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Abstract

In this paper, we present a novel application of structural causal models (SCMs)
and the abduction-action-prediction procedure [1] to a time series setting in the
context of a real world problem in the pharmaceutical industry. We aim to estimate
counterfactuals for the sales volume of a drug that has been impacted by the entry
to the market of a competitor generic drug. We employ encoder-decoder based
architectures, applying a conditional variational autoencoder and also introducing
the use of conditional sparse autoencoders, which had never been used in coun-
terfactual literature. The proposed methodology requires availability of historical
event and event-less time series and has the advantage of not relying on control
covariates that may be unavailable, while clearly outperforming the basic coun-
terfactual estimate of a forecast. We evaluate our approach using our company’s
real-world sales dataset, as well as synthetic and semi-synthetic datasets that mimic
the problem context, demonstrating its effectiveness. We have successfully applied
this model in our company, providing useful information for business planning,
investment allocation and objectives setting.

1 Introduction

In many industries, knowing the impact of a competitor entry in sales is critical for business planning,
investment allocation and objectives setting. The Pharma industry is notably affected when a drug’s
patent expires and Loss of Exclusivity (LOE) [2] takes place, prompting competitors to launch
cheaper generic versions of the drug. This usually results in a dramatic decrease in the sales volume
of about a 60-70% in the first years [2], severely affecting the company’s revenues. Thus, accurately
assessing the market impact of generic drug entries is of utmost importance.

Time series counterfactual estimation is an essential tool to understand an event’s impact on time
series data. It is applied to situations where an event or a treatment at a certain point in time alters
a time series’ trajectory, and consists in inferring, once given the observed post-event data, the
counterfactual data, i.e., the time series that would have taken place if the event had not occurred. In
the case of an event such as the entry in the market of a generic competitor drug, a straightforward
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approach for counterfactual estimation is to simply use a time series forecasting model trained on
historical data which was unaffected by this type of event, and predict the next steps of our pre-event
time series according to the model. The main problem of this approach is that its estimations rely
solely on pre-event data, lacking the ability to incorporate relevant information of the post-event facts
that could have affected the counterfactual time series.

For example, let us imagine that few months after a generic drug enters into the market to compete
with our target brand, an extreme weather event creates a problem in logistics which results in lower
than expected sales in the whole pharmaceutical market. With a forecast based model we would
estimate regular, not reduced, counterfactual sales volume despite the fact that, in all probability, our
counterfactual time series would have been affected by the aforementioned happening. This would
create a misconception of the impact that would be problematic for business analysis and planning.

The main method for time series counterfactual estimation that avoids this problem and captures
information from post-event observations is synthetic control [3, 4]. Causal Impact [5], a powerful
approach based on synthetic control principles, estimates counterfactuals with two data information
sources: the pre-event part of the target time series, and control time series that were predictive of
the target one prior to the intervention and have not been affected by it. This method, contrary to
the previously exposed forecast based one, seizes information of post-event observations. The fact
that it relies on time series other than the target one, however, can be a limitation in some cases.
In our industrial context, for instance, the control data that can be accessed do not usually produce
satisfactory results.

Based on our industrial application in the generics problem, in this paper we show that is possible
to use SCMs and the abduction-action-prediction procedure [1] to infer time series counterfactuals,
seizing information of post-event observations while not requiring access to any time series other than
the target one at inference time, i.e., capturing the post-event information directly from the target time
series. One limitation of our approach is that it requires availability of historical event and event-less
time series. Previously, several works like [6, 7, 8, 9] have used SCMs to infer counterfactuals, but
these methods have never been applied to time series settings. We use autoencoder based architectures
for SCMs modelling and for the abduction step, and show that sparse autoencoders [10], not used
previously in counterfactual literature, can perform better than the commonly used VAEs [11]. In
appendix A, we provide an extensive analysis of the related work, both regarding synthetic control
approaches for time series counterfactuals and SCMs for other types of counterfactuals.

This paper is structured as follows: Sec. 2 presents some background on SCMs. Sec. 3 details our
methodology, covering description of our problem setting and the explanation of our approach. In
Sec. 4, we introduce the datasets, models and metrics, and we discuss the results. Finally, Sec. 5
presents the conclusions of this work.

