Under review as a conference paper at ICLR 2026

CLoD-GS: CONTINUOUS LEVEL-OF-DETAIL VIA 3D
GAUSSIAN SPLATTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Level of Detail (LoD) is a fundamental technique in real-time computer graph-
ics for managing the rendering costs of complex scenes while preserving visual
fidelity. Traditionally, LoD is implemented using discrete levels (DLoD), where
multiple, distinct versions of a model are swapped out at different distances. This
long-standing paradigm, however, suffers from two major drawbacks: it requires
significant storage for multiple model copies and causes jarring visual popping”
artifacts during transitions, degrading the user experience. We argue that the
explicit, primitive-based nature of the emerging 3D Gaussian Splatting (3DGS)
technique enables a more ideal paradigm: Continuous LoD (CLoD). A CLoD ap-
proach facilitates smooth, seamless quality scaling within a single, unified model,
thereby circumventing the core problems of DLOD. To this end, we introduce
CLoD-GS, a framework that integrates a continuous LoD mechanism directly into
a 3DGS representation. Our method introduces a learnable, distance-dependent
decay parameter for each Gaussian primitive, which dynamically adjusts its opac-
ity based on viewpoint proximity. This allows for the progressive and smooth
filtering of less significant primitives, effectively creating a continuous spectrum
of detail within one model. To train this model to be robust across all distances, we
introduce a virtual distance scaling mechanism and a novel coarse-to-fine training
strategy with rendered point count regularization. Our approach not only elim-
inates the storage overhead and visual artifacts of discrete methods but also re-
duces the primitive count and memory footprint of the final model. Extensive
experiments demonstrate that CLoD-GS achieves smooth, quality-scalable ren-
dering from a single model, delivering high-fidelity results across a wide range of
performance targets.

1 INTRODUCTION

The pursuit of photorealism in real-time computer graphics is characterized by a fundamental ten-
sion between ever-increasing scene complexity and the finite computational budget of rendering
hardware. To maintain interactive frame rates, systems must intelligently manage the number of
primitives rendered per frame, a challenge first articulated decades ago (Funkhouser & Séquin,
1993)). This constrained optimization problem—generating the best possible image within a fixed
time budget—has driven the development of Level of Detail (LoD) techniques, which adaptively re-
duce an object’s complexity based on its perceptual importance to the viewer (Luebke et al., 2002).

The most established paradigm for LoD is Discrete Level of Detail (DLoD). In this approach, artists
or automated algorithms create multiple, distinct versions of a model at varying complexities (Clark,
1976). At runtime, the system selects the appropriate version based on metrics like distance or
screen-space projection size. While computationally efficient, DLoD suffers from two critical draw-
backs. First, storing multiple copies of every asset leads to a significant memory and storage over-
head, limiting scene scale and variety. Second, the instantaneous swap between discrete models
causes jarring visual “popping” artifacts, degrading the user experience (Giegl & Wimmer, 2007).

The recent advent of 3D Gaussian Splatting (3DGS) has revolutionized novel view synthesis, achiev-
ing state-of-the-art visual quality at real-time rendering speeds (Kerbl et al.|[2023). By representing
scenes as a collection of explicit 3D Gaussian primitives, 3DGS leverages a highly optimized ras-
terization pipeline. However, this paradigm does not escape the fundamental constraint of rendering

Under review as a conference paper at ICLR 2026

cost; performance still scales with the number of primitives, making LoD a necessity for complex
scenes. Given that 3DGS is a primitive-based representation, a straightforward approach would be
to apply the traditional DLoD paradigm by creating multiple, discrete sets of Gaussians at varying
levels of detail (Kulhanek et al.|[2025)). While feasible, this strategy inevitably reintroduces the clas-
sic DLoD drawbacks: a significant storage overhead for maintaining multiple Gaussian clouds and
the visually disruptive popping” artifacts during transitions.

We argue that a more ideal paradigm could be achieved with the unique characteristics of the 3DGS:
Continuous Level of Detail (CLoD). The profound suitability of 3DGS for a CLoD framework
stems from its fundamental representational properties, which distinguish it from traditional discrete
primitives like meshes or point clouds. First, each Gaussian is not a discrete point but a continuous
volumetric entity—a probability distribution with a “soft” footprint. This makes modulating its
contribution to the scene (e.g., via its opacity) an intrinsically smooth and continuous operation. In
contrast, simplifying a mesh requires discrete topological changes like edge collapses, which are
algorithmically complex to manage smoothly (Hoppe} [1996). Second, each primitive is defined by
a set of continuous parameters that can be finely controlled. This allows for per-primitive filtering
rather than the abrupt removal of entire geometric elements. Finally, the entire representation is end-
to-end differentiable. This critical feature allows the LoD mechanism itself to be learned. Instead of
relying on hand-crafted runtime algorithms, we can introduce new learnable parameters that control
simplification and optimize them directly within the primary training process.

To this end, we introduce CLoD-GS, a framework that fully leverages these properties by integrating
a continuous LoD mechanism directly into the 3DGS representation. Our key contribution is to aug-
ment each Gaussian primitive with an additional learnable parameter: a distance-dependent decay
factor. This parameter dynamically modulates the primitive’s opacity based on its proximity to the
viewpoint, allowing for the progressive and smooth filtering of less significant details, effectively
creating a continuous spectrum of detail within a single, unified model.

To train a single model that is robust across the entire LoD spectrum, we introduce a novel coarse-
to-fine training strategy. This involves rendering from virtually scaled distances to force the LoD
mechanism to activate, and a point count regularization loss that explicitly encourages the model to
learn a more compact representation for distant views. This strategy ensures that the model learns
not just to reconstruct the scene with high fidelity, but also to simplify it gracefully and efficiently.

Our CLoD-GS framework delivers a single, compact model capable of smooth, quality-scalable ren-
dering. It eliminates the storage overhead and popping artifacts inherent to discrete methods while
simultaneously reducing the final model’s primitive count and memory footprint. Our experiments
demonstrate that CLoD-GS achieves high-fidelity results across a wide range of performance targets,
paving the way for more scalable and visually coherent real-time neural rendering applications.

