
Word2vec to behavior: morphology facilitates the grounding of
language in machines.

David Matthews
University of Vermont

Sam Kriegman
University of Vermont

Collin Cappelle
University of Vermont

Josh Bongard
University of Vermont

forward,
backward,
stop,
cease,
suspend,
halt

...

...

...

...
haltforwardbackwardstop

Training Test
(zero-shot)

...

...

...

...

...

...

A
B

C E

D

...

...

...

...

...

...

Fig. 1. Overview of the method. A: The initial values of a robot control policy’s hidden layer is set by supplying the word2vec embedding associated
with a command such as ‘stop’ to one neuron in the input layer. The policy is then downloaded on to a robot, and the sensor data generated by its movement
is supplied to the remainder of the input layer (dotted arrow), further altering the hidden- and motor layers. After evaluation, the robot’s behavior is scored
against an objective function paired with the command, such as one that penalizes motion. The same policy is then evaluated four more times (two of
which are shown in B and C) against four other commands and objective functions. Policies are trained to maximize mean performance against all five of
these functions (D). After training, the best policy is supplied with a sixth, previously-unheard synonym of ‘stop’, and its behavior is scored against the
‘stop’ objective function (E) (youtu.be/MYegNCJ5bWU).

Abstract— Enabling machines to respond appropriately to
natural language commands could greatly expand the number
of people to whom they could be of service. Recently, advances
in neural network-trained word embeddings have empowered
non-embodied text-processing algorithms, and suggest they
could be of similar utility for embodied machines. Here we
introduce a method that does so by training robots to act
similarly to semantically-similar word2vec encoded commands.
We show that this enables them to act appropriately, after
training, to previously-unheard commands. Finally, we show
that inducing such an alignment between motoric and linguistic
similarities can be facilitated or hindered by the mechanical
structure of the robot. This points to future, large scale methods
that find and exploit relationships between action, language, and
robot structure.

I. INTRODUCTION

Using natural language to interact with machines has long
been a goal in AI research. Recently, word embeddings
such as word2vec have yielded significant advances in this
direction [1], [2]. These embeddings generate vector spaces
which accurately preserve semantic relationships between
words, and can then be used to address text classification
[3], sentiment analysis [4], [5], and other natural language-
based problems.

However, these approaches tend to disregard the role that
action and the body of an agent may play in generating and
understanding natural language. The link between action and
natural language has long been hypothesized in cognitive
science [6] and linguistics [7]. However, it was only recently
that neuroscience studies have provided data suggesting that
such a link exists [8]. For instance, Pulvemüller et al. have
shown that if stories are read to immobile subjects being
scanned by fMRI, their motor and sensor cortices exhibit
heightened activity [9].

In robotics, a long literature in helping robots ground
language in action exists [10]. For example, Steels et al.
reported a series of experiments in which robots collectively
construct their own syntax and grammar [11], while Schulz
et al. report on robots that construct a language to describe
spatial [12] and temporal [13] concepts. Matuszek et al.
[14] trained a parser on pairs of English commands and
corresponding control language expressions.

The word embedding approach is attractive as a data-
driven, rather than hypothesis-driven, method for enabling
machines to link natural language and action. Indeed, re-
cent such attempts have been reported. For example a
visual word2vec corpus has been trained which captures
semantic relationships between images rather than text [15],
and sound-word2vec similarly discovers semantic structure
among the sounds associated with words [16]. Jang et al.
demonstrated “grasp2vec”: a method for enabling robots to
autonomously learn object-centric representations that enable
recognition and grasping of objects without recourse to a pre-
defined feature set [17].

However, none of these methods attempt to align embod-
ied embeddings with word embeddings. In order to realize
robots that can respond appropriately to previously unheard
natural language, it would be useful if the robot’s learned
sensorimotor structure mapped on to natural language se-
mantic structure, and vice versa.

If so, robots should act similarly and appropriately when
they hear two similar words, even if they have not previously
heard one of those words.

