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Abstract

Traditional approaches to learning fair machine learning models often require rebuilding
models from scratch, generally without accounting for potentially existing previous models.
In a context where models need to be retrained frequently, this can lead to inconsistent model
updates, as well as redundant and costly validation testing. To address this limitation, we
introduce the notion of controlled model debiasing, a novel supervised learning task relying on
two desiderata: that the differences between new fair model and the existing one should be (i)
interpretable and (ii) minimal. After providing theoretical guarantees to this new problem,
we introduce a novel algorithm for algorithmic fairness, COMMOD, that is both model-
agnostic and does not require the sensitive attribute at test time. In addition, our algorithm
is explicitly designed to enforce (i) minimal and (ii) interpretable changes between biased and
debiased predictions—a property that, while highly desirable in high-stakes applications, is
rarely prioritized as an explicit objective in fairness literature. Our approach combines a
concept-based architecture and adversarial learning and we demonstrate through empirical
results that it achieves comparable performance to state-of-the-art debiasing methods while
performing minimal and interpretable prediction changes.

1 Introduction

The increasing adoption of machine learning models in high-stakes domains—such as criminal justice (Klein-
berg et al., 2016) and credit lending (Bruckner, 2018)—has raised significant concerns about the potential
biases that these models may reproduce and amplify, particularly against historically marginalized groups.
Recent public discourse, along with regulatory developments such as the European AI Act (2024/1689), has
further underscored the need for adapting AI systems to ensure fairness and trustworthiness (Bringas Col-
menarejo et al., 2022). Consequently, many of the machine learning models deployed by organizations are,
or may soon be, subject to these emerging regulatory requirements. Yet, such organizations frequently in-
vest significant resources (e.g. time and money) in validating their models with the assistance of domain
experts before deploying them at scale (see, e.g., (Mata et al., 2021) for dam safety monitoring and (Tsopra
et al., 2021) for precision medicine), to ensure their performance and trustworthiness. As new regulatory
constraints emerges for these models, the ability to make these models comply with new constraints while
minimizing the need for revalidation has thus become critically important.

The field of algorithmic fairness has experienced rapid growth in recent years, with numerous bias mitigation
strategies proposed (Romei & Ruggieri, 2014; Mehrabi et al., 2021). These approaches can be broadly
categorized into three types: pre-processing (e.g.,(Belrose et al., 2024)), in-processing (e.g.,(Zhang et al.,
2018)), and post-processing (e.g., (Kamiran et al., 2010)), based on the stage of the machine learning pipeline
at which fairness is enforced. While the two former categories do not account at all for any pre-existing biased
model being available for the task, post-processing approaches aim to impose fairness by directly modifying
the predictions of a biased classifier: this naturally imposes some kind of consistency between the new, fair
model and the old, biased one. However, these methods are generally deemed to achieve lower performance,
and the changes performed are generally not traceable.
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Motivated by these considerations, in this paper we consider a new paradigm, proposing to frame algorithmic
fairness as a model update task. The goal is thus to enforce fairness through small and understandable
updates to a pretrained model, presumably biased, in order to facilitate model monitoring. For this purpose,
we introduce the notion of Controlled Model Debiasing, based on two intuitive desiderata: (i) changes between
the new model and the existing one should be minimal, and (ii) these changes should be understandable.
We stress the fact that requiring minimal updates ensures that we change as few existing decisions as possible,
which preserves model stability, reduces the operational burden of re-validation, and maintains user trust in
settings where consistency is critical. At the same time, enforcing interpretable updates means each model
change can be clearly explained to domain experts and stakeholders—facilitating faster audit cycles, clearer
accountability, and easier troubleshooting when fairness constraints interact with real-world business rules.
Our formulation combines assumptions from both post-processing (e.g., (Kamiran et al., 2010)) and in-
processing (e.g., (Zhang et al., 2018)) approaches, proposing to learn a new fair model by leveraging a
previously trained biased one. After providing theoretical guarantees on the solution and feasibility of this
new proposed problem, we introduce COMMOD (COncept-based Minimal MOdel Debiasing), our method to
address it. Leveraging the fields of concept-based interpretability (Alvarez Melis & Jaakkola, 2018; Koh et al.,
2020b) and fair adversarial learning (Zhang et al., 2018; Grari et al., 2021), COMMOD is a model-agnostic,
interpretable debiasing method that aims to improve fairness in an interpretable way, while minimizing
prediction changes relative to the original model. Through experiments, we demonstrate that our method
achieves comparable fairness and accuracy performance to existing algorithmic fairness approaches, while
requiring fewer prediction changes. Additionally, we show that COMMOD enables more meaningful and
easier-to-understand prediction changes, enhancing its utility in practice. To summarize, our contributions
are as follows:

• We introduce a new notion of Controlled Model Debiasing, which aims to account for a previously
trained model by performing minimal and interpretable updates to mitigate bias (Section 3). To the
best of our knowledge, we are the first to address interpretability directly in the updating process.
Previously, only post-hoc interpretation of the debiasing process (e.g., (Ţifrea et al., 2023)) has been
explored.

• We provide two theoretical guarantees for the proposed problem: the formulation of the Bayes-
Optimal Classifier in a fairness-aware setting and the feasibility of the problem in the general setting
(Section 4).

• We introduce a new method, COMMOD, to address the new optimization problem in a model-
agnostic, fairness-unaware setting (Section 5). We validate its performance through experiments on
classical fairness datasets, showcasing its debiasing efficacy and ability to perform fewer and more
interpretable changes (Section 6).

2 Background and notation

Let X ⊆ Rd be an input space consisting of d features and Y an output space. In a traditional algorithmic
fairness framework in supervised learning, we want an algorithm that outputs Ŷ ∈ Y such that Ŷ is unbiased
from a sensitive variable S, only available at training time. For the sake of simplicity, we focus in this paper
on a binary classification problem where Y = {0, 1} and for which also the sensitive attribute S takes values
on a binary sensitive space S = {0, 1}.

2.1 Group fairness

Over the years, several notions of fairness have been proposed in the literature to define whether or not
a variable Ŷ is unbiased from a sensitive variable S ((Dwork et al., 2012; Hardt et al., 2016; Jiang et al.,
2020)). In this paper, we focus on two of the most used ones: Demographic Parity (Calders et al., 2009) and
Equalizing Odds (Hardt et al., 2016).
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2.1.1 Demographic Parity

A classifier satisfies Demographic Parity (DP) if the prediction Ŷ is independent from sensitive attribute S.
In the case of a binary classification, this is equivalent to P(Ŷ = 1 | S = 0) = P(Ŷ = 1 | S = 1). Hence,
Demographic Parity can be measured using the P-rule:

P-Rule = min
(
P(Ŷ = 1 | S = 1)
P(Ŷ = 1 | S = 0)

,
P(Ŷ = 1 | S = 0)
P(Ŷ = 1 | S = 1)

)
.

2.1.2 Equalizing Odds

A classifier satisfies Equalizing Odds (EO) if the prediction Ŷ is conditionally independent of the sensitive
attribute S given the actual outcome Y . In the case of a binary classification problem, this is equivalent to
P(Ŷ = 1 | Y = y, S = 0) = P(Ŷ = 1 | Y = y, S = 1), for all y ∈ {0, 1}. Hence, Equalizing Odds can be
measured using the Disparate Mistreatment (DM) (Zafar et al., 2017):

∆T P R = |TPRS=1 − TPRS=0|, ∆F P R = |FPRS=1 − FPRS=0|,

where TPRS=s = P(Ŷ = 1|Y = 1, S = s), FPRS=s = P(Ŷ = 1|Y = 0, S = s), and s ∈ {0, 1}. In the rest
of the paper, we use DM = ∆T P R + ∆F P R.

2.2 Mitigation strategies

Bias mitigation algorithms are generally grouped into three different categories, based on when the debiasing
process is carried on in the machine learning pipeline (Romei & Ruggieri, 2014). In particular, pre-processing
methods (e.g. (Zemel et al., 2013)) modify the training data such that they are unbiased with respect to
S. In-processing methods (e.g. (Zhang et al., 2018)) aim to train a new, fair, classifier by integrating some
fairness constraints in the optimization objective. Finally, post-processing methods aim to achieve fairness
by adjusting the predictions Ŷ f (or the predicted probabilities) of an already existing model f : X → Y. As
such, a notion of predictive similarity between these two sets of predictions often being optimized, either
directly (Jiang et al., 2020; Nguyen et al., 2021; Alghamdi et al., 2022) or indirectly through heuristics (Kami-
ran et al., 2018). However, rather than an assumed end-goal, this objective generally remains a proxy for the
true goal of optimizing accuracy, as the true labels Y are generally assumed to be unavailable at inference
time in the post-processing setting. Furthermore, these approaches generally suffer from several limitations,
such as not being model-agnostic (Calders & Verwer, 2010; Kamiran et al., 2010; Du et al., 2021), or re-
quiring access to the sensitive attribute at test time (Hardt et al., 2016; Pleiss et al., 2017), which greatly
hurt their practical use. On this topic, we provide a review of existing post-processing approaches and their
limitations in Table 2 in Appendix.

