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ABSTRACT

Autonomous driving relies on robust models trained on large-scale, high-quality
multi-view driving videos. Although world models provide a cost-effective so-
lution for generating realistic driving data, they often suffer from identity drift,
where the same object changes its appearance or category across frames due to
the absence of instance-level temporal constraints. We introduce ConsisDrive,
an identity-preserving driving world model designed to enforce temporal consis-
tency at the instance level. Our framework incorporates two key components:
(1) Instance-Masked Attention, which applies instance identity masks and tra-
jectory masks within attention blocks to ensure that visual tokens interact only
with their corresponding instance features across spatial and temporal dimen-
sions, thereby preserving object identity consistency; and (2) Instance-Masked
Loss, which adaptively emphasizes foreground regions with probabilistic instance
masking, reducing background noise while maintaining overall scene fidelity. By
integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video
generation quality and demonstrates significant improvements in downstream au-
tonomous driving tasks on the nuScenes dataset. Please refer to the project page
for additional video results in the supplementary materials.

1 INTRODUCTION

Autonomous driving has attracted extensive attention from both academia and industry over the past
decades Shi et al. (2016); Zheng et al. (2024a); Chen et al. (2024); Jiang et al. (2023). To achieve re-
liable performance, autonomous systems rely on high-quality, large-scale multi-view driving videos
with precise annotations, which are essential for training perception, tracking, and planning mod-
els. However, collecting and labeling such real-world driving data is both costly and labor-intensive.
Benefiting from the rapid advancements in generative video models Lei et al. (2023); Xi et al. (2025);
Zheng et al. (2024b); HaCohen et al. (2024); Wang et al. (2024a); Gao et al. (2024a); Zhou et al.
(2024); Ho et al. (2022); Blattmann et al. (2023); Hu (2024); Wang et al. (2023a; 2024b); Bar-Tal
et al. (2024); Gupta et al. (2024), driving world models Zhao et al. (2024); Wen et al. (2024); Jia
et al. (2023); Wang et al. (2023c); Gao et al. (2024b) have emerged as a promising alternative.
These models can synthesize diverse and realistic driving scenarios at scale, significantly reducing
the demand for costly data collection and annotation.

Instance identity preservation across frames is critical for generating realistic driving videos, as it
directly affects video quality Unterthiner et al. (2018) and determines their applicability in down-
stream autonomous driving tasks. For example, multi-object tracking Wang et al. (2023b) and per-
ception tasks Wang et al. (2023b) require temporally stable instance appearances to ensure reliable
temporal context understanding. Similarly, planning Hu et al. (2023) relies on temporally coherent
trajectories of surrounding agents to support accurate motion forecasting. These requirements ne-
cessitate that the world model consistently maintains instance identities—such as category, color,
and shape—across consecutive frames, ensuring continuity in both appearance and behavior of dy-
namic objects. From a broader perspective, the ability to preserve instance identity is essential for
world models to effectively capture the underlying dynamics of real-world environments. Techni-
cally, enforcing strong temporal consistency improves the reliability of autonomous driving models
trained on synthetic data, ultimately enhancing their generalization to real-world scenarios.
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Figure 1: Limitations of Prior Works in Instance Identity Preservation Across Frames. (a)
Category Shift: In DriveDreamer2 Zhao et al. (2024), the bus gradually turns into a truck, indi-
cating a failure to preserve semantic identity over time. (b) Color Shift: In MagicDrive-V2 Gao
et al. (2024b), the car’s color changes inconsistently across frames, violating temporal appearance
consistency. (c) Foreground Dilution: In Panacea Wen et al. (2024), scene-level supervision di-
lutes supervision over critical foreground regions, breaking temporal identity consistency for small
instances like pedestrians. In contrast, our method explicitly enforces instance-level temporal con-
straints, maintaining consistency across frames and effectively addressing these issues.

However, existing diffusion-based world models frequently suffer from identity drift, where the same
object changes its appearance or even category across frames (e.g., a red car becoming black, or a bus
turning into a truck), as shown in Fig. 1. Such identity inconsistency severely degrades video realism
and limits the applicability of generated data for downstream driving tasks. We identify three major
root causes of this problem. First, the absence of explicit instance identity conditions prevents the
model from anchoring consistent identities over long horizons. For example, DriveDreamer2 Zhao
et al. (2024) does not incorporate instance-specific conditions such as category, leading to noticeable
semantic shifts, as illustrated in Fig. 1(a). This highlights the necessity of injecting explicit instance
identity signals into the generation process. Second, the attention mechanism of current diffusion
transformers is not instance-aware. For instance, FLUX’s MMDiT Labs (2024) computes 3D full
attention across all visual tokens from different instances. This makes the attention mechanism
unreliable and causes information leakage between different instances. Models such as MagicDrive-
V2 Gao et al. (2024b) integrate temporal attention layers to enhance inter-frame global coherence,
they lack fine-grained, instance-aware temporal alignment, suffering from identity inconsistencies
such as color shifts, as shown in Fig. 1(b). This underscores the need for instance-aware attention
mechanisms. Third, existing training objectives Wen et al. (2024) apply uniform supervision over
the entire frame, forcing the model to reconstruct both background pixels (e.g., sky, buildings) and
critical foreground regions with equal importance. Since background pixels dominate the scene, this
supervision dilution prevents the model from focusing on fine-grained identity-preserving features.
Consequently, foreground temporal consistency is easily broken, especially for small objects, as
shown in Fig. 1(c) in Panacea Wen et al. (2024). This motivates the design of instance-aware training
objectives that emphasize foreground regions.

To address the above challenges, we propose ConsisDrive, an identity-preserving driving world
model specifically designed to enforce instance-level temporal consistency. Our framework incor-
porates instance awareness into both the attention mechanism and the training objective, guided
by carefully constructed instance masks. In particular, we introduce two core components: The
Instance Masked Attention (IMA) module explicitly guides the model’s attention towards each in-
dividual instance, effectively preventing information leakage across multiple instances. Specifically,
by constructing instance identity mask, we restrict visual tokens to attend only to the identity em-
beddings of their corresponding instances. This preserves the identity of the instance across long
sequences, effectively mitigating identity drift (e.g., preventing a bus from gradually being inter-
preted as a truck). What’s more, by constructing instance trajectory mask, we ensure that tokens of
the same object across frames exclusively attend to each other, while interactions across different
instances are strictly blocked. This design allows the model to reliably propagate appearance fea-
tures such as color and texture along the trajectory of each object, thereby avoiding cross-instance
information leakage and ensuring consistent instance-level visual identity across time. Second, the
Instance Masked Loss (IML) addresses the supervision dilution problem caused by uniform loss
computation across entire frames. IML employs instance masks to emphasize supervision on fore-
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ground regions during training. A probabilistic dynamic masking strategy is further introduced,
which adaptively balances between foreground-focused loss and global reconstruction loss. This
design ensures that foreground consistency is enforced without sacrificing overall scene fidelity,
allowing the model to capture both fine-grained identity details and natural background appearance.