Our main contributions are: 1) a solution for an industrial problem in the pharmaceutical market
based on SCMs and recent advances in causal machine learning, 2) an adaptation to a time series
setting of the abduction-action-prediction procedure, always applied, until now, to other types of data,
and 3) the use of sparse autoencoders for counterfactual estimation.

2 Background on Structural Causal Models

The proposed approach for counterfactual estimation is based on the J. Pearl definition of counterfac-
tual [1], which can be operationalized by employing SCMs.

A SCM M := (S, P (U)) consists of a collection S = {fi}Ni=1 of structural assignments ai :=
fi(ui;pai), where pai is the set of parents of ai (its direct causes), and a joint distribution P (U) =∏N

i=1 P (Ui) over mutually independent exogenous noise variables (i.e. unaccounted sources of
variation) [6]. SCMs allow to perform counterfactual queries in a three-step procedure [1]: 1)
Abduction: predict the ‘state of the world’ (the exogenous noise u) that is compatible with the
observed data a, i.e., infer PM(U | a); 2) Action: perform an intervention (e.g. do(Ai := ãi)) to
the counterfactual SCM which corresponds to the desired manipulation, which generates the modified
counterfactual SCM M̃ := Ma,do(ãi) = (S̃, PM(U | a)); 3) Prediction: compute the quantity of
interest based on the distribution entailed by the modified counterfactual SCM, PM̃(a).
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3 Method

3.1 Problem Setting of our Industrial Application

Next, we define the structure of the time series setting over which our models perform counterfactuals.
Problem Statement. Let X = {xi}Ni=1 be a set of observed time series xi = (xi

1, . . . , x
i
T ) with T

steps, with T = T1 + T2. Some of these time series are impacted by an event ei at time step T1 + 1
(the time series that are not impacted by the event are also assigned a value ei that represents the
lack of impact. Thus, we can divide the time series in a pre-event segment hi = (hi

1, . . . , h
i
T1
) with

T1 steps and a post-event segment yi = (yi1, . . . , y
i
T2
) with T2 steps. From now on, we will denote

as H , E and Y the variables referring, respectively, to the pre-event time series, the event and the
post-event time series, and as h, e and y to their specific realizations, often distinguishing among
factual values (ef and yf ) and counterfactual values (ecf and ycf ). For an observation

{
hi, eif ,y

i
f

}
,

our objective is to estimate the counterfactual values yi
cf in the hypothetical scenario where E had

taken a different value (E = eicf ) while the rest of the factors of variation of Y were maintained.

Given the previously defined variables, we define a counterfactual function f such that ycf =

f(h, ef ,yf , ecf ). Then, our task is to find an approximated counterfactual function f̂ that, similarly
to f, estimates ŷcf .

In our company, we count on a large amount of historical sales volume data for many products and
countries, a significant amount of which have been impacted by a generics entry to the market. Thus,
from these data, we can build a time series dataset of a selected number of steps T which consists
of non impacted time series, obtained by applying a T steps rolling window to the non impacted
historical data, and impacted time series, obtained by taking, once selected a number of pre-event
steps T1 and post-event steps T2 (with T1 + T2 = T ), the windows that match this selection in the
impacted historical time series.

E

H

Y Uy

Figure 1: Problem setting’s computa-
tional graph. Solid (and dashed) arrows
depict influences on post-event time
series Y in the unconfounded (con-
founded) setting, and dotted double ar-
rows indicate a bidirectional relation-
ship via the abduction step. Grey circles
and solid (and dashed) arrows represent
the causal graphs of the confounded
(unconfounded) setting.

In our counterfactual setting, E and H are the parents of
Y , and we consider datasets with two structures: 1) H
being parent of E, becoming a confounder (confounded
setting), and 2) no direct relation existing among H and
E (unconfounded setting). On the other hand, H and E
will be always intervened (H to its same factual value h
and E to the counterfactual value ecf ). Therefore, only
for the variable Y it will be necessary to estimate a struc-
tural assignment fy and to abduct its exogenous noise Uy,
responsible for its variation once given E and H . Thus,
it is not necessary to treat E and H as random variables
generated by an exogenous noise susceptible to be abducted
(and, in the confounded case, generated also by their par-
ents). This makes counterfactual estimation in both the
confounded and the unconfounded settings equivalent in a
practical level. In our industrial application, where LOE
occurs at a legally determined time unrelated to other fac-
tors that affect or are affected by the sales, out data can
be considered unconfounded. However, we test our ap-
proach for both unconfounded and confounded synthetic
and semi-synthetic datasets that imitate the main features of our market problem. Figure 1 shows the
computational and the causal graph of our problem. For the models that we present in this work, we
assume that our variables data generating process follow a causal graph like the one shown in figure
1, with no hidden confounders, and also positivity.

