Under review as a conference paper at ICLR 2025

TEST-TIME RAG (TTRAG): ENHANCING LONG CON-
TEXT UNDERSTANDING IN LLMS WITH RETRIEVAL-
AUGMENTED MECHANISMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are becoming increasingly pivotal in applications
that depend on extensive personalized context, such as conversational agents
and specialized task-oriented systems. In these scenarios, effective long-context
handling is essential to support agentic tasks and enhance in-context learning
capabilities. To address this challenge, we propose a novel integration of Retrieval-
Augmented Generation (RAG) techniques with LLMs, designed to enhance their
ability to effectively manage and utilize large contextual information only available
at test time. Our methodology, Test-Time RAG (TTRAG), enriches LLMs by
dynamically generating novel conditional embeddings coupled with query rewriting
and utilizing semantic search to retrieve the most relevant document chunks at
test time. This process preserves the context’s meaning and enhances the model’s
responsiveness and accuracy in knowledge-intensive Question Answering (QA)
tasks. Our evaluations demonstrate our system’s ability synthesize and retrieve
information across extensive texts: HotpotQA (+17.29%), QASPER (+4.39%), and
Natural Questions (+8.73%), demonstrating the effectiveness of TTRAG across
varied context lengths from 1 million to 9.6 million tokens.

1 INTRODUCTION

The ability for LLMs to incorporate a detailed history of a user’s experiences and actions could
unlock a new era of personalized intelligence. For example, an LLM helping a user respond to
an email could take into account much more than just the text in the email: it could also take
into account the user’s documents, calendar schedule, and other related emails or shared data.
However, capturing this scale of rich context for a user presents several challenges. First, because
the information is diverse and sparse, naively retrieving related documents by keyword or vector
similarity alone is insufficient (Karpukhin et al.l 2020} |Khattab & Zaharial 2020). Second, the
potentially relevant context could be orders of magnitude larger than what can fit within existing
long-context models (Anthropicl 2023} |Reid et al.,[2024). Finally, when the information does fit in
context, the use of long-context and the presence of distracting information can lead to significant
quality loss and increased latency (Liu et al.,[2023c|).

Retrieval Augmented Generation (RAG) systems have been increasingly employed for enabling
LLM:s to effectively access large collections of data (Lewis et al.||2021; [Borgeaud et al., 2022; Wang
et al., 2023; |Patil et al.l [2023). RAG operates by first computing document embeddings for each
document in the collection and then computes a similarity score with a given prompt to determine
a set of documents that should be included as context in a prompt to an LLM. RAG systems must
pre-compute document embeddings, limiting their application to scenarios where documents cannot
be indexed in advance. Such situations are common in our personalized applications including chat-
based interactions (Peng et al.,|2023), code analysis, database joins, and privacy-centric systems where
personal data is not available offline. To overcome these constraints and unlock new possibilities
in long-context processing, this paper presents a systems that extends classic RAG techniques of
embedding and filtering to a test-time setting, which we refer to as Test-time RAG (TTRAG).

As illustrated in fig. [T, TTRAG is built upon three critical components that address the challenges
posed by dynamic knowledge bases and enhance the efficiency of long-context processing: Con-

Under review as a conference paper at ICLR 2025

/ Test-Time RAG

/~ Conditional Embedding “\
and Filtering

Query
Rewriting

o
c
O
2
<
» | o
€ | ©
Bl = -
3 | T
® | c B
5 | A+
'm
iR
o
1
()
|_|_\|‘

= KV

E Retrieval

E — (e
= Aggregate | _
= e <o

— Everything
Context Block e — Q =80.5

Re-retrieved
Context

Figure 1: Test-time RAG (TTRAG) operates by first employing conditional compute to determine the
appropriate set of computations to perform on the given query (see §3.3|for details.) For most queries,
TTRAG proceeds with conditionally embedding the query to an embedding space, and then using the
embedded values to filter a set of relevant documents. TTRAG then iteratively rewrites the query and
re-retrieves documents, generating a response utilizing relevant documents once the golden context is
found.

ditional embeddings, a technique for dynamically generating document representations that are
conditioned on the specific user query, which leads to more contextually appropriate embeddings. Iz-
erative query rewriting, to better capture user intent and refine the search process, our system employs
an iterative query rewriting mechanism that is conditioned on both, the user prompt, and documents
retrieved so far. This dynamic refinement enables the system to expand or adjust user queries as
needed, improving the quality of document retrieval and enhancing the overall understanding of
the user’s request. Finally, inspired by classical distributed systems literature (Dean & Ghemawat,
2008)), our TTRAG system employs conditional compute to adapt the computation, adjusting the
processing depth and complexity based on the specific requirements of each query. This targeted
approach optimizes resource use without compromising output quality.

We evaluate the TTRAG pipeline on a variety of knowledge-intensive, question-answer datasets in-
cluding HotPotQA (Yang et al.||2018])), Natural Questions (Kwiatkowski et al., 2019), Comprehensive
RAG benchmark (CRAG) (Yang et al.l 2024), QASPER (Dasigi et al.;2021), QUALITY (Pang et al.|
2022). We additionally source tasks from InfiniteBench (Zhang et al.| 2024)) to evaluate on a diverse
set of long context tasks outside the scope of question answering. These datasets span multiple
domains and tasks that require reasoning over long context, providing a comprehensive assessment
of our system’s capabilities. TTRAG is benchmarked against state-of-the-art long context models
to demonstrate the performance and quality improvements achieved by our proposed approach over
current paradigms of long-context processing, and demonstrate significant improvements in LLM
performance in all our evaluations.

By enabling Al systems to handle dynamic and changing knowledge bases, Test-time RAG opens up
new possibilities for embedding personalized intelligence in user-applications over rapidly evolving
contexts. Furthermore, Test-time RAG does not require pre-indexing of sensitive information until
and unless it is necessary, making it particularly suitable for privacy-aware applications in healthcare,
finance, and other domains where users might not prefer to have their personal data indexed and
stored. To summarize, this paper makes the following contributions:

1. Propose three test-time compute techniques for RAG: conditional embeddings, iterative
query rewriting, and conditional compute

2. Introduce an end-to-end system which ensembles these test-time compute techniques and
scales performant long-context processing to millions of tokens