3 Controlled model debiasing

Let us now consider a context where a model f : X → [0, 1] that outputs each input x ∈ X to a predicted
probability P(Y = 1|X = x). Suppose now this model needs to be updated into a fairer model g while
trying to maintain the accuracy of f but make it fairer with respect to a specific fairness definition discussed
in Section 2.1. As discussed in Sec. 1, blindly training g can be harmful for several reasons. First, Krco
et al. (2023) have shown that some bias mitigation approaches performed needlessly large numbers of pre-
diction changes for similar levels of accuracy and fairness. Yet, a large number of inconsistent decisions may
negatively impact users’ trust, as shown by Burgeno & Joslyn (2020) in the context of weather forecast.
On top of this, beyond statistical testing, models in production may undergo extensive testing by domain
experts Tsopra et al. (2021). In this context, being able to understand the changes from one model to the
other would be crucial to not being forced to undergo all the testing again, in addition to increasing expert
trust. Driven by the above-mentioned considerations, we introduce the notion of Controlled Model Update,
which is based on the following notions of Interpretable and Minimal updates.
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3.1 Interpretable updates

To facilitate the adoption of a new model g, we propose to generate explanations that describe how the
debiasing process modified the old model f . Contrary to traditional XAI methods (see, e.g. (Guidotti et al.,
2018) for a survey), rather than explaining the decisions of the model g, our aim here is to generate insights
about the differences between f and g. An intuitive solution to this problem would be to first train a fair
model and then generating explanations for these differences in a post-hoc manner, akin to (Renard et al.,
2024). However, post hoc interpretability methods, in general, are often criticized for their lack of connection
with ground-truth data (Rudin, 2019; Laugel et al., 2019). Therefore, in order to ensure better trust in the
new model, we pursue the direction of self-explainable models (Alvarez Melis & Jaakkola, 2018), generating
global explanations for the differences between g and f while learning the predictive task.

3.2 Minimal updates

The constraint of ensuring that the new model remains as similar as possible to the initial one can be directly
added to the training objective (e.g. the one in (Zhang et al., 2018)). In particular, to the usual optimization
problem of fairness, we added a constraints that control the probability for a prediction Ŷ f to change label
after the debiasing process. We emphasize once again that making minimal changes to a biased model is
beneficial in cases where the model has already been validated based on user needs. Significant updates to
make the model fairer might risk no longer satisfying those needs, requiring once again a costly validation.
We then frame our problem in a traditional algorithmic-fairness way, in which the self-explainable model g is
required to be accurate and fair. On top of these constraints, g is required to be similar to f according to
a distance function distϕ : [0, 1]× [0, 1]→ R≥0, where distϕ(f, g) = EX∼D[ϕ(f(X), g(X))]. The combination
of these desiderata allows us to understand what changes are required from a biased model to become fairer
focusing on minimal adjustments.

Let fair(·) be the fairness criteria (e.g. Demographic Parity or Equalizing Odds). Further, let us define the
predictions of the biased model f and edited model g as Ŷ f = 1f(X)>0.5 and Ŷ = 1g(X)>0.5 respectively. We
can then formalize our optimization problem through the following Controlled Model Update objective:

min Acc(Ŷ , Y )
s.t. fair(Ŷ ) ≥ τ

distϕ(f, g) ≤ p

(1)

where τ ∈ R+ and p ∈ R. One could also notice that, by fixing ϕ(f, g) = |1(f>0.5) − 1(g>0.5)|, the distance
becomes distϕ(f, g) = P(Ŷ f ̸= Ŷ ). Through the paper, this is the distance we will refers to in our exper-
iments, but a brief discussion on other possible distances (i.e. different ϕ) is reported in Section 5.1 and
Appendix D.4. Observe that setting p = 0, i.e. forbidding any prediction change to happen, imposes g = f .
On the contrary, the more p increases and the more g is free to differ from f and, ideally, to reach higher
fairness scores. When p = 1, Eq. 1 becomes a classical algorithmic fairness learning problem. Notice also
that the interpretability is all carried by the self-explainable model g itself, and hence it will be not explicitly
appear in the optimization problem of Equation 1. We will discuss our self-explainable model g in Section
5.2.