3.2 Encoder-Decoder Based Models for Counterfactual Estimation in our Problem Setting

Several approaches have been used for SCM modelling and counterfactual estimation for high dimen-
sional settings. While some recent works use diffusion models [12], autoencoder based approaches
are the most extended and effective. Next, we describe how our problem setting counterfactuals can
be estimated using encoder-decoder architectures, assuming the graphs in figure 1.
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Figure 2: Scheme of encoder-decoder based methods for counterfactual inference, both in training
and counterfactual inference phase.

Counterfactual estimation process. Considering the abduction-action-prediction procedure and
our counterfactual problem setting, it is possible to define two trainable functions that, together,
allow to estimate a counterfactual ŷcf once given h, yf , ef and ecf . We will refer to the first of
these functions as an encoder Eϕ, with trainable parameters ϕ, which outputs either the location and
scale parameters of a (usually multivariate) latent distribution P (Z|h, ef ,yf ) = Eϕ(h, ef ,yf ), or
directly a latent variable z = Eϕ(h, ef ,yf ). Z is a latent representation that should allow the second
of our trainable functions, which we call the decoder Dθ with trainable parameters θ, to estimate
counterfactuals ŷcf = Dθ(z,h, ecf ). Figure 2 illustrates this process. In terms of the approximated
counterfactual function mentioned in 3.1, we can express our functions as:

ŷcf = f̂(h, ef ,yf , ecf ) = Dθ(Eϕ(h, ef ,yf ),h, ecf ). (1)

In the case where the encoder outputs the parameters of the latent distribution, the value z will be
obtained via sampling from that distribution. There is a parallelism between this encoder-decoder
setting and the abduction-action-prediction procedure. If we transfer the terminology of SCMs to our
time series problem setting, we have that abduction step would consist in inferring PM(Uy|h, ef ,yf ),
which is analogue to our encoder estimating a conditional distribution of Z or directly its value.
Here, Z is analogue to Uy, even if there can not be a complete identification among these variables
[13]. Then, the decoder (that can be identified with the structural assignment fy) inferring ŷcf would
correspond simultaneously to the action and the prediction steps, where we first set the modified
SCM M̃ = Mh,ef ,yf ;do(E=ecf ) and then the result ŷcf is obtained as a sample of M̃.

Limitations of regular AEs. If we train a conditioned regular AE, like in figure 2, with only the
reconstruction loss, and try to estimate counterfactuals, the results will not be satisfactory, as Z
will account for all the factors of variation of Y , and the conditioners will barely be used. To avoid
that, some regularization technique over Z needs to be added to reduce the capacity of Z to seize
information and force the model to use conditioners. Next, we explain the two encoder-decoder based
models that we use to estimate counterfactuals.

Our models. First, we apply a conditional VAE (CVAE), with a KL [14] regularization term, to
infer counterfactuals according to the previously defined process. Being CVAE a reasonable option
to generate counterfactuals, some relevant problems exist. For example, the model can ignore,
completely or partially, its conditioning C. Some of the techniques that can be used to reduce
the capacity of Z, such as increasing the weight of KL or reducing the dimensionality of latent
space, have severe consequences on the reconstruction capabilities, which also affect the quality
of the counterfactuals estimations. Even without these techniques, the reconstruction capacity of
VAEs is often poor, specially if we compare it to regular AEs [15]. For these reasons, we propose
CSAE, a novel model for counterfactual estimation based on sparse autoencoders, that adds an
L1 regularization term over Z to the regular reconstruction loss, limiting the capacity of Z to
capture information, thus forcing the model to use conditionings. With this model, we maintain the
reconstruction capacity of a regular autoencoder, adapting it to estimate sound counterfactuals. In
appendix B, we provide a complete explanation of CVAE and CSAE.
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4 Experimental Section

