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ABSTRACT

Level of Detail (LoD) is a fundamental technique in real-time computer graph-
ics for managing the rendering costs of complex scenes while preserving visual
fidelity. Traditionally, LoD is implemented using discrete levels (DLoD), where
multiple, distinct versions of a model are swapped out at different distances. How-
ever, this long-standing paradigm suffers from two major drawbacks: it requires
significant storage for multiple model copies and causes jarring visual “popping”
artifacts during transitions, degrading the user experience. We argue that the
explicit, primitive-based nature of the emerging 3D Gaussian Splatting (3DGS)
technique enables a more ideal paradigm: Continuous LoD (CLoD). A CLoD
approach facilitates smooth and seamless quality scaling within a single unified
model, thereby circumventing the core problems of DLOD. To this end, we in-
troduce CLoD-GS, a framework that integrates a continuous LoD mechanism di-
rectly into a 3DGS representation. Our method introduces a learnable distance-
dependent decay parameter for each Gaussian primitive that dynamically adjusts
its opacity based on viewpoint proximity. This allows for the progressive and
smooth filtering of less significant primitives, effectively creating a continuous
spectrum of detail within one model. To train this model to be robust across all
distances, we introduce a virtual distance scaling mechanism with point count
regularization. Our approach not only eliminates the storage overhead and visual
artifacts of discrete methods but also reduces the primitive count and memory
footprint of the final model. Extensive experiments demonstrate that CLoD-GS
achieves smooth, quality-scalable rendering from a single model, delivering high-
fidelity results across a wide range of performance targets.

1 INTRODUCTION

The pursuit of photorealism in real-time computer graphics is characterized by a fundamental ten-
sion between ever-increasing scene complexity and the finite computational budget of rendering
hardware. To maintain interactive frame rates, systems must intelligently manage the number of
primitives rendered per frame, a challenge first articulated decades ago (Funkhouser & Séquin,
1993). This constrained optimization problem—generating the best possible image within a fixed
time budget—has driven the development of Level of Detail (LoD) techniques, which adaptively re-
duce an object’s complexity based on its perceptual importance to the viewer (Luebke et al., 2002).

The most established paradigm for LoD is Discrete Level of Detail (DLoD). In this approach, artists
or automated algorithms create multiple, distinct versions of a model at varying complexities (Clark,
1976). At runtime, the system selects the appropriate version based on metrics like distance or
screen-space projection size. While computationally efficient, DLoD suffers from two critical draw-
backs. First, storing multiple copies of every asset leads to a significant memory overhead, limiting
scene scale and variety. Second, the instantaneous swap between discrete models causes jarring
visual “popping” artifacts, degrading the user experience (Giegl & Wimmer, |[2007).
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The recent advent of 3D Gaussian Splatting (3DGS) has revolutionized novel view synthesis, achiev-
ing state-of-the-art visual quality at real-time rendering speeds (Kerbl et al., 2023). By representing
scenes as a collection of explicit 3D Gaussian primitives, 3DGS leverages a highly optimized ras-
terization pipeline. However, this paradigm does not escape the fundamental constraint of rendering
cost; performance still scales with the number of primitives, making LoD a necessity for complex
scenes. Given that 3DGS is a primitive-based representation, a straightforward approach would be
to apply the traditional DLoD paradigm by creating multiple, discrete sets of Gaussians at varying
levels of detail (Kulhanek et al.,[2025]). While feasible, this strategy inevitably reintroduces the clas-
sic DLoD drawbacks: a significant storage overhead for maintaining multiple Gaussian clouds and
the visually disruptive “popping” artifacts during transitions.

We argue that a more ideal paradigm could be achieved with the unique characteristics of the 3DGS:
Continuous Level of Detail (CLoD). The profound suitability of 3DGS for a CLoD framework stems
from its fundamental representational properties, which distinguish it from traditional discrete prim-
itives like meshes or point clouds. First, each Gaussian is not a discrete point but a continuous
volumetric entity—a probability distribution with a “soft” footprint. This makes modulating its con-
tribution to the scene (e.g., via its opacity) an intrinsically smooth and continuous operation. In con-
trast, simplifying a mesh requires discrete topological changes like edge collapses(Hoppe, [1996).
Second, each primitive is defined by a set of continuous parameters that can be finely controlled.
This allows for per-primitive filtering rather than the abrupt removal of entire geometric elements.
Finally, the entire representation is end-to-end differentiable. This feature allows the LoD mecha-
nism itself to be learned. We can introduce new learnable parameters that control simplification and
optimize them directly within the primary training process.

To this end, we introduce CLoD-GS, a framework integrating a continuous LoD mechanism directly
into the 3DGS representation. Our key contribution is to augment each Gaussian primitive with
an additional learnable parameter: a distance-dependent decay factor. This parameter dynamically
modulates the primitive’s opacity based on its proximity to the viewpoint, allowing for the smooth
filtering of less significant details, effectively creating a continuous spectrum of detail within a
single, unified model. To train a single model that is robust across the entire LoD spectrum, we
introduce a novel virtual distance scaling training strategy. This involves rendering from virtually
scaled distances to activate the LoD mechanism, with a point count regularization loss that explic-
itly encourages the model to learn a more compact representation for distant views. Our framework
eliminates the storage overhead and popping artifacts inherent to discrete methods while simultane-
ously reducing the final model’s primitive count. Experiments demonstrate that CLoD-GS achieves
high-fidelity results across a wide range of performance targets, paving the way for more scalable
and visually coherent real-time neural rendering applications.

