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ABSTRACT

Autonomous driving relies on robust models trained on large-scale, high-quality
multi-view driving videos. Although world models provide a cost-effective so-
lution for generating realistic driving data, they often suffer from identity drift,
where the same object changes its appearance or category across frames due to
the absence of instance-level temporal constraints. We introduce ConsisDrive,
an identity-preserving driving world model designed to enforce temporal consis-
tency at the instance level. Our framework incorporates two key components:
(1) Instance-Masked Attention, which applies instance identity masks and tra-
jectory masks within attention blocks to ensure that visual tokens interact only
with their corresponding instance features across spatial and temporal dimen-
sions, thereby preserving object identity consistency; and (2) Instance-Masked
Loss, which adaptively emphasizes foreground regions with probabilistic instance
masking, reducing background noise while maintaining overall scene fidelity. By
integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video
generation quality and demonstrates significant improvements in downstream au-
tonomous driving tasks on the nuScenes dataset. Please refer to the project page
for additional video results in the supplementary materials.

1 INTRODUCTION

Autonomous driving has attracted extensive attention from both academia and industry over the past
decades Shi et al. (2016); Zheng et al. (2024a); Chen et al. (2024); Jiang et al. (2023). To achieve re-
liable performance, autonomous systems rely on high-quality, large-scale multi-view driving videos
with precise annotations, which are essential for training perception, tracking, and planning mod-
els. However, collecting and labeling such real-world driving data is both costly and labor-intensive.
Benefiting from the rapid advancements in generative video models Lei et al. (2023); Xi et al. (2025);
Zheng et al. (2024b); HaCohen et al. (2024); Wang et al. (2024a); Gao et al. (2024a); Zhou et al.
(2024); Ho et al. (2022); Blattmann et al. (2023); Hu (2024); Wang et al. (2023a; 2024b); Bar-Tal
et al. (2024); Gupta et al. (2024), driving world models Zhao et al. (2024); Wen et al. (2024); Jia
et al. (2023); Wang et al. (2023c); Gao et al. (2024b) have emerged as a promising alternative.
These models can synthesize diverse and realistic driving scenarios at scale, significantly reducing
the demand for costly data collection and annotation.

Instance identity preservation across frames is critical for generating realistic driving videos, as it
directly affects video quality Unterthiner et al. (2018) and determines their applicability in down-
stream autonomous driving tasks. For example, multi-object tracking Wang et al. (2023b) and per-
ception tasks Wang et al. (2023b) require temporally stable instance appearances to ensure reliable
temporal context understanding. Similarly, planning Hu et al. (2023) relies on temporally coherent
trajectories of surrounding agents to support accurate motion forecasting. These requirements ne-
cessitate that the world model consistently maintains instance identities—such as category, color,
and shape—across consecutive frames, ensuring continuity in both appearance and behavior of dy-
namic objects. From a broader perspective, the ability to preserve instance identity is essential for
world models to effectively capture the underlying dynamics of real-world environments. Techni-
cally, enforcing strong temporal consistency improves the reliability of autonomous driving models
trained on synthetic data, ultimately enhancing their generalization to real-world scenarios.
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Figure 1: Limitations of Prior Works in Instance Identity Preservation Across Frames. (a)
Category Shift: In DriveDreamer2 Zhao et al. (2024), the bus gradually turns into a truck, indi-
cating a failure to preserve semantic identity over time. (b) Color Shift: In MagicDrive-V2 Gao
et al. (2024b), the car’s color changes inconsistently across frames, violating temporal appearance
consistency. (c) Foreground Dilution: In Panacea Wen et al. (2024), scene-level supervision di-
lutes supervision over critical foreground regions, breaking temporal identity consistency for small
instances like pedestrians. In contrast, our method explicitly enforces instance-level temporal con-
straints, maintaining consistency across frames and effectively addressing these issues.

