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Abstract

Relocalization inside pre-built maps provides a big benefit
in the course of today’s autonomous driving tasks where the
map can be considered as an additional sensor for refining
the estimated current pose of the vehicle. Due to potentially
large drifts in the initial pose guess as well as maps con-
taining unfiltered dynamic and temporal static objects (e.g.
parking cars), traditional methods like ICP tend to fail and
show high computation times. We propose a novel and fast
relocalization method for accurate pose estimation inside
a pre-built map based on 3D point clouds. The method is
robust against inaccurate initialization caused by low perfor-
mance GPS systems and tolerates the presence of unfiltered
objects by specifically learning to extract significant features
from current scans and adjacent map sections. More specif-
ically, we introduce a novel distance-based matching loss
enabling us to simultaneously extract important information
from raw point clouds and aggregating inner- and inter-
cloud context by utilizing self- and cross-attention inside a
Graph Neural Network. We evaluate StickyLocalization’s
(SL) performance through an extensive series of experiments
using two benchmark datasets in terms of Relocalization
on NuScenes and Loop Closing using KITTI’s Odometry
dataset. We found that SL outperforms state-of-the art point
cloud registration and relocalization methods in terms of
transformation errors and runtime.

1. Introduction

Continuous allocation of a vehicle’s ego pose is essential
for today’s autonomous driving tasks. Being the prereq-
uisite for subsequent tasks, such as trajectory planning or
accomplishing complex driving maneuvers, it is necessary
to provide highly precise estimations of a vehicle’s posi-
tion in sufficient intervals facilitating real-time capability of
the driving systems. Global Navigation Satellite Systems
(GNSS) or Real Time Kinematic (RTK) aided systems are
widely used to tackle these problems as they are able to sup-

ply pose information with an accuracy of a few centimeters.
Due to fluctuating connection quality of GPS systems, e.g.,
tall buildings in urban environments blocking the signal, an
accepted approach is incorporating pre-built maps into the
pose estimation pipeline. These maps can for instance con-
sist of accurate geometrical modeling of the environment
like high definition maps (HD-Maps) or measurements of
the vehicle’s on-board sensors.

In order to utilize these maps in a pose estimation task, it
is necessary to establish correspondences between current
sensor data and the map’s content to calculate a transforma-
tion relative to a reference coordinate frame. A common
way of accomplishing this task, e.g., with the aid of LiDAR
(Light Detection and Ranging) scanners, is applying point
cloud registration approaches, like iterative closest points
(ICP), to the current point cloud and a map section close to
an initial location guess as provided by a low cost GPS. How-
ever, these systems are only able to deliver an insufficient
position accuracy of 5–20 m letting traditional as well as
up-to-date point cloud registration methods often fail. Thus,
explicit relocalization approaches, robust against large trans-
lational drifts as well as big rotational offsets in the pose
initialization and still being capable of providing accurate
pose estimations with low computation time, are urgently
needed. Besides Simultaneous Localization and Mapping
(SLAM) and odometry estimation methods, a comprehen-
sive review of deep neural network (DNN) relocalization
approaches was done by [5]. The authors found that main
research focus in the topic lays on image based methods
yielding 2D-to-2D and 2D-to-3D localization while 3D-to-
3D being comparably under-explored to the date. We argue
that cameras are highly sensitive to insufficient and varying
illumination resulting in relocalization drifts and errors and
making research into LiDAR-based methods a timely en-
deavor. In this paper, we present a novel and fast end-to-end
deep learning approach for accurate single-shot map relocal-
ization on point clouds utilizing graph neural networks. Our
main contributions are as follows:

• a novel end-to-end graph neural network-based solution
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Figure 1. Overview of the StickyLocalization architecture consisting of the pillar construction and encoding by the Pillar Layer, feature
point detection (orange and blue) through Pillar Filtering, context aggregation inside the Graph Neural Network Layer and probability
normalization by the Optimal Transport Layer.

for relocalization and loop closing tasks yielding low
computation time without the necessity of pre-selected
key-point features;

• a novel distance based matching loss improving net-
work convergence for correspondence matching tasks;

• extensive experiments on the nuScenes and KITTI
Odometry dataset demonstrating StickyLocalization’s
robust performance in relocalization and loop closing
applications; and

• a comparison of StickyLocalization’s performance to
state-of-the-art methods for point cloud registration and
relocalization employing large translational and rota-
tional offset scenarios.