2 RELATED WORK

LoD. The earliest and most common approach, DLoD, involves pre-generating multiple versions of
a mesh at different resolutions (Clarkl [1976). At runtime, the system selects an appropriate model
based on heuristics like distance or screen-space size (Funkhouser & Séquin, [1993). The creation
of these simplified meshes spurred a rich field of research in polygonal simplification algorithms,
with seminal works including vertex decimation (Schroeder et al., [1992) and methods based on
iterative edge collapses (Garland & Heckbert, |1997). DLoD’s reliance on multiple asset copies
leads to high storage costs and visually jarring “popping” artifacts during transitions (Luebke et al.,
2002). Techniques were developed to mitigate popping, but often at the cost of increased rendering
complexity or other visual artifacts (Giegl & Wimmer,|2007). To address the shortcomings of DLoD,
CLoD techniques were developed. The foundational work in this area is Progressive Meshes by
Hoppe| (1996)), which represents a mesh as a coarse base model plus a sequence of vertex split
operations that can incrementally refine it. This representation defines a continuous spectrum of
detail and allows for smooth geomorphs between any two levels. This concept was extended to
View-Dependent Simplification, where the LoD can vary locally across a single object’s surface
based on viewing parameters (Hoppel |1998]; |[Luebke & Erikson, |1999). While CLoD successfully
eliminates storage overhead and popping, it shifts complexity from the asset pipeline to the runtime
algorithm, often incurring significant CPU overhead to traverse the hierarchical data structures and
generate the appropriate mesh each frame (Lindstrom et al.|, {1996).

Under review as a conference paper at ICLR 2026

Neural Scene Representations. The field of novel view synthesis was revolutionized by Neural
Radiance Fields (NeRF), mapping 5D coordinates (position and viewing direction) to volumetric
density and color (Mildenhall et al.l 2020). In the context of NeRF, the LoD problem manifests
primarily as aliasing when viewing scenes at different scales. This was addressed by Barron et al.
(2021)) in Mip-NeRF. Other works like Strata-NeRF have explored imposing discrete structures onto
implicit fields, representing a form of discrete LoD for NeRFs (Dhiman et al.,|2023). The develop-
ment of methods like Instant-NGP accelerated NeRF training times, making these implicit methods
more practical (Miiller et al., |2022). To bridge the gap between the quality of implicit methods
and the speed of traditional rasterization, explicit neural representations were developed. Early
works like Plenoxels (Fridovich-Keil et al., [2022) and TensoRF (Chen et al., [2022) discretized the
scene into explicit representations, enabling much faster training and rendering. The most signifi-
cant breakthrough in this area has been 3D Gaussian Splatting (3DGS) (Kerbl et al., [2023). 3DGS
represents a scene as a collection of millions of explicit 3D Gaussian primitives and uses a highly
optimized, differentiable rasterizer to achieve real-time, high-fidelity rendering. The return to an ex-
plicit, primitive-based representation makes the vast body of knowledge on geometric LoD directly
relevant once again, creating a fertile ground for new frameworks like ours.

LoD for 3D Gaussian Splatting. Several works have adapted the DLoD philosophy to 3DGS by
creating hierarchical representations. A notable example is LODGE (Kulhanek et al., [2025)), which
creates multiple, discrete sets of Gaussians by iteratively applying smoothing filters and importance-
based pruning. Similarly, Octree-GS (Ren et al.|[2024) organizes the scene into an octree, assigning
“anchor Gaussians” to different levels of the hierarchy. While these methods provide structured
control over detail, they inherit the complexities of traditional DLoD. They rely on rigid, explicit
data structures that add algorithmic and memory overhead, and their management of discrete levels
can cause popping artifacts, often requiring specialized mechanisms to ensure smooth transitions.
In the CLoD space, Milef et al.| (2025) propose a method that achieves continuous LoD through
a separate, subsequent training phase. After an initial 3DGS model is trained, they perform an
additional optimization stage where random subsets of splats are used for rendering.

3DGS Model Compression. It is important to distinguish dynamic LoD techniques from static
model compression. While LoD is a runtime optimization for performance scaling, compression
is a pre-process for reducing storage and transmission costs. Recent work in 3DGS compression
includes pruning-based methods like LightGaussian, which permanently remove redundant Gaus-
sians from a trained model (Fan et al., [2023)), and quantization-based methods like Compact3D and
CompGS, which reduce the precision of Gaussian attributes using techniques like vector quantiza-
tion (Lee et al.l 2024} [Navaneet et al.l 2024). A sophisticated pruning approach is presented by
MaskGaussian (Liu et al.| 2025)), which models each Gaussian as a probabilistic entity with a learn-
able “probability of existence” to guide a more robust pruning process. Fundamentally, these are
static compression techniques designed to produce a single, smaller model.

3 METHODOLOGY

Our core objective is to develop a single, unified 3DGS model that can dynamically and smoothly
adjust its LoD at render time. This allows for a seamless trade-off between visual quality and
performance, catering to diverse hardware capabilities and user requirements. As illustrated in Fig-
ure (1} our framework achieves this by building upon the standard 3DGS representation with three
key innovations: a preliminary overview of the 3DGS baseline, a novel learnable parameterization
for distance-adaptive opacity, and a specialized coarse-to-fine training strategy to ensure robustness
across all detail levels.

3.1 PRELIMINARIES: 3D GAUSSIAN SPLATTING

The standard 3D Gaussian Splatting (3DGS) framework (Kerbl et al.l 2023) represents a 3D scene
as a collection of explicit, anisotropic 3D Gaussian primitives. Each Gaussian 7 is defined by a set of
learnable attributes: a 3D position (mean) 1;, a 3D covariance matrix X; (represented by scaling and
rotation factors), a base opacity «;, and coefficients for Spherical Harmonics (SH) to model view-
dependent color c;. Rendering is achieved through a highly optimized, differentiable rasterization
process. For a given viewpoint, 3D Gaussians are projected onto the 2D image plane. The final color

Under review as a conference paper at ICLR 2026

N7 v 17
d \\\\‘al!//// fld)-a Sld\\\\w,//

Lo Loy + Lreg

Rendering quality Rendering quality

; LoD mask FanceAan fainr
Gaussian count Gaussian count

Figure 1: Framework of the proposed methodology.

C for a pixel is then computed by alpha-blending the projected Gaussians sorted by depth:

1—1
C=> ca, [Ja-a) (1)
j=1

ieN

where N is the set of Gaussians overlapping the pixel, and « is the effective 2D opacity, which
is a product of the base opacity «; and the 2D Gaussian’s value at the pixel center. This explicit,
primitive-based, and differentiable representation serves as the foundation for our proposed LoD
mechanism.

3.2 LEARNABLE CONTINUOUS LOD VIA DISTANCE-ADAPTIVE OPACITY

To achieve a continuous LoD, our goal is to smoothly modulate the contribution of each Gaussian
primitive based on its perceptual importance, which is strongly correlated with its distance from the
viewer. Instead of discretely removing primitives, which causes popping, we propose to dynamically
attenuate their opacity, allowing them to fade out gracefully. This leverages the continuous nature
of the Gaussian representation and integrates seamlessly into the alpha-blending pipeline.