However, existing diffusion-based world models frequently suffer from identity drift, where the same
object changes its appearance or even category across frames (e.g., a red car becoming black, or a bus
turning into a truck), as shown in Fig. 1. Such identity inconsistency severely degrades video realism
and limits the applicability of generated data for downstream driving tasks. We identify three major
root causes of this problem. First, the absence of explicit instance identity conditions prevents the
model from anchoring consistent identities over long horizons. For example, DriveDreamer2 Zhao
et al. (2024) does not incorporate instance-specific conditions such as category, leading to noticeable
semantic shifts, as illustrated in Fig. 1(a). This highlights the necessity of injecting explicit instance
identity signals into the generation process. Second, the attention mechanism of current diffusion
transformers is not instance-aware. For instance, FLUX’s MMDiT Labs (2024) computes 3D full
attention across all visual tokens from different instances. This makes the attention mechanism
unreliable and causes information leakage between different instances. Models such as MagicDrive-
V2 Gao et al. (2024b) integrate temporal attention layers to enhance inter-frame global coherence,
they lack fine-grained, instance-aware temporal alignment, suffering from identity inconsistencies
such as color shifts, as shown in Fig. 1(b). This underscores the need for instance-aware attention
mechanisms. Third, existing training objectives Wen et al. (2024) apply uniform supervision over
the entire frame, forcing the model to reconstruct both background pixels (e.g., sky, buildings) and
critical foreground regions with equal importance. Since background pixels dominate the scene, this
supervision dilution prevents the model from focusing on fine-grained identity-preserving features.
Consequently, foreground temporal consistency is easily broken, especially for small objects, as
shown in Fig. 1(c) in Panacea Wen et al. (2024). This motivates the design of instance-aware training
objectives that emphasize foreground regions.

To address the above challenges, we propose ConsisDrive, an identity-preserving driving world
model specifically designed to enforce instance-level temporal consistency. Our framework incor-
porates instance awareness into both the attention mechanism and the training objective, guided
by carefully constructed instance masks. In particular, we introduce two core components: The
Instance Masked Attention (IMA) module explicitly guides the model’s attention towards each in-
dividual instance, effectively preventing information leakage across multiple instances. Specifically,
by constructing instance identity mask, we restrict visual tokens to attend only to the identity em-
beddings of their corresponding instances. This preserves the identity of the instance across long
sequences, effectively mitigating identity drift (e.g., preventing a bus from gradually being inter-
preted as a truck). What’s more, by constructing instance trajectory mask, we ensure that tokens of
the same object across frames exclusively attend to each other, while interactions across different
instances are strictly blocked. This design allows the model to reliably propagate appearance fea-
tures such as color and texture along the trajectory of each object, thereby avoiding cross-instance
information leakage and ensuring consistent instance-level visual identity across time. Second, the
Instance Masked Loss (IML) addresses the supervision dilution problem caused by uniform loss
computation across entire frames. IML employs instance masks to emphasize supervision on fore-
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ground regions during training. A probabilistic dynamic masking strategy is further introduced,
which adaptively balances between foreground-focused loss and global reconstruction loss. This
design ensures that foreground consistency is enforced without sacrificing overall scene fidelity,
allowing the model to capture both fine-grained identity details and natural background appearance.

Through the joint design of Instance Masked Attention module and Instance Masked Loss Supervi-
sion, ConsisDrive significantly mitigates identity drift and achieves temporally consistent video gen-
eration for driving scenarios. Our approach achieves state-of-the-art performance in both video gen-
eration quality and downstream autonomous driving task validation, outperforming previous works
Gao et al. (2024b); Zhao et al. (2024); Li et al. (2023); Wen et al. (2024). Our contributions are as
follows.

• We propose the Instance-Masked Attention module, which explicitly directs the model’s
attention to each individual instance. By incorporating both an instance identity mask and
a trajectory mask, the module constrains visual tokens to attend exclusively to tokens of
their corresponding instances across spatial and temporal dimensions. This design effec-
tively enforces instance-level temporal consistency while preventing information leakage
between different instances.