2. Related Work
Relocalization methods mostly utilize pre-built maps to

estimate the vehicle’s poses based on current sensor measure-
ments. Therefore, correspondences of current scan points
have to be determined in the complete map (global) or sec-
tions of it (local).

Local Relocalization approaches aim to determine the
vehicle’s pose based on a subsection of the map showing
its near proximity based on an inaccurate initial guess ac-
quired by low performance inertial systems. In this context
point cloud registration methods can be utilized to solve the

problem of map relocalization and loop closing in the course
of LiDAR odometry and mapping approaches [23, 32, 14].
The most prominent approach in this domain is ICP and it’s
adaptions [3, 33, 18] where features are matched to their par-
ticular correspondences by iteratively minimizing the overall
average point distance. These methods, however, often cru-
cially depend on a sufficiently close initialization and high
overlap of succeeding point clouds. Another common ap-
proach is employing a 2D or 3D grid representation of the
map consisting of different features like Gaussian distribu-
tion of LiDAR reflectances [12, 13] or Gaussian Mixture
Models in height-direction of the laser scanners [29]. At
inference time, current scans are processed in the same man-
ner to establish feature based map matching. [6] propose
a different approach by sliding a window to minimize the
distance between the current features and the ones of the
closest map frames.
Recently, the emergence of deep neural networks inspired
point cloud registration and relocalization methods respec-
tively. [28] for example combines transformer networks
with a subsequent SVD network structure to estimate rigid
transformations based on learned feature representations to
an end-to-end structure. Experiments show highly accurate
pose estimations compared to state of the art methods but
are limited to synthetic point clouds and the presence of
low drifts (< 0.5m) and thus is not applicable in terms of
autonomous driving tasks. In contrast, [15] utilizes a DNN
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based approach for outdoor scenarios by predicting corre-
sponding points in the other cloud to estimate the rigid trans-
formation. However, similar to common ICP approaches a
decent initial estimate is required. Methods like [30] and [2]
utilize a joint learning process of feature detection and de-
scription where salient points of point clouds are simultane-
ously determined and equipped with significant descriptors
subsequently used to find correspondences and estimate the
rigid transformation. On the other hand [25] utilizes a DNN
based pre-filtering of point clouds to remove dynamical and
temporary static objects like driving or parking vehicles.
Based on the consequential static clouds distinctive points
are extracted from current scans for a robust map feature
matching and pose estimation. [7] uses pre-processed point
cloud features in a PointNet [17] like structure for a direct
2D-Pose estimation with subsequent extended Kalman filters
yielding a real time relocalization application.

Global Relocalization methods in contrast to local ones
determine the vehicle’s pose inside the pre-built map without
the need for an initial guess. In [1] and [31], a DNN is used to
learn global feature descriptors which can be used to measure
the similarity between point clouds. Utilizing high dimen-
sional kd-trees based on these descriptors, the closest map
frame for an initial position guess can be determined. Sub-
sequently, common approaches like particle filters and ICP
are used to refine the pose estimation. [10] and [21] utilize
image based features retrieved by a customized GoogLeNet
[24] and Graph Neural Networks respectively to determine
global correspondences for a six DOF pose estimation. In
contrast, [27] is able to predict a six DOF pose inside a map
by feeding a single point cloud frame to the network. This
is achieved by implicitly learning a representation of the
complete map in the course of the training process. However,
such relocalization methods are consequently restricted to
the scene employed in the training process and are therefore
not generalizable to multiple environments.

3. The StickyLocalization Architecture
StickyLocalization aims to provide fast and robust 3D-to-

3D (local) relocalization for autonomous driving allowing
for accurate pose correction even based on a potentially bad
initialization as expected from low cost GPS devices.

Problem description: We define PG and PL as two
point clouds to be registered, whereas L defines the local
point cloud and G global map. The key-points of those point
clouds will be denoted as πG

i and πL
j with {πG

0 , . . . ,π
G
n } ⊂

PG and {πL
0 , . . . ,π

L
m} ⊂ PL, while other points will be

defined as xG
g ∈ PG and xL

l ∈ PL. Every point pillar
is associated with a key-point index i, a cylinder with an
endless height. The pillar is encoded by a feature descriptor
with depth D. Only most significant pillars, selected by the
Filtering Layer, will be used as graph neural network input.
The overall goal is to find partial assignment of two graphs

composed by specific feature descriptors, i.e. point pillars.
To keep computation time low and being independent

to point cloud pre-processing for feature extraction, a joint
learning process for key-point detection and matching com-
prises reasonable advantages. Therefore we propose an end-
to-end trainable approach for combined key-point selection
and matching on raw LiDAR point clouds utilizing Graph
Neural Networks for geometrical context aggregation. The
subsections below describe the architecture of our approach
organized according its main components: (1) the Pillar
Layer, (2) the Graph Neural Network layer, and (3) the
Optimal Transport layer.