Under review as a conference paper at ICLR 2025

Conditional Embeddings Iterative Query Rewriting Conditional Compute
Q: What password is
Q: What band was the man who compiled the tracks... Q: What was the 76ers' record the year associated with the
D s P
Q + D1: "What band ... singer best known for his Hilles) Tyarsen won WP USROS
work in White Snake" @
[Resp (No Query Rewriting): 71-71 }
Q + D2: "What band ... as a member of Deep LLM Compute Classifier
Purple, giving one of the bands..." .
N 4 Rewrite!
Q + Dn: "What band ...had more number one hits" . . /KV Retrieval Compute’,
the us billboard chart” Rewritten Question:What was the
N N . Category
[T Philadelphia 76ers' record the year s o
Allen Iverson won MVP? [PEIFEE VEEURF
Semantic Search embedding search with
[Response (Iterative Query Rewriting): 56—26} Q top k =1 4
Docunent 2 N -
“ ‘Answer: 56-26 Answer: 'ICLRRocks123"
Answer: Deep Purplew . ,r - -

Figure 2: TTRAG encompasses test-time embedding, rewriting, and task-conditional compute,
handling the entire breadth of long context tasks and questions. Because these techniques are
applied at inference time, there is no additional overhead to integrating these techniques with existing
popular language models. Boxes shaded in green correspond to correct responses from TTRAG, while
red boxes correspond to incorrect responses or selected documents from our baseline formulations.
Golden boxes represent the correct ground truth answer.

3. Demonstrate that Test-time RAG improves knowledge intensive QA by upto +17.29% on
GPT-3.5-turbo for HotpotQA

2 MOTIVATION

While in-context learning has proved to be a powerful tool for providing the model with relevant
context (Wies et al.;2024), LLMs that support long-contexts face three challenges: the computational
overhead required for training, the degradation in performance at longer-context, and the latency
overhead at inference time. The self-attention mechanism in auto-regressive transformer-based archi-
tectures suffers from quadratic increase in complexity as context length increases (Vaswani, |2017).
This computational burden poses a substantial challenges in training larger context models Dubey et al.
(2024). Moreover, even when long context capabilities are implemented, models often experience
performance degradation (Li et al.,|2024; Liu et al.| |2023c)), as well as increased latency (Agrawal
et al.,[2024)), as the context window expands, limiting their practical effectiveness.

Classically, to address these limitations, two techniques are adopted: retrieval augmented gener-
ation (RAG) and recursive summarization. These approaches aim to filter content, and compress
information to fit within the limited context windows of current models respectively. Recursive
summarization (Ren et al. 2017), while effective in some scenarios, inherently results in lossy
compression of previous context, often sacrificing important information as the context grows.
RAG (Lewis et al., [2020), on the other hand, pre-indexes a domain of context into an external
database of documents and employs information retrieval mechanisms to fetch relevant context at
prompt time. While RAG has shown promise in many applications, its effectiveness is heavily
dependent on having prior knowledge of the information set required to answer prospective queries.
None of the solutions mentioned before provide an effective technique to handle large amounts of
data introduced at test time and do not exploit the availability of intent present in the prompt.

Other efforts have looked at advancements in long context processing driven by architectural mod-
ifications such as State-space models (Gu et al., 2021)), ring attention (Liu et al., 2023a), sparse
attention (Chen et al., 2021} Zoph, [2022)), etc. These advancements are complementary and benefit
from Test-time RAG.

3 TEST-TIME RAG

Test-time RAG (TTRAG) contains three primary components that work in conjunction: conditional
embeddings, iterative query rewriting, and conditional compute. TTRAG is an ensemble, with each
component contributing individual merits that fit together as a compound, yet singular system.

Under review as a conference paper at ICLR 2025

Q' (Rewritten Query):
What was the record
of the Tampa Bay

Buccaneers in 2621?

Input
Query: What was the record of the NFL team that Tom
Brady was a part of when he won his last Super Bowl?
Document 1: [...Tom Brady played for New England ...]
Document 2: [...Tampa Bay had a record of 11-5 in...]
Document 3: [...American Football player for 28+ ...] | = |iesseeeccoccccasssss
[1
[1

Conditional
Embeddings

(02 | Q') = 0.9
(D5 | Q') = 0.8

(D1 | Q') = 0.2

Output
The record was 11-5.

Figure 3: End-to-end example demonstrating TTRAG. The scores shown following the conditional
embeddings represent similarity scores between the embedding and query.

Document 4: [...Inducted in the Hall of Fame in ..
Document 5: [...Won the Super Bowl in 2020-2021 ..

3.1 CONDITIONAL EMBEDDINGS

We present a novel approach to generate conditional embeddings at test time that capture detailed
semantic relationships between context and query. The fundamental mechanics which power con-
ditional embeddings rely on the premise enforced in test-time settings: access to the user query.
Traditional approaches to compute document embeddings are done offline and independent of the
queries themselves. We instead propose a method to compute document embeddings on a per-query
basis which leads to selecting documents that are more related to the query during retrieval. Our
approach contains two components that utilize query information: conditional embedding generation
and filtering. During the embedding generation step, we employ the query to tailor granular repre-
sentations of text such that the filtering portion can efficiently retrieve relevant context over large
contexts. To accomplish this, we leverage the contextual embedding capabilities that are implicitly
present in the transformer architecture, and utilize encoder-decoder variants which jointly condition
context on text appearing before and after a given token in a sequence (Devlin et al., 2019).

Decoder-only architectures where masked, causal attention is utilized, only allow tokens to attend to
previous tokens in the sequence, with next token prediction as the training objective (Radford et al.,
2019). In contrast, bidirectional encoders allow each token to attend to all other tokens, creating
token representations that have contextual awareness of other tokens in the sequence regardless
of their ordering as they pass through the encoder (Devlin et al.|[2019). Bidirectional attention is
a critical component of conditional embeddings generation to enable proper conditioning on the
query. Conditional document embeddings are constructed by first prefixing each document with the
query text. This augmented document is passed through a bidirectional encoder (DistilBERT), where
we extract the final hidden state embeddings, mask the tokens corresponding to the prefixed query
(visualized in fig.), then take an average across the sequence length dimension of the unmasked
token embeddings. From our ablations, we find that the performance of embeddings generated
from pooling the last hidden state is agnostic of the presence of the <KEOS> token, which we leave
unmasked. We are left with a fixed length embedding that captures fine grained relationships between
the query and context, which can be used in similarity search without the prefixed query inflating the
similarity scores. Conditional Embeddings (Filtering only) applies cosine similarity search between
query and document embeddings to only retain semantically similar context documents.