We demonstrate a method that forges such an alignment
here. Briefly, we assign a unique objective function to sets
of similar action words, and then train robots to maximize

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

978-1-7281-4003-2/19/$31.00 ©2019 IEEE 4153

these functions while they “hear” the embeddings associated
with those words, along with their own sensor data. Evidence
that robots can successfully learn to align human language
semantic structure with the structure of their own felt expe-
rience is demonstrated by the fact that robots so trained act
appropriately when issued previously unheard words.

Finally, we have found that the mechanical design of the
robot can facilitate or obstruct the training algorithm’s ability
to forge this alignment: we found the method performed
worse or better for robots with different body plans. This
adds to a growing body of work that demonstrates that
an appropriate robot body plan choice can facilitate other
aspects of behavior generation in robots [18]–[22].

II. METHODS

A. The task.

Robots were optimized in simulation using Pyrosim1 to
perform three behaviors (move forward, move backward,
and stop movement) according to the embeddings of six
different input commands: ‘forward’, ‘backward’, ‘stop’,
‘cease’, ‘suspend’, and ‘halt’. Prior to optimization, one of
the last four commands (i.e., one of the synonyms of ‘stop’)
is randomly selected for testing and held out of the training
set. Robots are optimized according to their performance
summed across all five training commands.

The performance of a robot under the ‘forward’ and
‘backward’ commands was measured by their respective
displacement in the positive and negative x-axis of the
simulator, at the end of an evaluation period of 500 time
steps (with step size 0.05; i.e., 25 seconds of behavior). For
the remaining commands, performance was proportional to
the negative euclidean distance from the origin (the robot’s
starting point) at the end of simulation, thus rewarding robots
that move less.

Because robots were tested under an unheard synonym of
‘stop’, test error was measured as the final displacement of
the robot.

B. The controller.

The robots are controlled by recurrent neural networks
with three layers: a sensor layer, which is fully connected
to a self- and recurrently-connected hidden layer consisting
of five neurons, which are fully connected to a motor layer
(Fig. 2). The number of motor neurons and sensor neurons
vary with the morphology of each robot.

The sensor layer includes an auditory neuron that initial-
izes the controller’s hidden state as follows. Before sending
a robot to the simulator for evaluation, the target command
vector is fed serially through the auditory neuron and into
the recurrent hidden layer, one element after another, each
time updating the hidden neurons’ values.

After initializing the hidden neurons, their incoming
synapses from the auditory input neuron were removed, and
the sensor and motor neurons were attached. The robot was
then sent to the simulator with its initialized network (Fig. 4).

1Pyrosim is a python interface for building robots (and their neural con-
trollers) in Open Dyanamics Engine: github.com/mec-lab/pyrosim

...

...

...

Fig. 2. Neural network architecture. Controllers here contain four neuron
types: auditory (green; a), sensor (blue; si), hidden (orange; hi), and motor
(red; mi) neurons. Prior to behavior, the auditory neuron is attached to the
recurrent, hidden layer, and a command vector is fed in serially along the
auditory neuron’s synapses into the hidden layer. The synapses connecting
the auditory neuron to the hidden neurons are then detached, and the robot
is sent to the simulator with only the sensor, hidden, and motor neurons.
Robots here have between 0 and 4 sensors, and between 1 and 8 motors.

C. The robots.

1) The quadruped: The quadruped (Fig. 1) consists of a
rectangular abdomen, attached to which are four legs, each
composed of an upper and lower cylindrical object. The knee
and the hip joint of each leg contain a 1-DOF rotational hinge
joint which can flex inward or extend outward by up to 45
degrees away from its initial angle (Fig. 3C). Inside each
lower leg is a touch sensor neuron, which at every time step
detects contact with the floor: its value is either 0 (no contact)
or +1 (contact).

2) The minimal robot: The minimal robot (Fig. 3A)
consists simply of two cylinders joined end-to-end by a
rotational hinge joint. Like a single leg of the quadruped,
minimal robots have a single degree-of-freedom hinge joint.
However, unlike the quadruped’s legs, the minimal robot
has two touch sensors (one in each cylinder) as well as a
proprioceptive sensor that measures the angle of its joint.