To this end, we introduce a single additional learnable parameter for each Gaussian primitive i: the
distance decay factor o4 ;. This scalar parameter is optimized alongside the Gaussian’s other at-
tributes and learns to control how rapidly the primitive’s visibility should decrease with distance. At
render time, for a given camera center ¢, we first compute the Euclidean distance d; = ||u; — ¢||
for each Gaussian. To ensure the decay effect is consistent across different scenes and camera per-
spectives, we normalize this distance. We define the normalized distance d; = d; /max;ecn,., (d;),
where Nyiew 18 the set of all Gaussians within the current view frustum. We then use this normalized
distance, along with a user-controllable virtual distance scale factor s,, to compute the attenuated

opacity o’
" (di) Sv)2
! — g;-exp [— 2
af = a; -exp (3 ReLU(0q,)? F ¢ 2

where «; is the original learned opacity. The virtual distance scale s,, > 1 allows the user to simulate
the effect of viewing the scene from farther away, thereby increasing the attenuation. The ReLU(-)
function ensures the learned decay parameter o4 ; remains non-negative, and e is a small constant for
numerical stability. This formulation effectively weights the original opacity with a Gaussian falloff
whose variance is learned per-primitive, a functional form widely used to model distance-dependent

effects (Goodfellow et al,[2016).

Under review as a conference paper at ICLR 2026

After computing the attenuated opacity «/, we apply a dynamic threshold to determine which prim-
itives are significant enough to be sent to the rasterizer. This filtering is defined by a boolean mask
M; = (af > 7 -s,), where 7 is a small base opacity threshold. By scaling the threshold with
Sy, We apply a stricter culling criterion when simulating more distant views. Only Gaussians with
M; = 1 are rendered. This simple, per-primitive computation allows for a continuous and smooth
performance-quality trade-off by adjusting the single scalar s,,.

3.3 COARSE-TO-FINE TRAINING FOR A UNIFIED LOD MODEL

A key challenge in creating a unified LoD model is training it to perform effectively across the entire
spectrum of detail, from full fidelity to aggressive simplification. A model trained only on high-
quality views would not learn a meaningful simplification behavior. To address this, we propose
a coarse-to-fine training strategy that forces the model to learn a representation that is robust at all
viewing scales.

During each training batch, we randomly sample a virtual distance scale factor s,, from a predefined
range (e.g., U(1,10)). This compels the model to optimize its parameters not only for the ground-
truth camera views (s, = 1) but also for simulated distant views (s, > 1), where our opacity
attenuation mechanism becomes active. However, we found that simply rendering from virtual
distances was insufficient, as the model could learn trivial solutions. We therefore introduce a more
direct form of supervision via a point count regularization loss, which explicitly encourages the
model to use fewer primitives for more distant views. This approach is inspired by sparsity-inducing
techniques in model compression (Hinton et al., 2015). We define a target primitive ratio 7qrger that
is inversely proportional to the virtual distance scale, given by 7jue = 1/s.. The exponent 1.5
is an empirical choice that controls the rate of simplification. We then compute a regularization
loss Lyeg that penalizes the model if the actual ratio of rendered primitives, 7actal = > M;/ Nootals
exceeds the target:

Lreg = Ws * (ReLU(naclual - nlarget))Q (3)

The weight ws, = (s, — 1.0)? ensures this penalty is only applied for simulated distant views
(sy > 1) and becomes progressively stronger for greater virtual distances. The final loss function
combines the standard 3DGS rendering 10ss (Lrender, @ Weighted sum of L1 and D-SSIM) with our
regularization term:

Ltotal = Lrender +)\regLreg (4)

where A, is a hyperparameter balancing reconstruction quality and the sparsity constraint. This
training strategy directly teaches the model to approximate the scene efficiently with fewer Gaus-
sians when required, resulting in a single, robust model with controllable, continuous LoD capabili-
ties.

4 EXPERIMENTS

We conduct a series of comprehensive experiments to validate the effectiveness of our CLoD-GS
framework. We first detail the experimental setup, then present quantitative and qualitative compar-
isons against state-of-the-art methods, and finally provide in-depth ablation and robustness studies.

4.1 EXPERIMENTAL SETUP

Datasets. Our evaluations are performed on 12 real-world scenes from three challenging public
datasets: the BungeeNeRF dataset (Xiangli et al.l [2022)) (8 scenes), the Tanks and Temples dataset
(Knapitsch et al., [2017) (2 scenes), and the Deep Blending dataset (Hedman et al.,|2018) (2 scenes).
For all experiments, we follow the original 3DGS train/test split to ensure fair comparisons. Eval-
uation Metrics. We use three standard metrics for novel view synthesis: Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM) (Wang et al., 2004)), and Learned Perceptual Im-
age Patch Similarity (LPIPS) (Zhang et al) 2018). Implementation Details. Our framework is
built on the official 3DGS implementation. All experiments are run on an Ubuntu server with four
NVIDIA RTX 4090 GPUs. We train our models for 30,000 iterations and enable the proposed mech-
anism since 5000 iterations. The learning rate for our learnable distance decay factor o4 ; is le-2,
and the weight for the regularization loss Ay, is set to 1.0. For our experiments, both 3DGS and

Under review as a conference paper at ICLR 2026

MaskGaussian were implemented on the latest public 3DGS codebase. Unless otherwise specified,
MaskGaussian uses the *beta’ settings from its original paper (Liu et al., [2025)).

Compared Methods. We compare CLoD-GS against several leading methods: 3DGS (Kerbl et al.}
2023): The original method, serving as the high-quality, high-cost baseline. Fast Rendering (Milef
et al.| 2025): A state-of-the-art continuous LoD method based on learning a static importance rank-
ing for splats. Octree-GS (Ren et al.,|2024): A state-of-the-art discrete LoD method using a hier-
archical octree structure. MaskGaussian (Liu et al.l | 2025): A state-of-the-art static compression
method that uses probabilistic masks for robust pruning. For Fast Rendering and Octree-GS, we re-
port the metrics from their respective papers. All other methods were trained locally under identical
conditions for a fair comparison.