3.2 ITERATIVE QUERY REWRITING

Drawing inspiration from query reformulation techniques in recommendation systems (Bhandari
et al., [2023), we introduce a framework for automatic query rewriting to improve retrieval and
generation quality. Questions over long context often have vague subjects and directives, as these
aspects are meant to be derived from context. However, in retrieval augmented paradigms, this
poses as a bottleneck during filtering and similarity search, as the standard embeddings struggle with
capturing the fine-grained semantics of a vague query with respect to a set of documents. We leverage
reasoning capabilties of LLMs to make the query more conducive for similarity search. We first pass
the query along with the top three (hyperparameter) documents retrieved from similarity search to
the LLM. Rather than immediately moving to the answer generation step, we prompt the LLM to
determine whether the answer to the query is found in the provided context. If the answer is not found,
the LLM is tasked with rewriting the query to be a better proxy for retrieving relevant context given
the documents provided. During this step, the LLM has freedom to incorporate additional information
from the documents into the rewritten question to dispel ambiguity and reword the question structure
so the question directive is less vague. If the answer is found, the LLM is instructed to just return the

Under review as a conference paper at ICLR 2025

Mask Query oo

Tokens

®
o
7]

‘al’ <EO0S>

Document Tokens

‘ ‘ ‘Attention' ‘s’ [iVaswanifl

Figure 4: Masking the query tokens prior to mean pooling allows document token representations to
retain conditional query information without inflating similarity scores during similarity search.

answer. The query rewriting step is repeated until we have retrieved a total of k (hyperparameter)
documents across all iterations.

Algorithm 1 Iterative Query Rewriting Pseudocode

1: while number of iterations < maximum rewrite tries do

2: Compute query and document embeddings

3: retrieved docs = top n documents from similarity search (parameter)
4: Prompt LLM to determine if answer in context

5: if answer in context then

6 return answer

7

8

end if
: if answer not in context then
9: LLM rewrites query
10: end if

11: end while
12: return retrieved docs

TTRAG’s online query-rewriting surfaces the following benefits: First, an observed improvement in
the LLM’s ability to parse context, which would be otherwise considered complex, highlighted in fig.[9]
and fig.[I0] Second, we demonstrate in fig. 8] scenarios where the LLM blends parametric knowledge
from pretraining with the non-parametric knowledge from provided context more effectively which
would otherwise not have been possible. Lastly, when used as a component in Test-time RAG, all of
the aforementioned benefits hold, while also decreasing the total number of tokens processed by the
LLM per query.

3.3 CONDITIONAL COMPUTE

Access to the query and documents at test time allows our pipeline to incorporate a conditional
compute feature designed to minimize compute while maintaining output quality based on the nature
of the user’s query, which greatly enhances its versatility across various tasks such as summarization,
question answering and key-value retrieval. Categorizing different user questions into various
"compute categories" is built on the idea that different types of information require distinct strategies
for document retrieval and processing. Adding this level of granularity results in context retrieval that
is more cost-effective and compute-efficient. In this paper, conditional compute refers to the number
of tokens processed at test time conditioned on the query, consistent with literature (Brown, 2021)

Under review as a conference paper at ICLR 2025

Task Classification and Response Generation: Each user query is classified into four predefined
categories: summarization tasks, KV retrieval tasks, aggregate statistics queries, and question-
answering tasks by an LLM classifier. Depending on the determined category, the pipeline adjusts its
subsequent processing steps to tailor the retrieval and response generation specifically to the task at
hand.

Summary Tasks: Retrieval based approaches historically struggle with creating summaries due to
the lack of whole context comprehension. For queries categorized under summarization, we split the
large context block into smaller batches that fit into the context window of the base LLM and then ask
the LLM to generate summaries for these smaller chunks and concantenate them to form the output.

Aggregate Statistics Tasks: We adopt a selective filtering-based implementation that identifies the
target block of text and calculate relevant aggregate statistics across the entire document set.

KYV Retrieval Tasks: Key-value pair (KV) retrieval challenges the LLM with accurately retrieving
a value given a key from a large block of JSON objects (Liu et al.,[2023c). The complexity of this
task is lies in the large retrieval base and the indistinguishable format of relevant and irrelevant
information, making the actual textual content the only distinct attribute. To tackle these challenges,
we employ a sparse BM2S5 retriever to fetch the most similar document from the context (top k = 1).

Question-Answering Tasks: For queries that do not fall into any of the other categories, the pipeline
defaults to our standard Test-time RAG retrieval process, leveraging the configured embedding model
to fetch documents that best match the query’s semantic content.

4 EXPERIMENTS AND RESULTS

The efficacy of TTRAG is assessed by observing performance of the system as a whole and individu-
ally testing core components on a wide variety of datasets, utilizing open and closed-source models.
We seek to answer the following questions:

1. What are the performance improvements gained from TTRAG as a complete system?
2. What are the quantified contributions from each component?
3. What is the reduction in compute at test-time?

4. How generalizable are these performance gains across different datasets and domains?

4.1 DATASETS, MODELS

We center our findings around the end-to-end evaluation of TTRAG and bolster them by presenting
ablation studies to quantify individual component performance, using a common base of models and
datasets. All datasets have long documents as context, either by nature of the dataset or by artificially
augmenting context during preprocessing.

Conditional Embeddings Conditional embedding performance is evaluated on two different
categories of datasets: general question-answering spanning multiple domains and domain-specific
datasets. For the first group of datasets, we use popular knowledge intensive question-answer datasets:
HotpotQA, Natural Questions, and PubMedQA (Yang et al.| 2018; Kwiatkowski et al., 2019} Jin
et al.l[2019).

For HotpotQA and Natural Questions, we extend the model-provided context to millions of tokens by
artificially concatenating documents across all questions in their respective datasets. We additionally
evaluate conditional embeddings on a second group of datasets with domain-specific context to test if
conditional embeddings are proficient at creating granular representations of text from context blocks
that are all relatively similar to each other. QASPER is a dataset consisting of question and answering
over NLP research papers, while QUALITY requires comprehension over whole text passages [Dasigi
et al.[(2021)); Pang et al.|(2022). Both datasets contain approximately 5k tokens of context on average
per question, all pertaining to the same body of text.

Iterative Query Rewriting CRAG, a comprehensive RAG-specific benchmark, presents a unique
challenge for query rewriting by including 300k tokens of simulated search results per question (Yang

Under review as a conference paper at ICLR 2025

et al.}2024). In comparison to the experimental evaluations done with HotpotQA, the information
contained in CRAG question documents is related. The inherent similarity between documents can
therefore be used as a proxy to determine if rewritten queries result in more nuanced retrieval.

Conditional Compute The InfiniteBench suite of evaluations contains a wide breadth of long
context tasks outside of traditional question answering, and is used to evaluate conditional compute.
En.Sum is used to benchmark summarization capabilities and Retrieve. KV tests the synthetic KV
retrieval task (Zhang et al.| 2024).