3) The spherical robots: The spherical robots (Fig. 3B)
consist of a pendulum attached to a sphere’s top interior
wall. Some spherical robots have a pendulum which can
only swing through the xz plane (where z is the vertical
axis). These are referred to as 1DOF spherical robots. Other
spherical robots have two orthogonal joints rotating in both
the xz and yz planes. This version is referred to as a 2DOF
spherical robot. Some spherical robots have proprioception
(denoted as “spherical robots with sensors”) and others do
not (denoted as “without sensors”).

A B C

Fig. 3. Three robots: Minimal (A), spherical (B), and quadrupedal (C).

4154

TABLE I
COSINE SIMILARITY BETWEEN DIFFERENT COMMANDS IN THE

WORD2VEC EMBEDDING.

forward backward halt stop suspend cease
forward 1 0.42 0.15 0.13 0.11 0.02

backward 1 0.17 0.17 0.09 -0.01
halt 1 0.61 0.63 0.56
stop 1 0.38 0.50

suspend 1 0.57
cease 1

TABLE II
SAMPLE COSINE SIMILARITY BETWEEN COMMANDS IN THE WORD2VEC

EMBEDDING, AFTER RANDOMLY-PERMUTING THE VECTOR.

forward backward halt stop suspend cease
forward 1 0.03 0.06 0.05 0.04 -0.05

backward 1 0.09 -0.01 -0.00 -0.00
halt 1 -0.02 0.11 -0.05
stop 1 0.04 -0.01

suspend 1 -0.04
cease 1

TABLE III
MEDIAN (AND STANDARD DEVIATION) TRAINING PERFORMANCE,

WITH HOLM-BONFERRONI CORRECTION FOR 56 COMPARISONS.

Robot Control Word2vec P-Value
Quadruped 1.84 (0.07) 1.90 (0.49) p > 0.05
Minimal 5.30 (0.06) 5.43 (0.07) p > 0.05
1DOF Spherical
with sensors 10.74 (0.08) 11.22 (0.08) p < 0.05
1DOF Spherical
without sensors 11.48 (0.08) 11.20 (0.09) p > 0.05
2DOF Spherical
with sensors 10.55 (0.08) 10.84 (0.08) p > 0.05
2DOF Spherical
without sensors 10.61 (0.09) 10.33 (0.07) p > 0.05

D. The optimization algorithm.

Controllers were optimized using a standard evolutionary
algorithm: AFPO (Age-Fitness Pareto Optimization; [23]).
AFPO is a multi-objective optimization method that trains
populations of candidate solutions to maximize the objec-
tive function for the desired behavior, while simultaneously
minimizing ‘age’, a variable which roughly corresponds to
the amount of search time spent in a particular area of
design space. This latter objective aids in the prevention of
premature convergence.

Each independent evolutionary run started with a different
random seed, and consisted of a population of 50 robots,
optimized for 6000 generations. At each generation, modified
copies are made of each robot in the population by randomly
selecting a single synapse and perturbing it according to
the normal distribution with a mean of the current synapse
weight value, and standard deviation of the absolute value
of the current synapse weight.

E. The experimental treatment.

Prior to optimization, the vectors corresponding to each
command were obtained from the word2vec embedding.2

During optimization, a command vector was uploaded to the

2code.google.com/archive/p/word2vec

robot (as described in §II-B); then, the robot behaved and
was assigned a performance score (as described in §II-A).
The cosine similarities between pairs of the command vectors
are presented in Table I.

F. The control treatment.
There is a possibility for overfitting in our method due to

the unbalanced nature of the training set. Since the majority
of the training commands (three out of five) require the
robot to remain stationary, control policies could evolve
that keep the robot immobile by default, yet memorize a
movement response for the ‘forward’ command and another
for the ‘backward’ command. In this way, even if we observe
that the robot stays immobile when presented with the
held-out, fourth ‘stop’ synonym, the control policy causing
this behavior may have ignored the latent structure in the
command embeddings.