4 Theoretical guarantees on the minimal update problem

In this section, we present two theoretical contributions to the problem formalized in Eq. 1, where we used
as distance distϕ(f, g) = P(Ŷ f ̸= Ŷ ). First (Sec. 4.1), we show that it is possible to define the Bayes Optimal
Classifier of the problem in the fairness-aware setting. Then, in Section 4.2, we assess the feasibility of the
problem in general, giving guarantees on the trade-off between fairness and number of prediction changes.
All proofs can be found in Appendix B.
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4.1 Result 1: Bayes-optimal classifier in a fairness-aware setting

Let (X, S, Y, Ŷ f ) ∼ Djnt be a joint distribution on X × {0, 1} × {0, 1} × {0, 1}, where X is the instance,
Y the target feature, S the sensitive variable, and Ŷ f the output of the black-box classifier. Let D be the
distribution over (X, Y ), D̄ a suitable distribution (DP or EO) over (X, S) and D∗ a distribution over (X, Ŷ f ).
We want to show that despite the new constraint on the number of changes, our optimization problem in Eq. 1
still has an analytical solution (i.e. the Bayes-optimal classifier (BOC)) in a fairness aware setting knowing
the true distributions above mentioned. To do so, we leverage the work of (Menon & Williamson, 2018), who
defined the BOC in the traditional fairness setting, relying on a reformulation of the optimization problem
using the notion of cost-sensitive risk1. For what concerns the fairness constraint, they show (Lemma 3) that
P-Rule(g) ≥ τ is equivalent to CSbal(g, D̄, c̄) ≥ k, where CSbal(g, D̄, c̄) = (1− c̄) ·FNR(g; D̄)+ c̄ ·FPR(g; D̄)
is the balanced cost-sensitive risk and c̄ = 1/(1 + τ).
Following the same idea, we first establish the equivalence between the constraint on the number of changes
and a cost-sensitive risk:

Lemma 4.1. Pick any random classifier g. Then, for any p ∈ [0, 1],

P(Ŷ f ̸= Ŷ ) ≤ p⇔ CSbal(g;D∗, c∗) ≤ p,

with CSbal(g;D∗, c∗) = (1− c∗) · FNR(g;D∗) + c∗ · FPR(g;D∗)2and c∗ = P(Ŷ = 1).

Finally, in a similar fashion of the main result in (Menon & Williamson, 2018) about the Bayes-Optimal
Classifier, we can define for any cost c, c̄, c∗ ∈ [0, 1], λfair, λratio ∈ R the Lagrangian RCS(g;D, D̄,D∗) of
the optimization problem in Eq. 1 as:

RCS(g;D, D̄,D∗) = CS(g;D, c)− λfairCSbal(g; D̄, c̄)
− λratioCSbal(g;D∗, c∗).

(2)

Proposition 4.2 (Fairness-aware Bayes-optimal classifier). The Bayes optimal classifier of RCS in a fairness
aware setting and knowing the distributions D, D̄,D∗ is given by

gopt(x) = arg min
g∈[0,1]X

RCS(g;D, D̄,D∗) = {Hη ◦ s∗(x) | α ∈ [0, 1]}

where
η(x) = P(Y = 1 | X = x), η̄(x) = P(S = 1 | X = x), η∗(x) = P(Ŷ f = 1 | X = x),

s∗(x) = η(x)− c− λratio(η̄(x)− c̄)− λfair(η∗(x)− c∗),

and Hη(z) = 1{z>0} + α1{z=0} is the modified Heaviside (or step) function for a parameter η ∈ [0, 1].

Despite its theoretical importance, the BOC presented in Proposition 3.2 remains impractical for computa-
tion, as the joint and marginal distributions of the random variables X, S, Y, Ŷ f are typically inaccessible in
real-world applications. Furthermore, the above result only holds within a fairness-aware setting, a context
that is uncommon in practical scenarios. For this reason, we introduce in Sec. 5 a novel algorithm that opti-
mizes a relaxed form of the optimization problem in Eq. 1, which does not require knowledge of the sensitive
attribute at test time. Finally, note that this result can be directly adapted to EO, since the additional
constraint we bring does not depend on the fairness criteria, and Menon & Williamson (2018) also applies
to EO.