Models and Baselines We evaluate our augmented LLM approach using various models (reported
along with context): GPT-4-0613 (8k), GPT-3.5-turbo-0125 (16k), Claude Haiku (200k), Llama2-7B
Chat (4k), and GPT-4-turbo-2024-04-09 (128k)

We also evaluate performance with two different styles of retrieval: BM25 — sparse vector represen-
tation (Robertson & Zaragozal [2009), and OpenAlI’s text-embedding-3-small — LLM based dense
vector representation. For our baselines, we use the same retriever as our pipeline to select the top 10
most relevant documents and backfill the rest of the context window with random documents from
the dataset, acting as distractor documents. Moreover, the documents in the context window are
randomly shuffled. This formulation ensures that golden documents are present in our baselines while
saturating the context window, which evaluates how well the baseline is able to process information
at maximum token input capacity. We additionally include performance of conditional embeddings
(Filtering only) configured with either dense or sparse vector embedding models in our ablations to
further establish performance of TTRAG’s components over standard retrieval strategies.

4.2 TEST-TIME RAG

Table 1: TTRAG improves exact matching accuracy by 17.29% when compared to baselines,
and demonstrates significant gains across diverse datasets. Each component of TTRAG stacks
performance benefits in both open and closed source settings. CE refers to conditional embeddings
isolated as an individual component.

Model HQA(IM) QASPER QuALITY NQA(5M)
Name Embedding Model Exact Match F1 Score Exact Match F1 Score Exact Match F1 Score Exact Match F1 Score
GPT-3.5-0125 Baseline text-embedding-3-small 41.18% 36.04 22.75% 29.0 53.48% 51.20 36.62% 38.29
GPT-3.5-0125 CE text-embedding-3-small 51.76% 47.46 25.90% 30.33 59.57% 55.97 42.69% 36.43
GPT-3.5-0125 TTRAG text-embedding-3-small 58.47% 48.83 27.14% 29.7 64.35% 59.18 45.35% 33.93
Llama-2-7b-chat-hf-Baseline text-embedding-3-small 27.18% 11.20 16.04% 9.60 14.78% 271 22.58% 13.75
Llama-2-7b-chat-hf CE text-embedding-3-small 38.24% 17.83 18.92% 10.91 16.09% 2.24 26.76% 17.01
Llama-2-7b-chat-hf TTRAG text-embedding-3-small 44.35% 30.04 19.72% 19.26 23.91% 4.62 30.55% 222

As a whole, TTRAG outperforms baselines in a variety of datasets when applied to closed and
open-sourced models, shown in table|l] We include a comparison of the results with conditional
embeddings as an isolated component of the TTRAG system to highlight that the collective arrange-
ment of all components in TTRAG leads to superior performance. The configuration of TTRAG
for question-answering tasks employs conditional embeddings to power iterative query rewriting.
Specifically, during each iteration of rewriting the query, conditional embedding and filtering is
used to retrieve the top k most similar documents. We fix the conditional compute component to
question-answering mode in order to match the nature of datasets we evaluate on.

4.3 CONDITIONAL EMBEDDING

We evaluate TTRAG's first component, conditional embeddings, over datasets that are state-of-the-art
in the respective domains of domain-specific question-answering tasks (QASPER, QuALITY) and
general knowledge question-answering tasks (HotPotQA, Natural Questions).

Domain Specific Question-Answering Tasks From fig. [/} we demonstrate that conditional
embeddings serve as a powerful re-ranker boosting the model’s performance from 22.75% to 25.90%
for GPT-3.5-turbo-0125 on QASPER table 2] and from 53.48% to 59.57% on QUALITY in table[6]
(moved to Appendix for space). We additionally note three further observations: first, conditional
embeddings demonstrate improved performance when used with bm?25 and text-embedding-3-small.

Under review as a conference paper at ICLR 2025

QASPER QUALITY
25 - ___ 60
50 <
PR3 201
S 407
® 151
= 30 +
t 10
% 20
w
5 1 10 -
0- 0-
text-embedding-3-small BM25 text-embedding-3-small BM25
Base Embedding Model
—== GPT-4-turbo-2024-04-09 Performance [CE [Filtering Only]
B Baseline (GPT-3.5-Turbo) 3 CE

Figure 5: Conditional embeddings improves accuracy over baseline with dense and sparse
embedding models. The performance of GPT-3.5-turbo coupled with conditional embeddings
surpasses performance of a much stronger GPT-4-turbo on QASPER by 0.9% and achieves a 3.5%
lift over its baseline.

Second, the performance contributions from conditional embeddings alone boosts performance of a
substantially weaker base model GPT-3.5-turbo-0125 to match performance of much stronger models,
GPT-4-turbo-2024-04-09 on QASPER, shown in fig. El Finally, we demonstrate that the trends hold
even when ported to Llama-models “as-is”.

Table 2: Conditional embeddings performance is agnostic of base model or embedding model.
Between all model permutations run on QASPER, conditional embeddings results in a 3% improve-
ment from baseline on average.

Model QASPER

Name Embedding Model Exact Match F1 Score
GPT-4-turbo-2024-04-09 Baseline text-embedding-3-small 25.00% 25.58
GPT-3.5-0125 Baseline text-embedding-3-small 22.75% 29.0
GPT-3.5-0125 CE (Filtering only) text-embedding-3-small 24.44% 29.89
GPT-3.5-0125 CE text-embedding-3-small 25.90% 30.33
GPT-3.5-0125 Baseline bm25 22.97% 27.99
GPT-3.5-0125 CE (Filtering only) ~ bm25 23.54% 26.67
GPT-3.5-0125 CE bm25 24.32% 29.23
Llama-2-7b Baseline text-embedding-3-small 16.04% 9.60
Llama-2-7b CE (Filtering only) text-embedding-3-small 16.22% 10.1
Llama-2-7b CE text-embedding-3-small 18.92% 10.91
Llama-2-7b Baseline bm25 13.74% 9.87
Llama-2-7b CE (Filtering only) bm25 15.54% 10.11
Llama-2-7b CE bm25 18.81% 10.24

General Knowledge Question-Answering Tasks On general knowledge question-answering tasks
HotPotQA, Natural Questions, and PubMed (table[7} and table[§|of Appendix respectively), table[3]
highlights the importance of aggressive filtering. We demonstrate that in Test-time RAG, aggressively
dropping documents even when additional context length is permissible is recommended. While it
may seem counter-intuitive to possibly give up recall (potentially impacting precision), distractor
documents actually hurt the model in comprehension tasks even when the model is trained for longer
context lengths. Test-time RAG’s consistent performance over HotPotQA table [3] Natural Questions
table[7] and PubMed table 8| highlight that with the conditional embeddings component of Test-time

Under review as a conference paper at ICLR 2025

RAG alone, classical short-context length models can be used at upto 8M+ context lengths without
significant loss in performance.

