters such as GP
lengthscales and weights and allowing for varying latents. (Keeley et al., 2020b) , similar to ours, model shared set of latents
and weights to model the common structure across trials, which is beneficial in analyzing repeated trials as shown in the
experimental results.

C. Variational distribution updates
Using the mean field assumption provided in Eq. (14), we derive the optimal distributions, denoted with ∗ superscript, for
the variables using coordinate ascent variational inference (Bishop, 2006). We represent the set of all variables including the
augmented variables with Θ.

C.1. Augmented variables

For augmented gamma variables, τn,t

q∗(τn,t) ∝ exp{Eq(−τn,t)[log p(Y ,Θ)]}
∝ exp{E[((yn,t + rn)− 1) log τn,t − τn,t]} (removing constant terms)
∝ exp{((yn,t + E[rn])− 1) log τn,t − τn,t}. (expectation;)

Recognizing the above as gamma distribution with natural parameters [(yn,t + E[rn])− 1,−1], the optimal distribution is
given by

q∗(τn,t) = Γ(yn,t + E[rn], 1). (34)

For augmented P-IG variables, ξn,t

q∗(ξn,t) ∝ exp{Eq(−ξn,t)[log p(Y,Θ)]}
∝ p(ξn,t; 1) exp{−E[r2n]ξn,t}. (removing constant terms)

Using the exponential tilting property (He et al., 2019), we can recognize this as a general class P-IG distribution,

q∗(ξn,t) = P-IG(
√
E[r2n]). (35)
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For the set of augmented PG variables ωn,t we can derive the optimal variational distributions as follows,

q∗(ωn,t) ∝ exp{Eq(−ωn,t)[log p(Y,Θ)]}

∝ exp

{
E
[
log

(efn,t)yn,t

(1 + efn,t)yn,t+rn

]}
(removing terms with no ωn,t dependence)

∝ exp

{
E
[
yn,t log(e

fn,t)− (yn,t + rn) log(1 + efn,t)

]}
(removing terms with no ωn,t dependence)

∝ exp

{
E
[
yn,t log(e

fn,t)− (yn,t + E[rn]) log(1 + efn,t)

]}
(applying expectation w.r.t rn)

∝ exp

{
E
[
log

(efn,t)yn,t

(1 + efn,t)yn,t+E[rn]

]}
(exponent in log; quotient rule)

∝ exp

{
E
[
log exp{−

ωn,tf
2
n,t

2
}PG(ωn,t|yn,t + E[rn], 0)

]}
(applying the Pólya-gamma integral identity; dropping constants)

∝ PG(ωn,t|yn,t + E[rn], 0) exp
{
E[−

ωn,tf
2
n,t

2
]

}
(simplifying expression)

∝ PG(ωn,t|yn,t + E[rn],
√
E[f2n,t]). (exponential tilting)

Note all augmented variables {ωn,t} do not have interdependence in the updates, hence the updates can be done in parallel
fashion. The same holds for {τn,t, ξn,t}.

For the repeated trial setting, B.3, the updates would simply differ in the shape parameter PG(ωn,t|
∑

m ym,n,t +

E[rn],
√
E[f2n,t])

C.2. Dispersion variables

q∗(rn) ∝ exp{Eq(−rn)[log p(Y ,Θ)]}
∝ exp{E[log p(Y |·)p(rn)]}
∝ p(rn) exp{E[log p(Y |·)]}

∝ p(rn) exp{E[log
∏
t

τ
(yn,t+rn)−1
n,t rn exp(−r2nξn,t + γrn − rn log 2 + κn,tfn,t)]}

(expanding expression by droping terms with no rn dependence)

∝ p(rn) exp{E[
∑
t

rn log τn,t + log rn − r2nξn,t + γrn − rn log 2−
1

2
rnfn,t]}

(product to summation; κn,t =
yn,t−rn

2 )