• We design Instance-Masked Loss Supervision, a probabilistic instance-focused training
objective that employs instance masks to emphasize supervision on foreground regions.

• Our model achieves SOTA video generation quality with high FID and FVD on the
nuScenes benchmark, surpassing previous methods. For autonomous driving applications,
the generated videos are validated on downstream perception, tracking, and planning tasks,
with performance competitive to real-world sensor data.

2 RELATED WORKS

Street-View Generation. Street-view generation methods typically use 2D layouts like BEV maps,
2D bounding boxes, and semantic segmentation. BEVGen Swerdlow et al. (2023) encodes semantic
data in BEV layouts, while BEVControl Yang et al. (2023) uses a two-stage pipeline for multi-
view urban scenes, ensuring cross-view consistency. However, projecting 3D information into 2D
layouts loses geometric details, causing temporal inconsistencies in videos. To address this, we
use 3D bounding boxes to maintain geometric fidelity. Unlike DrivingDiffusion Li et al. (2023),
which relies on a complex multi-stage pipeline, our method simplifies the process with an efficient,
end-to-end framework, ensuring temporal coherence and computational efficiency.

Simulation-to-Real Visual Translation. Recent advances in synthetic data for real-world visual
tasks have shown significant progress. GAN-based translation Guo et al. (2020) and domain ran-
domization Tobin et al. (2017) bridge synthetic and real-world data distributions, while datasets like
Synthia Ros et al. (2016) and Virtual KITTI Cabon et al. (2020) provide scalable benchmarks for se-
mantic segmentation and autonomous driving. Adversarial training Shrivastava et al. (2017); Zhang
et al. (2018) reduces distribution gaps, and human motion representation learning Guo et al. (2022)
highlights synthetic data’s utility in video understanding. Unlike these methods, we extract proxy
data like 3D bounding boxes and road maps from graphics systems, leveraging these conditions to
generate more realistic and diverse videos.

3 METHOD

We introduce ConsisDrive, an identity-preserving driving world model specifically designed to en-
force instance-level temporal consistency. Our framework incorporates instance awareness into both
the 3D full attention mechanism (Sec. 3.2) and the training objective (Sec. 3.3), where carefully con-
structed instance masks serve as structural priors to guide consistency across frames. The overall
architecture of our model is illustrated in Fig. 2.
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Figure 2: Overview. (a) Instance-Masked Attention, which explicitly directs the model’s attention
to each individual instance by incorporating both an instance identity mask and trajectory mask. (b)
Instance-Masked Loss Supervision, a probabilistic instance-focused training objective that employs
instance loss masks to emphasize supervision on foreground regions. (c) Instance Mask Construc-
tion. Illustration of how the Instance Identity Mask, Instance Trajectory Mask, and Instance Loss
Mask are constructed from 3D box projections.

3.1 OVERVIEW

Building on OpenSora V2.0 Peng et al. (2025), we employ a Variational Auto-Encoder (Video DC-
AE) for video encoding, T5XXL Chung et al. (2024) and CLIP-Large Radford et al. (2021) for text
encoding, MMDiT Labs (2024) as the foundational model for the denoising process.

To achieve fine-grained control, we introduce a comprehensive set of control conditions, including
bounding box projection, road maps, and scene descriptions, integrating them into the conditioned
video generation process. Moreover, we introduce instance category label, instance size, and track-
ing ID to extract instance identity conditions and incorporate them into the attention process, a key
mechanism within our proposed Instance-Masked Attention module, detailed in Sec. 3.2.

Given the need to handle multiple control elements, we adopt ControlNet Zhang et al. (2023) to
inject control signals into the video generation process. To integrate these control-aware represen-
tations, we duplicate the first 19 base blocks of the double-stream MMDiT backbone as dedicated
control blocks. Each control block fuses condition features with the corresponding outputs of the
base blocks, thereby modulating the feature flow and ensuring that control signals are effectively
incorporated throughout the generation pipeline.