3.1. The Pillar Layer

The pillar layer is comprised of three core components: a
pillar encoder, positional encoder and pillar filtering. This
is a very important clue, the pillar encoder calculates the
pillars for the whole cloud, whereas the positional encoder
is responsible for geometric aggregation. The pillar filtering
selects the most distinctive features to be matched.

Pillar Encoder: We learn features in 3D, i.e. identified
by key-points, being inspired by [11], because it is important
to get a local strong descriptor of the environment. A key
point, πG

i and πL
j , relates to a point pillar i and j including

a set of specific points PG
i and PL

j . Sampling is realized
using euclidean distance in x,y-plane with infinite height,
resembling a pillar shape. The pillar encoder’s feature input
stack fG

i ∈ RD (with D as input feature depth) per sampled
point xG

Ω with Ω ∈ {1, . . . , z} is composed as:

fG
i =

{[
(xG

Ω − πG
i ), iGΩ

]
, . . .

}
(1)

with xG
Ω ∈ R3 denoting the (x, y, z)T coordinates and

iGΩ ∈ R being a scalar intensity value (e.g. LiDAR re-
flectance). In contrast to [11] and [8] which are calculat-
ing a 11 dimensional vector for each point inside the pillar,
we found that the respective 3D coordinates relative to the
pillar’s keypoint (xG

Ω − πG
i ) + intensity are sufficient for

describing the local context of the feature point. More im-
port in this regard is the selection of the shape of the local
neighbourhood for feature aggregation where we found the
pillar shapes to be superior to compared ones like voxels.
Experiments on this are given in the supplementary material.
The pillar encoder itself is a single linear projection, sharing
weights across all pillars and frames, it is preceded by batch
normalization and eventually ReLU activated. The output is
defined by: f ′

G
j , f
′G
i ∈ RD′

:

f ′
K
i = Wf · fG

i ∀i ∈ {1, . . . , n}

f ′
L
j = Wf · fL

j ∀j ∈ {1, . . . ,m}
(2)

Positional Encoder. The positional encoder analyzes
and captures the geometrical global context of a pillar [17].
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It utilizes a multi-layer-perceptron (MLP) such as all pillars
with preceding batch normalization and ReLU activation.
The weights are shared across PL and PG. From the key-
points coordinates πG

i ,π
L
j ∈ R3, we derive the positional

features as:

π′
iG = MLPπ(πG

i ) ∀i ∈ {1, . . . , n}
π′
jL = MLPπ(πL

j ) ∀j ∈ {1, . . . ,m} .
(3)

Finally, we combine the aggregated local and global con-
text information of the pillars into the final feature represen-
tation:

nG
i = π′

G
i + f ′

G
i

nL
j = π′

L
j + f ′

L
j nG

i ,n
L
j ∈ RD

′ (4)

Here we found, that it is very important to have a separated
processing of the local and global information by the pillar-
and positional-encoder respectively. For instance combined
aggregation by using the points’ global 3D coordinates as
the pillar encoder’s feature input stack, instead of the relative
ones and omitting the positional encoder pipeline, would
lead to the network not converging at all.

Pillar Filtering: We adapt descriptor based key-point
feature selection in our joint training process similar to [2].
We propose a hard key-point selection strategy for both, train-
ing and testing, since we found that this allows the network
to derive a more robust point representation. Furthermore
instead of choosing the most salient entry of the feature de-
scriptors for nG

i and nL
j as proposed by [2], we calculate

the euclidean norm of each point’s D′ dim feature descrip-
tor, which leads to a more robust selection strategy and a
smoother training procedure.

Subsequently, this value is verified to be the maximum in
the context of the local spatial neighborhood Nxi within a
certain radius r surrounding the considered point. Eventu-
ally, key-point candidates are chosen from among all points
satisfying the above criteria by selecting the n and m most
salient points for the respective clouds. We furthermore
found that normalizing the feature descriptors by the number
of points in the respective local neighborhood is helping to
stabilize the training process, guaranteeing a more homoge-
neous point selection strategy.