2 RELATED WORK

LoD. The earliest and most common approach, DLoD, involves pre-generating multiple versions of
a mesh at different resolutions (Clarkl [1976). At runtime, the system selects an appropriate model
based on heuristics like distance or screen-space size (Funkhouser & Séquin, (1993). The creation
of these simplified meshes spurred a rich field of research in polygonal simplification algorithms
(Schroeder et al.| [1992; |Garland & Heckbert, [1997). DLoD’s reliance on multiple asset copies
leads to high storage costs and visually jarring “popping” artifacts during transitions (Luebke et al.,
2002). Techniques were developed to mitigate popping, but often at the cost of increased render-
ing complexity or other visual artifacts (Giegl & Wimmer, [2007). To address the shortcomings of
DLoD, CLoD techniques were developed. The foundational work in this area is Progressive Meshes
by [Hoppe| (1996), which represents a mesh as a coarse base model plus a sequence of vertex split
operations that can incrementally refine it. This concept was extended to View-Dependent Simplifi-
cation, where the LoD can vary locally across a single object’s surface based on viewing parameters
(Hoppel 1997; Luebke & Erikson, [1997). While CLoD successfully eliminates storage overhead
and popping, it shifts complexity from the asset pipeline to the runtime algorithm, often incurring
significant CPU overhead to traverse the hierarchical data structures and generate the appropriate
mesh each frame (Lindstrom et al., [1996).

Neural Scene Representations. The field of novel view synthesis was revolutionized by Neural
Radiance Fields (NeRF), mapping 5D coordinates (position and viewing direction) to volumetric
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density and color (Mildenhall et al. 2021). In the context of NeRF, the LoD problem manifests
primarily as aliasing when viewing scenes at different scales. This was addressed by
in Mip-NeRF. Other works like Strata-NeRF have explored imposing discrete structures onto
implicit fields, representing a form of discrete LoD for NeRFs (Dhiman et al.}[2023)). The develop-
ment of methods like Instant-NGP accelerated NeRF training times, making these implicit methods
more practical (Miiller et al.,2022)). To bridge the gap between the quality of implicit methods and
the speed of traditional rasterization, explicit neural representations were developed. Early works
like Plenoxels (Fridovich-Keil et al. [2022) and TensoRF discretized the scene
into explicit representations, enabling much faster training and rendering. The most significant
breakthrough in this area has been 3DGS (Kerbl et al.} [2023). The return to an explicit, primitive-
based representation makes the vast body of knowledge on geometric LoD directly relevant once
again, creating a fertile ground for new frameworks like ours.

LoD for 3D Gaussian Splatting. Several works have adapted the DLoD philosophy to 3DGS by
creating hierarchical representations. A notable example is LODGE (Kulhanek et al.} [2025), which
creates multiple, discrete sets of Gaussians by iteratively applying smoothing filters and importance-
based pruning. Hierarchical-3DGS 2024) focuses on designing hierarchical data struc-
tures and streaming systems for massive-scale scenes. Similarly, Octree-GS or-
ganizes the scene into an octree, assigning “anchor Gaussians” to different levels of the hierarchy.
While these methods provide structured control over detail, they inherit the complexities of tradi-
tional DLoD. They rely on rigid, explicit data structures that add algorithmic and memory overhead,
and their management of discrete levels can cause popping artifacts. The objectives of these meth-
ods are thus different from ours. Consequently, our method can complement these large-scale DLoD
systems by offering finer-grained, internal quality control for each loaded data chunk or level of the
hierarchy. In the CLoD field, [Milef et al.| (2025) propose a method that achieves continuous LoD
through a separate, subsequent training phase. After an initial 3DGS model is trained, they perform
an additional optimization stage where random subsets of splats are used for rendering.

3DGS Model Compression. It is important to distinguish dynamic LoD techniques from static
model compression. While LoD is a runtime optimization for performance scaling, compression
is a pre-process for reducing storage and transmission costs. Recent work in 3DGS compression
includes pruning-based methods like LightGaussian, which permanently remove redundant Gaus-
sians from a trained model 2023)), and quantization-based methods like Compact3D and
CompGS, which reduce the precision of Gaussian attributes using techniques like vector quantiza-
tion (Lee et all, 2024} Navaneet et al.| [2024). A sophisticated pruning approach is presented by
MaskGaussian (Liu et al.} 2025), which models each Gaussian as a probabilistic entity with a learn-
able “probability of existence” to guide a more robust pruning process. Fundamentally, these are
static compression techniques designed to produce a single, smaller model.
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Figure 1: Framework of the proposed methodology.
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3 METHODOLOGY

Our core objective is to develop a single, unified 3DGS model that can dynamically and smoothly
adjust its LoD at render time. This allows for a seamless trade-off between visual quality and perfor-
mance, catering to diverse hardware capabilities and user requirements. As illustrated in Figure
our framework achieves this by building upon the standard 3DGS representation with three key
innovations: a novel learnable parameterization for distance-adaptive opacity, a dynamic masking
mechanism driven by the viewing distance, and a specialized virtual distance scaling training strat-
egy to ensure robustness across all detail levels.