In order to assess whether such overfitting occurs, we
use the following control. At the beginning of each evo-
lutionary run, the vectors corresponding to each command
were obtained from the word embeddings vector space. Each
vector was then randomly permuted so that the distribution of
values in each new vector do not change, but their orderings
do (Table II). The resulting five permuted embeddings are
held constant over the course of that evolutionary run.
If the optimization method tends to yield overfit control
policies, they should similarly keep the robot immobile when
presented with the sixth, held-out ‘stop’ synonym, regardless
of the permutation.

If however the control policies exploit the latent struc-
ture in the embeddings and that structure is disrupted by
permutation, we should expect to see the control treatment
policies generate more movement in the robot, compared
to the experimental treatment policies, when both are pre-
sented with the held-out ‘stop’ synonym. In other words, the
control treatment policies should generalize worse than the
experimental treatment policies when presented with the test
command.

G. The hypothesis tests and correction.
For hypothesis testing, we use the Mann-Whitney U test

[24], a rank-based test of whether one of two random
variables is larger than the other.

We make a total of 56 pairwise comparisons in this paper.
With each comparison, the likelihood of incorrectly rejecting
a null hypothesis (i.e., making a Type I error) increases. Thus,
to control the family-wise error rate (the probability of one or
more false rejections of true hypotheses) we conservatively
adjust the rejection criteria of each individual hypothesis test
using the the Holm-Bonferroni (step-down) procedure [25].

III. RESULTS

Twelve hundred independent evolutionary trials were per-
formed in total: 100 for each of the experimental and control
treatments, for each of the six robot morphologies (Table III).

The 1200 run champions—the best robot from each
trial—are extracted in order to test for statistical differences
between the treatments, commands and morphologies.

4155

a : 'forward' (train) b : 'stop' (train) c : 'cease' (train)

d : 'backward' (train) e : 'suspend' (train) f : 'halt' (test)

g : 'forward' (train) h : 'halt' (train) i : 'stop' (train)

j : 'backward' (train) k : 'cease' (train) l : 'suspend' (test)

m: 'forward' (train) n : 'halt' (train) o : 'stop' (train)

0 100 200
Element Index

0
1

2
3

4Ne
ur

on
 ID

p : 'backward' (train) q : 'suspend' (train) r : 'cease' (test)

−1.0 −0.5 0.0 0.5 1.0
Activation State

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0s : Experimental Treatment

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0t : Control Treatment

−2 −1 0 1 2−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0u : Control Treatment

'forward'

'backward'

'stop' (train)

'stop' (test)

Fig. 4. Initialization and behavior of three quadrupedal controllers. The robot’s five hidden neurons were initialized with the six different command
vectors, prior to behavior, by feeding the vectors serially into the network (a-f). After the hidden layer is fully initialized (the rightmost column of a-f),
the robot behaves in closed-loop with feedback from its touch sensors (s; starting at the origin). s: This controller successfully generated correct behavior
for each of the word2vec training commands and also achieved low test error by suppressing movement when commanded to ‘halt’ even though ‘halt’ was
held out of the training set. On visual inspection of a-f, it seems as though neurons 0 and 4 encode motion, while the others (neurons 1-3) may encode
direction. t: When trained with randomly-permuted word2vec command vectors (see §II-F for details), this controller failed to yield correct behavior during
training: the robot remains close to the origin despite being rewarded to move ‘forward’ (g; pink trajectory in t). During testing, when commanded to
‘suspend’ (l; orange trajectory in t), the robot moved similarly to how it moved when commanded to go ‘backward’ (j; green trajectory in t). u: This
controller was successfully trained to generate appropriate behavior with randomly-permuted word2vec command vectors, but failed to generalize, and thus
behaved inappropriately when commanded to ‘cease’: the robot moves as though commanded to go backward (r resembles p; the blue trajectory follows
the green trajectory). These counterfactuals (g-r; t and u) indicate that successful controllers in the experimental treatment utilized the word2vec embedding
to achieve zero-shot generalization.