1From (Menon & Williamson, 2018): The risk of a randomized classifier g : X → (0, 1) computed on Y is called cost sensitive
risk for a cost parameter c ∈ (0, 1) and π = P(Y = 1) if it can be written as CS(g, D, c) = π · (1 − c) · F NR(g; D) + (1 − π) · c ·
F P R(g; D), where F NR(g; D) = EX|Y =1[1 − g(X)] and F P R(g; D) = EX|Y =0[g(X)].

2Notice that we changed the distribution w.r.t. FPR and FNR are computed. Hence, F NR(g; D∗) = P(Ŷ = 0|Ŷ f = 1) and
F P R(g; D∗) = P(Ŷ = 1|Ŷ f = 0).
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4.2 Result 2: fairness level under a maximum change constraint

We now aim to theoretically understand what happens experimentally to the trade-off between fairness score
and the similarity between f and g defined in Eq. 1. For this purpose, we study the impact that K changes
to the predictions of f can have on P-Rule and on Disparate Mistreatment (DM).

Let us consider a set{(Xi, Yi, Si)}N
i=1, with Si ∈ {0, 1} and Yi ∈ {0, 1}. Then, we can define the following

quantities
γs1(f) =

∣∣{ i : Si = s, f(Xi) = 1}
∣∣, γs0(f) =

∣∣{ i : Si = s, f(Xi) = 0}
∣∣,

where |{set}| stays for the size of such a set. Then, with C = S0/S1, the empirical P-Rule of f is

P-Rule(f) = min
(

C · γ11(f)
γ10(f) , 1

C ·
γ10(f)
γ11(f)

)
.

Definition 4.3. (Switching point) The switching point Ks is the minimum number of changes required to
get a P-Rule(g) ≈ 1 starting from P-Rule(f).

Informally, the switching point refers to the phenomenon in which, starting from one of the two functional
forms in the minimum definition of the P-Rule, we switch to the reciprocal form definition. With this in
mind, we can prove the following proposition:
Proposition 4.4 (Extreme-flip optimality for Demographic Parity). Given K changes with K < Ks, the
maximum P-Rule we can get by editing with K flips the predictions of a model f is achieved by either
dedicating all the flips to one side of the division γ11(f) vs γ10(f).

Note that, in minimal changes regimes of these paper, the it is reasonable to assume that K < Ks. We believe
this result represents a significant milestone in the theoretical characterization of the effects of debiasing a
model using DP as a fairness measure. Although this result provides valuable insights into the dynamics of
the debiasing process, Proposition 4.4 does not account for the potential impact of these optimal changes on
model accuracy. This highlights the possibility that, in the context of algorithmic fairness—where the goal
is to balance fairness and accuracy—debiasing algorithms may prioritize alternative changes that minimize
adverse effects on accuracy. On top of this, this theoretical result would be algorithmically applicable only
in a fairness aware setting due to the fact that the knowledge of proportion γij , i, j ∈ {0, 1} is required.

Extension of the result to Equalized Odds. Further, this result could be also presented for EO and
a proof follows more or less the same argument. In fact, we can define

Ns,y =
∣∣{ i : Si = s, Yi = y}

∣∣, s, y ∈ {0, 1},

i.e. the number of instances in group s with label y. The core insight is that, when you split K flips between
TPR-adjusting and FPR-adjusting actions, the resulting DM is a piecewise-linear function of the allocation.
A convex (affine) function on a compact interval always achieves its minimum at one of the endpoints and
hence the best you can do is to devote all K flips to whichever single action gives the larger per-flip reduction
in disparity. In particular, we can prove the following:

Proposition 4.5 (Optimal allocation for minimizing Disparate Mistreatment). Let f be a fixed base classifier
and define

γ = max
s∈{0,1}

1
Ns,1

, δ = max
s∈{0,1}

1
Ns,0

.