3.2 INSTANCE-MASKED ATTENTION

The Instance-Masked Attention module, as illustrated in Fig.2 (a), is designed to guide the model’s
attention towards each individual instance. By constructing instance masks from the bounding boxes
of objects in Fig.2 (c), we effectively prevent information leakage across multiple instances. We
add our proposed learnable Instance-Masked Attention module to handle the per-instance identity
conditioning. Instance-Masked Attention module fuses the instance identity conditions with the cor-
responding outputs of the copy blocks and modulates its features to enable instance-aware attention.
We now describe the key operations within the Instance-Masked Attention module in detail.

The Instance-Masked Attention module, as illustrated in Fig. 2(a), is designed to explicitly guide
the model’s attention towards each individual instance. Instance masks are constructed from object
bounding boxes, as shown in Fig. 2(c), to prevent information leakage across instances and ensure
instance-level disentanglement. We introduce a learnable Instance-Masked Attention mechanism,
which injects per-instance identity conditions and fuses them with the corresponding outputs of
the copy blocks. By modulating these features, the module enables instance-aware attention that
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preserves instance identity and ensures instance consistency across spatial and temporal dimensions.
We now describe the key operations of the Instance-Masked Attention module in detail.

3.2.1 INSTANCE IDENTITY CONDITION

For each instance i that appears in the video, we construct a global condition that integrates multiple
factors of the instance, including its category, its unique tracking ID, and the size of its bounding
box. Together, these attributes provide an informative representation of both semantic identity and
geometric configuration, which is crucial for preserving the instance identity consistently across
frames.

Concretely, we first apply a Fourier mapping γ(·) to encode the tracking ID IDi and the bounding
box size si = (dxi, dyi, dzi). At the same time, we employ the CLIP-Large Radford et al. (2021)
text encoder τθ(·) to extract a semantic feature from the category label ci. These components are
concatenated and passed through a multilayer perceptron (MLP) to produce the instance global
identity condition embedding:

gi = MLP([τθ(ci), γ(si), γ(IDi)]) . (1)

The complete set of embeddings for all n instances in the video is then denoted as:

G = {gi}ni=1.

3.2.2 INSTANCE-MASKED ATTENTION AND FUSE MECHANISM

We denote the m = Tcompress × Hcompress × Wcompress visual tokens extracted from the copy
MMDiT block as V , and the n instance condition tokens as G. We then apply 3D self-attention (SA)
over the backbone features and the concatenated instance condition tokens [V,G] in the Instance-
Masked Attention module, which can be formulated as:

Ṽ = SAmask([V,G]), (2)

.

We observed that standard self-attention, without masking, leads to information leakage across in-
stances, such as the color of one instance bleeding into another. To address this problem, we con-
struct a mask matrix M ∈ R(m+n)×(m+n) to determine the valid connections:

Instance-to-Token Indicator Function. Indicator function I(vk) denotes the set of instance IDs
whose projected bounding boxes cover the spatial region of token vk, as illustrated in Fig.2 (c).
Formally, each instance i is represented by a 3D bounding box with corners Ci = {Xi,c}8c=1, where
Xi,c ∈ R3. Given camera parameters (Kt,Rt,Tt) at frame t, the corners are projected as

x̃t
i,c = Kt

(
RtXi,c +Tt

)
, xt

i,c =
(

x̃
z̃ ,

ỹ
z̃

)
, (3)

with the convex hull of {xt
i,c} forming the polygon P t

i . Rasterization yields binary masks BMi ∈
{0, 1}T×H×W . We further apply trilinear interpolation to map these masks into latent space, denoted
as ˜BM i. For patch tokens p obtained from VAE compression,we define

I(vk) ≡ I(t, p) = { i | ∃(x, y), ˜BM i(t, x, y) = 1 }, (4)

where vk is a flattened visual token corresponding to (t, p).