Through the joint design of Instance Masked Attention module and Instance Masked Loss Supervi-
sion, ConsisDrive significantly mitigates identity drift and achieves temporally consistent video gen-
eration for driving scenarios. Our approach achieves state-of-the-art performance in both video gen-
eration quality and downstream autonomous driving task validation, outperforming previous works
Gao et al. (2024b); Zhao et al. (2024); Li et al. (2023); Wen et al. (2024). Our contributions are as
follows.

• We propose the Instance-Masked Attention module, which explicitly directs the model’s
attention to each individual instance. By incorporating both an instance identity mask and
a trajectory mask, the module constrains visual tokens to attend exclusively to tokens of
their corresponding instances across spatial and temporal dimensions. This design effec-
tively enforces instance-level temporal consistency while preventing information leakage
between different instances.

• We design Instance-Masked Loss Supervision, a probabilistic instance-focused training
objective that employs instance masks to emphasize supervision on foreground regions.

• Our model achieves SOTA video generation quality with high FID and FVD on the
nuScenes benchmark, surpassing previous methods. For autonomous driving applications,
the generated videos are validated on downstream perception, tracking, and planning tasks,
with performance competitive to real-world sensor data.

2 RELATED WORKS

Street-View Generation. Street-view generation methods typically use 2D layouts like BEV maps,
2D bounding boxes, and semantic segmentation. BEVGen Swerdlow et al. (2023) encodes semantic
data in BEV layouts, while BEVControl Yang et al. (2023) uses a two-stage pipeline for multi-
view urban scenes, ensuring cross-view consistency. However, projecting 3D information into 2D
layouts loses geometric details, causing temporal inconsistencies in videos. To address this, we
use 3D bounding boxes to maintain geometric fidelity. Unlike DrivingDiffusion Li et al. (2023),
which relies on a complex multi-stage pipeline, our method simplifies the process with an efficient,
end-to-end framework, ensuring temporal coherence and computational efficiency.

Simulation-to-Real Visual Translation. Recent advances in synthetic data for real-world visual
tasks have shown significant progress. GAN-based translation Guo et al. (2020) and domain ran-
domization Tobin et al. (2017) bridge synthetic and real-world data distributions, while datasets like
Synthia Ros et al. (2016) and Virtual KITTI Cabon et al. (2020) provide scalable benchmarks for se-
mantic segmentation and autonomous driving. Adversarial training Shrivastava et al. (2017); Zhang
et al. (2018) reduces distribution gaps, and human motion representation learning Guo et al. (2022)
highlights synthetic data’s utility in video understanding. Unlike these methods, we extract proxy
data like 3D bounding boxes and road maps from graphics systems, leveraging these conditions to
generate more realistic and diverse videos.

3 METHOD

We introduce ConsisDrive, an identity-preserving driving world model specifically designed to en-
force instance-level temporal consistency. Our framework incorporates instance awareness into both
the 3D full attention mechanism (Sec. 3.2) and the training objective (Sec. 3.3), where carefully con-
structed instance masks serve as structural priors to guide consistency across frames. The overall
architecture of our model is illustrated in Fig. 2.
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Figure 2: Overview. (a) Instance-Masked Attention, which explicitly directs the model’s attention
to each individual instance by incorporating both an instance identity mask and trajectory mask. (b)
Instance-Masked Loss Supervision, a probabilistic instance-focused training objective that employs
instance loss masks to emphasize supervision on foreground regions. (c) Instance Mask Construc-
tion. Illustration of how the Instance Identity Mask, Instance Trajectory Mask, and Instance Loss
Mask are constructed from 3D box projections.

3.1 OVERVIEW

Building on OpenSora V2.0 Peng et al. (2025), we employ a Variational Auto-Encoder (Video DC-
AE) for video encoding, T5XXL Chung et al. (2024) and CLIP-Large Radford et al. (2021) for text
encoding, MMDiT Labs (2024) as the foundational model for the denoising process.

To achieve fine-grained control, we introduce a comprehensive set of control conditions, including
bounding box projection, road maps, and scene descriptions, integrating them into the conditioned
video generation process. Moreover, we introduce instance category label, instance size, and track-
ing ID to extract instance identity conditions and incorporate them into the attention process, a key
mechanism within our proposed Instance-Masked Attention module, detailed in Sec. 3.2.

Given the need to handle multiple control elements, we adopt ControlNet Zhang et al. (2023) to
inject control signals into the video generation process. To integrate these control-aware represen-
tations, we duplicate the first 19 base blocks of the double-stream MMDiT backbone as dedicated
control blocks. Each control block fuses condition features with the corresponding outputs of the
base blocks, thereby modulating the feature flow and ensuring that control signals are effectively
incorporated throughout the generation pipeline.

3.2 INSTANCE-MASKED ATTENTION

The Instance-Masked Attention module, as illustrated in Fig.2 (a), is designed to guide the model’s
attention towards each individual instance. By constructing instance masks from the bounding boxes
of objects in Fig.2 (c), we effectively prevent information leakage across multiple instances. We
add our proposed learnable Instance-Masked Attention module to handle the per-instance identity
conditioning. Instance-Masked Attention module fuses the instance identity conditions with the cor-
responding outputs of the copy blocks and modulates its features to enable instance-aware attention.
We now describe the key operations within the Instance-Masked Attention module in detail.

The Instance-Masked Attention module, as illustrated in Fig. 2(a), is designed to explicitly guide
the model’s attention towards each individual instance. Instance masks are constructed from object
bounding boxes, as shown in Fig. 2(c), to prevent information leakage across instances and ensure
instance-level disentanglement. We introduce a learnable Instance-Masked Attention mechanism,
which injects per-instance identity conditions and fuses them with the corresponding outputs of
the copy blocks. By modulating these features, the module enables instance-aware attention that
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preserves instance identity and ensures instance consistency across spatial and temporal dimensions.
We now describe the key operations of the Instance-Masked Attention module in detail.

3.2.1 INSTANCE IDENTITY CONDITION

For each instance i that appears in the video, we construct a global condition that integrates multiple
factors of the instance, including its category, its unique tracking ID, and the size of its bounding
box. Together, these attributes provide an informative representation of both semantic identity and
geometric configuration, which is crucial for preserving the instance identity consistently across
frames.

Concretely, we first apply a Fourier mapping γ(·) to encode the tracking ID IDi and the bounding
box size si = (dxi, dyi, dzi). At the same time, we employ the CLIP-Large Radford et al. (2021)
text encoder τθ(·) to extract a semantic feature from the category label ci. These components are
concatenated and passed through a multilayer perceptron (MLP) to produce the instance global
identity condition embedding:

gi = MLP([τθ(ci), γ(si), γ(IDi)]) . (1)

The complete set of embeddings for all n instances in the video is then denoted as:

G = {gi}ni=1.