3.1 PRELIMINARIES: 3D GAUSSIAN SPLATTING

The standard 3DGS framework (Kerbl et al.,|2023)) represents a 3D scene as a collection of explicit,
anisotropic 3D Gaussian primitives. Each Gaussian ¢ is defined by a set of learnable attributes: a
3D position (mean) 1;, a 3D covariance matrix >; (represented by scaling and rotation factors), a
base opacity «;, and coefficients for Spherical Harmonics (SH) to model view-dependent color c;.
Rendering is achieved through a highly optimized, differentiable rasterization process. For a given
viewpoint, 3D Gaussians are projected onto the 2D image plane. The final color C for a pixel is then
computed by alpha-blending the projected Gaussians sorted by depth:
i—1
C=> coj[J1-a) (1)
iEN j=1
where N is the set of Gaussians overlapping the pixel, and « is the effective 2D opacity, which
is a product of the base opacity «; and the 2D Gaussian’s value at the pixel center. This explicit,
primitive-based, and differentiable representation serves as the foundation for our proposed LoD
mechanism.

3.2 LEARNABLE CONTINUOUS LOD VIA DISTANCE-ADAPTIVE OPACITY

To achieve a continuous LoD, our goal is to smoothly modulate the contribution of each Gaussian
primitive based on its perceptual importance, which is strongly correlated with its distance from the
viewer. Instead of discretely removing primitives, which causes popping, we propose to dynamically
attenuate their opacity, allowing them to fade out gracefully. This leverages the continuous nature
of the Gaussian representation and integrates seamlessly into the alpha-blending pipeline.

To this end, we introduce a single additional learnable parameter for each Gaussian primitive i: the
distance decay factor o4 ;. This scalar parameter is optimized alongside the Gaussian’s other at-
tributes and learns to control how rapidly the primitive’s visibility should decrease with distance. At
render time, for a given camera center ¢, we first compute the Euclidean distance d; = ||u; — ¢||
for each Gaussian. To ensure the decay effect is consistent across different scenes and camera per-
spectives, we normalize this distance. We define the normalized distance d; = d; /max;ecn,., (d;),
where Nyiew 18 the set of all Gaussians within the current view frustum. We then use this normalized
distance, along with a user-controllable virtual distance scale factor s,,, to compute the attenuated

opacity o'
1 (d; ) SU)Q
a; = a; - exp ( 3 (ReLU(0q.))? T e) ()
where «; is the original learned opacity. The virtual distance scale s,, > 1 allows the user to simulate
the effect of viewing the scene from farther away, thereby increasing the attenuation. The ReLU(-)
function ensures the learned decay parameter o4 ; remains non-negative, and e is a small constant for
numerical stability. This formulation effectively weights the original opacity with a Gaussian falloff

whose variance is learned per-primitive, a functional form widely used to model distance-dependent
effects (Takikawa et al., 2021} |Strugar, | 2009).

After computing the attenuated opacity «/, we apply a dynamic threshold to determine which prim-
itives are significant enough to be sent to the rasterizer. This filtering is defined by a boolean mask
M; = (o > 7 s,), where 7 is a small base opacity threshold. By scaling the threshold with
Sy, We apply a stricter culling criterion when simulating more distant views. Only Gaussians with
M; = 1 are rendered. This simple, per-primitive computation allows for a continuous and smooth
performance-quality trade-off by adjusting the single scalar s,,.
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3.3 VIRTUAL DISTANCE SCALING TRAINING FOR A UNIFIED LoD MODEL

A key challenge in creating a unified LoD model is training it to perform effectively across the entire
spectrum of detail, from full fidelity to aggressive simplification. A model trained only on high-
quality views would not learn a meaningful simplification behavior. To address this, we propose a
virtual distance scaling training strategy that forces the model to learn a representation that is robust
at all viewing scales.

During each training iteration, we randomly sample a virtual distance scale factor s, from a pre-
defined range (e.g., U(1,10)), where I/ denotes a uniform distribution. This strategy compels the
model to optimize its parameters not only for the ground-truth camera views (where s, = 1) but
also for simulated distant views (s, > 1).