Table 3: Conditional Embeddings outperforms baselines at million token context lengths for knowl-
edge intensive question-answering tasks. With Test-time RAG’s, we are able to scale LLMs at context
lengths up to 8.8M million tokens even with BM25 while retaining performance on HotPot QA
(HQA). Natural Questions and PubMed included in table[/} table [8|of Appendix.

Model HQA(IM) HQA(SM) HQA(8.8M)
Name Embedding Model Exact Match F1 Score Exact Match F1 Score Exact Match F1 Score
GPT-4-0613 Baseline text-embedding-3-small 66.12% 34.25 64.29% 32,58 61.24% 31.66
GPT-4-0613 CE (Filtering only) text-embedding-3-small 69.41% 37.52 65.07% 34.29 62.22% 32.98
GPT-4-0613 CE (Filtering only) bm25 70.12% 38.19 67.36% 35.87 67.25% 36.22
GPT-4-turbo-2024-04-09 Baseline text-embedding-3-small 70.00% 48.14 63.88% 45.62 60.63% 38.96
GPT-4-turbo-2024-04-09 CE (Filtering only) text-embedding-3-small 73.06% 51.01 64.63% 47.30 63.00% 45.01
GPT-4-turbo-2024-04-09 CE (Filtering only) bm25 73.65% 53.79 70.38% 51.43 70.5% 49.9
Llama-2-7b-chat-hf-Baseline text-embedding-3-small 27.18% 11.20 26.56% 10.51 26.94% 11.41
Llama-2-7b-chat-hf CE (Filtering only) text-embedding-3-small 35.76% 12.46 32.56% 13.48 31.06% 14.43
Llama-2-7b-chat-hf CE (Filtering only) bm25 36.35% 12.65 33.65% 12.73 32.00% 12.72
Claude-3-Haiku-Baseline text-embedding-3-small 57.82% 21.44 55.56% 21.28 48.67% 21.65
Claude-3-Haiku CE (Filtering only) text-embedding-3-small 54.35% 42.57 51.04% 38.37 50.1% 37.91
Claude-3-Haiku CE (Filtering only) bm25 53.18% 44.53 52.59% 43.68 52.73% 44.27

4.4 QUERY REWRITING

Evaluations on query rewriting suggest material gains in accuracy, demonstrated in table[d] More
comprehensive context parsing and inclusion of an LLM’s parametric memory is observed in examples
fig.[B] fig.[9] fig.[I0} From a compute efficiency standpoint, the number of tokens processed by the
LLM is less when compared to just conditional embeddings (Filtering only) while improving
performance, due relevant context being found faster during the iterative query rewriting algorithm,
shown in fig.[6] Additionally, the number of documents shown to the LLM is upper bounded by
the top k set in conditional embeddings (Filtering only), establishing query rewriting as more token
compute friendly. As shown in table[5} the average number of query rewrites is minimal for correctly
answered questions in CRAG, supporting that the inclusion of less than 2 iterations of rewriting
results in less tokens processed when compared to conditional embeddings (Filtering only). To
isolate the query rewriting component of TTRAG from conditional embedding generation, we utilize
conditional embeddings (Filtering only) to retrieve out-of-the-box embeddings generated from text-
embedding-3-small during each iteration of query rewriting. We then benchmark against conditional
embeddings (Filtering only) without query rewriting alongside our standard baseline formulation.

Table 4: The performance gains in exact match accuracy from query rewriting are present
in both large and small models. GPT-3.5-turbo has approximately 175 billion parameters while
Llama2 and Llama3 have 7 and 8 billion parameters respectively. Therefore even small models
with significantly less reasoning capabilities (which directly correlates to the quality of rewriting)
concretely benefit from query rewriting.

Model CRAG
Name Embedding Model Exact Match F1 Score
GPT-3.5-0125 Query Rewrite text-embedding-3-small 30.04 % 23.53
GPT-3.5-0125 CE (Filtering only) text-embedding-3-small 28.94% 23.69
Llama-2-7b Query Rewrite text-embedding-3-small 21.18% 21.83
Llama-2-7b CE (Filtering only) text-embedding-3-small 20.33% 21.26
Llama-3-8B Query Rewrite text-embedding-3-small 23.47 % 20.77
Llama-3-8B CE (Filtering only) text-embedding-3-small 23.02% 20.25

4.5 CONDITIONAL COMPUTE

Evaluation for conditional compute is carried out independently per compute category. For key-value
retrieval task, when presented with an effective context window of 20 million tokens, our pipeline

Under review as a conference paper at ICLR 2025

Table 5: The number of documents processed to generate an answer with query rewriting is
strictly less than naively retrieving 5 documents via conditional embeddings (Filtering only). In
our evaluations each iteration of rewriting processes 3 documents.

Model Average Number of Rewrites
GPT-3.5-0125 1.22
Llama-2-7B 1.42
Llama-3-8B 1.31

CRAG: Query Rewriting

30 | 5000 5000, 5000, L s000

r 4800
254

F 4600

N
=)

CE [Filtering Only]
Query Rewriting
[4400 § —e~ Input Tokens Processed

R 4200

-
5}

r 4000

f 3800

Exact Match %
]
Average Input Tokens Processed Per Question

660

3600

GPT-3.5-turbo-0125 Uama-2-7b Uama-3-8b
Models

Figure 6: Query rewriting improves accuracy across closed and open sourced models and finds
golden documents faster. Due to the iterative structure of query rewriting, the answer converges
with a 20% reduction of tokens processed compared to conditional embeddings (Filtering only) and
with higher accuracy.

has an exact match score of 85.2%, which far exceeds the capabilities of available currently LLMs
at this context size. Table [I0] enumerates our latency and compute on the KV retrieval task. For
summarization, conditional compute achieves comparable results (32.21 F1 score and 8.65 ROUGE-L
score) while only processing 25k total tokens as opposed to the 171k tokens of context provided.
Table[IT]and fig. [TT| outline compute efficiency gains for summarization. When viewing aggregate
results displayed in fig.[12], conditional compute processes 10x less tokens on average, which is a
drastic efficiency gain in long-context settings.