4156

E Move E Stop E Test C MoveC Stop C Test
0

100

101

102
Bo

dy
 L

en
gt

hs

a: 1DOF Ball (Sensors)

E Move E Stop E Test C MoveC Stop C Test
0

100

101

102

Bo
dy

 L
en

gt
hs

*
d: 1DOF Ball (No Sensors)

E Move E Stop E Test C MoveC Stop C Test
0

100

101

102 ***

e: 2DOF Ball (No Sensors)

E Move E Stop E Test C MoveC Stop C Test
0

100

101

102 ***

*** ***

b: 2DOF Ball (Sensors)

E Move E Stop E Test C MoveC Stop C Test
0

100

101

102

*** ***

*
c: Quadruped

E Move E Stop E Test C MoveC Stop C Test
0

100

101

102

f: Minimal

Fig. 5. The effect of morphology on symbol grounding. Median net displacement in body lengths of the run champions (the best robot from each
optimization trial) grouped by morphology and command meaning: “Move” denotes the commands ‘forward’ and ‘backward’ during training, “Stop” denotes
the training ‘stop’ commands, and “Test” denotes the test ‘stop’ command (i.e., test error). The experimental treatment (word2vec vectors) is denoted by
“E”, and the control treatment (randomly-permuted word2vec vectors) is denoted by “C”. For pairwise comparisons, we used the Mann-Whitney U test with
Holm-Bonferroni correction for 56 comparisons (see §II-G). The red significance brackets specifically denote a difference between the experimental and
control treatments in terms of zero-shot generalization. The presence of red brackets for some morphologies, but not for others, indicates that only certain
morphologies were able to align their sensorimotor structure with the word2vec embedding. Error bars denote 95% bootstrapped confidence intervals of
the median. A single asterisk denotes significance at the 0.01 level, two denote the 0.001 level, and three the 0.0001 level.

Fig. 4 traces the behaviors of three exemplar run cham-
pions that are representative of typical behaviors found by
the optimizer in the control and experimental treatments.
Under the control treatment, the optimizer yielded special-
ized robots that were unsuccessful at one or more of the
training behaviors and failed to “understand” the meaning
of the unheard synonym: they have high test error. Under
the experimental treatment, the optimizer yielded robots with
correct behavior on all three training commands and that
understood the meaning of the unheard synonym: they have
low test error.

Fig. 5 compares the average displacement of the run
champions under the different experimental conditions tested
here. Overall, within each morphology and treatment, the
optimizer found controllers that behaved correctly, during
training, under both the ‘move’ and ‘stop’ commands: Robots
moved significantly more when commanded to do so than
when commanded to ‘stop’ (green bars are significantly
higher than orange bars).

There was no significant difference between control and
experimental treatments, in any of the tested morphologies,
in terms of the final displacement of optimized robots
commanded to move (pairs of green bars in each panel are
of equal height). This implies that training performance of
the robots is not due to inherent properties of the word2vec
embedding; rather, it is due to the evolutionary algorithm.

In both treatments and in five of the six morphologies (but
not the quadruped) there is a significant difference between
the displacement of robots given the training and testing
‘stop’ commands (blue bars are usually higher than the
orange bar to their left). Thus, the robots did not completely

understand the meaning of the command ‘stop’. This was
somewhat expected given the distance between the variants
of ‘stop’ in the word2vec space (Table II). However, for
four of the six morphologies, robots optimized with the
experimental treatment moved less under the testing ‘stop’
command than those optimized with the control treatment
(red significance brackets in Fig. 5). Thus, morphology
affects the grounding of the ‘stop’ commands.

However, the training set is unbalanced—there are three
commands for ‘stop’ and only two for ‘move’—so it is
possible that robots are overfitting to the stop commands and
thus display little motion during testing without learning the
semantic meaning of the commands.

To control for this, we retrained the quadruped from
scratch on a new, balanced set of commands (Fig. 6), where
each task (‘stop’, ‘forward’, and ‘backward’) was trained
using two commands, yielding a training set size of six.
The two commands were chosen for each task such that the
cosine similarity between them was similar to that of the
stop synonyms previously used. We chose to use ‘forward’
and the misspelled ‘foward’ for the ‘forward’ task; and
‘backward’ and ‘backwards’ for the ‘backward’ task. For the
‘stop’ task, we removed the ‘halt’ command, leaving ‘stop,
‘suspend’ and ‘cease’, one of which was randomly held-out
at the beginning of each evolutionary trial for testing, and
the others were used for training. (Also, the reward function
paired with the ‘stop’ commands was changed to be inversely
proportional to the robot’s total movement, thus protecting
against the perverse instantiation of oscillating around the
origin.)