3.2. Graph Neural Network Layer

The input nodes of the graph (Layer 0) are the descriptors
of the filtered key-points for the local (0)nL

i and global (0)nG
i

cloud respectively. The Graph Architecture is inspired by
[21] and [8] and developed in the same way. The idea relies
on two complete graphs GL and GG, whose input nodes are
equivalent to the pillars (cp. Fig. 1). The graph is a multiplex
graph to perform global matching with inter-frame edges,
i.e. edges that connect all nodes of GG with GL and vice
versa. The extensive use of multi-head self attention, for

each graph individual, as well as multi-head cross attention,
among both graphs cross connected, effectively integrates
contextual cues. We propose an attention function A [26]
with query q, keys k, and values v, defined as:

A(q,k,v) = softmax

(
qT · k√
D′

)
· v (5)

D′ is the feature depth of each nodes input and output (see
[8]).

After applying several layers lmax similar to [8] the graph
ends up in final predictions computed by the last layer and
designed as single linear projection with shared weights
across both graphs (GL,GG) and pillars:

mK
i = Wm · (lmax)nG

i

mL
j = Wm · (lmax)nL

j

(6)

3.3. Optimal Transport Layer

Similar to [8] and [21] the final matching consists of two
steps, first a score matrix M ∈ Rn×m is calculated based on
the last layers output:

M = (mK)T ·mL (7)

In a second step a soft-assignment matrix P ∈
R(n+1)×(m+1) is containing matching probabilities for each
pair of features is derived. As proposed by [21] we extend
M to M̄ by using a dustbin for unassigned matches. Finding
the optimal assignment then corresponds to maximizing the
sum

∑
i,j M̄i,j , as described in [8].

3.4. Loss

Previous point matching approaches, e.g., [21], propose a
hard assignment of point correspondences between frames
by element-wise multiplication of a ground truth match ma-
trix GT with the predicted match probabilities P used for
calculating the negative log-likelihood loss:

LNLL = −
∑

i,j∈GT
log Pij . (8)

Thereby, the ground truth matrix comprises 1 for a cor-
respondence match and 0 otherwise, with a match refer-
ring to an inter-frame nearest neighbor distance below a
certain threshold for each point in the respective frames.
This method exhibits good performance for networks with
pre-selected features since it facilitates fast training con-
vergence. However, using it for the joint learning process
including key-point selection the we propose, this approach
is prejudicial. This is due to close points with a distance
slightly larger than the nearest neighbor and therefore not
depicting the corresponding match point would be valued as
0, penalizing the learned representation of close and similar
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points by raising the loss in the training process. Therefore,
we propose a novel distance-based matching loss addressing
joint training of key-point selection and matching. To reward
closer and penalize farther points, the confidence values pre-
dicted by the network are multiplied with a weighing term
based on the euclidean distances D of the respective points
before calculating the negative log-likelihood loss, which
smooths the training process and yields faster convergence
in the joint training process.

LNLL = −
m∑
i=0

n∑
j=0

log(Pij · e−Dij) (9)

with m and n expressing the number of points in the
respective frames.

4. Experiments
We evaluate StickyLocalization’s performance from two

perspectives. First, we evaluate the approach’s relocalization
capabilities under challenging conditions using the nuScenes
dataset. We compare our results to classical as well as DNN-
based state-of-the-art approaches for point cloud registra-
tion in terms of average transformation errors. Second, we
evaluate how StickyLocalization can be adopted to tackle
loop closure in LiDAR-based odometry and mapping. More
specifically, we show how our approach can substitute com-
mon techniques for loop closure estimation like ICP and
other state-of-the-art point cloud registration methods on se-
lected sequences of the KITTI dataset. Finally we show the
impact of the joint learning process for key-point detection
and matching utilizing the proposed selection strategy and
loss function with regard to the overall performance of our
approach by comparing different versions of StickyLocaliza-
tion.

4.1. Experimental Setup

Model configuration: Each point pillar is sampled with
up to z = 128 points using a Euclidean distance threshold
of d = 0.5 m. We utilize a feature depth of D′ = 256. The
positional encoder has five layers with the dimensions set
to 32, 64, 128, 256 channels respectively. For the key-point
selection layer (Pillar Filtering) we chose the m = 500 and
n = 2500 most salient candidates for the current frame
and the accumulated map cloud respectively. The graph is
composed of lmax = 9 self and cross attention layers with
h = 4 heads each. In depth experiments on the selection
and comparison of hyperparameters, as well as other design
choices of the architecture can be found in the supplemen-
tary material. Our model is implemented in PyTorch [16]
v1.8.1 with Python 3.6. If not stated otherwise, each training
is performed using the Adam optimizer and the proposed
distance based matching loss (cp. Eq. 9). Pose estimation is
performed by applying singular value decomposition (SVD)

of the predicted matches by the network with correspon-
dence probabilities below a threshold of 0.2 being filtered.
All experiments were executed on a system equipped with
Intel Xeon E5-1650 CPU, NVIDIA GeForce GTX 1080 Ti
GPU and 64GB of RAM.