∝ p(rn) exp{
∑
t

rn E[log τn,t] + log rn − r2n E[ξn,t] + γrn − rn log 2−
1

2
rn E[fn,t]} (applying expectation)

∝ p(rn)rTn exp{
∑
t

rn E[log τn,t]− r2n E[ξn,t] + γrn − rn log 2−
1

2
rn E[fn,t]}

∝ rT−1
n exp{−r2n

(∑
t

E[ξn,t]
)
+ rn

∑
t

(
E[log τn,t] + γ − log 2− 1

2
E[fn,t]

)
}

(p(rn) ∝ 1/r; simplification)

(36)

We can recognize the above expression as a Power Truncated Normal (PTN) distribution (He et al., 2019) with parameters
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p = T, (37)

a =
∑
t

E[ξn,t] & b =
∑
t

(
E[log τn,t] + γ − log 2− 1

2
E[fn,t]

)
. (38)

The expectation in E[ξn,t] is given closed form of the moment of a P-IG distribution with tilting parameter c (Theorem 2 in
(He et al., 2019) for details)

E[ξn,t] =
1

2c
ψ(c+ 1)− ψ(1). (39)

Also by logarithmic expectation of gamma distribution, we can simplify,

E[log τn,t] = ψ(α)− log β. (40)

where α, β are shape and rate parameters of the variational distribution and ψ denotes the digamma function.

Repeated trials setting For M repeated trials,

p =MT, (41)

a =
∑
m,n,t

E[ξm,n,t] & b =
∑
m,n,t

(
E[log τm,n,t] + γ − log 2− 1

2
E[fn,t]

)
(42)

where {ξm,n,t, τm,n,t} are augmented variables.
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C.3. Latent processes

q∗(Xd) ∝ p(Xd) exp{Eq(−Xd)[log p(Y |Θ)]}

∝ p(Xd) exp{E
[
− 1

2

∑
n

(zn − fn)Ωn(zn − fn)
⊤
]
}

∝ p(Xd) exp{E
[
− 1

2

∑
n

−2fnΩnz
⊤
n + fnΩnf

⊤
n

]
} (distribute and remove constants w.r.t Xd)

∝ p(Xd) exp{E
[
− 1

2

∑
n

wnXΩnX
⊤w⊤

n − 2wnXΩn(z
⊤
n − βn1)

]
} (removing constants w.r.t Xd)

∝ p(Xd) exp{E
[
− 1

2

∑
n

(∑
d′

wn,dXdΩnX
⊤
d′wn,d′

)
− 2wn,dXdΩn(z

⊤
n − βn1)

]
}

(decomposing summations; removing constants)

∝ p(Xd) exp{E
[
− 1

2

∑
n

Xd(Ωnw
2
n,d)X

⊤
d − 2Xdwn,dΩn(z

⊤
n − βn1−

∑
d′

Xd′wn,d′)

]
} (rearranging)

∝ p(Xd) exp{−
1

2

(
Xd(

∑
n

E[Ωn]E[w2
n,d])X

⊤
d

− 2Xd

(∑
n

E[wn,d]E[Ωn](z
⊤
n − E[βn]1−

∑
d′ ̸=d

E[Xd′ ]E[wn,d′)]

))
}

(applying summations along n; applying expectations)

∝ exp{−1

2

(
Xd (K

−1
d +

∑
n

E[Ωn]E[w2
n,d])︸ ︷︷ ︸

:=Φd

X⊤
d

− 2Xd

(∑
n

E[wn,d]E[Ωn](z
⊤
n − E[βn]1−

∑
d′ ̸=d

E[Xd′ ]E[wn,d′)]

))
} (definition of p(Xd) 9)

∝ exp

{
− 1

2

(
Xd −

(
Φ−1

d

(∑
n

E[wn,d]E[Ωn](z
⊤
n − E[βn]1−

∑
d′ ̸=d

E[Xd′ ]E[wn,d′)]