3.2.2 INSTANCE-MASKED ATTENTION AND FUSE MECHANISM

We denote the m = Tcompress × Hcompress × Wcompress visual tokens extracted from the copy
MMDiT block as V , and the n instance condition tokens as G. We then apply 3D self-attention (SA)
over the backbone features and the concatenated instance condition tokens [V,G] in the Instance-
Masked Attention module, which can be formulated as:

Ṽ = SAmask([V,G]). (2)

We observed that standard self-attention, without masking, leads to information leakage across in-
stances, such as the color of one instance bleeding into another. To address this problem, we con-
struct a mask matrix M ∈ R(m+n)×(m+n) to determine the valid connections:

Token-to-Instance Indicator Function. Indicator function I(vk) denotes the set of instance IDs
whose projected bounding boxes cover the spatial region of token vk, as illustrated in Fig.2 (c).
Formally, each instance i is represented by a 3D bounding box with corners Ci = {Xi,c}8c=1, where
Xi,c ∈ R3. Given camera parameters (Kt,Rt,Tt) at frame t, the corners are projected as

x̃t
i,c = Kt

(
RtXi,c +Tt

)
, xt

i,c =
(

x̃
z̃ ,

ỹ
z̃

)
, (3)

with the convex hull of {xt
i,c} forming the polygon P t

i . Rasterization yields binary masks BMi ∈
{0, 1}T×H×W . We further apply trilinear interpolation to map these masks into latent space, denoted
as ˜BM i. For patch tokens p obtained from VAE compression,we define

I(vk) ≡ I(t, p) = { i | ∃(x, y), ˜BM i(t, x, y) = 1 }, (4)

where vk is a flattened visual token corresponding to (t, p).

Instance Identity Mask. For each visual token vk and instance condition token gi, the attention
score is masked as

Mk,m+i/Mm+i,k = −∞ if i /∈ I(vk),

This mask ensures that each visual token can only attend to the identity condition token of the corre-
sponding instance. This mechanism explicitly injects global identity features into the attention pro-
cess, ensuring that each instance preserves its identity consistently across long temporal sequences.
Meanwhile, it strictly suppresses interactions between different instances, thereby preventing iden-
tity leakage across objects.

Instance Trajectory Mask. For two visual tokens vk and vj , the attention score is masked as

Mk,j = −∞ if I(vk) ∩ I(vj) = ∅.

5
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This mask ensures that tokens of the same instance across frames can attend to one another, while
interactions across different instances are strictly prohibited. This design preserves temporal consis-
tency by explicitly enabling the propagation of instance-specific features across their trajectories.

Finally, the output of the Instance-Masked Attention is added back to the backbone representation
via gated addition:

V = V + tanh(ω) Ṽ [: m], (5)
where ω is a learnable scalar parameter, initialized to zero, that adaptively controls the contribution
of the Instance-Masked Attention module.

3.3 INSTANCE-MASKED LOSS

The goal of ConsisDrive is to ensure that foreground objects in driving scenes remain consistent
across all frames in the generated video. However, existing training objectives apply uniform su-
pervision over the entire frame, forcing the model to reconstruct both background pixels (e.g., sky,
buildings) and critical foreground regions with equal importance. Since background pixels dominate
the scene, this supervision dilution introduces noise that interferes with model training, preventing
the model from focusing on fine-grained identity-preserving features. Consequently, foreground
temporal consistency is easily broken, especially for small objects.

To resolve this issue, we propose the Instance-Masked Loss, which focuses the supervision signal
on foreground objects, as illustrated in Fig.2 (b)(c). Specifically, we construct a binary loss mask
MLoss ∈ {0, 1}Tcomp×Hcomp×Wcomp from the Instance-to-Token Indicator function I(vk). For each
token vk, the mask is defined as MLoss(vk) = 1{I(vk)̸=∅}, ensuring that only tokens covered by at
least one instance are selected. The masked loss is then computed as:

Lmask = MLoss ⊙ L,

where L denotes the original denoising loss and ⊙ indicates element-wise multiplication.

However, directly applying this masked loss to all training samples may cause the model to overfit
to foreground objects, which in turn harms the generation quality of background regions, such as
roads and high-definition maps. To alleviate this problem, we adopt a probabilistic dynamic masking
strategy. Specifically, with a probability p of α, the masked loss is applied:

L̃mask =

{
Lmask, if p < α

L, if p ≥ α
(6)

This stochastic scheme allows the model to concentrate on foreground consistency while still pre-
serving the natural realism of background content.

4 EXPERIMENT

4.1 SETUPS

Datasets and Baselines. We train and evaluate our model on the nuScenes dataset Caesar et al.
(2020). To benchmark our approach, we compare it with state-of-the-art driving world models,
including BEVControl Yang et al. (2023), DriveDiffusion Li et al. (2023), DriveDreamer2 Zhao
et al. (2024), Panacea Wen et al. (2024), and MagicDrive-V2 Gao et al. (2024b).

Metrics. For realism assessment, we use FID Heusel et al. (2017) and FVD Unterthiner et al. (2018)
to measure video quality. To evaluate the effectiveness of attribute binding and Instace Masked Loss
Supervision, we measure the alignment between generated instances and their conditioned cate-
gories and sizes, ensuring that both semantic and geometric structures are faithfully preserved. This
evaluation is conducted through perception tasks, since accurate category recognition and size lo-
calization are fundamental requirements for reliable perception. Hence, perception performance
directly reflects the generation accuracy of object categories and spatial extents. Specifically, fol-
lowing Panacea Wen et al. (2024), we adopt the video-based perception model StreamPETR Wang
et al. (2023b) and report metrics such as the nuScenes Detection Score (NDS) and mean Average
Precision (mAP). Among them, mAP directly measures the accuracy of object category detection,
while NDS integrates category detection with localization, orientation, and other aspects to provide
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a holistic assessment of perception quality. To further evaluate the propagation of instance-specific
features across frames, we assess our model on the multi-object tracking (MOT) task in real-world
autonomous driving scenarios. MOT explicitly measures the ability to maintain consistent object
identities over time, using metrics like ID switches (IDS). We also adopt the StreamPETR model
Wang et al. (2023b) as the tracker and report standard MOT metrics, including AMOTA, AMOTP,
and IDS. Although Bevfusion Liu et al. (2023) has also been employed for perception evaluation Gao
et al. (2024c), it is based on an image model, performs worse than the video-based StreamPETR,
and lacks the ability to provide object tracking metrics. For these reasons, we choose StreamPETR
as our evaluation model.