4.1 Datasets for Counterfactual Estimation

To assess the efficacy and validate the dependability of our techniques, we utilize multiple time series
datasets exhibiting various characteristics. In counterfacual literature, there is the general problem
of evaluation: as, in real world data, we do not have access to counterfactual ground truths, it is not
possible to directly evaluate counterfactual models. Two alternatives exist to overcome this issue: the
use of metrics that do not directly measure similarity among counterfactual estimations and ground
truths but desirable properties of counterfactuals, which we address in 4.2, and the use of synthetic
or semi-synthetic datasets, where we control the data generating process, or at least a part of it, and
therefore have access to the counterfactual ground truths which allow to apply traditional metrics.
Thus, we employ, apart from our property dataset, other datasets that imitate our industrial setting of
generic competitor drugs entering into the market and causing severe changes in sales, but where
counterfactual ground truths are known. All datasets are divided into time series with an event at the
same given time step (e = 1) and those without (e = 0). Next, we describe them:
Real world dataset. This dataset shows the monthly sales of our company and has been built as
explained in 3.1. We take 12 months as pre-event time steps and 30 months as post-event time steps.
This is a private dataset as it contains company specific information.
Synthetic datasets. Dataset of time series with 30 steps that initiate always at value 0, have a trend
that stems from a uniform distribution [-0.1,0.1] (meaning that this amount is added at each step),
a drop of 0.7 in the step 20 in case of series with event, and an additional change at any randomly
selected post-event step, with a value chosen uniformly within a range from -0.7 to 0.7. This value
represents the effect of a happening that affects the time series both in case of event and without
event, whereas the previous drop of 0.7 represents the effect of the main event. Besides, a Gaussian
noise with variance of 0.1 is added to each step to make the time series more realistic. As can be
noticed, the only difference in the generating process of these data for time series with and without
event is the drop of 0.7, which allows to generate at the same time a time series with or without event
and its counterfactual ground truth. There are two versions of this dataset: 1) Unconfounded, where
the presence or absence of event is completely random for every time series, and 2) Confounded,
where the probability of featuring an event follows a Bernouilli distribution with p = (t+ 0.1)/0.2,
there t is the trend.
Semi-synthetic dataset. This dataset is based in Rossmann Store Sales dataset [16], a public dataset
from a Kaggle competition. It shows the daily sales of Rossmann drug stores from 2013 to 2015. We
simulate a situation where, the first Monday of every march from 2013 to 2015, there is an event that
affects half of the stores (e.g., it could be a promotion, a marketing campaign, etc.) and multiplies the
sales by 1.1 the first day, 1.2 the second day, and 1.3 the rest of the days during three weeks. We use
the four weeks previous to the first Monday of march of each year as pre-event time series, and the
next three weeks as post-event time series. This is an unconfounded dataset.

Table 1: Results for time series datasets with both settings ef = 0 and ef = 1 over 10 random seeds.
We measure MAE and MBE with respect to the counterfactual ground truth and the total and altered
steps differences. Symbol ∼ means that the best results are those closest to the specified value.

Metric Method Synthetic 0 Synthetic 1 Conf. synth. 0 Conf. synth. 1 Semi-synth. 0 Semi-synth. 1 Real world 0 Real world 1

cf MAE ↓
LSTM .199± .005 .198± .005 .199 ±.003 .201 ±.004 .101± .004 .080± .002 – –
CVAE .144± .021 .137± .014 .145 ±.007 .187 ±.017 .105± .005 .083± .004 – –
CSAE .069 ± .004 .068 ± .009 .090 ± .030 .087 ± .012 .062 ± .004 .055 ± .003 – –

cf MBE ∼ 0
LSTM .001 ± .011 .001 ± .014 -.001 ± .010 -0.016 ± .016 .003± .004 .002 ± .004 – –
CVAE −.067± .019 .067± .024 .051 ±.017 .126 ± .028 .011± .010 −.011± .009 – –
CSAE .002± .008 .006± .016 .043 ± .048 -.041 ± .029 -.001 ± .004 .002 ± .003 – –

Total Steps ∼ 1
CVAE .457 ± .091 .443 ± .066 .450 ±.038 .460 ± .040 .037 ± .011 .045 ± .110 .899 ± .024 1.372 ± .070
CSAE .940 ± .037 ..932 ± .069 .922 ± .045 .939 ± .056 .760 ± .046 .747 ± .042 .845 ± .255 1.192 ± .105

Altered Steps ∼ 1
CVAE .388 ± .097 .360 ± .090 .241 ±.018 .246 ± .021 .109 ± .017 .109 ± .015 .312 ± .016 .710 ± .021
CSAE .865 ± .009 .821 ± .059 .889 ± .043 .860 ± .029 .304 ± .015 .461 ± .009 .556 ± .213 .774 ± .094