4.2 RESULTS AND COMPARISONS

Table |I| summarizes the performance of all
methods at their highest quality settings. Our
CLoD-GS consistently achieves state-of-the-art Table 1: Quantitative comparison of highest-
rendering quality, often surpassing the origi- quality models. Best results are bold, second best
nal 3DGS in PSNR and SSIM while using sig- are underlined. The fifth and sixth columns indi-
nificantly fewer Gaussians (e.g., a 38% reduc- cate the number of Gaussian primitives (#GS) and
tion on BungeeNeRF). This demonstrates that memory consumption (Mem).

our regularization strategy inherently produces

.) Method PSNR1 SSIM{ LPIPS| #GS(k) Mem(Mb)
a more compact and efficient representation. 2
. A : ungeeNeRF
Whll(? Octrfee-G'S'achleves the hlghest com- pes 7791 0917 0% 6733 15925
pression ratios, it introduces considerable ren- gast Regdsering o 4/ 0909/ . é 6;2; I(S)Z%-S
. . tree- 7. ! 11 1045.7
dering overhead for smaller scenes and is N0t yiugGaussian 2776 0916 0098 5298 1253.1
natively supported by existing renderers. The _Ours 2805 0919 0095 4185 10059
superior performance of our method is partic- Tanks &Temples
: 3DGS 2370 0853 0169 1574 37219
ularly' pronounc'ed on datasets with large depth .0 Rendering 2362 0853 0194 1574 37219
variations and significant focal length changes, Octree-GS 2417 0858 0161 424 383.9
. . : MaskGaussian 23.56 0.846 0.180 1237 292.68
such as BungeeNeRF. This highlights the ef- o,y 2395 0853 0170 1159 27833
fectiveness of our designed LoD mechanism Deep Blending
in handling complex, multi-scale scenes. As “3pgs 2084 0907 0238 2486 587.98
in Fi FastRendering 2899 0902 0303 2486 587.98
shown in Figure 2] our method produces clearer PSR s oo o T500

results at similar primitive counts, particularly = MaskGaussian ~ 29.66 0907 0244 1778 42041
in areas with repetitive textures or complex _2u 295 0908 0299 169 40l
lighting, while often using fewer Gaussians.

Figure [3|illustrates the trade-off between image quality and the percentage of rendered Gaussians.
For a fair comparison, the points for 3DGS and MaskGaussian are also selected by applying our
opacity attenuation formula (Equation 3) to their trained models and selecting the primitives with
the highest resulting opacities. The curves for CLoD-GS show that increasing the virtual distance
scale range during training (e.g., from s, € [1,3] to s, € [1,5]) produces models that are more
robust to simplification. A larger training range results in a more graceful degradation of quality as
fewer points are rendered. Notably, this improved low-detail performance is achieved while main-
taining nearly identical peak quality, confirming our method’s ability to create a single, versatile
model that performs well across the entire quality-performance spectrum.

To directly compare our continuous LoD (CLoD) approach against a traditional discrete LoD
(DLoD) strategy, we designed a specific experiment. As shown in Figure [d] we divide the ren-
dered image into four vertical regions. For the DLoD approach, we train two separate models: a
high-quality baseline and a low-quality compressed model (using MaskGaussian with \,,, = 0.02).
We render the two left regions with the low-quality model and the two right regions with the high-
quality model, simulating a hard switch between LoD levels. For our CLoD approach, we use a
single trained model and render the four regions with progressively increasing detail by setting the
scale factor s,, respectively, while keeping the number of rendered Gaussians comparable to the
DLoD setup. The visual results clearly show the drawback of the DLoD strategy: a prominent “pop-
ping” artifact is visible at the boundary between the two models (indicated by the red dashed line),
where the quality changes abruptly. In contrast, our CLoD approach provides a smooth, continu-
ous transition across the regions. This is further quantified in Figure [5] where the metric curves
for DLoD show a sharp jump at the boundary, while our CLoD method exhibits a smooth, gradual

Under review as a conference paper at ICLR 2026

Chicago

Amsterdam

Playroom

Train

Figure 2: Visual comparison at similar primitive counts. The number of Gaussians used and the
corresponding PSNR are annotated in the bottom-right corner of each image. Our method preserves
details and avoids the artifacts present in other methods, especially under complex lighting and
texture conditions.

change. Importantly, our CLoD approach is also more efficient, requiring the training of only one
model, which typically takes half the time needed to train the two models required for the DLoD
setup.

4.3 ABLATION STUDIES

To validate our design choices, we conduct ablation stud-
ies on the key components of our training strategy, with
all models trained using a maximum virtual scale of s, = Table 2: Ablation study on our key
5. As shown in Table [2] removing any of these compo- training components. The full model
nents degrades performance. We analyze the effects of outperforms all ablated versions.

the regularization loss (Ly,), its adaptive weight (wy),

> Method PSNR1 SSIM1 LPIPS
and our coarse-to-fine batching strategy. The results con- ! ! v
. .. BungeeNeRF
firm that all three components are crucial for achieving
. . Full Model (Ours) 27.59 0.902 0.123
optimal performance. The full model consistently outper- ; yeight () 2739 0894 0127

forms the ablated versions, demonstrating that the com- w/o loss (Lieg) 2756 0902 0.123
bination of our regularization loss, its adaptive weight- ~_Woweight&loss 2671 0871 0.169
ing, and the multi-scale training approach is essential for Deep Blending

: : : Full Model (Ours) ~ 29.76 0908 0245
learning a robust and efficient LoD representation. wlo weight (a) 3058 0,906 0240
W/0 1085 (Lreg) 2972 0906 0.246

w/o weight & loss 29.57 0.905 0.252

4.4 ROBUSTNESS
ANALYSIS AND MEMORY FOOTPRINT ANALYSIS

To demonstrate the robustness and generality of our

method, we apply our CLoD-GS training strategy to a model pre-trained with MaskGaussian. As
shown in Figure |6} our method successfully imparts continuous LoD capabilities onto the already
compressed MaskGaussian model. The resulting quality-compression curves show a similar trend:

Under review as a conference paper at ICLR 2026

Bungeenerf Deep Blending

PSNR (dB)
PSNR (dB)

3 H To 05 o5
Points Count (Many — Few) 1e6 Points Count (Many — Few) 106

/
]
J

3 3 1o 08
Points Count (Many — Few) 106 Points Count (Many ~ Few)

Figure 3: Quality vs. primitive count on the BungeeNeRF and Deep Blending datasets. The dashed
lines indicate the maximum virtual scale used during training for each model, with the minimum
scale always starting at 1. Our method (CLoD-GS) with varying virtual distance scale ranges (s,)
shows a more graceful quality degradation compared to baselines. Increasing the scale range for s,
improves performance at lower detail levels without compromising maximum quality.