Method Multi-View Multi-Frame FVD↓ FID↓
BEVControl Yang et al. (2023) ✓ - 24.85
DrivingDiffusion Li et al. (2023) ✓ ✓ 332 15.83
Panacea Wen et al. (2024) ✓ ✓ 139 16.96
MagicDrive-V2 Gao et al. (2024b) ✓ ✓ 94.84 20.91
DriveScape Wu et al. (2024) ✓ ✓ 76.39 8.34
DriveDreamer2 Zhao et al. (2024) ✓ ✓ 55.7 11.2
DiVE Jiang et al. (2024) ✓ ✓ 94.6 -
DrivingSphere Yan et al. (2024) ✓ ✓ 103.42 -
UniScene Li et al. (2025) ✓ ✓ 70.52 6.12
InstaDrive Yang et al. (2025a) ✓ ✓ 38.06 3.96
UniMLVG Chen et al. (2025) ✓ ✓ 60.1 8.8
ConsisDrive ✓ ✓ 37.23 3.88

Table 1: Visual and Temporal Fidelity: Comparison with SoTA methods on nuScenes validation set.

4.2 TRAINING DETAILS

Our method is implemented based on OpenSora V2.0 Peng et al. (2025). All training inputs were
set to 16x256x448 and conducted on 64 A100 GPUs. Experimental results show that our method
can stably generate over 200 frames. For more implementation details, please refer to Appendix A.

4.3 MAIN RESULTS

4.3.1 QUANTITATIVE ANALYSIS

To verify the fine-grained temporal consistency and high fidelity of our generated videos, we com-
pare our approach with various state-of-the-art driving world models. We generate training and
validation data using the nuScenes dataset’s labels as conditions.

Visual Realism and Temporal Fidelity. Our generated videos achieve superior temporal fidelity,
reducing the FVD to 37.23. This improvement stems from the proposed Instance-Masked Atten-
tion module, which preserves instance attributes across frames and thereby enhances instance-level
temporal consistency. In terms of visual quality, our method attains an FID of 3.88, as reported in
Tab. 1, substantially outperforming both video-based approaches (e.g., DriveDreamer2) and image-
based solutions (e.g., BEVControl). These demonstrate that our generated images exhibit not only
stronger temporal coherence but also significantly higher visual realism.

Method Real Gen. mAP↑ mAOE↓ mAVE↓ NDS↑
Oracle ✓ - 34.5 59.4 29.1 46.9
Panacea - ✓ 22.5 (65.22%) 72.7 46.9 36.1 (76.97%)
Panacea ✓ ✓ 37.1 (+2.6%) 54.2 27.3 49.2 (+2.3%)
ConsisDrive (Ours) - ✓ 31.5 (91.3%) 63.0 33.1 42.06 (89.68%)
ConsisDrive (Ours) ✓ ✓ 43.2 (+8.7%) 39.8 25.2 54.6 (+7.7%)

Table 2: Comparison on perception tasks with Panacea. Training StreamPETR with synthetic data
augmentation leads to significant performance improvements, highlighting the value of generated
data for perception.

Method Real Gen. NDS↑
Oracle ✓ - 46.90

Panacea - ✓ 32.10 (68.00%)
MagicDrive-V2 - ✓ 36.82 (78.51%)

ConsisDrive - ✓ 41.38 (88.23%)

Table 3: Comparison of perception task performance on generated nuScenes (T+I)2V validation
data. Evaluated with pre-trained StreamPETR Wang et al. (2023b), our model outperforms baselines
without post-refinement, showing its ability to faithfully capture and bind instance attributes.
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Method Real Gen. AMOTA↑ AMOTP↓ IDS↓
Oracle ✓ - 0.289 1.419 687
DriveDreamer2 ✓ ✓ 0.313 1.387 593 (-94)
InstaDrive ✓ ✓ 0.496 1.376 532 (-155)
ConsisDrive (Ours) ✓ ✓ 0.498 1.350 525 (-162)

Table 4: Comparison involving data augmentation using synthetic data on multi object tracking.

Instance Attribute Binding. We evaluate instance-level temporal consistency by examining how
well global instance attributes are bound to the generated content. In autonomous driving, percep-
tion tasks critically depend on precise category recognition and size localization, making them a
natural measure of attribute binding quality. To this end, we assess the alignment between generated
instances and their conditioned categories and sizes, which directly reflects the fidelity of instance
attribute binding.

Data Augmentation Performance on Perception. As shown in Tab. 2, training StreamPETR exclu-
sively on our generated dataset achieves a mean Average Precision (mAP) of 31.5%, which cor-
responds to 91.3% of the performance obtained by training solely on the real nuScenes dataset.
Since mAP directly measures category detection accuracy, this result confirms that global instance
attributes are reliably bound through our Instance Identity Mask (Sec. 3.2). Moreover, the gener-
ated dataset proves to be not only a viable substitute for real data but also an effective standalone
training resource for perception models. When we further re-train StreamPETR by augmenting real
data with our generated videos, the perception model achieves a nuScenes Detection Score (NDS)
of 54.6, representing a 7.7-point improvement over training with real data alone. This demonstrates
the substantial benefit of incorporating our generated data into the training pipeline.

Validation Performance on Perception. Additionally, we use the pre-trained StreamPETR model to
evaluate the generated validation set of nuScenes. As reported in Tab. 3, our model achieves a rel-
ative performance of 88.23% on the NDS metric, highlighting strong alignment between generated
content and conditioned instance categories and sizes. Further validation on downstream planning
tasks is provided in the Appendix C.1.

Instance Attribute Propagation. Data Augmentation Performance on MOT. We further evaluate
instance-level temporal consistency by measuring how effectively instance attributes are propagated
across frames. In autonomous driving, this is naturally reflected by the multi-object tracking (MOT)
task, since MOT requires tracking instances according to their consistent attributes over time. This
makes MOT a strong indicator of attribute propagation quality. Concretely, we generate videos
conditioned on labels from the nuScenes training set and use them to augment the training data and
re-train the object tracking model StreamPETR Wang et al. (2023b). Then we evaluate the real
validation set using the re-trained StreamPETR. As shown in Tab.4, the MOT model re-trained with
our generated data shows significant improvements, achieving a lower number of identity switches
(IDS = 525) compared to the original pre-trained StreamPETR. This demonstrates that the Instance
Trajectory Mask in Instance-Masked Attention module effectively propagates and preserves instance
attributes, ensuring reliable temporal consistency for downstream perception tasks.

4.3.2 QUALITATIVE ANALYSIS

We qualitatively compare ConsisDrive against state-of-the-art baselines by inspecting generated
videos, as illustrated in Fig. 1. Please refer to the project page for additional video result.

Instance Attribute Binding (Category). As shown in Fig. 1(a), DriveDreamer2 suffers from
semantic drift, where the category of a car gradually changes into a truck. In contrast, Con-
sisDrive preserves the semantic category consistently across all frames, demonstrating stronger
instance-level temporal consistency. This improvement arises from the Instance Identity Mask in
the Instance Masked Attention Module, which explicitly binds identity features to their correspond-
ing instance identities.