4.2 Evaluated Metrics

To evaluate our methods, we use various metrics. Mean Absolute Error (MAE) and Mean Bias
Error (MBE) are employed to compare estimations with ground truths in synthetic and semi-synthetic
datasets, as counterfactual ground truths exist solely for these datasets. MAE is a direct measure
of how good our estimations are, while MBE allows to detect biases. We also consider additional
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metrics that evaluate some interesting properties of counterfactuals and do not require a ground truth,
being then applicable to the real world dataset. Next, we present the Added Variations metrics.

Added Variations. We introduce this metric to evaluate how a counterfactual estimation responds
to changes in the observations. The core idea is that, for an accurate method, in the case that we
introduce variations in the post-event factual time series, the model should understand that they are
the effect of some process that has nothing to do with the event and, therefore, should reflect those
variations in the counterfactual estimate. This metric is implemented as follows: for each time series
to be evaluated, several positive and negative values in the order of the data values are chosen; for
each of this values, several windows of few consecutive steps from the post-event time series are
selected and the chosen value is added to those steps. After that, a counterfactual estimate is obtained
for every altered time series and it is compared to the counterfactual estimate of the non-altered
time series. Two quantities are obtained: 1) Total difference, that takes into account the difference
among the altered counterfactual and the base counterfactual in all the steps, and 2) Altered steps
difference, which takes into account the difference among the altered counterfactual and the base
counterfactual only in the steps affected by the alteration. These quantities are then divided by the
expected difference (the product of the alteration value and the number of affected steps). Thus,
ideally, the final results for both total difference and altered steps difference metrics should be 1. The
final results are obtained by averaging all calculations. For a more formal definition, see Appendix C.

4.3 Models and Baselines

We compare the counterfactual estimations of CVAE and CSAE for all the metrics described in 4.2,
and we add as a benchmark, for the MAE and MBE comparison with ground truth counterfactuals,
an LSTM-based conditional forecast model that has as inputs only the pre-event time series and the
value of the event. Thus, it can be used as a time series counterfactual estimator that does not take
into account post-event values. Metrics like Added Variations only make sense for methods that use
the abduction-prediction-action procedure.

Even if synthetic control methods would be a clear alternative to our approach, we exclude them
from the evaluation because we are not working with control time series and, even if we could create
synthetic datasets with control data to evaluate MAE, the results would depend much more on how
predictive the control time series are than on the models themselves, making the comparison useless
to evaluate method performances. This means that, in real applications, the selection of the optimal
model should strongly depend on the control data, in case it exists. In our industrial context, existing
control data has shown to not be of enough quality to raise the possibility of using these methods.

The encoder and decoder architectures of both CVAE and CSAE are shared, and are based on 1D
convolutional and transposed convolutional layers, in a setting inspired in the VAE architecture for
time series generation proposed in [17]. All methods have been implemented with TensorFlow [18],
using an Adam optimizer with a learning rate of 10−4. Other hyperparameters of CVAE and CSAE
such as dimensionality of latent space or the factor of their respective regularizations (KL for CVAE
and L1 for CSAE) are particular for each dataset and have been chosen after an optimization process.

4.4 Results

Table 1 shows the results of time series experiments for the datasets described in Sec. 4.1. Even if
we are interested in counterfactuals for impacted time series, we evaluate the two possible settings:
0 when ef = 0 and ecf = 1, and 1 when ef = 1 and ecf = 0. All values have been obtained after
performing 10 experiments with different random seeds, and the intervals correspond to the standard
deviation. We see that, in counterfactual MAE metric, CSAE has the best results with an important
difference. MBE metric allows to detect biases in the counterfactual estimations. For example, when
using CVAE, the inferred counterfactual of time series are often biased towards the actual values.
This is reflected in MBE metrics, where CSAE and LSTM model have similar values. In the Added
Variations metrics, CSAE outperforms the other models in all settings except real world 0.
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5 Conclusion