))⊤)
Φd

(
Xd −

(
Φ−1

d

(∑
n

E[wn,d]E[Ωn](z
⊤
n − E[βn]1−

∑
d′ ̸=d

E[Xd′ ]E[wn,d′)]

))⊤)⊤}
(removing constant; applying expectations; completing the square;)

We can recognize the above expression as a multivariate Gaussian distribution over a random vector Xd with mean and
variance md and variance V d

q∗(Xd) = N (md,V d)

md = V d

(∑
n

E[wn,d]E[Ωn](z
⊤
n − E[βn]1−

∑
d′ ̸=d

E[Xd′ ]E[wn,d′)]

)
(43)

V d = Φ−1
n (44)
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C.4. Base intensities

q∗(β) ∝ p(β|τβ) exp{Eq(−β[log p(Y |Θ)]}

∝ p(β|τβ) exp{E
[
− 1

2

∑
n

(zn − fn)Ωn(zn − fn)
⊤
]
}

∝ p(β|τβ) exp{E
[
− 1

2

∑
n

−2fnΩnz
⊤
n + fnΩnf

⊤
n

]
} (distribute and remove constants w.r.t βn)

∝ p(β|τβ) exp{E
[
− 1

2

∑
n

βn1
⊤Ωn1βn − 2βn1

⊤Ωn(z
⊤
n −XTwT

n )

]
} (removing constants w.r.t βn)

∝ p(β|τβ) exp{E
[
− 1

2

∑
n

β2
n Tr(Ωn)− 2βn Tr(Ωn diag(z

⊤
n −XTwT

n ))

]
} (simplificiation)

∝ exp{−1

2

∑
n

β2
n (E[τβ ] + Tr(E[Ωn]))︸ ︷︷ ︸

:=Φn

−2βn Tr(E[Ωn] diag

(
z⊤
n − E[XT ]E[wT

n ]

)
)}

(definition of p(β|τβ); applying expectation)

∝ exp{−1

2

∑
n

Φn

(
βn −

Tr(E[Ωn] diag

(
z⊤
n − E[XT ]E[wT

n ]

)
)

Φn

)2

}

(completing the square; removing constants)

We can recognize the above expression as a product of univariate Gaussian distributions with mean and covariance denoted
µn and σ2

n.

q∗(β) =
∏
n

N (µn, σ
2
d)

µn = σ2
n Tr(E[Ωn] diag

(
z⊤
n − E[XT ]E[wT

n ]

)
) & σ2

n =
1

E[τβ ] + Tr(E[Ωn])
(45)

C.5. Loading weights

Recall fn = wn Xd + βn1
⊤
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q∗(W ) ∝ p(W ) exp{Eq(−W )[log p(Y |Θ)]}

∝ p(W ) exp{E
[
− 1

2

∑
n

(zn − fn)Ωn(zn − fn)
⊤
]
}

∝ p(W ) exp{E
[
− 1

2

∑
n

−2fnΩnz
⊤
n + fnΩnf

⊤
n

]
} (distribute and remove constants w.r.t W )

∝ exp{−1

2
wn(diag(τ ))w

⊤
n } exp{E

[
− 1

2

∑
n

wnXΩnX
⊤w⊤

n − 2wnXΩnz
⊤
n

]
}

(removing constants w.r.t W ; ẑ⊤
n = z⊤

n − βn1)

∝ exp{E
[
− 1

2

∑
n

wn(XΩnX
⊤ + diag(τ ))w⊤

n − 2wnXΩnẑ
⊤
n

]
} (removing constants w.r.t W )

∝ exp{E
[
− 1

2

∑
n

wnΦnw
⊤
n − 2wnXΩnẑ

⊤
n + ẑnΩ

−1X⊤XΩnẑ
⊤
n − ẑnΩ

−1X⊤XΩnẑ
⊤
n

]
}

(Φn = (XΩnX
⊤ + diag(τ )); completing the square)

∝ exp{
[
− 1

2

∑
n

(
wn −

(
(E[Φn])

−1 E[X]E[Ωnẑ
⊤
n ]