GT MaskGaussian

Ours (scale=3) Ours (scale=5) Ours (scale=7)

Barcelona Amsterdam

Quebec

Figure 4: Visual comparison of DLoD vs. CLoD strategies. The DLoD approach (the second
column) uses two separate models, causing a visible quality jump at the boundary (red dashed line).
Our CLoD approach (the left three columns) uses a single model with varying scale factors, resulting
in a smooth, artifact-free transition.

increasing the virtual distance scale range improves the model’s ability to gracefully handle sim-
plification. This demonstrates that our CLoD mechanism is an orthogonal enhancement that can
be effectively combined with state-of-the-art compression techniques. Our method adds only one
additional float parameter (0 ;) per Gaussian. In a standard 3DGS implementation, each Gaus-

Under review as a conference paper at ICLR 2026

0.84

Amsterdam

Barcelona

Quebec

:>\/—‘\

—8— MaskGaussian

Ours (scale=3)
—&— Ours (scale=5)
—&— Ours (scale=7)

—8— MaskGaussian

Ours (scale=3)
—&— Ours (scale=5)
—&— Ours (scale=7)

—e— MaskGaussian

Ours (scale=3)
—4— Ours (scale=5)
—&— Ours (scale=7)

0 1 2
Block Index (Left to Right)

0 1 2
Block Index (Left to Right)

0 1 2
Block Index (Left to Right)

Figure 5: Metric curves for the DLoD vs. CLoD comparison. The plot shows the quality metrics
across the three transition regions of the image. The DLoD strategy exhibits a sharp, discontinuous
jump in quality at the model boundary, whereas our CLoD strategy shows a smooth and continuous
progression.

sian requires approximately 248 bytes of storage, an increase of only 1.6%, which is an entirely
acceptable overhead.

PSNR SSIM
X [— .
~ T
~_ N 090 ——
N s -
= ~— 085 \‘\\\ AN
2 \ ~_
— 080 ~ \
\\\\\ 2] ~ .
2 07
~— \

H a 2 1 5 a

3 3
Points Count (Many - Few) Points Count (Many -+ Few) 1e6

Figure 6: Robustness analysis. Our CLoD-GS training strategy is applied to a MaskGaussian model
on Bungeenerf dataset, successfully enabling continuous LoD on a compressed representation.

5 CONCLUSION

In this paper, we introduced CLoD-GS, a novel framework that seamlessly integrates a CLoD mech-
anism into the 3D Gaussian Splatting representation. We identified the core limitations of apply-
ing traditional DLoD paradigms to 3DGS—namely, prohibitive storage overhead and jarring visual
”popping” artifacts. Our core contribution is a lightweight, learnable mechanism that augments each
Gaussian primitive with a distance-dependent decay parameter. This parameter, optimized directly
within a novel coarse-to-fine training strategy, allows each primitive to learn its own view-dependent
simplification behavior. The resulting model contains a continuous spectrum of detail within a sin-
gle, unified representation, enabling smooth, pop-free quality scaling at render time. Our exper-
iments have shown that CLoD-GS not only eliminates the fundamental drawbacks of DLoD but
also achieves state-of-the-art rendering quality, often with a more compact set of primitives than
the baseline 3DGS. While our method demonstrates significant advantages for static scenes, fu-
ture work could explore the integration of more sophisticated perceptual metrics beyond distance to
guide the learned decay, or hybrid systems that combine our continuous per-primitive scaling with
chunk-based loading for rendering massive-scale environments. Ultimately, CLoD-GS represents a
significant step towards creating truly scalable, efficient, and visually coherent neural scene repre-
sentations, paving the way for the next generation of real-time, high-fidelity graphics applications.

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide compre-
hensive resources to facilitate the verification of our findings. The full source code for our model,
training, and evaluation scripts is included in the supplementary material. All experiments were
conducted on publicly available datasets, ensuring that the data is accessible to the broader research
community. The detailed experimental setup, including all hyperparameters and training config-
urations, is described in Section [4] of the main paper. Furthermore, for a more granular analysis,
we provide a full breakdown of our model’s performance on every scene/split of each dataset in
Appendix.

REFERENCES

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855-5864,
2021.

Anpei Chen, Zexiang Xu, Changqing Fu, Christian Theobalt, and Taku Komura. Tensorf: Tensorial
radiance fields. In European Conference on Computer Vision, pp. 333-350. Springer, 2022.

James H Clark. Hierarchical geometric models for visible surface algorithms. Communications of
the ACM, 19(10):547-554, 1976.

Ankit Dhiman, R Srinath, Harsh Rangwani, Rishubh Parihar, Lokesh R Boregowda, Srinath Sridhar,
and R Venkatesh Babu. Strata-nerf: Neural radiance fields for stratified scenes. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 17557-17568, 2023.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaus-
sian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint
arXiv:2311.17245, 2023.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501-5510, 2022.

Thomas A Funkhouser and Carlo H Séquin. Adaptive display algorithm for interactive frame rates
during visualization of complex virtual environments. In Proceedings of the 20th annual confer-
ence on Computer graphics and interactive techniques, pp. 247-254, 1993.

Michael Garland and Paul S Heckbert. Surface simplification using quadric error metrics. In Pro-
ceedings of the 24th annual conference on Computer graphics and interactive techniques, pp.
209-216, 1997.

Markus Giegl and Michael Wimmer. Unpopping: Solving the image-space blend problem for
smooth discrete lod transitions. In Proceedings of the 2007 symposium on Interactive 3D graphics
and games, pp. 111-118, 2007.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(TOG), 37(6):1-15, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Hugues Hoppe. Progressive meshes. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pp. 99-108, 1996.

Hugues Hoppe. View-dependent refinement of progressive meshes. In Proceedings of the 25th
annual conference on Computer graphics and interactive techniques, pp. 189—198, 1998.

10

Under review as a conference paper at ICLR 2026

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics (TOG), 42(4):1-14,
2023.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. In ACM Transactions on Graphics (TOG), volume 36, pp. 1-13.
ACM, 2017.

Jonas Kulhanek, Marie-Julie Rakotosaona, Fabian Manhardt, Christina Tsalicoglou, Michael
Niemeyer, Torsten Sattler, Songyou Peng, and Federico Tombari. Lodge: Level-of-detail large-
scale gaussian splatting with efficient rendering. arXiv preprint arXiv:2505.23158, 2025.

Joong-won Lee, Jin-Hwa Park, Jeong-Jin Lee, and Dosik Han. Compact 3d gaussian representation
for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21459-21468, 2024.

Peter Lindstrom, David Koller, William Ribarsky, Larry F Hodges, Nick Faust, and Gregory A
Turner. Real-time, continuous level of detail rendering of height fields. In Proceedings of the
23rd annual conference on Computer graphics and interactive techniques, pp. 109-118, 1996.

Yifei Liu, Zhihang Zhong, Yifan Zhan, Sheng Xu, and Xiao Sun. Maskgaussian: Adaptive 3d
gaussian representation from probabilistic masks. In Proceedings of the Computer Vision and
Pattern Recognition Conference (CVPR), pp. 681-690, June 2025.

David Luebke and Carl Erikson. View-dependent simplification of arbitrary polygonal environ-
ments. In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques, pp. 199-208, 1999.