However, we observed that relying solely on rendering from virtual distances was insufficient, as the
model could converge to trivial solutions. We therefore introduce a more direct form of supervision
through a primitive count regularization loss. This loss explicitly encourages the model to utilize
fewer primitives for more distant views. To this end, we define a target primitive ratio, 7rger, Which
is inversely proportional to the virtual distance scale:

Tltarget = 1/511,'5- 3)
The exponent 1.5 is an empirically determined value that controls the rate of geometric simplifica-

tion. We then formulate a regularization loss, L, which penalizes the model if the actual ratio of
rendered primitives, 7,cwal, €Xceeds this target:

Lreg = (Sv - 10)2 : (ReLU(naCtual - 77target))2 5 4)

where Nacal = (ZZ M;)/Niota. Here, Ny is the total number of primitives in the scene, and
M; € {0,1} is a binary mask indicating whether the i-th primitive is rendered. The quadratic
weight term (s, — 1.0)? ensures that this penalty is applied only to simulated distant views (s, > 1)
and that its magnitude increases with the virtual distance.

The final training objective combines the standard 3DGS rendering 10sS, Lyenger (2 weighted sum of
L1 and D-SSIM losses), with our regularization term:

Liotal = ws (Lrender + )\regLreg)~ (%)

Here, the weight wy = (1—0.5-s,/ max(s,))? is designed to apply weaker supervision to renderings
from larger virtual distances. This prevents the model from over-pruning primitives at the expense
of rendering quality. The hyperparameter A, balances the trade-off between reconstruction fidelity
and the sparsity constraint. This comprehensive training strategy equips the model with the ability
to learn an efficient, view-dependent representation, thereby enabling a single, robust model with
controllable and continuous Level-of-Detail (LoD) capabilities.

4 EXPERIMENTS

We conduct a series of comprehensive experiments to validate the effectiveness of our CLoD-GS
framework. We first detail the experimental setup, then present quantitative and qualitative compar-
isons against state-of-the-art methods, and finally provide in-depth ablation and robustness studies.

4.1 EXPERIMENTAL SETUP

Datasets. Our evaluations are performed on 12 real-world scenes from three challenging public
datasets: the BungeeNeRF dataset (Xiangli et al.l [2022)) (8 scenes), the Tanks and Temples dataset
(Knapitsch et al.l 2017) (2 scenes), the Deep Blending dataset (Hedman et al.,|2018) (2 scenes) and
the MipNeRF360 dataset (Barron et al., |2022)). For all experiments, we follow the original 3DGS
train/test split to ensure fair comparisons.

Evaluation Metrics. We use three standard metrics for novel view synthesis: Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM) (Wang et al., [2004), Learned Perceptual Image
Patch Similarity (LPIPS) (Zhang et al.,[2018)) and Frames Per Second (FPS).

Implementation Details. Our framework is built on the official 3DGS implementation. All exper-
iments are run on an Ubuntu server with four NVIDIA RTX 4090 GPUs. We train our models for
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30,000 iterations and enable the proposed mechanism since 5000 iterations. The learning rate for
our learnable distance decay factor o4 ; is le-2, and the weight for the regularization loss A is set
to 1.0. Notably, our method utilizes the same set of hyperparameters across all datasets. The scale
parameter, tested at values of 1, 3, 5 and 7, defines the maximum allowable value for the s, during
training. For our experiments, both 3DGS and MaskGaussian were implemented on the latest public
3DGS codebase. Unless otherwise specified, MaskGaussian uses the ‘beta’ settings from its original

paper (Liu et al., 2025)).

Compared Methods. We compare CLoD-
GS against several leading methods: 3DGS
(Kerbl et al., 2023): The original method,
serving as the high-quality, high-cost base-
line. Fast Rendering (Milef et al [2025): A
state-of-the-art continuous LoD method based
on learning a static importance ranking for
splats. Octree-GS (Ren et al.l 2025) and H-
3DGS (Kerbl et al., 2024): State-of-the-art dis-
crete LoD methods using hierarchical struc-
tures. MaskGaussian (Liu et al.l 2025): A
state-of-the-art static compression method that
uses probabilistic masks for robust pruning. For
Fast Rendering and Octree-GS, we report the
metrics from their respective papers. All other
methods were trained locally under identical
conditions for a fair comparison.

4.2 RESULTS AND COMPARISONS

Table[T]and Table[2]summarize the performance
of all methods at their highest quality settings.
Our CLoD-GS consistently achieves higher
rendering quality and speed, often surpassing
the original 3DGS in PSNR and SSIM while
using significantly fewer Gaussians (e.g., a 38%
reduction on BungeeNeRF). This demonstrates
that our regularization strategy inherently pro-
duces a more compact and efficient represen-
tation. While Octree-GS achieves the high-
est compression ratios, it introduces consider-
able rendering overhead for smaller scenes and
is not natively supported by existing renderers.
The superior performance of our method is par-

Table 1: Quantitative comparison of highest-
quality models. Best results are bold, second best
are underlined. The fifth and sixth columns indi-
cate the number of Gaussian primitives (#GS) and
memory consumption (Mem). |’ indicates that
lower is better.