Instance Identity Mask. For each visual token vk and instance condition token gi, the attention
score is masked as

Mk,m+i/Mm+i,k = −∞ if i /∈ I(vk),

This mask ensures that each visual token can only attend to the identity condition token of the corre-
sponding instance. This mechanism explicitly injects global identity features into the attention pro-
cess, ensuring that each instance preserves its identity consistently across long temporal sequences.
Meanwhile, it strictly suppresses interactions between different instances, thereby preventing iden-
tity leakage across objects.

Instance Trajectory Mask. For two visual tokens vk and vj , the attention score is masked as

Mk,j = −∞ if I(vk) ∩ I(vj) = ∅.

5
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This mask ensures that tokens of the same instance across frames can attend to one another, while
interactions across different instances are strictly prohibited. This design preserves temporal consis-
tency by explicitly enabling the propagation of instance-specific features across their trajectories.

Finally, the output of the Instance-Masked Attention is added back to the backbone representation
via gated addition:

V = V + tanh(ω) Ṽ [: m], (5)
where ω is a learnable scalar parameter, initialized to zero, that adaptively controls the contribution
of the Instance-Masked Attention module.

3.3 INSTANCE-MASKED LOSS

The goal of ConsisDrive is to ensure that foreground objects in driving scenes remain consistent
across all frames in the generated video. However, existing training objectives apply uniform su-
pervision over the entire frame, forcing the model to reconstruct both background pixels (e.g., sky,
buildings) and critical foreground regions with equal importance. Since background pixels dominate
the scene, this supervision dilution introduces noise that interferes with model training, preventing
the model from focusing on fine-grained identity-preserving features. Consequently, foreground
temporal consistency is easily broken, especially for small objects.

To resolve this issue, we propose the Instance-Masked Loss, which focuses the supervision signal
on foreground objects, as illustrated in Fig.2 (b)(c). Specifically, we construct a binary loss mask
MLoss ∈ {0, 1}Tcomp×Hcomp×Wcomp from the Instance-to-Token Indicator function I(vk). For each
token vk, the mask is defined as MLoss(vk) = 1{I(vk)̸=∅}, ensuring that only tokens covered by at
least one instance are selected. The masked loss is then computed as:

Lmask = MLoss ⊙ L,

where L denotes the original denoising loss and ⊙ indicates element-wise multiplication.

However, directly applying this masked loss to all training samples may cause the model to overfit
to foreground objects, which in turn harms the generation quality of background regions, such as
roads and high-definition maps. To alleviate this problem, we adopt a probabilistic dynamic masking
strategy. Specifically, with a probability p of α, the masked loss is applied:

L̃mask =

{
Lmask, if p < α

L, if p ≥ α
(6)

This stochastic scheme allows the model to concentrate on foreground consistency while still pre-
serving the natural realism of background content.

4 EXPERIMENT

4.1 SETUPS

Datasets and Baselines. We train and evaluate our model on the nuScenes dataset Caesar et al.
(2020). To benchmark our approach, we compare it with state-of-the-art driving world models,
including BEVControl Yang et al. (2023), DriveDiffusion Li et al. (2023), DriveDreamer2 Zhao
et al. (2024), Panacea Wen et al. (2024), and MagicDrive-V2 Gao et al. (2024b).

Metrics. For realism assessment, we use FID Heusel et al. (2017) and FVD Unterthiner et al. (2018)
to measure video quality. To evaluate the effectiveness of attribute binding and Instace Masked Loss
Supervision, we measure the alignment between generated instances and their conditioned cate-
gories and sizes, ensuring that both semantic and geometric structures are faithfully preserved. This
evaluation is conducted through perception tasks, since accurate category recognition and size lo-
calization are fundamental requirements for reliable perception. Hence, perception performance
directly reflects the generation accuracy of object categories and spatial extents. Specifically, fol-
lowing Panacea Wen et al. (2024), we adopt the video-based perception model StreamPETR Wang
et al. (2023b) and report metrics such as the nuScenes Detection Score (NDS) and mean Average
Precision (mAP). Among them, mAP directly measures the accuracy of object category detection,
while NDS integrates category detection with localization, orientation, and other aspects to provide
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a holistic assessment of perception quality. To further evaluate the propagation of instance-specific
features across frames, we assess our model on the multi-object tracking (MOT) task in real-world
autonomous driving scenarios. MOT explicitly measures the ability to maintain consistent object
identities over time, using metrics like ID switches (IDS). We also adopt the StreamPETR model
Wang et al. (2023b) as the tracker and report standard MOT metrics, including AMOTA, AMOTP,
and IDS. Although Bevfusion Liu et al. (2023) has also been employed for perception evaluation Gao
et al. (2024c), it is based on an image model, performs worse than the video-based StreamPETR,
and lacks the ability to provide object tracking metrics. For these reasons, we choose StreamPETR
as our evaluation model.