)⊤)
E[Φn](

wn −
(
(E[Φn])

−1 E[X]E[Ωnẑ
⊤
n ]

)⊤)⊤]
}

(removing constant; applying expectations; completing the square;)

We can recognize the above expression as product of multivariate Gaussian distribution of random vectors wn with mean
and variance mn and variance V n

q∗(W ) =
∏
n

N (mn,V n)

mn = V n(E[X]E[Ωnẑ
⊤
n ]) & V n = (E[Φn])

−1 (46)

C.6. Precision Variables

For the ARD precision variables,

q∗(τ ) ∝ exp{Eq(−τ )[log p(Y ,Θ)]}
∝ p(τ ) exp{E [log p(W |τ )]} (no τ dependence)

= p(τ ) exp{E

[∑
n

1

2
log |diag(τ )| − 1

2
wn diag(τ )w

⊤
n

]
} (definition of p(W |τ ))

= p(τ ) exp{E

[
N

2

∑
d

log τd −
1

2

∑
n

wn diag(τ )w
⊤
n

]
} (definition of p(W |τ ))

= p(τ ) exp{N
2

∑
d

log τd −
1

2

∑
d

∑
n

E
[
w2

n,d

]
τd + const} (taking expectations, rearranging)

∝ exp{
∑
d

(ad − 1) log τd − bdτd} exp{
N

2

∑
d

log τd −
1

2

∑
d

∑
n

E
[
w2

n,d

]
τd} (definition of p(τ))

= exp{
∑
d

(ad +
N

2
− 1) log τd − (bd +

1

2

∑
d

∑
n

E
[
w2

n,d

]
)τd}. (rearranging)
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Recognizing the above as a product of gamma distributions, we get

q∗(τ ) =
∏
d

G(âd, b̂d) where

âd = ad +
N

2
b̂d = bd +

1

2

∑
n

E
[
w2

n,d

]
. (47)

The update rule for the precision variable, τβ , is given as

q∗(τβ) ∝ exp{Eq(−τβ)[log p(Y ,Θ)]}

∝ p(τβ) exp{E

[∑
n

log p(βn|τβ)

]
} (no τβ dependence)

∝ p(τβ) exp{E

[∑
n

1

2
log τβ −

1

2
β2
nτβ

]
} (definition of p(βn|τβ))

= p(τβ) exp{
N

2
log τβ −

1

2

∑
n

E
[
β2
n

]
τβ} (taking expectations, rearranging)

= exp{(c+ N

2
− 1) log τβ − (d+

1

2

∑
n

E
[
β2
n

]
)τβ}. (definition of p(τβ))

Recognizing the above as a product of gamma distributions, we get

q∗(τβ) = G(ĉ, d̂) where

ĉ = c+
N

2
d̂ = d+

1

2

∑
n

E
[
β2
n

]
. (48)

C.7. Computing variational moments

All of the variables except the dispersion parameter rn have a known closed form for their first and second moments. For
rn, we compute the its moments using an efficient gamma based sampler presented in (He et al., 2019) (see its Appendix
C for details). Also for completeness, we review moments and other important facts of the less common Pólya-Gamma,
Pólya-Inverse Gamma, and Power Truncated Normal distributions in Appendix F

D. ELBO expression
The evidence lower bound (ELBO), denoted as L defined in Equation (15) is given as follows

L = Eq(Θ) [log p(Y |Θ)]−KL[q(Θ)∥p(Θ)]

where Θ = {X,W ,β, τ , τβ , {ωn,t, τn,t, ξn,t, }} is the set of all latent variables and KL represents Kullback-Leibler
divergence measure.

This follows from Jensen’s inequality,

log p(Y ) = logEp(Θ) [p(Y |Θ)]

= logEq(Θ)

[
p(Y |Θ)p(Θ)

q(Θ)

]
≥ Eq(Θ)

[
log

p(Y |Θ)p(Θ)

q(Θ)

]
=: L. (49)

In the variational EM algorithm presented in Algorithm 1, we update the variational distributions utilizing closed form
solutions. However, to update the GP parameters, we directly optimize them (via automatic differentiation) using the ELBO
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formula. This requires further simplifications of the ELBO. In the following, we show details of the simplifications.