This alternate training set is balanced on a per-task level,

4157

E Move E Stop E Test C MoveC Stop C Test
0

100

101

Bo
dy

 L
en

gt
hs

*** *** ***
**

Quadruped Balanced

Fig. 6. Per-task balanced training sets. To control for the possibility that
generalization to the unheard “stop” command is actually due to overfitting
behavior to the more prevalent “stop” commands, we retrained controllers
for the quadruped from scratch using a balanced training set, consisting
of two commands for each task: two “stop” commands, two “forward”
commands, and two “backward” commands. Note that while this alternate
training set is balanced per task, it is unbalanced in another way: there are
four “move” commands but only one “stop” command. The significance
levels under these alternative data were identical to those of the original (per-
task unbalanced) regime (Fig. 5c). Just as in Fig. 5, the median displacement
of the run champions is shown during training and under the unheard ‘stop’
command (“Test”), for the experimental treatment (E; word2vec vectors) and
the control treatment (C; randomly-permuted word2vec vectors). The seven
pairwise comparisons made here are included in the 56 total comparison
count used to correct p-values throughout the paper (details in §2G).

however it is unbalanced on another level: there are four
commands for ‘move’ and only two for ‘stop’.

As seen in Fig. 6, under the per-task balanced training
sets, the optimizer still found controllers that generated
correct behavior during training. There was no statistically
significant difference between the control and experimental
treatments in terms of training performance.

Under the control treatment, the quadruped moved sig-
nificantly more for the test ‘stop’ command than the train-
ing ‘stop’ commands. In fact they moved almost as much
during the test ‘stop’ command as in their training ‘move’
commands. Thus the control treatment, with the per-task
balanced training set, yielded controllers that were overfit
to the ‘move’ commands.

Under the experimental treatment, however, there was
no significant difference between the movement of the
quadruped under the training and test ‘stop’ commands.
This suggests that, despite the higher prevalence of ‘move’
commands in the per-task balanced training data, controllers
learned latent structure of the embedding, and used this
understanding to correctly generalize to the unheard ‘stop’
synonym.

IV. DISCUSSION

One limitation of this work is that the command vector
is loaded serially into the controller, prior to behavior,
and is potentially overwritten by proprioception and touch
sensor data during behavior. Ideally, robots would be able
to hear the commands throughout their evaluation periods,
therefore allowing them to modulate their interpretation of
the command based on action. Further, this would allow
dynamic communication with the robot.

One way to achieve this is with wider controller architec-
tures: each element in the vector commands could have its
own input synapse. Then, the entire vector could influence
action at each time step, and be updated during behavior.
Moreover, the controllers should also be deeper such that
more complex (nonlinear and hierarchical) latent structure
of the embedding can be learned.

Additionally, unlike other end-to-end methods that are
mostly automated, the method presented here still requires
much manual intervention: the investigator must create an
objective function for each grouping of action synonyms. To
minimize such intervention, in future work we wish to in-
vestigate whether a small set of semantically and motorically
orthogonal objective functions can be created that enables the
robot to generalize not just to unheard synonyms of training
commands, but also to novel sequences of commands.

Finally, these experiments were conducted with simulated
robots. In future work, we would like to investigate how
well this technique extends to physical robots. To this end,
we have already performed some initial work to investigate
how well the use of vector spaces for training robots works
on physical systems.

A. The physical robot.

Our physical robot system (Fig. 7) is a 12 DOF quadruped
powered by a Raspberry Pi 3B+ and 12 14-gram Micro
Servos. The main body is laser cut out of wood and holds the
Raspberry Pi, an I2C PWM Driver, a 9DOF IMU, and a DC
buck converter for power regulation. We provide power via
an umbilical cord. Each of the four legs is constructed from
3D printed parts and contains three joints: a hip, a knee, and
an ankle.