For any integer K ≥ 1, consider all post-processed classifiers obtained by flipping exactly K labels of f . If
x ∈ [0, K] denotes the number of flips devoted to reducing the TPR-gap (and K − x those for the FPR-gap),
the minimum Disparate Mistreatment over x ∈ {1, . . . , K} is attained at an endpoint:

xopt =


0, δ > γ,

any x ∈ [0, K], δ = γ,

K, δ < γ.
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This means that the best strategy is to devote all K flips to whichever type of flip gives the larger per-flip
reduction.

5 COMMOD: an algorithm for controlled model debiasing

As previously mentioned, while the BOC of Proposition 4.2 is theoretically relevant in the Fairness-Aware
setting, it lacks practical utility. In order to solve Problem 1, we thus propose a new algorithm, called COM-
MOD, circumventing these limitations and integrating the interpretability objective described in Section 3.
COMMOD aims to edit the probabilities scores f(X) of the biased model into scores g(X), whose associated
predictions Ŷ = 1g(X)>0.5 are more fair and whose predictive quality is measured through a loss function
LY (g(X), Y ) (e.g. the binary cross-entropy loss). The update is done through a multiplicative factor r(X)
as follows:

g(X) = σ(r(X)flogit(X)), (3)

where σ(·) is the sigmoid function to ensure g(X) ∈ [0, 1] and flogit is the logit value of the biased model
f . Besides being intuitive, this formulation enables a more direct modelling of the differences between f
and g, as Ŷ ̸= Ŷ f if and only if r(X) < 0. We then propose to model the ratio rwg as a Neural Network
with parameters wg and taking as input X. In the subsections below, we describe how both desiderata of
similarity and interpretability are integrated in COMMOD.

5.1 Penalization term for minimal updates

We propose to minimize model changes by adding a penalization term Lratio. Numerous similarity measures
between f and g can be considered, depending on the considered scenario: for instance, existing works in post-
processing fairness generally focus on distances between distributions such as the Wasserstein distance (Jiang
et al., 2020) or the KL-divergence (Ţifrea et al., 2023). Here, we propose to use either a mean squared norm
function Lratio(rwg (X)) = ||rwg (X)−1||2M defined by a positive-definite inner product M . This term ensure
that the score f(X) is not modified unnecessarily, and thus that the calibration of g remains consistent
(cf. Figure 9 in App. D.4 for a related discussion). For the sake of simplicity, in the experiments of
our paper we set M = I, recovering the classical Euclidean distance. More generally, by choosing M =
diag(w1, . . . , wd) ≻ 0, one recovers a weighted Euclidean norm

∥∥rwg
(X) − 1

∥∥2
M

=
∑d

i=1 wi

(
rwg

(X)i − 1
)2

.

Similarly, setting M = Σ−1, with Σ the (positive-definite) feature covariance matrix, yields the Mahalanobis
distance (rwg

(X) − 1)⊤Σ−1(rwg
(X) − 1). In likelihood-based settings one can even take M to be the

Fisher-information matrix, providing a local quadratic approximation to the KL divergence.

5.2 Concept-based Architecture for Interpretable Changes

In our approach, we prioritize interpretability by utilizing a self-explainable model. For classification prob-
lems, interpretable models par excellence are decision trees. On the other hand, for regression we do not have
the same theoretical understanding but a model that is usually considered interpretable is Sparse Linear
Regression. On top of that, inspired by the growing body of works on concepts (Koh et al., 2020a; Yuksek-
gonul et al., 2023; Fel et al., 2023; Zarlenga et al., 2023), we propose to learn k concepts C : X → R in an
unsupervised manner where every concept is a sparse linear combination of the input features. Consistently
with previous works, we also posit that these concepts should be both diverse (Alvarez Melis & Jaakkola,
2018; Fel et al., 2023; Zarlenga et al., 2023) to be meaningful and the least redundant possible. Hence, the
model g is interpretable due to the structure of rwg that is a neural network without activation functions.
The final architecture rwg consists of an initial (linear) bottleneck that maps the input features X into k
concepts, followed by an output layer that linearly combines these concepts to produce the multiplicative
ratio needed for the update. By using linear combinations for both the features-to-concepts mapping and
the concepts-to-output mapping, we can directly examine the learned weights to understand the direction
(positive or negative) in which each concept—and, by extension, each feature—contributes to the value of
the ratio. This level of interpretability was not achievable in previous models like TabCBM (Zarlenga et al.,
2023).To ensure that the learned concepts are meaningful, we introduce penalization terms for diversity
and sparsity, similar to those considered in the existing interpretability literature (Zarlenga et al., 2023;
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Yuksekgonul et al., 2023; Khurana & Galhotra, 2021). Given our linear architecture, these terms are defined
as follows: for sparsity, we use a Lasso penalization term, and for diversity, we define the penalization as
Ldiversity =