David Luebke, Martin Reddy, Jonathan D Cohen, Amitabh Varshney, Benjamin Watson, and Robert
Huebner. Level of detail for 3D graphics. Morgan Kaufmann, 2002.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
conference on computer vision, pp. 405-421. Springer, 2020.

Nicholas Milef, Dario Seyb, Todd Keeler, Thu Nguyen-Phuoc, Aljaz Bozic, Sushant Kondguli, and
Carl Marshall. Learning fast 3d gaussian splatting rendering using continuous level of detail. In
Computer Graphics Forum, volume 44. Wiley Online Library, 2025.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. In ACM SIGGRAPH 2022 Conference Proceedings,
pp- 1-15,2022.

K L Navaneet, Atharva S, and R Venkatesh Babu. Compgs: Smaller and faster gaussian splatting
with vector quantization. arXiv preprint arXiv:2312.01033, 2024.

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. Octree-
gs: Towards consistent real-time rendering with lod-structured 3d gaussians. arXiv preprint
arXiv:2403.17898, 2024.

William J Schroeder, Jonathan A Zarge, and William E Lorensen. Decimation of triangle meshes.

In Proceedings of the 19th annual conference on Computer graphics and interactive techniques,
pp- 65-70, 1992.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. In IEEE transactions on image processing, volume 13,
pp. 600-612. IEEE, 2004.

Yuanbo Xiangli, Zirui Lin, Matthew Tancik, Christian Theobalt, and Angjoo Kanazawa. Bungeen-
erf: Progressive neural radiance field for extreme multi-scale scene rendering. In European Con-
ference on Computer Vision, pp. 263—280. Springer, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586-595, 2018.

11

Under review as a conference paper at ICLR 2026

A DETAILED METRIC TABLES

This section provides a comprehensive, scene-by-scene breakdown of the performance metrics for
the methods evaluated in our study. These tables offer a granular view of the results that are summa-
rized in the main body of the paper, detailing the PSNR, SSIM, LPIPS, and Gaussian count for our
method, the original 3DGS, MaskGaussian, and the ablation study configurations across all tested
datasets.

Table 3: ours (scale=1)
Dataset PSNRT SSIMT LPIPS| #GS M)|

BungeeNeRF
amsterdam 27.78 0.911 0.108 3.89
barcelona 27.84 0.922 0.085 491
bilbao 29.02 0.919 0.101 3.63
chicago 28.62 0.934 0.087 3.50
hollywood 26.53 0.880 0.138 4.58
pompidou 27.37 0.920 0.094 5.14
quebec 29.03 0.938 0.092 3.75
rome 28.23 0.925 0.098 4.08
Deep Blending
drjohnson 29.47 0.905 0.237 2.07
playroom 30.39 0.911 0.241 1.33
Tanks & Temples
train 22.14 0.806 0.220 0.57
truck 25.35 0.880 0.150 1.75

Table 4: Mask Gaussian
Dataset PSNR1T SSIM1T LPIPS] #GS (M)J

BungeeNeRF
amsterdam 27.69 0.916 0.100 4.69
barcelona 27.49 0.919 0.085 6.62
bilbao 28.86 0919 0.097 4.28
chicago 28.03 0.931 0.085 4.75
hollywood 26.35 0.873 0.133 5.62
pompidou 27.13 0.920 0.093 6.83
quebec 28.84 0.936 0.092 4.44
rome 27.66 0918 0.100 5.17
Deep Blending
drjohnson 29.21 0.904 0.243 2.34
playroom 30.12 0.910 0.244 1.22
Tanks & Temples
train 21.80 0.811 0.212 0.88
truck 25.31 0.881 0.149 1.60

B DETAILED METRIC CURVES

This section presents the detailed quality-versus-performance curves for each of the eight scenes
in the BungeeNeRF dataset. The following figures illustrate the trade-off between PSNR and the

12

Under review as a conference paper at ICLR 2026

Table 5: Original 3DGS

Dataset PSNRT SSIM{ LPIPS| #GS (M)

BungeeNeRF
amsterdam 27.85 0.918 0.096 6.24
barcelona 27.67 0.920 0.083 8.18
bilbao 28.98 0.918 0.095 5.49
chicago 28.54 0.933 0.080 6.08
hollywood 26.24 0.868 0.135 6.79
pompidou 27.26 0.921 0.091 8.64
quebec 28.95 0.937 0.089 5.91
rome 27.77 0.920 0.096 6.55
Deep Blending
drjohnson 29.43 0.905 0.236 3.12
playroom 30.25 0.909 0.240 1.85
Tanks & Temples
train 21.97 0.821 0.197 1.09
truck 25.44 0.885 0.142 2.06

Table 6: Full Model (scale=5)

Dataset PSNRT SSIM{ LPIPS| #GS (M)

BungeeNeRF
amsterdam 27.15 0.889 0.137 2.37
barcelona 26.99 0.886 0.123 2.78
bilbao 28.62 0.905 0.122 2.22
chicago 28.01 0.917 0.108 2.30
hollywood 26.75 0.878 0.147 3.34
pompidou 26.85 0.902 0.118 2.92
quebec 28.89 0.932 0.105 2.53
rome 27.43 0.903 0.127 2.16
Deep Blending
drjohnson 29.32 0.906 0.241 1.16
playroom 30.20 0.909 0.248 0.86
Tanks & Temples
train 21.99 0.806 0.219 0.59
truck 25.29 0.880 0.148 1.46

13

Under review as a conference paper at ICLR 2026

Table 7: Without Weight Adaptation (scale=5)

Dataset PSNRT SSIM{ LPIPS| #GS (M)

BungeeNeRF
amsterdam 26.82 0.876 0.146 2.34
barcelona 26.33 0.863 0.138 3.11
bilbao 28.27 0.896 0.128 2.07
chicago 27.82 0.913 0.111 2.17
hollywood 26.75 0.882 0.140 3.65
pompidou 26.86 0.895 0.121 3.10
quebec 28.90 0.933 0.103 2.40
rome 27.32 0.895 0.130 2.29
Deep Blending
drjohnson 29.15 0.905 0.242 1.12
playroom 30.01 0.907 0.250 0.92
Tanks & Temples
train 22.02 0.809 0.216 0.63
truck 25.26 0.881 0.147 1.46

Table 8: Without Regularization (scale=5)

Dataset PSNRT SSIM{ LPIPS| #GS (M)

BungeeNeRF
amsterdam 27.09 0.888 0.138 2.37
barcelona 27.10 0.893 0.119 2.85
bilbao 28.51 0.906 0.121 2.29
chicago 27.98 0917 0.108 2.29
hollywood 26.67 0.878 0.147 3.42
pompidou 26.95 0.906 0.116 291
quebec 28.86 0.932 0.105 2.56
rome 27.34 0.899 0.129 2.14
Deep Blending
drjohnson 29.28 0.906 0.242 1.12
playroom 30.17 0.907 0.250 0.93
Tanks & Temples
train 22.10 0.808 0.218 0.60
truck 25.22 0.880 0.149 1.38