The robot is controlled by the on-board computer with
programs written in Python. The Python code interfaces
with the robot sensors and motor driver over I2C to actuate
the motors. The sensor data can be added to the artificial
recurrent neural network which is modeled by the Raspberry

Fig. 7. The physical 12 DOF quadruped.

4158

-150

0

150 a. b.

-150

0

150 c. d.

-150 0 150

-150

0

150 e.

-150 0 150

f.

-150

0

150 g. h.

-150

0

150 i. j.

-150 0 150

-150

0

150 k.

-150 0 150

l.

'forward' 'backward' 'stop' (train) 'stop' (test)

Fig. 8. The trajectories of the physical robot. Twelve controllers were optimized in simulation and then transferred to the physical quadruped. The
movement of the physical robot is traced (in millimeters from the origin) for both the training and testing commands; final position at the end of the
evaluation period of 3 seconds is denoted by square endpoints, colored differently for each command. The left panel (a-f) contains six run champions from
the experimental treatment, and the right panel (g-l) contains six run champs from the control treatment.

Pi. An SSH connection over WiFi is used to perform main-
tenance, and configure and start the robot.

We created a new simulated quadruped without sensors
and with a slightly modified morphology to more closely
match the morphology of the physical robot. Controllers
were optimized in simulation under the same conditions as
the original three robots. We then transferred six optimized
controllers from each treatment to the physical robot and
recorded the motion using computer vision. The movement
patterns of these controllers are shown in Fig. 8.

Overall, simulated behaviors did not transfer adequately to
reality. However, some of the controllers were able to exhibit
movement denoting a minimally successful sim2real transfer.
For some of the controllers (e.g., Fig. 8b,g,j), the physical
robot moved in different ways for the ‘forward’, ‘backward’,
and ‘stop’ commands, thus exhibiting the rudiments of suc-
cessful sim2real transfer. Future work will more thoroughly
investigate the use of vector spaces and existing sim2real
methods [26]–[29] for training physical systems to ground
language.

V. CONCLUSIONS

In this work we have presented a method for inducing an
alignment between similarities among sensor data generated
by robot movements and the semantic similarities between
the word2vec-encoded commands that induced those actions.

This method yields control policies that cause robots to
move appropriately to previously-unheard natural language
commands. Further, we have found that this method can be
facilitated or frustrated by the particular mechanical structure
of the robot employed. In future work we plan to evolve
robot body plans, searching for those that make it even
easier to induce such alignments. This work thus suggests
not just that relationships between action, human language,
and embodiment can be created in machines, but provides
an empirical method for exploring and strengthening these
relationships to yield robots that could be commanded by
non-expert human handlers.

SOURCE CODE

github.com/davidmatthews1uvm/2019-IROS

ACKNOWLEDGEMENTS

The authors would like to thank Eve Wight and Ryan
Joseph for their help in creating the physical robot. This work
was supported by NSF award EFRI-1830870 and DARPA
contract HR0011-18-2-0022. Computation was provided by
the Vermont Advanced Computing Core.

REFERENCES

[1] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

4159

[2] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[3] J. Lilleberg, Y. Zhu, and Y. Zhang, “Support vector machines and
word2vec for text classification with semantic features,” in 2015 IEEE
14th International Conference on Cognitive Informatics & Cognitive
Computing (ICCI* CC). IEEE, 2015, pp. 136–140.

[4] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning
sentiment-specific word embedding for twitter sentiment classifica-
tion,” in Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2014,
pp. 1555–1565.

[5] B. Dickinson and W. Hu, “Sentiment analysis of investor opinions on
twitter,” Social Networking, vol. 4, no. 03, p. 62, 2015.

[6] A. Clark, “Language, embodiment, and the cognitive niche,” Trends
in cognitive sciences, vol. 10, no. 8, pp. 370–374, 2006.

[7] G. Lakoff and M. Johnson, Metaphors we live by. University of
Chicago press, 2008.