L = Eq(Θ)[p(Y |Θ)]−KL[q(Θ)∥p(Θ)] (50)

We note that in the expression, the variational expectation term has no dependence of GP parameters. And by independence
assumptions presented in Equation (14),

the above KL term decomposes as

KL[q(Θ)∥p(Θ)]

=
∑
d

KL[q(Xd∥p(Xd))] +
∑
n,t

KL[q(ωn,t∥p(ωn,t))] +
∑
n,t

KL[q(τn,t)∥p(τn,t)]

+
∑
n,t

KL[q(ξn,t)∥p(ξn,t)] +
∑
n

KL[q(wn)∥p(wn|τ )]

+
∑
n

KL[q(βn)||p(βn)] +
∑
d

KL[q(τ d)∥p(τ d)] + KL[q(τβ)∥p(τβ)].

From the equation above, we note that only the first KL term is dependent on GP parameters. Thus, further simplifying the
KL using divergence formula of two multivariate Gaussians distributions,

KL[q(Xd)∥p(Xd)] = KL[q(Xd|µ̂d, K̂d)∥p(Xd|µd,Kd)]

=
1

2

[
log |Kd| − log |K̂d| − T +Tr{K−1

d K̂d}+ (µd − µ̂d)
⊤K−1

d (µd − µ̂d)
]
.

We can now define an objective function to optimize our GP parameters {θd}Dd=1.

L(θd) = −KL[q(Xd)∥p(Xd)] + const (removing constants w.r.t θd)
= Eq(Xd)[log q(Xd)] + Eq(Xd)[log p(Xd)] + const (KL def.)
= Eq(Xd)[log p(Xd)] + const (removing constants w.r.t θd)

= −1

2

(
log |Kd|+ Eq(Xd)[Xd]K

−1
d Eq(Xd)[X

⊤
d ] + Tr(K̂dKd)

)
+ const . (51)

Recall Kd denotes the prior covariance of the d-th latent process with kernel parameters θd. In practice, we use PyTorch
(Paszke et al., 2019) automatic differentiation engine to compute gradients with respect to the GP length scale parameters
{θd}. For a sparse GPFA variant Section 3.3, Kd would be an M ×M prior covariance matrix instead of a large T × T .

E. Natural Gradients
The sparse GPFA variant shown in Section 3.3 avoids the expensive T × T matrix. However, still in the variational updates
it uses all the data i.e. spike counts of all neurons across time. Here we show how we can extend the accelerate the inference
by using only a mini-batch of the data. Using mini-batch of the data we obtain a noisy natural gradient (Hoffman et al.,
2013).

Consider a random minibatch of time points T . The natural gradients based on these time points are give below. These
gradients are scaled to match the dataset size using the ratio of the total number of time steps to the minibatch size T

|T | .

E.1. Weights

The natural parameters for the loading weights of the n-th neuron are

η
(n)
1 =

T

|T |
E[X]E[Ωn](z

⊤
n − E[βn]1]) η

(n)
2 = −1

2
(diag(E[τ ]) +

T

|T |
E[X E[Ωn]X

⊤]) (52)

E.2. Latent Processes

The natural parameters for the d-th latent process are

22



Conditionally-Conjugate Gaussian Process Factor Analysis for Spike Count Data via Data Augmentation

η
(d)
1 =

T

|T |

(∑
n

E[Ωn]E[wn,d]
(
E[z⊤

n ]− E[βn]1−
∑
d′ ̸=d

E[wn,d′ ]E[X⊤
d′ ]
))

η
(d)
2 = −1

2

(
K−1

d +
T

|T |
∑
n

E[w2
n,d]E[Ωn]

)
(53)

E.3. Base Intensities

The natural parameters for the base intensity of the n neuron are given by

η
(n)
1 =

T

|T |
(E[zn]− E[wn]E[X])E[Ωn]1 η

(n)
2 = −1

2
(E[τβ ] +

T

|T |
Tr(E[Ωn])

(54)

F. Important Densities
Glynn et al. (2019) and He et al. (2019) formally defined new distributions Pólya-Inverse Gamma(P-IG) and Power Truncated
Normal distributions resepectively. For completeness we include their important details in this section. We also review
Pólya-Gamma distribution.