Method Multi-View Multi-Frame FVD↓ FID↓
BEVControl Yang et al. (2023) ✓ - 24.85
DrivingDiffusion Li et al. (2023) ✓ ✓ 332 15.83
Panacea Wen et al. (2024) ✓ ✓ 139 16.96
MagicDrive-V2 Gao et al. (2024b) ✓ ✓ 94.84 20.91
DriveScape Wu et al. (2024) ✓ ✓ 76.39 8.34
DriveDreamer2 Zhao et al. (2024) ✓ ✓ 55.7 11.2
ConsisDrive ✓ ✓ 37.23 3.88

Table 1: Visual and Temporal Fidelity: Comparison with SoTA methods on nuScenes validation set.

4.2 TRAINING DETAILS

Our method is implemented based on Open-Sora 2.0 Peng et al. (2025). All training inputs were set
to 16x256x448 and conducted on 64 A100 GPUs. Experimental results show that our method can
stably generate over 200 frames. For more implementation details, please refer to Appendix A.

4.3 MAIN RESULTS

4.3.1 QUANTITATIVE ANALYSIS

To verify the fine-grained temporal consistency and high fidelity of our generated videos, we com-
pare our approach with various state-of-the-art driving world models. We generate training and
validation data using the nuScenes dataset’s labels as conditions.

Visual Realism and Temporal Fidelity. Our generated videos achieve superior temporal fidelity,
reducing the FVD to 37.23. This improvement stems from the proposed Instance-Masked Atten-
tion module, which preserves instance attributes across frames and thereby enhances instance-level
temporal consistency. In terms of visual quality, our method attains an FID of 3.88, as reported in
Tab. 1, substantially outperforming both video-based approaches (e.g., DriveDreamer2) and image-
based solutions (e.g., BEVControl). These demonstrate that our generated images exhibit not only
stronger temporal coherence but also significantly higher visual realism.

Method Real Gen. mAP↑ mAOE↓ mAVE↓ NDS↑
Oracle ✓ - 34.5 59.4 29.1 46.9
Panacea - ✓ 22.5 (65.22%) 72.7 46.9 36.1 (76.97%)
Panacea ✓ ✓ 37.1 (+2.6%) 54.2 27.3 49.2 (+2.3%)
ConsisDrive (Ours) - ✓ 31.5 (91.3%) 63.0 33.1 42.06 (89.68%)
ConsisDrive (Ours) ✓ ✓ 43.2 (+8.7%) 39.8 25.2 54.6 (+7.7%)

Table 2: Comparison on perception tasks with Panacea. Training StreamPETR with synthetic data
augmentation leads to significant performance improvements, highlighting the value of generated
data for perception.

Method Real Generated NDS↑
Oracle ✓ - 46.90

Panacea - ✓ 32.10 (68.00%)
MagicDrive-V2 - ✓ 36.82 (78.51%)

ConsisDrive - ✓ 41.38 (88.23%)

Table 3: Comparison of perception task performance on generated nuScenes (T+I)2V validation
data. Evaluated with pre-trained StreamPETR Wang et al. (2023b), our model outperforms baselines
without post-refinement, showing its ability to faithfully capture and bind instance attributes.