∑
i,j≤k ρ(W i, W j), where ρ denotes the cosine distance and W i, W j are the network’s weights

from input features to concepts i and j respectively. The combined penalization term is then given by
Lconcepts = Ldiversity + Lsparsity.
Beyond ensuring interpretability, using a linear transformation rather than a more complex architecture
stems from our observations that it often lead to comparable results along our metrics of interest (see D.3
in the Appendix) - an observation also made by (Ţifrea et al., 2023).

5.3 Final model

To ensure fairness, we propose to leverage the technique proposed by (Zhang et al., 2018), which relies
on a dynamic reconstruction of the sensitive attribute from the predictions using an adversarial model
hwh

: Y → S to estimate and mitigate bias. The higher the loss LS(hwh
(rwg

(X)flogit(X)), S) of this
adversary is, the more fair the predictions gwg

(X) are. Furthermore, this allows us to mitigate bias in
a fairness-blind setting (i.e. without access to the sensitive attribute at test time), thus overcoming the
limitation of most post-processing fairness methods (cf Table 2).

We then use our rescaling network rwg , implemented as a purely linear mapping without activation functions
(cf. Section 5.2); on the other hand, both the adversary hwh

and the predicting network gwg are standard
fully connected networks with non-linear activations.

Thus, the relaxed version of Equation 1 for DP can be written as:

min
wg

E[LY (gwg
(X), Y )] [1]

s.t E[LS(hwh
(rwg

(X)flogit(X)), S)] ≥ ϵ′ [2]
and E[Lratio(rwg

(X))] ≤ η′ [3]

(4)

with ϵ′, η′ > 0. In practice, we relax Problem 4, integrating the interpretability constraints on the concepts:

arg min
wg

max
wh

1
N

N∑
i=1
LY (gwg

(xi), yi)

− λfairLS(hwh
(rwg

(xi)flogit(xi)), si)
+ λratioLratio(rwg

(xi))
+ λconceptsLconcepts(rwg

(xi)),

(5)

with λfair, λratio and λconcepts three hyperparameters and with LY and LS binary cross-entropy losses.
Similarly to (Zhang et al., 2018) this loss function can easily be adapted to address EO by modifying the
adversary hwh

to take as both the true labels Y and the predictions gwg
(X).

6 Experiments

After describing our experimental setting, we propose in this section to empirically evaluate the two dimen-
sions of the controlled model update: the ability to achieve accuracy and fairness with minimal (Section 6.2),
and interpretable (Section 6.3) prediction changes.

6.1 Experimental protocol

6.1.1 Datasets

We experimentally validate two binary classification datasets, commonly used in the fairness literature (Hort
et al., 2024): Law School (Wightman, 1998) and Compas (Angwin et al., 2016). The sensitive attribute for
both datasets is race.
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Method Q1 Fairness Q2 Fairness Q3 Fairness Q4 Fairness
Q3 Acc Q4 Acc Q2 Acc Q3 Acc Q2 Acc Q1 Acc Q2 Acc

La
w

Sc
ho

ol
Oracle (ROC) 0.18 0.08 0.26 - - 0.33 -
Oracle (LPP) - 0.08 - 0.12 - - -
LPP 0.11 0.07 0.15 - 0.19 0.23 0.21
Zhang 0.17 0.12 0.23 0.18 0.28 0.34 0.28
FRAPPE - 0.03 0.16 - 0.18 0.24 0.21
COMMOD 0.07 0.01 0.10 0.08 0.13 0.24 0.18

C
om

pa
s

Oracle (ROC) 0.02 0.03 - 0.05 0.06 - 0.09
Oracle (LPP) 0.02 0.01 - 0.03 0.03 - 0.06
LPP 0.08 0.04 0.14 0.12 - - -
Zhang 0.09 0.07 0.16 0.12 0.14 0.20 0.16
FRAPPE - 0.18 0.24 - 0.21 0.28 -
COMMOD 0.05 0.01 0.09 0.09 0.05 0.20 0.06

Table 1: Avg. percentage of prediction class changes for various quartiles of accuracy and fairness on the Law
School and Compas dataset (DP). The missing values indicate that no model trained with the corresponding
method ended up in this quartile definition.