5 CONCLUSION

In conclusion, this paper presents Test-time RAG, a novel system incorporating conditional embed-
dings, iterative query rewriting, and conditional compute. As a novel extension to classical RAG,
TTRAG addresses the challenges of incorporating vast, dynamic knowledge bases in personalized Al
applications. Test-time RAG enables more flexible and efficient use of long contexts, overcoming
the limitations of pre-indexing and static retrieval mechanisms. Our evaluation of TTRAG is two-
fold: we measure the performance of the system as a whole, then present ablations exploring the
individual contributions of each component across various knowledge-intensive, domain-specific, and
long-context benchmarks, including HotpotQA, Natural Questions, PubMed, QASPER, QuALITY,
and CRAG. Test-time RAG demonstrates consistent and substantial improvements in accuracy and
context-handling capabilities with varied base models in diverse settings, showcasing TTRAG’s
potential in scaling long-context processing to millions of tokens. By dynamically adapting at test
time, Test-time RAG empowers large language models to personalize and refine their responses based
on evolving user contexts, enhancing their utility in real-world, user-focused scenarios.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav Gulavani,
Alexey Tumanov, and Ramachandran Ramjee. Taming { Throughput-Latency} tradeoff in {LLM}
inference with {Sarathi-Serve}. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24), pp. 117-134, 2024.

Anthropic. Prompt engineering for claude’s long context window. 2023.

Manik Bhandari, Mingxian Wang, Oleg Poliannikov, and Kanna Shimizu. Recqr: Using recom-
mendation systems for query reformulation to correct unseen errors in spoken dialog systems. In
RecSys 2023, 2023.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206-2240. PMLR, 2022.

Noam Brown. Research, 2021. Conditional compute.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:

Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413-17426, 2021.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers, 2021. URL https:
//arxiv.org/abs/2105.03011.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering, 2019. URL https://arxiv.org/abs/
1909.061406l

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval, pp. 39-48, 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452-466, 2019. doi: 10.1162/tacl_a_00276. URL
https://aclanthology.org/Q19-1026.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

11

https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1909.06146
https://arxiv.org/abs/1909.06146
https://aclanthology.org/Q19-1026

Under review as a conference paper at ICLR 2025

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktédschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https:
//arxiv.org/abs/2005.11401.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context. arXiv preprint arXiv:2310.01889, 2023a.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023b.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023c. URL
https://arxiv.org/abs/2307.03172.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen,
Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel R. Bowman. Quality:
Question answering with long input texts, yes!, 2022. URL https://arxiv.org/abs/
2112.08608.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Pengjie Ren, Zhumin Chen, Zhaochun Ren, Furu Wei, Jun Ma, and Maarten de Rijke. Leveraging
contextual sentence relations for extractive summarization using a neural attention model. In
Proceedings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17, pp. 95-104, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450350228. doi: 10.1145/3077136.3080792. URL https:
//doi.orqg/10.1145/3077136.3080792,

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Found. Trends Inf. Retr., 3(4):333-389, April 2009. ISSN 1554-0669.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Boxin Wang, Wei Ping, Lawrence McAfee, Peng Xu, Bo Li, Mohammad Shoeybi, and Bryan
Catanzaro. Instructretro: Instruction tuning post retrieval-augmented pretraining. arXiv preprint
arXiv:2310.07713,2023.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. Advances in
Neural Information Processing Systems, 36, 2024.

Xiao Yang, Kai Sun, Hao Xin, Yushi Sun, Nikita Bhalla, Xiangsen Chen, Sajal Choudhary,
Rongze Daniel Gui, Ziran Will Jiang, Ziyu Jiang, Lingkun Kong, Brian Moran, Jiaqi Wang,
Yifan Ethan Xu, An Yan, Chenyu Yang, Eting Yuan, Hanwen Zha, Nan Tang, Lei Chen, Nicolas
Scheffer, Yue Liu, Nirav Shah, Rakesh Wanga, Anuj Kumar, Wen tau Yih, and Xin Luna Dong. Crag
— comprehensive rag benchmark, 2024. URL https://arxiv.org/abs/2406.04744,

12

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2112.08608
https://arxiv.org/abs/2112.08608
https://doi.org/10.1145/3077136.3080792
https://doi.org/10.1145/3077136.3080792
https://arxiv.org/abs/2406.04744

Under review as a conference paper at ICLR 2025

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018. URL |https://arxiv.org/abs/1809.09600.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. cobench: Extending long context
evaluation beyond 100k tokens, 2024. URL https://arxiv.org/abs/2402.13718,

Barret Zoph. Designing effective sparse expert models. In 2022 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), pp. 1044—1044. IEEE Computer Society,
2022.

13

https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2402.13718

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CONDITIONAL EMBEDDING EXAMPLE

We include an example in fig.[7, demonstrating a scenario where conditional embeddings excels over
traditional embedding methods.

Question: What band was the man who compiled the tracks for The Early
Years a part of when they were inducted into the Rock and Roll Hall of
Fame?

Without Conditional Embeddings:
Response: White Snake

With Conditional Embeddings:

Retrieved Documents: David Coverdale (born 22 September 1951) is an
English rock singer best known for his work with ... In 2016,
Coverdale was inducted into the Rock and Roll Hall of Fame as a member
of Deep Purple, giving one of the band$ induction speeches...
Response: Deep Purple

Ground Truth Answer: Deep Purple

Figure 7: Conditional embeddings correctly returns the golden document as the first document
(and therefore most similar/informative to answer user question) in the set of retrieved docu-
ments. Without conditional embeddings, the golden document is present near the end of the set of
retrieved documents, making it harder for the LLM to effectively utilize the relevant context as there
is an implicit bias towards tokens present at the beginning of context (Liu et al.| [2023b))

A.2 QUERY REWRITING EXAMPLES

We include empirical examples highlighting observed benefits of iterative query rewriting in fig.

fig.[9] and fig.[10]

Question: "Call Me Manana" is a song by a group that has sold how
many records?

Without Query Rewrite:
Response:Two million records

With Query Rewrite:

Rewritten Query: How many records has the German techno group
Scooter sold?

Response: Over 30 million

Ground Truth Answer: Over 30 million

Figure 8: Query rewriting allows for the LLM to incorporate relevant pre-training data with
provided context. The retrieved documents in both scenarios have no occurrence of ’Scooter’,
meaning this information must have been present in pre-training and was accessed through query
rewriting.

A.3 QUALITY RESULTS
We observe significant accuracy gains in table [6] when utilizing conditional embeddings on the

QuALITY dataset. We do not exclude questions tagged as difficult’ (questions where less than 50%
of the speed annotations by human evaluators were correct) in our evaluation (Pang et al., 2022).

14

Under review as a conference paper at ICLR 2025

Question: What was the 76ers' record the year Allen Iverson won MVP?

Without Query Rewrite:
Response: 71-71

With Query Rewrite:

Rewritten Query: What was the Philadelphia 76ers' record the year
Allen Iverson won the MVP award?