14

Under review as a conference paper at ICLR 2026

Table 9: Without Weight & Regularization (scale=5)
Dataset PSNRtT SSIMT LPIPS| #GS M)}

BungeeNeRF
amsterdam 25.93 0.848 0.193 1.03
barcelona 26.04 0.849 0.171 1.37
bilbao 27.97 0.884 0.158 1.06
chicago 27.18 0.893 0.147 0.81
hollywood 26.02 0.843 0.208 1.46
pompidou 26.08 0.877 0.153 1.37
quebec 28.05 0.912 0.140 1.06
rome 26.46 0.866 0.179 0.97
Deep Blending
drjohnson 29.31 0.905 0.248 0.94
playroom 29.84 0.904 0.257 0.63
Tanks & Temples
train 22.30 0.800 0.236 0.38
truck 25.21 0.876 0.158 1.09

number of rendered primitives for both the original 3DGS and the MaskGaussian methods, providing
a visual complement to the quantitative data in the preceding tables.

C USE OF LLMS

During the preparation of this manuscript, we utilized the Large Language Model (LLM) Gemini
2.5 Pr developed by Google. Its role was strictly limited to that of a writing assistant. Specifically,
the model was employed for proofreading and copy-editing to improve the grammatical accuracy,
clarity, and overall readability of the text. The LLM was not used for generating core research
ideas, developing the methodology, conducting experiments, analyzing results, or drawing scientific
conclusions. All intellectual contributions, including the concepts, experiments, and conclusions
presented in this paper, are solely the work of the human authors.

'https://gemini.google.com/

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
81
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

PSNR (dB)

30 0.06
0.94
0.08
29 0.92
010
& 0.90 012
T = 0
gt & s
= o 0.14
é’ 0.88
27
< 016
—8— MaskGaussian 0.86 1 —— MaskGaussian 0.18 { —®— MaskGaussian
56| = ours (scale=3) —#- Ours (scale=3) ~#- Ours (scale=3)
—a— Ours (scale=5) —&— Ours (scale=5) —&— Ours (scale=5)
& Ours (scale=7) 05| ¥ Ours (scale=7) 0201 4~ Ours (scale=7)
0 1 2 3 [1 2 3 0 1 2 3
Block Index (Left to Right) 006 Block Index (Left to Right) Block Index (Left to Right)
—e— MaskGaussian
~#- Ours (scale=3)
0 —&— Ours (scale=5) 095 0.06
~- Ours (scale=7)
094
0.08
© 29
c
o § = 0.93 9
8 I @ 3 0.10
o 28 0.92
4]
012
091
. —e— MaskGaussian —e— MaskGaussian
~#- Ours (scale=3) ~#- Ours (scale=3)
0.90 1 —&— Ours (scale=5) 0.14{ —4— Ours (scale=5)
- Ours (scale=7) - Ours (scale=7)
0 1 2 3 0 1 2 3 0 1 2 3
Block Index (Left to Right) Block Index (Left to Right) Block Index (Left to Right)
2 —e— MaskGaussian 095 0.08
~=- Ours (scale=3)
—&— Ours (scale=5) 094
—&- Ours (scale=7) 010
31 0.93
0.12
0.92
o 30
[} 0.14
Re) g = 0.91 g
[T 8 5
8 2 0.90 016
0.89 0.18
28 ‘ ’
0.88 1 —®— MaskGaussian —e— MaskGaussian
~#m— Ours (scale=3) 0.20 1 —m~ Ours (scale=3)
0,87 —&— Ours (scale=5) —&— Ours (scale=5)
27 —&— Ours (scale=7) 0.22{ ~ Ours (scale=7)
0 1 2 3 o 1 2 3 o 1 2 3
Block Index (Left to Right) Block Index (Left to Right) Block Index (Left to Right)
Figure 7: All metric curves for the DLoD vs. CLoD comparison.
PSNR vs Points Count - bungeenerf_amsterdam
27.5 4
25.0 1
22,54
20.0 4
17.5 1
15.0 1
—A— 3DGS (Decay)
125 4 —#&— MaskGaussian (Decay)
—#— Ours(scale=1)
—&— Ours(scale=3)
== Qurs(scale=5)
10.0 1 —— Ours(scale=7)
—& - Ours(scale=10)

6 5

4 3
Points Count (Many — Few)

Figure 8: 3DGS: PSNR vs. primitive count on the BungeeNeRF amsterdam dataset.

16

Under review as a conference paper at ICLR 2026

PSNR (dB)

PSNR (dB)

PSNR vs Points Count - bungeenerf_barcelona

27.5 1

25.0 1

22,51

20.0 1

17.59

15.0 1

12.5 1 —A— 3DGS (Decay)
#— MaskGaussian (Decay)
—#— Ours(scale=1)
10.0 { —@— Ours(scale=3)
—— Qurs(scale=5)
Ours(scale=7)
7.5 4 —®- Ours(scale=10)

}

T T T T T T T T T

8 7 6 5 4 3 2 1 0
Points Count (Many - Few) le6
Figure 9: 3DGS: PSNR vs. primitive count on the BungeeNeRF barcelona dataset.
PSNR vs Points Count - bungeenerf_bilbao
30
25 4
20 4
15 A
—&— 3DGS (Decay)
4— MaskGaussian (Decay)
—#— Ours(scale=1)
—&— Ours(scale=3)
101 e Ours(scale=5)
—+— Qurs(scale=7)
—@- Ours(scale=10)
5 2 3 2 1 0
1e6

Points Count (Many - Few)

Figure 10: 3DGS: PSNR vs. primitive count on the BungeeNeRF bilbao dataset.

17

Under review as a conference paper at ICLR 2026

PSNR (dB)

PSNR (dB)

PSNR vs Points Count - bungeenerf_chicago

27.5 1

25.0 1

22.51

20.0 1

17.5 1

15.0 1

12.5 4

10.0 1

—4— 3DGS (Decay)
#— MaskGaussian (Decay)
—#— Ours(scale=1)
—&— Ours(scale=3)
—— Qurs(scale=5)
—+— Ours(scale=7)
—& - Ours(scale=10)

T T T T T T T

6 5 4 3 2 1 0
Points Count (Many - Few) 1e6

Figure 11: 3DGS: PSNR vs. primitive count on the BungeeNeRF chicago dataset.