Datasets: For validation on the relocalization task we uti-
lize the nuScenes dataset [4], which consists of 1,000 driving
scenes of challenging environments captured in Boston and
Singapore. The dataset includes recordings of 6 cameras, 5
radar sensors, and a 32-layer LiDAR scanner. Apart from
annotations for semantic segmentation and object detection,
nuScenes also provides ground truth poses for each recorded
frame obtained from a reference RTK system. Since the
same scene has been recorded multiple times, the dataset
perfectly suits our needs for evaluating relocalization perfor-
mance under challenging conditions. Furthermore, we aim
to study generalization ability and flexibility of our approach
by applying it to loop closure estimation tasks. Therefore, we
employ KITTI odometry’s training sequences with overlap-
ping trajectories offering the ability to perform loop closings
with the provided Velodyne scans and ground truth poses.

Training details: For our trainings on nuScenes we uti-
lize the Singapore-Onenorth environment training set con-
sisting of multiple sequences captured on nine different days.
In order to generate frame to map pairs, we process ev-
ery frame and acquire corresponding map frames from se-
quences on different days within a 20m radius relative to
the original shot using the provided poses. Maps containing
an amount of consecutive frames larger than a predefined
threshold, i.e. 5 in this case were considered valid. By apply-
ing the ground truth transformations to the current as well
as the respective accumulated map frames, we gain source
and target input point clouds to be used with our approach.
To balance the variable data size of the input clouds, we per-
form voxelization with a voxel size of 0.1m on the source
and with a voxel size of 0.5m on the target, i.e., the map
cloud before feeding it to the network. In order to have a
large variety in the training data and to ensure a robust and
generalizable network, we use random translation within a
range of δt = [0, 20]m and a random rotation of the yaw
angle of δr = [−π, π] to generate the poses to be estimated
by the network in the course of the training process. Since
nuScenes provides 2D poses, in this context the selected δt
are limited to a Euclidean distance for a translation in x and
y direction δt =

√
t2x + t2y .

For loop closure estimation on the KITTI odometry
dataset, we pursue a similar strategy for generating train-
ing data with the exception that corresponding map frames
are selected from the same sequences. Therefore, we use
sequences holding overlapping trajectories as training data
for our loop closure investigations, namely 00, 02, 05, 06,
and 07. In order to avoid the selection of map clouds in sur-
rounding frames, valid candidates are chosen within a 20m
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radius around the current frame with a temporal distance
of at least 60 s resembling to 600 frames. Furthermore, we
downsize source and target frames for KITTI with a voxel
size of 0.2m and 0.6m respectively and use 3D poses for
ground truth pose generation, so δt =

√
t2x + t2y + t2z but

with rotation constraint to an angular offset of the yaw angle
only δr = [−π, π].

Metrics: We measure transformation errors T between
the predicted poses Tpred and the the respective dataset’s
ground truth poses TGT as:

T = T−1
pred · TGT. (10)

Subsequently, we calculate translation errors Et as eu-
clidean norm in meters and rotational errors Er as angular
offset in radians (cp. [9]) formally denoted as:

Et =
∥∥∥(T41, T42, T43)T

∥∥∥ (11)

Er = arccos fθ
(
0.5 · (T11 + T22 + T33 − 1)

)
fθ(x) =


1 if x > 1

x if − 1 < x < 1

−1 if x < −1

(12)

State-of-the-art methods: We compare our results on
relocalization and loop closing to the geometry based state-
of-the-art methods ICP [33] and G-ICP [22] as well as to
the more complex FPFH [19] using hand-crafted feature
descriptors. We utilize the point cloud library (PCL) [20]
for the implementations of ICP and G-ICP and Open3D
for FPFH. Furthermore, we consider state-of-the-art DNN
approaches for point cloud registration, i.e., D3Feat [2] and
3DFeat-Net [30] using their released replication code. For
FPFH and the DNN methods, we apply RANSAC to the
calculated key-points and feature descriptors to determine
the pose. Furthermore, we downsample point clouds with
the voxel sizes discussed in the Training details paragraph
for all ICP variants and for all other methods following to
their original publication and code instructions.