[8] V. Gallese and G. Lakoff, “The brain’s concepts: The role of the
sensory-motor system in conceptual knowledge,” Cognitive neuropsy-
chology, vol. 22, no. 3-4, pp. 455–479, 2005.

[9] F. Pulvermüller and L. Fadiga, “Active perception: sensorimotor cir-
cuits as a cortical basis for language,” Nature reviews neuroscience,
vol. 11, no. 5, p. 351, 2010.

[10] M. Selfridge and W. Vannoy, “A natural language interface to a robot
assembly system,” IEEE Journal on Robotics and Automation, vol. 2,
no. 3, pp. 167–171, 1986.

[11] L. Steels, “Evolving grounded communication for robots,” Trends in
cognitive sciences, vol. 7, no. 7, pp. 308–312, 2003.

[12] R. Schulz, A. Glover, M. J. Milford, G. Wyeth, and J. Wiles,
“Lingodroids: Studies in spatial cognition and language,” in 2011 IEEE
International Conference on Robotics and Automation. IEEE, 2011,
pp. 178–183.

[13] S. Heath, R. Schulz, D. Ball, and J. Wiles, “Lingodroids: Learning
terms for time,” in 2012 IEEE International Conference on Robotics
and Automation. IEEE, 2012, pp. 1862–1867.

[14] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to
parse natural language commands to a robot control system,” in
Experimental Robotics. Springer, 2013, pp. 403–415.

[15] S. Kottur, R. Vedantam, J. M. Moura, and D. Parikh, “Visual word2vec
(vis-w2v): Learning visually grounded word embeddings using ab-
stract scenes,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4985–4994.

[16] A. K. Vijayakumar, R. Vedantam, and D. Parikh, “Sound-word2vec:
Learning word representations grounded in sounds,” arXiv preprint
arXiv:1703.01720, 2017.

[17] E. Jang, C. Devin, V. Vanhoucke, and S. Levine, “Grasp2vec: Learning
object representations from self-supervised grasping,” arXiv preprint
arXiv:1811.06964, 2018.

[18] J. Bongard, “Morphological change in machines accelerates the evo-
lution of robust behavior,” Proceedings of the National Academy of
Sciences, vol. 108, no. 4, pp. 1234–1239, 2011.

[19] J. C. Bongard, A. Bernatskiy, K. Livingston, N. Livingston, J. Long,
and M. Smith, “Evolving robot morphology facilitates the evolution
of neural modularity and evolvability,” in Proceedings of the 2015
annual conference on genetic and evolutionary computation. ACM,
2015, pp. 129–136.

[20] Z. Mahoor, J. Felag, and J. Bongard, “Morphology dictates a
robot’s ability to ground crowd-proposed language,” arXiv preprint
arXiv:1712.05881, 2017.

[21] S. Kriegman, N. Cheney, and J. Bongard, “How morphological devel-
opment can guide evolution,” Scientific reports, vol. 8, no. 1, p. 13934,
2018.

[22] S. Kriegman, S. Walker, D. Shah, M. Levin, R. Kramer-Bottiglio,
and J. Bongard, “Automated shapeshifting for function recovery in
damaged robots,” in Proceedings of Robotics: Science and Systems,
2019.

[23] M. Schmidt and H. Lipson, “Age-fitness pareto optimization,” in
Genetic Programming Theory and Practice VIII. Springer, 2011,
pp. 129–146.

[24] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals
of mathematical statistics, pp. 50–60, 1947.

[25] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian journal of statistics, pp. 65–70, 1979.

[26] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through
continuous self-modeling,” Science, vol. 314, no. 5802, pp. 1118–
1121, 2006.

[27] J. Zhang, L. Tai, P. Yun, Y. Xiong, M. Liu, J. Boedecker, and
W. Burgard, “Vr-goggles for robots: Real-to-sim domain adaptation
for visual control,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 1148–1155, 2019.

[28] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, 2019.

[29] R. Kwiatkowski and H. Lipson, “Task-agnostic self-modeling ma-
chines,” Science Robotics, vol. 4, no. 26, 2019.

4160