Method PSNR1 SSIM1 LPIPS| #GS(k)| Mem(MB) |
BungeeNeRF
3DGS 2791 0917 0.096 6733 1592.48
Fast Rendering / / / 6733 1592.48
Octree-GS 27.94 0.909 0.110 / 1045.70
MaskGaussian 27.76 0.916 0.098 5298 1253.13
Ours (scale=1) 28.05 0.919 0.100 4185 1005.87
Ours (scale=3) 27.70 0.908 0.117 2738 658.01
Ours (scale=7) 27.09 0.885 0.150 1855 445.72
Tanks&Temples
3DGS 23.70 0.853 0.169 1574 372.19
Fast Rendering 23.62 0.853 0.194 1574 372.19
Octree-GS 24.17 0.858 0.161 / 383.90
MaskGaussian 23.56 0.846 0.180 1237 292.68
H-3DGS (7=0) 21.71 0.820 0.200 / /
H-3DGS (7=3) 21.77 0.821 0.200 / /
H-3DGS (7=6) 21.76 0.818 0.206 / /
H-3DGS (7=15) 21.55 0.800 0.239 / /
Ours (scale=1) 23.75 0.843 0.185 1159 278.53
Ours (scale=3) 23.79 0.843 0.185 984 236.58
Ours (scale=7) 23.67 0.839 0.193 884 212.54
Deep Blending
3DGS 29.84 0.907 0.238 2486 587.98
Fast Rendering 29.00 0.902 0.303 2486 587.98
Octree-GS 29.65 0.901 0.257 / 180.00
MaskGaussian 29.66 0.907 0.244 1778 420.41
H-3DGS (7=0) 27.41 0.887 0.254 / /
H-3DGS (7=3) 27.40 0.887 0.254 / /
H-3DGS (7=6) 27.38 0.887 0.255 / /
H-3DGS (7=15) 27.26 0.884 0.265 / /
Ours (scale=1) 29.93 0.908 0.239 1697 407.72
Ours (scale=3) 29.86 0.907 0.244 1258 302.27
Ours (scale=7) 29.64 0.907 0.251 662 159.04

ticularly pronounced on datasets with large depth variations and significant focal length changes,
such as BungeeNeRF. This highlights the effectiveness of our designed LoD mechanism in handling

complex, multi-scale scenes.

As shown in Figure 2] our method produces
clearer results at similar primitive counts, par-
ticularly in areas with repetitive textures or
complex lighting, while often using fewer
Gaussians. Figure [3]and Figure [ illustrate the
trade-off between rendering quality and speed
as a function of the number of Gaussians. For
a fair comparison, the points for 3DGS and
MaskGaussian are also selected by applying
our opacity attenuation formula (Equation 3)
to their trained models and selecting the prim-
itives with the highest resulting opacities. The

Table 2: Comparison of FPS on various datasets.
Best results are bold, second best are underlined.
Higher is better (1).

Method BungeeNeRF 1 Tanks&Temples T Deep Blending T Mip-NeRF 360
Octree-GS 76.05 134.87 141.59 129.45
H-3DGS (7=0) / 42.30 36.30 /
H-3DGS (7=3) / 54.05 46.50 /
H-3DGS (7=6) / 61.54 47.37 /
H-3DGS (7=15) / 75.82 51.03 /

Ours (scale=1) 57.34 169.89 128.68 109.42
e=3) 69.74 176.74
e: 199.12

145.83
187.48

125.33
140.58

Ours (scale=7) 87.88

curves for CLoD-GS show that increasing the virtual distance scale range during training (e.g., from
sy € [1,3] to s, € [1,5]) produces models that are more robust to simplification. Notably, this
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Figure 2: Visual comparison at similar primitive counts. The number of Gaussians used and the
corresponding PSNR are annotated in the bottom-right corner of each image.
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Figure 3: Quality vs. primitive count on the BungeeNeRF and Deep Blending datasets. The dashed
lines indicate the maximum virtual scale during training. Our method with varying virtual distance
scale ranges (s,) shows a more graceful quality degradation.

improved low-detail performance is achieved while maintaining nearly identical peak quality, con-
firming our method’s ability to create a single, versatile model that performs well across the entire
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quality-performance spectrum. Ultimately, when pruning Gaussians to enhance FPS, our method
consistently achieves higher rendering quality.

FPS vs Point count (Bungeenerf) PSNR vs FPS (Bungeenerf)
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Figure 4: Relationship between FPS, the number of Gaussians, and rendering quality. As shown,
rendering speed exhibits a strong negative correlation with the number of Gaussians. Reducing
the number of Gaussians boosts FPS for all methods, with our method showing a more significant
increase.

To directly compare our continuous LoD (CLoD) ap-
proach against a traditional discrete LoD (DLoD) strat-  Taple 3: Ablation study on our key
egy, we designed a specific experiment. As shown in  {raining components. The full model
Figure[5] we divide the rendered image into four vertical outperforms all ablated versions.

regions. For the DLoD approach, we train two separate
models: a high-quality baseline and a low-quality com-

pressed model (using MaskGaussian with \,,, = 0.02). Method PSNRT SSIMT LPIPS|
We render the two left regions with the low-quality model BungeeNeRF