4.2. Relocalization

Test dataset: We selected the Boston-Seaport test set of
the nuScenes dataset to validate StickyLocalization’s relo-
calization performance. Note that training was performed on
the Singapore-Onenorth subset, which results in a test set of
unseen frames from a completely different environment. The
random pose generation for validation was executed once
and then saved in order to supply the same transformations to
all compared methods. In this context we aimed for equally
distributed translational offsets, so 1/3 of the frames had a
displacement chosen from δt1 = [0, 5]m, δt2 = [5, 10]m,

and δt3 = [10, 20]m respectively. Based on this distribution,
we derive three datasets, each having a different constraint
maximum rotational offset per frame, resulting in the re-
spective variants Easy: δr1 = [−0.25π, 0.25π], Medium:
δr2 = [−0.5π, 0.5π], and Hard: δr3 = [−π, π]. The perfor-
mance of the considered methods for pose estimation in the
course of the relocalization task is shown in Tab. 1.

Discussion: The majority of the compared methods show
substantial deficiencies in achieving accurate pose estimation
due to the large temporal offset, of several days, between
frame and map section and the accompanying cloud discrep-
ancies. We find that the performance of the less complex
approaches, i.e. ICP and G-ICP, is highly depended on the
maximum angular offset of the transformations expressed by
a decrease of accuracy for higher levels of difficulty of the
test sets. The descriptor based methods on the other hand
show an overall constant performance on the three test sets,
which suggests a rotational invariance of these approaches.
However, due to the presence of dynamic objects and key-
points being featured on their respective surfaces, the subse-
quent RANSAC struggles in estimating accurate poses for
the calculated/predicted feature points and descriptors. To
overcome these challenging conditions, StickyLocalization
utilizes Graph Neural Networks and makes extensive use of
attention mechanisms allowing it to learn and analyze inner-
and inter-cloud relations. We observe that StickyLocaliza-
tion predicts higher probabilities for correspondences from
the static environment of the current frame and the respective
map section rather than temporal key-points originating from
dynamic objects. Consequently, by applying SVD to the ro-
bust matches we are reaching the lowest mean translational
and rotational errors among all considered methods for the
employed relocalization test sets. Fig. 3 shows qualitative
results visualizing the correspondences predicted by our ap-
proach which are subsequently used to estimate the vehicles
pose inside the map.

Runtime evaluation: In the course of our experi-
ments we, amongst others, performed tests using different
parametrization for the deep learning aided methods 3DFeat-
Net and D3Feat concerning the quality of the estimated poses
based on the predicted key-points and features. We found
that the performance is highly depending on the number of
RANSAC iterations, hence we chose a comparatively high
number of 4,000,000 iterations, to gain fair and comparable
results on our experiments. A high amount of RANSAC iter-
ations, however, results in an increase of computation time,
constraining the applicability of an algorithm. In this context,
an additional advantage of our approach is the independence
of a sub-sequential fitting algorithm like RANSAC, since
we are able to implicitly predict inter-cloud correspondences
which can be utilized by SVD in order to predict the respec-
tive poses. Since SVD is more efficient, StickyLocalization
outperforms all compared methods in terms of runtime by
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Table 1. Relocalization results on the nuScenes test data (Boston-
Seaport)

Method δt[0; 5]m δt[5; 10]m δt[10; 20]m mean
Et Er Et Er Et Er Et Er

Easy: δr ≤ 45 deg
ICP[33] 1.848 0.151 3.000 0.144 7.307 0.191 4.084 0.162
G-ICP[22] 1.701 0.159 3.395 0.166 8.897 0.235 4.707 0.187
FPFH[19] 4.065 0.136 4.068 0.141 4.743 0.143 4.297 0.140
3DFeat-Net[30] 1.660 0.068 1.501 0.058 1.611 0.088 1.591 0.072
D3Feat[2] 0.734 0.035 0.760 0.051 1.280 0.072 0.928 0.053
Ours 0.561 0.017 0.387 0.012 0.517 0.019 0.489 0.016

Medium: δr ≤ 90 deg
ICP[33] 4.125 0.579 6.207 0.637 9.345 0.628 6.587 0.615
G-ICP[22] 4.341 0.593 6.547 0.652 10.955 0.665 7.318 0.637
FPFH[19] 5.318 0.288 6.059 0.308 6.840 0.262 6.080 0.286
3DFeat-Net[30] 1.798 0.091 1.896 0.069 1.672 0.065 1.788 0.075
D3Feat[2] 0.762 0.045 0.958 0.059 0.998 0.045 0.907 0.049
Ours 0.431 0.011 0.317 0.008 0.605 0.015 0.452 0.011