Instance Attribute Propagation (Color). In Fig. 1(b), MagicDrive-V2 exhibits color inconsistency,
where the color of the same car changes from black to red across frames. Our model maintains stable
color and texture attributes throughout the video, indicating superior attribute propagation over time.
This is enabled by the Instance Trajectory Mask in the Instance Masked Attention Module, which
enforces cross-frame attention only within the same instance trajectory, preventing appearance drift.
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Foreground Emphasis. As shown in Fig. 1(c), ConsisDrive enhances the fidelity of small and
challenging objects (e.g., pedestrians), whereas Panacea produces blurred results for such instances.
This improvement stems from the Instance Masked Loss Supervision, which prioritizes supervision
on foreground regions even when the foreground spatial proportion is very small and background
pixels dominate the scene, thereby preventing foreground signals from being diluted by background
pixels.

Settings FVD↓ FID↓ NDS↑ IDS↓
ConsisDrive 37.23 3.88 41.38 525
w/o IMA(Identity) 40.89 (+3.66) 5.29 (+1.41) 37.55 (-3.83) 735 (+210)
w/o IMA(Trajectory) 53.66 (+16.43) 4.41 (+0.53) 40.40 (-0.98) 1074 (+549)
w/o IML 40.19 (+2.96) 4.24 (+0.36) 36.85 (-4.53) 637 (+112)

Table 5: Ablation study results in (T+I)2V scenarios on the nuScenes validation set.

(a) w/o Identity Mask: Category Shift  (b) w/o Trajectory Mask: Color Shift (c) w/o Foreground Supervision: Small Object Dilution 

Fr
am

e

w/o Trajectory Mask Oursw/o Identity Mask Ours w/o Foreground Supervision Ours

Figure 3: Ablation study of the three key modules. (a) Removing the Identity Mask leads to incorrect
instance category rendering, e.g., a traffic cone turns into a crouching pedestrian. (b) Removing the
Trajectory Mask results in color shifts of the car. (c) Removing foreground supervision causes
blurred generation of small objects, such as pedestrians.

4.4 ABLATION STUDY

We validate three key components in ConsisDrive through both qualitative and quantitative anal-
yses, demonstrating their effectiveness and robustness. The qualitative comparison is presented in
Fig. 3, while quantitative results are reported in Tab. 5.

Instance Identity Mask. To assess the impact of the Instance Identity Mask within the Instance
Masked Attention module, we conduct an ablation by removing the global instance identity condi-
tioning (i.e., filling the instance identity mask with −∞). As shown in Tab. 5, the absence of global
identity conditioning results in a 3.83-point drop in NDS for the perception task. This confirms
its critical role in binding category and size conditions to their corresponding instances, ensuring
faithful instance attribute binding.

Instance Trajectory Mask. To evaluate the impact of the Instance Trajectory Mask, we perform
an ablation by removing trajectory-based attention (i.e., filling the trajectory mask with −∞). As
reported in Tab. 5, removing this causes a significant increase of 549 ID switches in the multi-object
tracking task and a 16.43-point drop in FVD. These results underscore its importance in propagating
and preserving instance attributes such as color consistently across frames.

Instance Masked Loss Supervision. To analyze the effect of Instance Masked Loss Supervision,
we remove it and retain only the standard denoising loss. As shown in Tab. 5, this results in a 4.53-
point degradation in NDS, demonstrating that the module is crucial for emphasizing supervision on
foreground regions. By preventing foreground signals from being overwhelmed when their spatial
proportion is small, it ensures higher fidelity in generating small and visually challenging objects.

5 CONCLUSION

We propose ConsisDrive, an identity-preserving driving world model specially designed to enhance
instance-level temporal consistency. Our approach introduces two key advancements: the Instance
Masked Attention module, which explicitly directs the model’s attention to each individual instance,
and the Instance Masked Loss Supervision, which employs instance masks to emphasize supervision
on foreground regions. By incorporating these instance-aware mechanisms, ConsisDrive achieves
SOTA generation quality and significantly improves downstream autonomous driving tasks.
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ETHICS STATEMENT

This work focuses on video generation for autonomous driving research. Our model is trained
and evaluated on publicly available datasets (e.g., nuScenes) and is intended solely for academic
research. We emphasize that the generated data should not be directly deployed in real-world driving
systems without careful validation, as safety-critical applications require rigorous testing.

REPRODUCIBILITY STATEMENT

We provide comprehensive details of the model architecture, training objectives, and evaluation
protocols. All datasets used in this work are publicly available, and the implementation details are
carefully documented to ensure reproducibility. Code and configuration files are included in the
supplementary material to facilitate further research and independent verification.
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AUTHOR RESPONSE (SUPPLEMENT)

We sincerely thank Reviewer 4E4z (@R1), 6KzT (@R2), JFL4 (@R3), and V1rg (@R4) for
their thoughtful feedback and for highlighting the strengths of our work in temporal consistency
(@R1@R2@R3@R4), experimental validation (@R2@R3@R4), and novelty (@R1@R2@R3@R4).

As noted in our original submission, we have provided a project page with extensive video results
included in the supplementary materials. Please ensure that the entire supplementary archive
is fully uncompressed before opening the webpage. The page has been successfully tested on
both macOS and Windows 10 systems.

We will make further revisions to the main paper based on the reviewers’ feedback. We appreciate
your constructive comments and look forward to any additional suggestions.

.1 COMPARISON WITH OTHER BASELINES @R1

We have added InstaDrive Yang et al. (2025a) as a baseline in Tab. 1 and Tab. 4. Across all metrics,
including FID, FVD, and tracking evaluations, InstaDrive consistently performs worse than our
method, validating the effectiveness of our approach.

InstaDrive uses an Instance Flow Guider Module to encode trajectory information into an RGB
motion map via an optical-flow–like process. This method incurs a high computational cost and
may suffer from information loss due to clipping when motion exceeds thresholds.

In contrast, our Trajectory Mask constructs an instance-specific attention corridor with 3D-tracked
trajectories, enabling feature propagation without quantization loss, ensuring better instance-level
temporal consistency.

.2 CHALLENGES FOR OCCLUSION IN NON-CONTINUOUS TRAJECTORY @R1 @R4

Method: Instance-Masked Attention ensures consistent instance identity even when objects are
occluded and reappear, the principle is demonstrated in Fig. 2 (c). When an object (e.g., object 1)
becomes occluded at frame t + 1 and reappears at frame t + 2, the Indicator function I(vk) tracks
the object’s presence across frames. At frame t, 1 ∈ I(v0) when the object is visible. At frame
t + 1, the object is occluded, and at frame t + 2, 1 ∈ I(v4) when the object reappears. To ensure
correct feature propagation, we set M(0, 4) = 0 in the Instance Trajectory Mask, allowing attention
between token v0 and v4. This enables the reliable propagation of instance-specific features across
their trajectory, even after occlusion.