: : : N : Full Model (Ours) 27.59 0.902 0.123
apd the‘ two right regions with the high-quality model, weight (wy) 2739 0.894 0127
simulating a hard switch between LoD levels. For our  wioloss (Lvg) 2756 0.902 0.123
CLoD approach, we use a single trained model and ren- _Woweight&loss 2671 0871  0.169
der the four regions with progressively increasing detail Deep Blending
by setting the scale factor s, respectively, while keep- ~ Full Model (Ours) ~ 29.76  0.908  0.245
. h b £ dered G k ble to th w/o weight (w;) 29.58 0.906 0.246
mgt € number o1 rendere aussians comparable to the W/0 1055 (Lieg) 29.72 0.906 0.246

DLoD setup. The visual results clearly show the draw-  w/o weight&loss ~ 29.57  0.905 0.252
back of the DLoD strategy: a prominent “popping” arti-

fact is visible at the boundary between the two models (indicated by the red dashed line), where the
quality changes abruptly. In contrast, our CLoD approach provides a smooth, continuous transition
across the regions. This is further quantified in Figure [6] where the metric curves for DLoD show
a sharp jump at the boundary, while our CLoD method exhibits a smooth, gradual change. Impor-
tantly, our CLoD approach is also more efficient, requiring the training of only one model, which
typically takes half the time needed to train the two models required for the DLoD setup.

4.3 ABLATION STUDIES

To validate our design choices, we conduct ablation studies on the key components of our training
strategy, with all models trained using a maximum virtual scale of s, = 5. As shown in Table 3]
removing any of these components degrades performance. We analyze the effects of the regulariza-
tion loss (Lyg) and adaptive weight (ws). The results confirm that all three components are crucial
for achieving optimal performance. The full model consistently outperforms the ablated versions,
demonstrating that the combination of our regularization loss, its adaptive weighting, and the multi-
scale training approach is essential for learning a robust and efficient LoD representation.

4.4 ROBUSTNESS ANALYSIS AND EFFECTIVENESS ANALYSIS

To demonstrate the robustness and generality of our method, we apply our CLoD-GS training strat-
egy to a model pre-trained with MaskGaussian. As shown in Figure [/} our method successfully
imparts continuous LoD capabilities onto the already compressed MaskGaussian model. The re-
sulting quality-compression curves show a similar trend: increasing the virtual distance scale range
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Figure 5: Visual comparison of DLoD vs. CLoD strategies. The DLoD approach (the second
column) uses two separate models, causing a visible quality jump at the boundary (red dashed line).
Our CLoD approach (the left three columns) uses a single model with varying scale factors, resulting
in a smooth, artifact-free transition.
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Figure 6: Metric curves for the DLoD vs. CLoD comparison. The DLoD strategy exhibits a sharp,
discontinuous jump in quality, whereas our CLoD strategy shows a smooth progression.
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Figure 7: Robustness analysis. Our CLoD-GS training strategy is applied to a MaskGaussian model

on Bungeenerf dataset, successfully enabling continuous LoD on a compressed representation.
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improves the model’s ability to gracefully handle simplification. This demonstrates that our CLoD
mechanism is an orthogonal enhancement that can be effectively combined with state-of-the-art
compression techniques.

To validate the mechanism of our proposed method, we analyze the distributions of opacity and the
learned decay factors (o4,;) for the Amsterdam scene from the BungeeNeRF dataset, as depicted in
Figure[8] The analysis empirically demonstrates that the virtual distance range during training is the
governing factor for o4 ;. We observe that a wider distance range encourages a distribution of o ;
skewed towards larger values. Primitives with larger o4 ; values exhibit slower opacity decay, thus
remaining visible at greater virtual distances. This confirms that our model automatically learns to
assign higher persistence to perceptually important primitives without requiring any manual super-
vision. Our method adds only one additional float parameter per Gaussian. In a standard 3DGS
implementation, each Gaussian requires approximately 248 bytes of storage, an increase of only
1.6%, which is an entirely acceptable overhead.

Amsterdam of Bungeenerf
Opacity Probability Density Function Opacity Cumulative Distribution Function

Probability Density

04 06 08 10 00 02 04 06
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Figure 8: Distribution analysis of opacity and decay factor o4 ; for various models in the Amsterdam
scene. The figure plots their respective PDFs and CDFs.

5 CONCLUSION

In this paper, we introduced CLoD-GS, a novel framework that seamlessly integrates a CLoD mech-
anism into the 3DGS representation. We identified the core limitations of applying traditional DLoD
paradigms to 3DGS—namely, prohibitive storage overhead and jarring visual “popping” artifacts.
Our core contribution is a lightweight, learnable mechanism that augments each Gaussian primi-
tive with a distance-dependent decay parameter. This parameter, optimized directly within a novel
virtual distance scaling training strategy, allows each primitive to learn its own view-dependent sim-
plification behavior. The resulting model contains a continuous spectrum of detail within a single,
unified representation, enabling smooth, pop-free quality scaling. Our experiments have shown that
CLoD-GS not only eliminates the fundamental drawbacks of DLoD but also achieves high render-
ing quality, often with a more compact set of primitives than the baseline 3DGS. While our method
demonstrates significant advantages for static scenes, future work could explore the integration of
more sophisticated perceptual metrics beyond distance to guide the learned decay, or hybrid sys-
tems that combine our continuous per-primitive scaling with chunk-based loading for rendering
massive-scale environments. Ultimately, CLoD-GS represents a significant step towards creating
truly scalable, efficient, and visually coherent neural scene representations, paving the way for the
next generation of real-time, high-fidelity graphics applications.
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6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide com-
prehensive resources to facilitate the verification of our findings. All experiments were conducted
on publicly available datasets, ensuring that the data is accessible to the broader research commu-
nity. The detailed experimental setup, including all hyperparameters and training configurations, is
described in Section |4|of the main paper.
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A RENDERING RESULT ON MIPNERF360 DATASET