F.1. Pólya-Inverse Gamma (P-IG)

The Pólya-Inverse Gamma (P-IG) distribution is defined with an infinite dimensional parameter vector d = {d1, d2, ...} and
a scalar “tilting” parameter c. The distribution of a P-IG random variable x with parameter d and c = 0 is equivalent to an
infinite convolution of the well known generalized inverse Gaussian (GIG) distribution,

P-IG(x|d, c = 0)
D
=

∞∑
k=1

GIG

(
− 3

2
,

1√
2dk

, 0

)
(55)

The general class of P-IG(d, 0) is defined as exponential tilting of P-IG(d, c), similar to Pólya Gamma distribution (Polson
et al., 2013),

P-IG(x|d, c) ∝ exp(− c
2
x) P-IG(x|d, 0), (56)

and equivalently,

P-IG(x|d, c) D
=

∞∑
k=1

GIG

(
− 3

2
, 2c2,

1

2k2

)
. (57)

Theorem 2 in (He et al., 2019) shows the first moment of the distributions available in closed form,

E[x] =
1

2c
(ψ(c+ 1)− ψ(1)). (58)

F.2. Power truncated normal (PTN)

The Power Truncated Normal distribution, PTN, is defined with three parameters p, a > 0 and b ̸= 0. For a PTN variable x,
its unnormalized density is given as

PTN(x) ∝ xp−1e−ax2+bx, x > 0. (59)

He et al. (2019) showed (in Appendix C) an efficient sampling algorithm from the distribution. This is important in the
variational updates to compute the mean.
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F.3. Pólya-gamma distribution

The Pólya-gamma distribution is part of the class of infinite convolution of gamma distributions. For a Pólya-gamma
variable ω with distribution PG(b, 0) where b denotes the shape parameter, the variable is equal in distribution with infinite
sum of gamma variables.

ω
D
=

1

2π2

∞∑
k=1

gk
(k − 1/2)2

(60)

where gk ∼ Γ(b, 1). Polson et al. (2013) showed the distribution of the general class of PG(b, c) distribution can be
expressed as exponential tilting of of PG ,

PG(ω|b, c) ∝ exp(−c
2

2
x)p(ω|b, 0). (61)

For our purpose, in the variational updates it is important to compute the first moment of the distribution. As shown in
(Polson et al., 2013), the first moment is given as

E(ω) =
b

2c
tanh(c/2). (62)

G. Experiments: details and results
G.1. General Experiment Details

Handling repeated trials Keeley et al. (2020b)’s PAL method and our ccGPFA infer shared firing rates for repeated trials.
However, the other baselines do not. To fairly include the remaining baselines, we took additional steps to infer shared
firing rates. Yu et al. (2008)’s GPFA infers separate latent processes for individual trials. To compute the firing rates of
neurons, we took an average of the inferred latents across trials. In addition, since the model is fit on the square-root
transformation of the spikes as Gaussian distribution, we simulated a total of 20 Monte Carlo samples and applied the
inverse transformation (squaring samples) to simulate spike counts. By taking an average over the simulated spikes, we
approximated the inferred firing rates. Similarly, for Jensen et al. (2021)’s bGPFA, we took an average of the latent processes
across trials and computed the firing rates using the negative binomial likelihood.