Qualitative results demonstrating our method’s handling of non-continuous trajectories are shown
in Fig. 4, where the car maintains its identity despite temporary occlusion.
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(b) Ours(Front-Right View)(a)w/o Trajectory Mask

Figure 4: Challenges for Non-Continuous Trajectory. (a) Without the Trajectory Mask in the
Instance-Masked Attention module, the car is occluded and reappears, but its color changes from
white to black. (b) With our Instance-Masked Attention, the car preserves its identity and features
even after occlusion and reappearance.
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.3 NOVELTY COMPARED TO PRIOR WORK@R2

We appreciate the reviewer’s comments and clarify that the core novelty of ConsisDrive lies in
introducing trajectory-grounded, instance-aware attention and supervision mechanisms that directly
address fine-grained identity consistency in long-horizon driving video generation—a problem not
tackled by prior works.

Masked Attention Novelty. Our instance-masked attention has two innovations that differ funda-
mentally from Mask2Former Cheng et al. (2022). (i) Our Trajectory Mask establishes an instance-
specific attention corridor across frames using 3D-tracked trajectories. This enables tokens belong-
ing to the same object to exchange information over time, thereby preserving semantic identity
across the full video sequence. Such temporally linked attention does not exist in Mask2Former or
other masked-attention architectures, which perform mask-guided attention within a single frame for
segmentation, without any mechanism for temporal identity modeling or cross-frame feature prop-
agation. (ii) Our masks are deterministically constructed from 3D-tracked trajectories, explicitly
controlling which spatial–temporal token interactions are permitted. In contrast, spatial masks in
Mask2Former originate from per-frame predictions and are not used to regulate cross-frame feature
flow or identity binding.

Masked Loss Novelty. The proposed Instance-Masked Loss serves a fundamentally different pur-
pose from Focal Loss Lin et al. (2018). Focal Loss is sample-aware: It reweights individual samples
based on prediction confidence to mitigate class imbalance in static image tasks. In contrast, our
loss is pixel-aware and leverages 3D-projected instance regions to construct instance masks, ensur-
ing that foreground objects receive sufficient supervision across all frames. This mechanism directly
supports the goal of improving instance-level temporal consistency, which is not addressed by Focal
Loss or related formulations.

Pipeline Novelty. Our method targets a different problem compared to CineMaster Wang et al.
(2025). CineMaster focuses on controllable video generation to regulate per-frame layout. It
does not preserve instance identities across frames. In contrast, ConsisDrive addresses instance-
level temporal consistency, a key failure in driving world models. Our method introduces identity-
and trajectory-aware masks inside the diffusion transformer’s attention blocks, providing explicit
cross-frame constraints that prevent identity drift. To our knowledge, no prior controllable video
model—including CineMaster—builds trajectory-grounded cross-frame masking or maintains per-
sistent global identity embeddings in the attention mechanism.

.4 DATASET GENERALIZATION BEYOND NUSCENES @R2

To address cross-dataset generalization, we additionally conduct experiments on a large, higher-
annotation-quality 200-hour private driving dataset, which provides the same multi-camera format,
3D annotations, and calibration parameters required by StreamPETR, enabling a fully consistent
evaluation pipeline. For a fair comparison, we follow the train/val ratio of nuScenes (≈ 28h/6h)
when splitting the private dataset.

Quantitative Results. Following the same ablation pipeline as Tab.5 in Sec.4.4, we re-evaluate
all three key components on the private dataset in Tab.6. The outcomes mirror those observed on
nuScenes. (i) w/o IMA(Identity): Removing global identity conditioning leads to a 3.96-point drop
in NDS, confirming its role in binding category and size level identity features to their corresponding
instances. (ii) w/o IMA(Trajectory): Disabling trajectory-based masking increases ID switches by
553 and degrades FVD by 17.69, demonstrating its central effect on cross-frame attribute propaga-
tion and temporal consistency. (iii) w/o IML: Removing the loss mask results in a 4.80-point NDS
decline, showing the necessity of foreground-focused supervision for preserving small and visually
challenging objects. These consistent trends across two datasets verify that each design component
is robust and generalizable, demonstrating that the method does not overfit to nuScenes.

Settings(Private) FVD↓ FID↓ NDS↑ IDS↓
ConsisDrive 20.56 2.26 45.66 476
w/o IMA(Identity) 24.18 (+3.62) 3.90 (+1.64) 41.70 (-3.96) 696 (+220)
w/o IMA(Trajectory) 38.25 (+17.69) 2.84 (+0.58) 44.54 (-1.12) 1029 (+553)
w/o IML 23.06 (+2.50) 2.69 (+0.43) 40.86 (-4.80) 596 (+120)

Table 6: Ablation study results on the Private Dataset validation set.
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Visualization Results. As shown in Fig. 8 in App. D.1, training on the private dataset yields gen-
eration quality comparable to that on nuScenes, with stable instance identities, consistent object
colors, and clear rendering of small objects. These results demonstrate that ConsisDrive generalizes
effectively to new environments and dataset distributions.

.5 BACKBONE MODEL GENERALIZATION FROM OPENSORA TO WAN@R2

The proposed Instance-Masked Attention and Loss are plug-and-play modules that can be inserted
into any diffusion transformer with spatiotemporal attention. These components do not rely on
any architectural details specific to OpenSora V2.0; instead, they target structural limitations that
broadly exist across modern video diffusion transformers, including Wan 2.1/2.2: (i) the absence of
explicit instance identity conditioning, (ii) instance-agnostic self-attention leading to cross-instance
information leakage, and (iii) uniform per-pixel diffusion losses that dilute foreground gradients.

To validate compatibility, we conducted an experiment by integrating the Instance-Masked Attention
and Instance-Masked Loss modules into a Wan 2.1 + ControlNet pipeline in Fig.5. The baseline
Wan 2.1 + ControlNet (without ConsisDrive) still exhibits significant identity drift in Fig.5 (a),
despite Wan’s strong base modeling capability. This behavior is expected: Wan’s transformer blocks
employ the same full self-attention mechanism as the MMDiT architecture in OpenSora V2.0, and
therefore inherit the same intrinsic limitations regarding instance-level temporal consistency. After
plugging in our identity and trajectory masks in Fig.5 (b), the system achieves noticeably improved
instance consistency across frames. These results confirm that ConsisDrive can be readily applied
to Wan 2.1/2.2 or future foundation models.
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(a) Wan2.1+ControlNet (b) Wan2.1+ControlNet+ConsisDrive

Figure 5: Backbone Model Generalization to Wan 2.1. (a) The baseline Wan 2.1 + ControlNet
(without ConsisDrive) still exhibits significant identity shift in the white car’s shape. (b) After
plugging in our Instance-Masked Attention and Instance-Masked Loss modules, the system achieves
noticeably improved instance consistency across frames.