Response: 56-26

Ground Truth Answer: 56-26

Figure 9: Query rewriting allows for the LLM to parse context with higher efficacy by appending rele-
vant context to the query, aiding in retrieval. Conditional embeddings (Filtering only) hallucinates
a response while query rewriting appends the fact that the 76ers’ team is from Philadelphia,
facilitating the retrieval of golden documents and generation of the correct answer.

Question: Do you know how many people are in the weeknd?

Without Query Rewrite:
Response: No

With Query Rewrite:

Rewritten Query: How much is The Weeknd's net worth?

Response: The Weeknd is a solo artist, not a band, so there is only
one person in The Weeknd.

Ground Truth Answer: 1

Figure 10: The rewritten query is unrelated to the question yet it allowed the LLM to determine that
the Weeknd is an individual from the documents retrieved by the question about his net worth. The
search during retrieval expanded due to the rewritten question to grab relevant documents
which can contain ""hints'' of the answer to the original question.

A.4 NATURAL QUESTIONS RESULTS

To extend our suite of knowledge-intensive QA tasks, we additionally evaluate TTRAG on the Natural
Questions dataset in table[7] Natural Questions includes questions spanning multiple domains and
multi-hop questions (answer can only be synthesized by referring to multiple documents), which
often poses a challenge for retrieval based systems when coupled with large context sizes.

A.5 PUBMEDQA RESULTS

We additionally present results for PubmedQA in table |8| Although the domain specific context
provided per question in PubMedQA can fit within the context window of large context models,
filtering the context by relevance to the query leads to higher accuracy of generated responses

A.6 CONDITIONAL EMBEDDINGS IMPLEMENTATION DETAILS

Conditional embeddings contains two distinct components that are present in our experiments: CE
(Filtering only) and CE. CE (Filtering Only) applies retrieval over embeddings generated by a
pretrained embedding model such as text-embedding-3-small. CE as a whole encapsulates both
filtering and generation by generating conditional embeddings over a set of documents by passing
them through DistilBERT and then carrying out retrieval over these conditional embeddings. In our
experiments, we present CE (Filtering Only) as a benchmark to display the accuracy gains of targeted
relevant context in the prompt being superior naively providing a large block of context to the LLM.
The flow of CE (Filtering Only) is as follows: generate embeddings of query and documents with
pretrained embedding model and run similarity search between query and documents to fetch top k
similar documents. CE does the following: apply CE (Filtering Only) first to get a pre-filtered set of

15

Under review as a conference paper at ICLR 2025

Table 6: Context in QUALITY is a cohesive long block of text, inherently making all context
somewhat relevant to a query. Conditional embeddings clearly delineates fine grained distinctions
between documents pertaining to a similar topic and domain, resulting in a 6 % improvement
over baseline.

Model QuALITY
Name Embedding Model Exact Match F1 Score
GPT-3.5-0125 CE text-embedding-3-small 59.57% 55.97
GPT-3.5-0125 CE bm25 58.26% 54.37
GPT-3.5-0125 CE (Filtering only) text-embedding-3-small 59.13% 53.71
GPT-3.5-0125 CE (Filtering only) ~ bm25 55.22% 523
GPT-3.5-0125 Baseline text-embedding-3-small 53.48% 51.20
GPT-3.5-0125 Baseline bm25 52.17% 48.58

Table 7: Conditional embeddings (Filtering only) maintains high performance when handling up to
almost 10 million token context lengths, with a 3% improvement over baseline in open source
models.

Model NQA(IM) NQA(5M) NQA(9.6M)
Name Embedding Model Exact Match F1 Score Exact Match F1 Score Exact Match F1 Score
Gemini-1.5-Flash (Baseline) text-embedding-3-small 32.00% 28.25 38.05% 36.03 37.18% 34.32
Gemini-1.5-Pro (Baseline) text-embedding-3-small 38.00% 31.54 40.58% 39.30 39.44% 38.23
GPT-4-0613 Baseline text-embedding-3-small 45.65% 25.59 42.27% 24.70 42.90% 25.03
GPT-4-0613 CE (Filtering only) text-embedding-3-small 45.05% 26.52 44.62% 25.29 38.56% 24.06
GPT-4-0613 CE (Filtering only) bm25 27.93% 18.83 22.90% 14.88 20.51% 15.17
GPT-4-turbo-2024-04-09 Baseline text-embedding-3-small 45.95% 3391 47.45% 33.8 45.45% 31.93
GPT-4-turbo-2024-04-09 CE (Filtering only) text-embedding-3-small 47.75% 36.89 47.83% 35.01 43.53% 33.51
GPT-4-turbo-2024-04-09 CE (Filtering only) bm25 39.64% 32.15 36.26% 28.6 34.52% 25.25
Llama-2-7b-chat-hf-Baseline text-embedding-3-small 27.08% 13.55 22.58% 13.75 21.18% 14.09
Llama-2-7b-chat-hf CE (Filtering only) text-embedding-3-small 30.21% 17.02 25.43% 17.11 24.47% 16.19
Llama-2-7b-chat-hf CE (Filtering only) bm25 27.08% 16.13 15.37% 11.86 14.12% 11.67
Claude-3-Haiku-Baseline text-embedding-3-small 38.74% 2091 40.31% 22.65 37.71% 21.8
Claude-3-Haiku CE (Filtering only) text-embedding-3-small 45.05% 33.65 39.92% 32.98 40.34% 30.64
Claude-3-Haiku CE (Filtering only) bm25 35.24% 23.90 27.98% 21.03 27.40% 18.89

k documents, generate conditional embeddings for query and each document in this pre-filtered set
by passing through DistilBERT base model (uncased version), extracting last hidden state, masking
tokens, and averaging across sequence length dimension, and then run similarity search between
query and documents to fetch top similar documents among the pre-filtered set of documents. The
value-add of conditional embeddings is in capturing fine-grained semantic information. Therefore
this application of conditional embeddings is highly performant as we always conditionally embed
on k documents, which introduces very minimal latency and memory and also highlights that CE
delivers on capturing detailed semantics. Because each document retrieved in the top k set is highly
semantically related to the query, the observed gains from applying CE on this pre-filtered set imply
that CE is able to differentiate more detailed, relevant context within a set of documents that are all
initially viewed as related to the query.

A.7 EXACT SUBSTRING MATCHING

To objectively evaluate the performance of our Test-time RAG pipeline, we employ the Exact Match
Score as one of our primary evaluation metrics. This metric measures the precision of the model’s
output in replicating the ground truth answers, which is critical for assessing the effectiveness of
the retrieval and generation process in producing correct answers. We first normalize the model
output and the ground truth answers by processing the text to be lowercase and removing unnecessary
spacing and characters. After normalization, the exact match score is computed as follows:

* The normalized output is compared to the normalized ground truth. An exact match occurs
if the normalized strings are identical or one is contained in an other, reflecting that the
response generated by the model precisely matches the expected answer in content.