Handling neurons with no/few spikes As a preprocessing step in each experiment, for each experimental condition we
filtered out neurons which did not spike in any trial before fitting any GPFA models. There was one condition for the first
experiment using Allen data, nine conditions for the second MC Maze experiment with behavioral data, and one condition
for the third experiment using synthetic data.

Since the second experiment with behavioral data involved fitting a linear model from inferred firing rates across multiple
conditions, for neurons that had no spikes in some of the nine conditions (and thus removed before fitting GPFA models for
those conditions) but had some spikes in other conditions (and thus were included in GPFA fitting for those), we imputed
zero-firing rates for the conditions they were removed. This choice accounts for neurons which could be quiet for one
condition but active for another. For Yu et al. (2008)’s GPFA model, we set a higher spike count threshold for removal. This
was done to mitigate a rank-deficiency issue raised in the implementation. Specifically, we excluded neurons in conditions
where across all trials there was exactly one spike. There were about 5-10 such neurons in each condition. Like for the other
methods, if a neuron was active in other conditions, we imputed a zero-firing rate for that neuron in the fitted GPFA model
for the conditions it was removed. Lastly, we note that in the first experiment with Allen Brain Observatory data, all of the
neurons kept after removing zero-spiking neurons had more than one spike across the trials, so the neurons Yu et al. (2008)’s
GPFA model were trained and tested on were identical to those the others were. Also, we did not use Yu et al. (2008)’s
GPFA in the third experiment with synthetic data.

G.2. Scalability Results

Additional details on experiments For our methods that use inducing points, in practice, we used a stochastic extension
of our sparse GPFA method presented in Section 3.1 and Appendix E. For the different choices of inducing points
M = {50, 100, 200}, we set increasing number of batch sizes B = {100, 150, 200}. We used a constant step size of 0.25
for the natural gradient updates.
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Table 5: Scalability Experiment Performance comparison in terms of average test negative loglikelihood (per spike count
per trial) and running times in seconds (in parentheses). Bin/NegBin stands for our (negative) binomial ccGPFA model. The
suffixes {50, 100, 200} indicate the number of inducing points used.

Method T=300 T=900 T=1500

Keeley et al. (2020b) 1.517 ± 0.004 (1657.51) 1.514 ± 0.002 (12524.83) 1.514 ± 0.002(112644.72)
Bin 1.458 ± 0.004 (19.12) 1.452 ± 0.002 (196.08) 1.451 ± 0.002 (631.37)

NegBin 1.416 ± 0.003 (10.21) 1.415 ± 0.002 (299.78) 1.415 ± 0.001 (1422.04)
Bin-50 1.458 ± 0.004 (5.23) 1.455 ± 0.002 (14.78) 1.460 ± 0.002 (6.34)

Bin-100 1.458 ± 0.004 (6.17) 1.452 ± 0.002 (11.46) 1.452 ± 0.002 (7.59)
Bin-200 1.458 ± 0.004 (12.99) 1.453 ± 0.002 (17.08) 1.452 ± 0.002 (15.01)

NegBin-50 1.416 ± 0.003 (12.22) 1.417 ± 0.002 (12.14) 1.422 ± 0.001 (31.09)
NegBin-100 1.416 ± 0.003 (10.74) 1.415 ± 0.002 (13.81) 1.416 ± 0.001 (21.09)
NegBin-200 1.416 ± 0.003 (20.86) 1.415 ± 0.002 (23.03) 1.415 ± 0.001 (54.94)

Effect of using inducing points From the table, we can see for T = 300 the runtime for the sparse NegBin-200 model
takes twice as much time as the non-sparse NegBin model. However, the benefits of using inducing points can be clearly
seen for T = 900 and T = 1500 where the NegBin-200 achieves similar test negative loglikelihood for roughly 1/10 and
1/25 respectively of the time taken by NegBin. This result highlights the scalability gained via sparse Gaussian Processes.

Choice of Likelihood Comparing the results for Bin and NegBin, we can see NegBin yields a better test negative
loglikelihood result. This follows the fact the generative distribution uses a negative binomial likelihood.
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