.6 COMPUTATIONAL COST AND EFFICIENCY @R2

We report the training cost and inference latency in Tab. 7. These metrics depend on several factors,
including resolution and sampling steps. Since many prior works lack detailed reports, we ensure a
fair comparison by benchmarking all methods under identical conditions. Panacea, MagicDriveV2,
InstaDrive, and our model require 11.24s, 8.21s, 15.12s, and 9.28s per frame for inference, respec-
tively. The high-compression (4 × 32 × 32) video autoencoder in OpenSora V2.0, which reduces
latent token counts, significantly improves inference efficiency compared with OpenSora V1.0.

Method Steps (k) Training GPU-Hours (k) Inference (s/frame) FLOPS(×1012)
Panacea 106 1.2 11.24 -
MagicDrive-V2 150 1.1 8.21 -
InstaDrive 120 2.5 15.12 -
ConsisDrive 122 1.8 9.28 6.96

Table 7: Comparison of computational cost and inference efficiency under a unified evaluation setup.

.7 VALIDATION PERFORMANCE ON MOT @R2

We directly evaluate both the real validation dataset and the generated validation set of nuScenes
on the Multi-Object Tracking (MOT) task, using the pretrained StreamPETR model with the same
setup as in Tab. 3. As shown in Tab. 8, the validation set generated by our model achieves a relative
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Method Real Gen. AMOTA↑ AMOTP↓ IDS↓
Oracle ✓ - 0.289 1.419 687
DriveDreamer2 - ✓ 0.207(71.6%) 1.682(+18.5%) 784 (+14.1%)
ConsisDrive (Ours) - ✓ 0.253(87.5%) 1.506(+6.1%) 726 (+5.7%)

Table 8: Comparison of MOT task performance on real or generated nuScenes (T+I)2V validation
data. Evaluated with pre-trained StreamPETR, our model outperforms DriveDreamer2, showing its
ability to faithfully propagate instance attributes over frames.

performance of 87.5% on the AMOTA metric, with only a slight increase of 5.7% in the IDS metric
compared to the real validation set. This demonstrates our model’s ability to propagate instance
attributes across frames and confirms that the generated videos perform comparably to real data.

.8 DESIGN CHOICE OF INSTANCE IDENTITY CONDITIONING @R3

Our conditioning of global instance identity operates at instance-aligned token level: the model first
establishes correspondence I(vk) between each latent token and the instance to which it belongs,
and then injects G only along these aligned pairs. This is functionally equivalent to a concatenation
[V,G] followed by self-attention, but with an instance mask to prevent cross-instance interactions. In
contrast, alternative strategies cannot enforce this level of control: (i) Injecting attributes as tokens
into V allows all tokens to freely interact, leading to identity leakage between instances, as the
transformer has no mechanism to prevent cross-instance attention. (ii) Additional Cross-attention
layers treat all conditioning tokens as a shared pool, allowing visual tokens from different objects to
attend to the same identity embeddings, again causing contamination between instances.

.9 ABLATION ON PROBABILISTIC DYNAMIC MASKING IN INSTANCE-MASKED LOSS @R3

We set the probability α = 0.5 in the Instance-Masked Loss, meaning there is a 50% chance of using
the dynamic mask loss (focusing on foreground regions) and a 50% chance of using the original loss
(considering the entire global scene) during training. In Sec. 4.4, we evaluate the necessity of the
Instance-Masked Loss by setting α = 0 (i.e., without IML). The results are as follows: qualitative
results are presented in Fig. 3, and quantitative results are provided in Tab. 5. We have also added
ablation studies on the impact of α in Tab. 9. When α = 0, the model is forced to equally consider
both foreground and background, but background noise interferes with training, leading to a decrease
in foreground consistency. On the other hand, as α approaches 1, the model excessively focuses on
foreground objects, potentially losing the ability to generate coherent background content. The
complete ConsisDrive, integrating all components, yields optimal performance.

Settings FVD↓ FID↓ NDS↑ IDS↓
w/o IML(α = 0) 23.06 (+2.50) 2.69 (+0.43) 40.86 (-4.80) 596 (+120)
ConsisDrive (α = 0.5) 20.56 2.26 45.66 476
α = 0.8 28.13 (+7.57) 3.23 (+0.97) 35.63 (-10.03) 638 (+162)
α = 1 30.06 (+9.50) 5.89 (+3.63) 32.72 (-12.94) 725 (+249)

Table 9: Ablation study results on Probabilistic Dynamic Masking in Instance-Masked Loss.

.10 CHOICE OF FULL ATTENTION IN MMDIT @R4

We appreciate reviewer’s feedback on computational cost of full attention. The use of full atten-
tion in MMDiT is becoming increasingly dominant, as seen in architectures like OpenSora V2.0,
Wan 2.1 Wan et al. (2025), and HunyuanVideo Kong et al. (2025). This approach offers three key
advantages: (i) Full attention has demonstrated superior performance by capturing richer spatiotem-
poral relationships compared to divided 2D+1D spatiotemporal attention Polyak (2025); Yang et al.
(2025b); Brooks et al. (2024); Team (2024). (ii) It supports unified generation for both images
and videos, simplifying training process and improving model scalability. (iii) It leverages exist-
ing LLM-related acceleration capabilities more effectively, enhancing both training and inference
efficiency.
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.11 MORE COMPARISON WITH BASELINES @R4

We thank the reviewer for pointing out the recent driving world models. After carefully review-
ing UniMLVGChen et al. (2025), UniSceneLi et al. (2025), DrivingSphereYan et al. (2024), and
DiVEJiang et al. (2024), we found that their reported performance is lower than ours across multiple
metrics, including FID, FVD, and perception-related evaluations. We have now included compar-
isons with these methods and updated Tab. 1 accordingly.

.12 ABLATION STUDY OF INSTANCE-MASKED ATTENTION @R4

We apologize for the typo in Fig. 3, where the label ”MagicDrive-V2/Panacea” actually referred to
our ablation results. To clarify, our ablation study isolates the contribution of the Instance-Masked
Attention by removing either the Identity Mask or the Trajectory Mask and comparing the results
with those of the full model. The typo has been corrected as suggested.

.13 TEMPORAL INCONSISTENCY OBSERVED IN RECENT LITERATURE’S DEMO AND PAPER
@R4-Q1

We clarify that the identity inconsistency illustrated in Fig. 3 is not an isolated or uncommon issue.
It is, in fact, a well-documented and recurrent failure mode in recent driving video generation works.
For example:

(i) Panacea Project Page (BEV-guided Video Generation, demo2.gif): the first car parked on the
roadside in the Left view gradually changes color from black to white. We include this example in
Fig. 6 (a).

(ii) Panacea paper (Fig.7, row 1): a car changes color from silver to black across frames. We
include this example in Fig. 6 (b).