* The score is calculated by dividing the number of correct predictions (where the normalized
output matches the normalized ground truth exactly) by the total number of samples evalu-

16

Under review as a conference paper at ICLR 2025

Table 8: In settings where context is long yet constrained to a specific domain, test time
filtering still outperforms naively stuffing the prompt with full context. GPT-4-Turbo has a 128k
length context window, which easily accommodates the 5k context length for PubMedQAquestions.
However, conditional embeddings (Filtering only) leads to a 3.7 % lift in performance over baseline
GPT-4-Turbo.

Model PubMedQA

Name Embedding Model Exact Match F1 Score
GPT-4-turbo-2024-04-09 Baseline text-embedding-3-small 68.50% 542
GPT-4-turbo-2024-04-09 CE (Filtering only) text-embedding-3-small 72.20% 4.75
GPT-4-turbo-2024-04-09 CE (Filtering only) bm25 70.10% 4.74
Claude-3-Haiku-Baseline text-embedding-3-small 52.80% 2.85
Claude-3-Haiku CE (Filtering only) text-embedding-3-small 62.50% 37.22
Claude-3-Haiku CE (Filtering only) bm?25 57.40% 32.67

ated. This fraction is then expressed as a percentage to represent the proportion of responses
that were perfect matches to the ground truths.

A.8 QUERY REWRITING PROMPT

"Rewrite the user question by adding information provided in the documents to the rewritten question.
Return the answer only if it is found explicitly in the provided documents. Otherwise, return only the
rewritten question.

User Question: {query}

Documents: {top three}"

A.9 CoSsT CALCULATIONS

Cost = Input Token Cost + Output Token Cost

f sti A f Tokens i
Input Token Cost = Cost per million input tokens x (Number of Questions x Average Number of Tokens per Questlon)

1000000

L Number of ti Max Number of Output Tok R
Output token cost = Cost per million output tokens x (umber of Questions x Max Number of Output Tokens per esponse)

1000000

A.10 CoSsT EFFECTIVE

Another implication of our pipeline is its cost effectiveness. One implicit feature of Test-Time RAG
is that context processing is targeted as only relevant chunks are shown to the LLM, especially for
Question-Answering tasks. As a result, the average amount of tokens processed per generation is
significantly less than passing in large blocks of context. Because LLM API providers charge usage
based on tokens in and tokens out, large context tasks can incur compounding charges very quickly.
This is mitigated by the reduced token processing done in at all components of Test-Time RAG. We
display example costs for running our evaluations in[9} and demonstrate that Test-Time RAG attains
superior performance at a fraction of the cost.

Table 9: We demonstrate superior performance with all collective benefits of Test-Time-RAG
for 2.8x less cost when compared to naively running baselines on these datasets.

Dataset GPT-4-0613 Baseline Test-Time RAG w/ GPT-4-0613
HotpotQA $1890.94 $558.04
Natural Questions $417.77 $147.83
QASPER $146.34 $66.42

17

Under review as a conference paper at ICLR 2025

A1l

ADDITIONAL INFORMATION - CONDITIONAL COMPUTE

For space considerations, we have included performance of conditional compute in this appendix
section. We additionally present performance of conditional compute on the KV retrieval task
in fig. [[3] summarization task in fig. [TT] and display aggregate performance averaged across all
conditional compute tasks in fig.

Table 10: Conditional compute has lower latency and processes a lower order of magnitude of

input tokens when tackling KV retrieval queries.

Latency (s) Input Tokens Output Tokens
Mean P95 P99 Mean P95 P99 Mean P95 P99
Conditional Compute 7.29 8.01 8.75 | 227.67 239.0 241.0 23.76 28.0 30.0
Baseline 7.87 952 13.79 | 6987.0 7028.0 7039.02 | 2445 28.0 29.0

Table 11: Baseline methods for summarization process 5x more tokens and have comparable
latency to the iterative summarization process employed by conditional compute..

Latency (s) Input Tokens Output Tokens
Mean P95 P99 Mean P95 P99 Mean P95 P99
Conditional Compute 31.07 5521 71.62 | 20792.37 21184.35 21550.19 | 785.37 1177.35 1543.19
Baseline 24.87 50.12 54.66 171500 172692.8 173505.76 | 1816.8 1985.8 1998.76

Conditional Compute vs Baseline: Summarization

10°

104

103

102

Number of Tokens Processed(log scale)

Latency (seconds)

Tok:

Input Tok

(4]

wp

mmm Conditional Compute MEAN
mm Conditional Compute P95

Conditional Compute P99

mmm Baseline MEAN
mm Baseline P95

Baseline P99

Figure 11: Baseline methods for summarization process 5x more tokens and have comparable latency

to the iterative summarization process employed by conditional compute.

18

Under review as a conference paper at ICLR 2025

972
973
974
975
976
977
978
979 mmm Baseline

980 107 Conditional Compute
981

982 106

983
984
985 10°
986
987
988
989 - . ——
990

991 Figure 12: Aggregating key metrics across the different conditional compute tasks, we see that
992 on average, baseline methods process more tokens by a full order of magnitude, which becomes a
993 constraint at inference time in compute and performance for long context tasks.

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005 Conditional Compute vs Baseline: Synthetic KV Retrieval

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017 Latency (seconds) Input Tokens Output Tokens

1018

1010 Figure 13: The number of input tokens processed on KV retrieval tasks by conditional compute
1020 is allpost an orfler of magnitude less than baseline. Additionally, the entire conditional compute
. pipeline maintains lower latency.

1022
1023
1024
1025

Aggregated Conditional Compute Metrics Across Tasks

Values

104

Average Input Tok Pre A ge Output T

mmm Conditional Compute MEAN
mmm Conditional Compute P95
wam Conditional Compute P99
mmm Baseline MEAN

mmm Baseline P95

107 4 wem Baseline POQ

102 5

101 4

Number of Tokens Processed (log scale)

	Introduction
	Motivation
	Test-Time RAG
	Conditional Embeddings
	Iterative Query Rewriting
	Conditional Compute

	Experiments and Results
	Datasets, Models
	Test-Time RAG
	Conditional Embedding
	Query Rewriting
	Conditional Compute

	Conclusion
	Appendix
	Conditional Embedding Example
	Query Rewriting Examples
	QuALITY Results
	Natural Questions Results
	PubmedQA Results
	Conditional Embeddings Implementation Details
	Exact Substring Matching
	Query Rewriting Prompt
	Cost Calculations
	Cost Effective
	Additional Information - Conditional Compute