We have added experiments on the challenging Mip-NeRF 360 dataset. As shown in the Table
even without any dataset-specific tuning, CLoD-GS demonstrates a competitive trade-off between
quality and memory. We acknowledge that the results are not state-of-the-art on this specific dataset,
which we attribute to our use of universal parameters that were not optimized for these special
scenes. However, this finding underscores a key strength of our method: generality. In contrast,
other methods like Octree-GS often require dataset-specific configurations, as evidenced by the
separate training scripts provided in its official repository for different datasets.

Table 4: Quantitative comparison of different methods on the MipNeRF360 dataset. The arrows
indicate whether higher (1) or lower ({) values are better.

Method PSNRT SSIM{ LPIPS| #GS k), Memory (MB)|
3DGS 2759 08136 02206 2638.53 624.04
Fast Rendering  27.58 0.8240 02420  2638.53 624.04
Octree-GS 27.65 0.8150  0.2200 / 418.60
MaskGaussian ~ 27.23  0.8035 0.2253  2145.10 507.34
Ours (scale=1)  27.01 0.8069 0.2299  2414.38 580.24
Ours (scale=3) 2699 0.8042 02361  1778.10 427.32
Ours (scale=7) 2671 0.7968  0.2494  1361.49 327.20

B DETAILED METRIC TABLES

This section provides a comprehensive, scene-by-scene breakdown of the performance metrics for
the methods evaluated in our study. These tables offer a granular view of the results that are summa-
rized in the main body of the paper, detailing the PSNR, SSIM, LPIPS, and Gaussian count for our
method, the original 3DGS, MaskGaussian, and the ablation study configurations across all tested
datasets.

C DETAILED METRIC CURVES

This section presents the detailed quality-versus-performance curves for each of the eight scenes
in the BungeeNeRF dataset. The following figures illustrate the trade-off between PSNR and the
number of rendered primitives for both the original 3DGS and the MaskGaussian methods, providing
a visual complement to the quantitative data in the preceding tables.

D USE OF LLMS

During the preparation of this manuscript, we utilized the Large Language Model (LLM) Gemini
2.5 Pr developed by Google. Its role was strictly limited to that of a writing assistant. Specifically,

'https://gemini.google.com/
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Table 5: ours (scale=1)

Dataset PSNRT SSIM{ LPIPS| #GS (M)

BungeeNeRF
amsterdam  27.78 0911 0.108 3.89
barcelona 27.84 0.922 0.085 491
bilbao 29.02 0.919 0.101 3.63
chicago 28.62 0.934 0.087 3.50
hollywood  26.53 0.880 0.138 4.58
pompidou 27.37 0.920 0.094 5.14
quebec 29.03 0.938 0.092 3.75
rome 28.23 0.925 0.098 4.08
Deep Blending
drjohnson 29.47 0.905 0.237 2.07
playroom 30.39 0.911 0.241 1.33
Tanks & Temples
train 22.14 0.806 0.220 0.57
truck 25.35 0.880 0.150 1.75

Table 6: Mask Gaussian

Dataset PSNRT SSIM{ LPIPS| #GS (M)

BungeeNeRF
amsterdam  27.69 0.916 0.100 4.69
barcelona 27.49 0.919 0.085 6.62
bilbao 28.86 0.919 0.097 4.28
chicago 28.03 0.931 0.085 4.75
hollywood  26.35 0.873 0.133 5.62
pompidou 27.13 0.920 0.093 6.83
quebec 28.84 0.936 0.092 4.44
rome 27.66 0.918 0.100 5.17
Deep Blending
drjohnson 29.21 0.904 0.243 2.34
playroom 30.12 0.910 0.244 1.22
Tanks & Temples
train 21.80 0.811 0.212 0.88
truck 25.31 0.881 0.149 1.60
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Table 7: Original 3DGS

Dataset PSNRT SSIM{ LPIPS| #GS (M)

BungeeNeRF
amsterdam  27.85 0918 0.096 6.24
barcelona 27.67 0.920 0.083 8.18
bilbao 28.98 0.918 0.095 5.49
chicago 28.54 0.933 0.080 6.08
hollywood  26.24 0.868 0.135 6.79
pompidou 27.26 0.921 0.091 8.64
quebec 28.95 0.937 0.089 591
rome 27.77 0.920 0.096 6.55
Deep Blending
drjohnson 29.43 0.905 0.236 3.12
playroom 30.25 0.909 0.240 1.85
Tanks & Temples
train 21.97 0.821 0.197 1.09
truck 25.44 0.885 0.142 2.06