Hard: δr ≤ 180 deg
ICP[33] 6.726 1.533 7.735 1.508 11.019 1.451 8.518 1.497
G-ICP[22] 6.131 1.494 8.321 1.505 13.569 1.463 9.383 1.487
FPFH[19] 5.986 0.384 6.386 0.366 8.166 0.427 6.859 0.392
3DFeat-Net[30] 1.810 0.085 1.836 0.102 2.008 0.107 1.886 0.098
D3Feat[2] 1.079 0.029 0.947 0.048 1.208 0.040 1.080 0.039
Ours 0.553 0.010 0.355 0.009 0.401 0.014 0.436 0.011

a substantial margin. The average runtime per approach
for matching one pair of frames on the nuScenes test set is
shown in Fig. 2.

Figure 2. Average runtime across the compared methods on the
Hard variant of the nuScenes test dataset. The ability to use SVD
for registration in our approach presents a huge runtime benefit in
contrast to methods relying on RANSAC.

4.3. Loop Closure Estimation

Test Dataset: For the loop closure estimation experi-
ments we utilize sequence 08 of the KITTI dataset, which
was unseen during the training of our network. We refined
the ground truth poses for each frame pair, as these are
known to feature certain drifts. Furthermore, we again con-
struct three different test sets with varying δr and δt analog to

the previous experiments. Translational displacement gener-
ation in this case, however, was done in a three-dimensional
manner so that δt =

√
t2x + t2y + t2z with rotational offset

constraint to the yaw angle, since this is the most prominent
angle for a vehicle’s poses. Table 2 reports the performance
of our approach in contrast to the considered state-of-the-art
methods on the respective test sets.

Discussion: Aside from the ICP variants, the consid-
ered methods provide results with substantially lower overall
transformation errors in contrast to the relocalization experi-
ments. This is due to frame pairs being part of the same trace
and therefore not comprising discrepancies caused by dy-
namic objects. Larger errors concerning ICP and G-ICP on
those experiments are most likely caused by the general rota-
tion variance of the approaches in combination with the more
dense point clouds delivered by the Velodyne HDL-64E used
for the KITTI dataset. StickyLocalization still reaches the
lowest rotational errors on all test sets as well as comparable
results to the deep learning based state-of-the-art approaches
with respect to the average translational errors. We argue
that due to missing discrepancies between the point clouds
for the loop closure estimation task, RANSAC converges
much faster for D3Feat.

Table 2. Loop closure estimation results on the KITTI test data
(Sequence 08)

Method δt[0; 5]m δt[5; 10]m δt[10; 20]m mean
Et Er Et Er Et Er Et Er

Easy: δr ≤ 45 deg
ICP[33] 4.807 0.208 4.562 0.155 4.577 0.233 4.648 0.199
G-ICP[22] 2.139 0.175 2.584 0.093 4.311 0.463 3.026 0.246
FPFH[19] 1.379 0.100 0.749 0.047 0.680 0.069 0.956 0.072
3DFeat-Net[30] 0.785 0.034 0.569 0.034 0.659 0.018 0.674 0.029
D3Feat[2] 0.352 0.017 0.348 0.017 0.403 0.017 0.366 0.017
Ours 0.392 0.009 0.381 0.009 0.372 0.010 0.382 0.010

Medium: δr ≤ 90 deg
ICP[33] 7.361 0.610 7.608 0.704 7.541 0.625 7.504 0.646
G-ICP[22] 5.357 0.641 5.784 0.731 7.855 0.842 6.350 0.739
FPFH[19] 1.299 0.108 2.730 0.206 1.425 0.065 1.823 0.128
3DFeat-Net[30] 0.431 0.017 0.347 0.013 0.609 0.037 0.458 0.022
D3Feat[2] 0.319 0.018 0.342 0.017 0.426 0.017 0.360 0.017
Ours 0.400 0.010 0.375 0.010 0.378 0.010 0.385 0.010

Hard: δr ≤ 180 deg
ICP[33] 9.424 1.441 10.174 1.669 10.864 1.588 10.162 1.566
G-ICP[22] 7.502 1.421 8.043 1.658 10.124 1.756 8.575 1.614
FPFH[19] 2.518 0.217 3.149 0.242 3.092 0.207 2.903 0.222
3DFeat-Net[30] 0.797 0.057 0.754 0.038 0.809 0.058 0.787 0.051
D3Feat[2] 0.344 0.016 0.387 0.018 0.384 0.017 0.371 0.017
Ours 0.456 0.010 0.354 0.009 0.382 0.010 0.399 0.010