Instance Attribute Binding. We evaluate instance-level temporal consistency by examining how
well global instance attributes are bound to the generated content. In autonomous driving, percep-
tion tasks critically depend on precise category recognition and size localization, making them a
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Method Real Generated AMOTA↑ AMOTP↓ IDS↓
Oracle ✓ - 0.289 1.419 687
DriveDreamer2 ✓ ✓ 0.313 1.387 593 (-94)
ConsisDrive (Ours) ✓ ✓ 0.498 1.350 525 (-162)

Table 4: Comparison on multi-object tracking with MagicDrive-V2 a based on pre-trained Stream-
PETR.

natural measure of attribute binding quality. To this end, we assess the alignment between generated
instances and their conditioned categories and sizes, which directly reflects the fidelity of instance
attribute binding.

Data Augmentation Performance. As shown in Tab. 2, training StreamPETR exclusively on our
generated dataset achieves a mean Average Precision (mAP) of 31.5%, which corresponds to 91.3%
of the performance obtained by training solely on the real nuScenes dataset. Since mAP directly
measures category detection accuracy, this result confirms that global instance attributes are reliably
bound through our Instance Identity Mask (Sec. 3.2). Moreover, the generated dataset proves to be
not only a viable substitute for real data but also an effective standalone training resource for per-
ception models. When we further re-train StreamPETR by augmenting real data with our generated
videos, the perception model achieves a nuScenes Detection Score (NDS) of 54.6, representing a
7.7-point improvement over training with real data alone. This demonstrates the substantial benefit
of incorporating our generated data into the training pipeline.

Perception Validation Performance. Additionally, we use the pre-trained StreamPETR model to
evaluate the generated validation set of the nuScenes. As reported in Tab. 3, our model achieves
a relative performance of 88.23% on the NDS metric, highlighting strong alignment between gen-
erated content and conditioned instance categories and sizes. Further validation on downstream
planning tasks is provided in the Appendix B.1.

Instance Attribute Propagation. We further evaluate instance-level temporal consistency by mea-
suring how effectively instance attributes are propagated across frames. In autonomous driving, this
is naturally reflected by the multi-object tracking (MOT) task, since MOT requires tracking instances
according to their consistent attributes over time. This makes MOT a strong indicator of attribute
propagation quality. Concretely, we generate videos conditioned on labels from the nuScenes vali-
dation set and use them to augment the training data of the object tracking model StreamPETR Wang
et al. (2023b). The MOT model trained with our generated data shows significant improvements,
achieving a lower number of identity switches (IDS = 525) compared to the original pre-trained
StreamPETR. This demonstrates that the Instance Trajectory Mask in Instance-Masked Attention
module effectively propagates and preserves instance attributes, ensuring reliable temporal consis-
tency for downstream perception tasks.

4.3.2 QUALITATIVE ANALYSIS

We qualitatively compare ConsisDrive against state-of-the-art baselines by inspecting generated
videos, as illustrated in Fig. 1. Please refer to the project page for additional video result.

Instance Attribute Binding (Category). As shown in Fig. 1(a), DriveDreamer2 suffers from
semantic drift, where the category of a car gradually changes into a truck. In contrast, Con-
sisDrive preserves the semantic category consistently across all frames, demonstrating stronger
instance-level temporal consistency. This improvement arises from the Instance Identity Mask in
the Instance Masked Attention Module, which explicitly binds identity features to their correspond-
ing instance identities.

Instance Attribute Propagation (Color). In Fig. 1(b), MagicDrive-V2 exhibits color inconsistency,
where the color of the same car changes from black to red across frames. Our model maintains stable
color and texture attributes throughout the video, indicating superior attribute propagation over time.
This is enabled by the Instance Trajectory Mask in the Instance Masked Attention Module, which
enforces cross-frame attention only within the same instance trajectory, preventing appearance drift.

Foreground Emphasis. As shown in Fig. 1(c), ConsisDrive enhances the fidelity of small and
challenging objects (e.g., pedestrians), whereas Panacea produces blurred results for such instances.
This improvement stems from the Instance Masked Loss Supervision, which prioritizes supervision
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on foreground regions even when the foreground spatial proportion is very small and background
pixels dominate the scene, thereby preventing foreground signals from being diluted by background
pixels.