Table 8: Full Model (scale=5)

Dataset PSNRT SSIM{ LPIPS| #GS (M)

BungeeNeRF
amsterdam  27.15 0.889 0.137 2.37
barcelona 26.99 0.886 0.123 2.78
bilbao 28.62 0.905 0.122 2.22
chicago 28.01 0.917 0.108 2.30
hollywood  26.75 0.878 0.147 3.34
pompidou 26.85 0.902 0.118 2.92
quebec 28.89 0.932 0.105 2.53
rome 27.43 0.903 0.127 2.16
Deep Blending
drjohnson 29.32 0.906 0.241 1.16
playroom 30.20 0.909 0.248 0.86
Tanks & Temples
train 21.99 0.806 0.219 0.59
truck 25.29 0.880 0.148 1.46
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Table 9: Without Weight Adaptation (scale=5)

Dataset PSNRT SSIM{ LPIPS| #GS (M)

BungeeNeRF
amsterdam  26.82 0.876 0.146 2.34
barcelona 26.33 0.863 0.138 3.11
bilbao 28.27 0.896 0.128 2.07
chicago 27.82 0.913 0.111 2.17
hollywood  26.75 0.882 0.140 3.65
pompidou 26.86 0.895 0.121 3.10
quebec 28.90 0.933 0.103 2.40
rome 27.32 0.895 0.130 2.29
Deep Blending
drjohnson 29.15 0.905 0.242 1.12
playroom 30.01 0.907 0.250 0.92
Tanks & Temples
train 22.02 0.809 0.216 0.63
truck 25.26 0.881 0.147 1.46

Table 10: Without Regularization (scale=5)

Dataset PSNRT SSIM{ LPIPS| #GS (M)

BungeeNeRF
amsterdam  27.09 0.888 0.138 2.37
barcelona 27.10 0.893 0.119 2.85
bilbao 28.51 0.906 0.121 2.29
chicago 27.98 0.917 0.108 2.29
hollywood  26.67 0.878 0.147 342
pompidou 26.95 0.906 0.116 291
quebec 28.86 0.932 0.105 2.56
rome 27.34 0.899 0.129 2.14
Deep Blending
drjohnson 29.28 0.906 0.242 1.12
playroom 30.17 0.907 0.250 0.93
Tanks & Temples
train 22.10 0.808 0.218 0.60
truck 25.22 0.880 0.149 1.38
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Amsterdam

Barcelona

Quebec

Table 11: Without Weight & Regularization (scale=5)

Dataset PSNR1T SSIM1T LPIPS] #GS (M)J
BungeeNeRF
amsterdam  25.93 0.848 0.193 1.03
barcelona 26.04 0.849 0.171 1.37
bilbao 27.97 0.884 0.158 1.06
chicago 27.18 0.893 0.147 0.81
hollywood 26.02 0.843 0.208 1.46
pompidou 26.08 0.877 0.153 1.37
quebec 28.05 0.912 0.140 1.06
rome 26.46 0.866 0.179 0.97
Deep Blending
drjohnson 29.31 0.905 0.248 0.94
playroom 29.84 0.904 0.257 0.63
Tanks & Temples
train 22.30 0.800 0.236 0.38
truck 25.21 0.876 0.158 1.09
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Figure 9: All metric curves for the DLoD vs. CLoD comparison.
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Figure 10: 3DGS: PSNR vs. primitive count on the BungeeNeRF amsterdam dataset.
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Figure 11: 3DGS: PSNR vs. primitive count on the BungeeNeRF barcelona dataset.

the model was employed for proofreading and copy-editing to improve the grammatical accuracy,
clarity, and overall readability of the text. The LLM was not used for generating core research
ideas, developing the methodology, conducting experiments, analyzing results, or drawing scientific
conclusions. All intellectual contributions, including the concepts, experiments, and conclusions
presented in this paper, are solely the work of the human authors.

18



Published as a conference paper at ICLR 2026
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Figure 12: 3DGS: PSNR vs. primitive count on the BungeeNeRF bilbao dataset.
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Figure 13: 3DGS: PSNR vs. primitive count on the BungeeNeRF chicago dataset.
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PSNR vs Points Count - bungeenerf_hollywood
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Figure 14: 3DGS: PSNR vs. primitive count on the BungeeNeRF hollywood dataset.
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Figure 15: 3DGS: PSNR vs. primitive count on the BungeeNeRF pompidou dataset.
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Figure 16: 3DGS: PSNR vs. primitive count on the BungeeNeRF quebec dataset.
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Figure 17: 3DGS: PSNR vs. primitive count on the BungeeNeRF rome dataset.
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Figure 18: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF amsterdam dataset.
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Figure 19: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF barcelona dataset.
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PSNR vs Points Count - bungeenerf_bilbao
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Figure 20: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF bilbao dataset.
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Figure 21: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF chicago dataset.
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Figure 22: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF hollywood dataset.
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Figure 23: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF pompidou dataset.
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PSNR vs Points Count - bungeenerf_quebec
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Figure 24: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF quebec dataset.
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Figure 25: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF rome dataset.
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