In this paper, we have adapted the theory of SCMs and the abduction-action-prediction procedure to
the time series counterfactual of generic drug entry to the market. Two autoencoder based models
have been proposed: CVAE, well known in counterfactual literature although not previously applied
to time series problems, and CSAE, a new model for counterfactual inference. While CVAE shows
some superiority with respect to the simple forecast counterfactual estimation in some cases, CSAE
clearly outperforms both the forecast and CVAE, and makes the abduction-action-prediction process,
under-explored in time series counterfactuals, an interesting option for cases similar to ours. The
convenience of our approach over synthetic control techniques will depend on the availability and
informative capacity of control data and on the amount of historical event and event-less time series.
In our industrial context, CSAE has been applied to estimate the market impacts of generic entries,
becoming a useful tool for the business planning area.
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A Extended Related Work

A.1 Time Series Counterfactuals

Several methods have been proposed for time series counterfactual estimation and causal impact
inference in the presence of an event or treatment. Difference in differences [19] is a common
approach which requires some control time series that are not affected by the event to estimate
counterfactuals. This method features some important limitations like the Parallel Trends Assumption.
Synthetic control [3, 4], which generalizes Difference in differences and overcomes some of its
limitations, selects several available time series, other than the target one, that have been not affected
by the event, computes some weights based on their pre-event similarity to the target time series,
and then estimates the counterfactual as the weighted average of the post-event control time series.
Causal Impact [5] is closely related to the synthetic control approach, and its main difference is that it
estimates counterfactuals through a model that predicts the target from control series trained with
pre-event observations. Matrix Completion Methods [20] are an alternative that can be viewed as a
combination of synthetic control and the more classical unconfoundedness approach [21, 22].

Apart from the previous methods, there are other works which perform time series counterfactuals
and have some relation with ours. [23] proposes a method for time series explanation based on
counterfactuals. However, their authors use forecast methods that do not take into account actual
observations and perform something more similar to an intervention. [24] imputes counterfactual
outcomes for treated observations to estimate the average treatment effects (ATEs) using techniques
like fixed effects counterfactual estimator, interactive fixed effects counterfactual estimator or matrix
completion estimator. [25] develops a method that leverages the assignment of multiple treatments
over time to estimate treatment effects in the presence of multi-cause hidden counfounders. [26] uses
adversarially balanced representations to estimate counterfactuals of treatments at random time steps,
which differs from our setting as we do not need to model random time steps events. [27] proposes a
method to detect causal relationships in time series. [28] also proposes a method for counterfactual
estimation with time varying treatments and counfounders based in transformers. ARCO [29] uses
a combination of machine learning and time series econometrics techniques to estimate the causal
effects of a treatment on an outcome variable in a panel time series data setting when a single unit is
treated and control group is not available.

A.2 Causal Deep Leaning

In recent years, many works have appeared that mix the structural causal model (SCM) theory
[1] and deep learning techniques to estimate counterfactuals. Apart from the ones mentioned in
the paper, based on VAEs [11] and, to a lesser extend, normalizing flows [30], other interesting
approaches have been proposed. For example, [31] and [32] use GANs [33], while [34] uses diffusion
models [35]. [13] presents some useful metrics to evaluate counterfactuals, which are used in our
paper to evaluate the models. [36] uses deep neural networks to disentangle object shape, object
texture and background in natural images. [37] utilizes class prototypes in order to find interpretable
counterfactual explanations. [38] uses multiple competing models in order to retrieve a set of
independent mechanisms from a set of transformed data points in an unsupervised way.

There are other interesting works about causal representation learning with deep generative models
that do not tackle directly the problem of counterfactual inference but are interesting to take into
account. [39] and [40] combine GANs [33] with SCMs, basing a generator architecture on an
assumed causal graph. However, this method lack tractable abduction capabilities and therefore
cannot generate counterfactuals, reaching only the second rung of the causal ladder [1]. [41] proposes
a method that learns a causal model, including the directed acyclic graph (DAG), over latent variables
from data, and generates counterfactual samples. [42] uses a GAN based approach to address the
specific problem of spurious correlations in medical datasets.

Finally, there are other interesting counterfactual estimation approaches that are applied to tabular
data. Among them, [43], based in GANs, and [44], based in Deep Twin Networks, similar to siamese
networks [45], stand out.
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B Extended Models Explanation

The loss function for a classic CVAE [11] with a β penalty [46], which corresponds to the evidence
lower bound (ELBO), for a datum x and a conditioning c, is given by:

LCVAE(θ, ϕ) = Eqϕ(z|x,c)[log pθ(x|z, c)]− β KL[qϕ(z|x, c) ∥ p(z))] (2)

where both qϕ(z|x, c) and pθ(x|z, c) are a set of dimension-wise independent normal distributions
parameterised, respectively, by an encoder neural network Eϕ and a decoder neural network Dθ,
p(z) is an isotropic normal prior distribution, KL is the Kullback–Leibler divergence [14] and β is a
penalization over KL [46]. In the model training, the ELBO function is maximized with respect to
parameters of the neural networks using the re-parametrization trick to sample from the approximate
latent posterior: z = µϕ(x, c) + αϕ(x, c)⊙ ϵz ∼ N (0, I).