These examples demonstrate that identity drift remains a persistent challenge in state-of-the-art
methods. This is precisely the issue our Instance-Masked Attention is designed to address, and
Fig. 1 highlights both the widespread identity-preservation failures in prior works and our method’s
improvements under the same challenging scenarios.
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(a) Panacea Project Page Demo2.gif (b) Panacea Paper Fig.7

Figure 6: Samples of Identity Drift from Panacea. (a) Panacea’s Project Page (BEV-guided Video
Generation, demo2.gif): the first car parked on the roadside in the Left view gradually changes
color from black to white. (b) Panacea’s Paper (Fig.7, row 1): a car changes color from silver to
black across frames.

.14 NEW SAMPLE FROM LEFT-HAND FOR NON-CONTINUOUS TRAJECTORY @R4-Q2/Q3

We thank the reviewer for the helpful suggestion. We have added a new example from the nuScenes
validation set where a vehicle appears, disappears, and reappears in the Left-Front view. The quali-
tative result is shown in Fig. 7 (b), providing a more representative and higher-quality demonstration
of our model’s ability to preserve instance identity under non-continuous trajectories.
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We will add more representative and higher-quality results to showcase our method’s capability on
the Project Page.
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(b) Ours(Left-Front View)(a) Ours(Right-Front View)

Figure 7: Samples of Non-Continuous Trajectory generated by ConsisDrive with Instance-Masked
Attention. (a) In the Right-Front view, the black car is occluded and reappears while maintaining its
identity. (b) In the Left-Front view, the white car similarly preserves its appearance after occlusion
and reappearance.

Thanks for your feedback again! It really helps me improve my manuscript to better showcase our
research work!

Hope for your final review and final rating!
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A MORE EXPERIMENTAL DETAILS

We provide a project page for additional video results in the supplementary materials. Please unzip
the entire supplementary materials archive before opening the webpage. Tested OK on macOS and
Windows 10 systems.

A.1 TRAINING DETAILS

Our method is implemented based on OpenSora V2.0 Peng et al. (2025). Initially, we train for 20k
iterations on the front-view videos from the NuScenes training set. Next, to adapt to multi-view
positional encoding, we froze the backbone and fine-tuned the patch embedder for 2k iterations.
Finally, we added all the control modules and trained the entire model for 100k iterations with a
mini-batch size of 1. All training inputs were set to 16x256x448 and performed on 64 A100 GPUs.
Additionally, during training, we set a 0.2 probability of not adding noise to the first frame and
assigned a timestep of 0 to the first frame, enabling the model to have image-to-video generation
capability. As a result, during testing, the model can autoregressively iterate. Experimental results
show that our method can stably generate over 200 frames and the long video is included in the
project webpage in the supplementary materials.

B PRELIMINARY

Latent Video Diffusion Model (LVDM). The LVDM enhances the stable diffusion model Ramesh
et al. (2022) by integrating a 3D U-Net, thereby empowering efficient video data processing. This
3D U-Net design augments each spatial convolution with an additional temporal convolution and
follows each spatial attention block with a corresponding temporal attention block. It is optimized
by employing a noise-prediction objective function:

lϵ = ||ϵ− ϵθ(zt, t, c)||22, (7)

Here, ϵθ(·) signifies the 3D U-Net’s noise prediction function. The condition c is guided into the
U-Net using cross-attention for adjustment. Meanwhile, zt denotes the noisy hidden state, evolving
like a Markov chain that progressively adds Gaussian noise to the initial latent state z0:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (8)

where ᾱt =
∏t

i=1(1− βt) and βt is a coefficient that controls the noise strength in step t.

MMDiT. Inspired by FLUX’s MMDiT Labs (2024), OpenSora V2.0 Peng et al. (2025) employs
a hybrid transformer architecture that incorporates both dual-stream and single-stream processing
blocks. In the dual-stream blocks, text and video information are processed separately to facilitate
more effective feature extraction within each modality. Subsequently, single-stream blocks integrate
these features to facilitate effective cross-modal interactions. To further enhance the model’s ability
to capture spatial and temporal information, we apply 3D RoPE (Rotary Position Embedding), which
extends traditional positional encoding to three-dimensional space, allowing the model to better
represent motion dynamics across time.

For text encoding, it leverages T5-XXL Chung et al. (2024) and CLIP-Large Radford et al. (2021),
two high-capacity pretrained models known for their strong semantic understanding. T5-XXL cap-
tures complex textual semantics, while CLIP-Large improves alignment between text and visual
concepts, leading to more accurate prompt adherence in video generation.

C MORE QUANTITATIVE RESULTS

C.1 EVALUATION ON PLANNING TASK.

We also assess our model in the planning task in autonomous driving. Planning task Hu et al. (2023)
relies on temporally coherent trajectories of surrounding agents to support accurate motion forecast-
ing. Therefore, planning task performance also serves as a comprehensive indicator of instance-level
temporal consistency.
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Eval Data L2(m)↓ Col. Rate↓
1s 2s 3s Avg. 1s 2s 3s Avg.

Oracle 0.48 0.96 1.65 1.03 0.0005 0.0017 0.0071 0.0031
ConsisDrive 0.60 1.49 2.38 1.55 0.0020 0.0087 0.0124 0.0100

Table 10: Comparison on planning task using the pre-trained planning model UniAD Shi et al.
(2016). The L2 loss and collision rates closely match the performance of the original data, high-
lighting the benefits of enhanced temporal consistency.
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Figure 8: Results on private dataset. This demonstrates that we achieved similar generation quality
as on nuScenes, highlighting the generalization capability of ConsisDrive.

To validate our approach, we evaluate the generated nuScenes validation data using pretrained plan-
ning model UniAD Shi et al. (2016) in Tab. 10. The L2 loss and collision rates closely match the
performance of the original data, demonstrating clear benefits from improved instance-level tempo-
ral consistency.

D MORE VISUALIZATION RESULTS

Here, we provide additional visualization results to showcase our model’s strong ability to generate
high-fidelity, instance-level temporally consistent multi-view driving videos. We sample 8 frames
from each generated video as a demo to save space in the paper. Our model is capable of generating
long-duration driving videos through iterative processing. We provide a web page in the supplemen-
tary materials for additional results. Please refer to the webpage in the supplementary materials for
visualization results.
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D.1 RESULTS ON OUR PRIVATE DATASET

In addition to public datasets, we trained on a 200-hour private dataset. The results, as shown in
Fig. 8, demonstrate that we achieved similar generation quality as on nuScenes, highlighting the
generalization capability of our method.

E LIMITATIONS

Our work establishes a identity-preserving framework for generating high-quality, multi-view driv-
ing videos, achieving state-of-the-art performance in both video generation quality and downstream
perception task validation. However, certain limitations remain, mainly due to time and resource
constraints.

Future research could explore the integration of more advanced generative models, such as SD-XL
Podell et al. (2023), and develop more efficient methods to produce high-fidelity videos at larger
spatial resolutions. Additionally, the computational cost of inference for ConsisDrive is relatively
high, which presents another avenue for improvement. Enhancing the efficiency of ConsisDrive will
be a key focus in future developments to make the model more practical for real-world applications.
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