4.4. Ablation Study

In order to study the impact of the individual contributions
proposed in this paper on the overall performance of our
approach, we perform continuative trainings while altering
certain parts of the processing pipeline. More precisely, we
compare four different versions of StickyLocalization and
evaluate their respective performance on the Hard set of
nuScenes test data, i.e.:
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Figure 3. Qualitative results: Current measurements (colored) and the corresponding map (gray) used for relocalization on the nuScenes
test dataset. Green lines highlight the correspondences predicted by StickyLocalization used to determine the vehicles poses inside the map.
The estimated poses are subsequently applied to the respective point clouds to achieve an overlay with the map.

• SLPS : Using preselected features based on the
smoothness factor proposed by [32] and the loss func-
tion based on hard matches (Eq. 8)

• SLRND : Using randomly sampled points, trained with
the hard matches loss (Eq. 8)

• SLHM : Trained with learnable feature selection but
applying the hard matches loss (Eq. 8)

• SLDM : Trained with learnable feature selection and
applying the proposed distance matching loss (Eq. 9)

• SLRSC : Model SLDM but applying RANSAC di-
rectly on the predicted descriptors

Table 3. Ablation experiments with different configurations of
StickyLocalization on the nuScenes test data

Method δt[0; 5]m δt[5; 10]m δt[10; 20]m mean
Et Er Et Er Et Er Et Er

SLRND 1.382 0.167 1.071 0.101 0.887 0.085 1.111 0.117
SLPS 0.795 0.068 0.921 0.063 0.956 0.063 0.892 0.065
SLHM 1.254 0.085 0.932 0.042 1.376 0.109 1.189 0.079
SLDM 0.553 0.010 0.355 0.009 0.401 0.014 0.436 0.011
SLRSC 0.545 0.020 0.361 0.014 0.394 0.014 0.433 0.016

Table 3 reports the performance of the different con-
figurations. Applying the inline feature selection method
(cp. Sec. 3.1) and the distance based matching loss (cp.
Eq. 9), results in lower transformation errors compared to
the configurations using pre-selected features or random key-
points, demonstrating StickyLocalization’s ability to learn a
robust selection of significant key-points for pose estimation.
Furthermore, in comparison to using a loss based on hard
matches in the course of joint training of key-point selection
and matching, our proposed loss leads to faster convergence
of the network yielding lower transformation errors.

Finally we validate the quality of the descriptors predicted
by the Graph Neural Network by directly feeding them into

RANSAC to predict the pose. Here, we utilized the model
SLDM but skipping the Sinkhorn normalization and SVD
for inference time on the test data. Because of the included
outlier removal of RANSAC, partially small improvements
regarding Et can be observed compared to SLDM . Due to
skipping the Sinkhorn iterations, we see a drop in inference
time from 0.140s to 0.080s, but simultaneously the average
registration time increases from 0.001s to 0.181s. However,
the performance of RANSAC in these experiments proves
the high expressiveness of the descriptors predicted by our
Graph Neural Network and their potential utilizability for
other perception tasks.

5. Conclusion

In this paper, we present a fast and accurate method
for point cloud based relocalization utilizing Graph Neu-
ral Networks. By introducing a descriptor-based feature
pre-selection and utilizing a novel distance based match-
ing loss, we are able to construct an end-to-end trainable
pipeline for joint robust key-point detection and matching.
To demonstrate our performance, we performed experiments
using sequences of the nuScenes dataset recorded in a com-
pletely different area compared to the sequences used to
train the network. We compare our results to traditional and
deep learning based state-of-the-art methods and are able to
outperform all approaches in terms of transformation errors
and runtime. Furthermore, we evaluated the applicability of
StickyLocalization with regard to loop closure estimation
tasks, where we employed the training sequences of KITTI
including overlapping odometry traces. Again, StickyLo-
calization outperforms all compared methods concerning
rotational errors and achieves state-of-the-art results in terms
of translational. Finally we showed that by utilizing the
stated selection strategy in combination with the proposed
distance based matching loss, we achieve the best perfor-
mance among all versions of our approach with certain parts
replaced, as well as the overall quality of our descriptors by
directly applying RANSAC in order to predict the pose.
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