Based on the time series setting and the encoder-decoder counterfactual estimation method described
in the main paper, it is possible to generate a counterfactual sample ŷcf by encoding an observation
ŷf and its parents h and ef , i.e. obtaining the normal distribution qϕ(z|yf ,h, ef ), where position and
scale parameters come from the encoder: µϕ, αϕ = Eϕ(yf ,h, ef ), then sampling the latent posterior
from this distribution: z ∼ qϕ(z|yf ,h, ef ), and finally decoding it along with the counterfactual
event ecf : ŷcf ∼ pθ(yf |z,h, ecf ). Notice that, in a practical level, the counterfactual will be
decoded from the latent sample in a deterministic way: ŷcf = Dθ(z,h, ecf ).

Our proposed model, the Conditional Sparse Autoencoder (CSAE), is trained with the following loss
function:

LCSAE(x) = |x− x̂| − λ
∑
i

|zi| (3)

where x is the input variable, zi are the elements of the latent space vector z = Eϕ(x, c) with c being
the conditioning, λ is the hyperparameter of the penalty term, which in this work we have chosen to
be L1, and x̂ is the reconstruction term which stems from the decoder: x̂ = Dθ(z, c).

As in the case of CVAE, the framework described in 3.2 allows to generate a counterfactual sample
ŷcf by encoding an observation ŷf and its parents h and ef . In this case, we have z = Eϕ(yf ,h, ef ),
and then ŷcf = Dθ(z,h, ecf ). Also similarly to CVAE, there is a parallelism among the abduction-
action-prediction scheme and how CSAE performs counterfactuals; thus, z would make the function
of the abducted exogenous noise and the action refers to the introduction of the counterfactual parents
in the decoder instead of the factual ones.

C Added Variations Equations

Let y = {yt} , t ∈ T be the post-event time series over which we want to perform counterfac-
tuals, h its correspondent historical time series previous to the event, ef the (factual) event, and
ŷcf = f̂(y,h, ef , ecf ), where f̂ is a counterfactual function and ecf is the counterfactual event, its
correspondent counterfactual estimation. Then, we consider a time series A = 0...0, vA...vA, 0...0
with T steps, where vA is the value of the alteration which is added only to a certain number
of consecutive steps. Let yA = y + A be the altered time series, then ŷA

cf would be its cor-
respondent counterfactual estimation. We consider that, if our counterfactual model is correct,
alterations in the factual time series should be reflected in the counterfactual time series. Thus, ideally∑

i ŷ
A
cf(i) − ŷcf(i) =

∑
i Ai = nA · vA, where nA is the number of steps affected by the alteration

in A. Taking into account that we use different time series A with different values nA and vA, we
can express total differences metric for a single time series y (TD) as:

TD =

〈∑
i ŷ

A
cf(i) − ŷcf(i)

na · vA

〉
A

, (4)

and altered step differences (ASD) as

ASD =

〈∑
i ŷ

A
cf(i) − ŷcf(i)

na · vA
Ii∈sA

〉
A

, (5)
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where sA is the set of altered steps (those with value vA and not 0) in A and I is the indicator function.
We see that, ideally, the result of these averages over the different alteration schemes should be 1.
The results given in the paper are the averages of these metrics over all the time series in the test set.
The parameters nA, sA and vA are particular for every dataset and can be seen in the code.

12


	Introduction
	Background on Structural Causal Models
	Method
	Problem Setting of our Industrial Application
	Encoder-Decoder Based Models for Counterfactual Estimation in our Problem Setting

	Experimental Section
	Datasets for Counterfactual Estimation
	Evaluated Metrics
	Models and Baselines
	Results

	Conclusion
	Acknowledgements
	Extended Related Work
	Time Series Counterfactuals
	Causal Deep Leaning

	Extended Models Explanation
	Added Variations Equations