PSNR vs Points Count - bungeenerf_hollywood

27.5

25.0 1

22.51

20.0

17.51

15.0 1

12.51

10.0 1

—&— 3DGS (Decay)
4— MaskGaussian (Decay)
—#— OQOurs(scale=1)
—&— Ours(scale=3)
—%— Ours(scale=5)
Ours(scale=7)
—@ - Ours(scale=10)

}

6 5 4 3 2 1 0
Points Count (Many - Few) 1le6

4

Figure 12: 3DGS: PSNR vs. primitive count on the BungeeNeRF hollywood dataset.

18

Under review as a conference paper at ICLR 2026

PSNR (dB)

PSNR (dB)

PSNR vs Points Count - bungeenerf_pompidou

25 1

N
=]
L

154

10 1

3DGS (Decay)
MaskGaussian (Decay)
Ours(scale=1)
Ours(scale=3)
Ours(scale=5)
Ours(scale=7)

—& - Qurs(scale=10)

BRARE

27.5 1

25.0 1

22.51

20.0 1

17.59

8

6 4 2 0
Points Count (Many - Few) 1le6

Figure 13: 3DGS: PSNR vs. primitive count on the BungeeNeRF pompidou dataset.

PSNR vs Points Count - bungeenerf_quebec

15.0 1 —— 3DGS (Decay)

10.0 1

4~ MaskGaussian (Decay)
Ours(scale=1)

=
12.5 1 —®— Ours(scale=3)
—x—

Ours(scale=5)
—+— Qurs(scale=7)
=@ Ours(scale=10)

6 5

a4 3 2 1 0
Points Count (Many - Few) le6

Figure 14: 3DGS: PSNR vs. primitive count on the BungeeNeRF quebec dataset.

19

Under review as a conference paper at ICLR 2026

PSNR (dB)

PSNR (dB)

PSNR vs Points Count - bungeenerf_rome

27.5 1

25.0 1

22.51

20.0 1

17.5 1

15.0 4

—&— 3DGS (Decay)
12.5 4 —*— MaskGaussian (Decay)
—#— Ours(scale=1)
—&— Ours(scale=3)
——

10.0 4 Ours(scale=5)

—+— Qurs(scale=7)
—® - Ours(scale=10)
6 5 2 3 2 1 0
Points Count (Many - Few) 1le6
Figure 15: 3DGS: PSNR vs. primitive count on the BungeeNeRF rome dataset.
PSNR vs Points Count - bungeenerf_amsterdam
28 1
26 1
24
22
20 1
A
18 A
16
—&— MaskGaussian (Decay)
#— Our MaskGaussian(scale=3)
14 { —®— Our MaskGaussian(scale=5)
—&— Our MaskGaussian(scale=7)

45 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Points Count (Many - Few) le6

Figure 16: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF amsterdam dataset.

20

Under review as a conference paper at ICLR 2026

PSNR (dB)

PSNR (dB)

PSNR vs Points Count - bungeenerf_barcelona

28 4
26 1
24 4
22 A
201
A
18 A
—4&— MaskGaussian (Decay)
#— Our MaskGaussian(scale=3)
16 1 —®— Our MaskGaussian(scale=5)
—— Our MaskGaussian(scale=7)

6 5 4 3 2 1
Points Count (Many - Few) 1e6

Figure 17: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF barcelona dataset.

PSNR vs Points Count - bungeenerf_bilbao

281

26 1

24 4

22 A

20 A A

18 A

16 A
—#&— MaskGaussian (Decay)

14 4 #— Our MaskGaussian(scale=3)
—#- Our MaskGaussian(scale=5)
—&— Our MaskGaussian(scale=7)

4.0 3.5 3.0 2.5 2.0 15 1.0
Points Count (Many — Few) le6

Figure 18: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF bilbao dataset.

21

Under review as a conference paper at ICLR 2026

PSNR (dB)

PSNR (dB)

PSNR vs Points Count - bungeenerf_chicago

28 1
26 1
24 4
224
201
18 A
164 A MaskGaussian (Decay)
#— Our MaskGaussian(scale=3)
—#— Our MaskGaussian(scale=5)
—#— Our MaskGaussian(scale=7)
14 T T T T T T T T T
4.5 4.0 35 3.0 25 2.0 1.5 1.0 0.5
Points Count (Many — Few) 1le6
Figure 19: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF chicago dataset.
PSNR vs Points Count - bungeenerf_hollywood
26 1
24
221
A
20 1
18 A
16
14 4 —&— MaskGaussian (Decay)
#— Our MaskGaussian(scale=3)
—#— Our MaskGaussian(scale=5)
—&— Our MaskGaussian(scale=7)
5 4 3
le6

Points Count (Many - Few)

Figure 20: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF hollywood dataset.

22

Under review as a conference paper at ICLR 2026

PSNR vs Points Count - bungeenerf_pompidou

26 1
24 A
221
o
Z
o 201
=
n
a
18 A
A
16
14 1 —&— MaskGaussian (Decay)
#— Our MaskGaussian(scale=3)
—#— Our MaskGaussian(scale=5)
—— Our MaskGaussian(scale=7)
124 T T T T T T
7 6 5 4 3 2 1
Points Count (Many - Few) 1le6
Figure 21: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF pompidou dataset.
PSNR vs Points Count - bungeenerf_quebec
28 1
26 1
24 4
o
Z 221
o<
=
g A
201
18 A
16 1 —A— MaskGaussian (Decay)
#— Our MaskGaussian(scale=3)
—#- Our MaskGaussian(scale=5)
14 1 —&— Our MaskGaussian(scale=7)

4.5 4.0 35 3.0 2.5 2.0 15 1.0
Points Count (Many - Few)

Figure 22: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF quebec dataset.

23

le6

Under review as a conference paper at ICLR 2026

PSNR vs Points Count - bungeenerf_rome

28 1
26 1
24 A
o
Z 22
-4
=4
0
a
201
18 A
16 1 —A— MaskGaussian (Decay)
4~ Our MaskGaussian(scale=3)
—#— Our MaskGaussian(scale=5)
14 4 —&— Our MaskGaussian(scale=7)

5 4 3 2 1
Points Count (Many - Few)

Figure 23: MaskGaussian: PSNR vs. primitive count on the BungeeNeRF rome dataset.

24

	Introduction
	Related Work
	Methodology
	Preliminaries: 3D Gaussian Splatting
	Learnable Continuous LoD via Distance-Adaptive Opacity
	Coarse-to-Fine Training for a Unified LoD Model

	Experiments
	Experimental Setup
	Results and Comparisons
	Ablation Studies
	Robustness Analysis and Memory Footprint Analysis

	Conclusion
	Reproducibility Statement
	Detailed Metric Tables
	Detailed Metric Curves
	Use of LLMs