Settings FVD↓ FID↓ NDS↑ IDS↓
ConsisDrive 38.06 3.96 40.51 532
w/o IMA(Identity) 40.89 (+2.83) 5.29 (+1.33) 37.55 (-2.96) 735 (+203)
w/o IMA(Trajectory) 53.66 (+15.6) 4.41 (+0.45) 40.40 (-0.11) 1074 (+542)
w/o IML 40.19 (+2.13) 4.24 (+0.28) 36.85 (-3.66) 637 (+105)

Table 5: Ablation study results in (T+I)2V scenarios on the generated nuScenes validation set.

(a) w/o Identity Mask (b) w/o Trajectory Mask (c) w/o Foreground Supervision

Fr
am

e

MagicDrive-V2 OursMagicDrive-V2 Ours Panacea Ours

Figure 3: Ablation study of the three key modules. Zoom in for better view. (a) Removing the
Identity Mask leads to incorrect instance category rendering, e.g., a traffic cone turns into a crouch-
ing pedestrian. (b) Removing the Trajectory Mask results in color shifts of the car. (c) Removing
foreground supervision causes blurred generation of small objects, such as pedestrians.

4.4 ABLATION STUDY

We validate three key components in ConsisDrive through both qualitative and quantitative anal-
yses, demonstrating their effectiveness and robustness. The qualitative comparison is presented in
Fig. 3, while quantitative results are reported in Tab. 5.

Instance Identity Mask. To assess the impact of the Instance Identity Mask within the Instance
Masked Attention module, we conduct an ablation by removing the global instance identity condi-
tioning (i.e., filling the instance identity mask with −∞). As shown in Tab. 5, the absence of global
identity conditioning results in a 2.96-point drop in NDS for the perception task. This confirms
its critical role in binding category and size conditions to their corresponding instances, ensuring
faithful instance attribute binding.

Instance Trajectory Mask. To evaluate the impact of the Instance Trajectory Mask, we perform
an ablation by removing trajectory-based attention (i.e., filling the trajectory mask with −∞). As
reported in Tab. 5, removing this causes a significant increase of 542 ID switches in the multi-object
tracking task and a 15.6-point drop in FVD. These results underscore its importance in propagating
and preserving instance attributes such as color consistently across frames.

Instance Masked Loss Supervision. To analyze the effect of Instance Masked Loss Supervision,
we remove it and retain only the standard denoising loss. As shown in Tab. 5, this results in a 3.66-
point degradation in NDS, demonstrating that the module is crucial for emphasizing supervision on
foreground regions. By preventing foreground signals from being overwhelmed when their spatial
proportion is small, it ensures higher fidelity in generating small and visually challenging objects.

5 CONCLUSION

We propose ConsisDrive, an identity-preserving driving world model specially designed to enhance
instance-level temporal consistency. Our approach introduces two key advancements: the Instance
Masked Attention module, which explicitly directs the model’s attention to each individual instance,
and the Instance Masked Loss Supervision, which employs instance masks to emphasize supervision
on foreground regions. By incorporating these instance-aware mechanisms, ConsisDrive achieves
SOTA generation quality and significantly improves downstream autonomous driving tasks.

ETHICS STATEMENT

This work focuses on video generation for autonomous driving research. Our model is trained
and evaluated on publicly available datasets (e.g., nuScenes) and is intended solely for academic
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research. We emphasize that the generated data should not be directly deployed in real-world driving
systems without careful validation, as safety-critical applications require rigorous testing.

REPRODUCIBILITY STATEMENT

We provide comprehensive details of the model architecture, training objectives, and evaluation
protocols. All datasets used in this work are publicly available, and the implementation details are
carefully documented to ensure reproducibility. Code and configuration files are included in the
supplementary material to facilitate further research and independent verification.
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