6.1.2 Competitors and baselines

To assess the efficacy of COMMOD, we first use an in-processing debiasing method, AdvDebias (Zhang
et al., 2018), described in Section 2.1. We use the implementation provided in the AIF360 library (Bellamy
et al., 2018). Additionally, as discussed in Section 6.2, post-processing debiasing methods also use
a pretrained classifier as input. Yet, most methods are not directly comparable as they are not model-
agnostic or require the sensitive attribute a test time. Two exceptions are LPP (Xian & Zhao, 2024) and
FRAPPE (Ţifrea et al., 2023), which we use as competitors. Furthermore, although not directly comparable,
we include the fairness-aware algorithms proposed by (Xian & Zhao, 2024) (that we name "Oracle (LPP)")
and (Kamiran et al., 2012) ("Oracle (ROC)") as baselines. As they directly use the sensitive attribute to
make predictions, these two algorithms are expected to outperform all the others.

6.1.3 Set-up

After splitting each dataset in Dtrain (70%) and Dtest (30%), we train our pretrained classifier f to optimize
solely accuracy. In these experiments, we use a Logistic Regression classifier from the scikit-learn library,
but any other classifier could be used since COMMOD and the proposed competitors are model-agnostic.
We then train COMMOD, the competitors and the baselines on Dtrain, varying hyperparameter values for
each method to achieve a range of fairness and accuracy scores over Dtest. For COMMOD, we set a fixed
value for the number of concepts k: 2 for Law School and 5 for Compas. Further details on implementation
are available in Section C of the Appendix.

6.2 Experiment 1: achieving fairness through minimal changes

In this first experiment, we aim to assess the ability of COMMOD to achieve competitive results in terms
of fairness and accuracy while performing a lower number of changes. For this purpose, we measure the
proportion P of prediction changes between the black-box model and the fairer model on the test set Dtest.
As this value is directly linked to the fairness and accuracy levels of the models, we intend to evaluate P
for models with comparable levels of fairness and accuracy. To do so, we discretize the fairness scores into
four segments, defined as quartiles of the scores of AdvDebias: Q1 corresponds to the most biased models,
and Q4 to the most fair ones. The full details of these segments are available in Appendix C.3, along with
a robustness analysis (cf. Appendix D.1) in which, to ensure that our results do not depend on the specific
segment definition chosen, we reproduce the same experiment with other segment definitions. For each
segment, we then display the Pareto graph between P (y-axis, lower is better) and Accuracy (x-axis, higher

9
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Figure 1: Number of prediction class changes (y-axis) for comparable levels of fairness (P-Rule or DM
quartiles Q1-Q4) and accuracy (x-axis) for DP (top) and EO (bottom) on Law School and Compas.

is better) in Figure 1: in this representation, the most efficient method will be the closest one to the bottom
left corner. An aggregated view of these results can be found in Table 1.

We observe that for similar levels of accuracy and fairness, COMMOD consistently achieves lower values of
number of changes than its competitors. For less fair models (segment Q1), the difference is more subtle: as
models put less emphasis on fairness than on accuracy, they tend to adopt a similar behavior, i.e. the one
of the biased model f . In other segments however, the value of COMMOD is more notable.

6.3 Experiment 2: interpretability of the model updates

In this second experiment, we aim to evaluate the quality of the explanations generated with COMMOD.

6.3.1 Illustrative results

Starting with an example of explanation on the Compas Dataset. After training COMMOD with k = 2
concepts, we obtain a final test P-Rule score of 0.78 (up from 0.60 with f) and accuracy of 0.62 (down from
0.66) with P = 0.08. The first two plots of Figure 2 highlight the diversity between these concepts, as they
target different features. For instance, the concept C0, contributing positively (w0 = 0.41) to class changes,
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Figure 2: Example of explanation for Compas. Left: feature contributions to the concepts. Right: P(Ŷ ̸= Ŷ f )
for the segments described by these features.
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Figure 3: Comparison of concept redundancy (left, lower is better) and sparsity (right, higher is better) for
the Law School dataset between FRAPPE and COMMOD.

is primarily activated by older individuals; on the other hand, C1, contributing negatively (w1 = −0.23),
targets a specific crime category. In the third graph, we calculate the probability values P(Ŷ ̸= Ŷ f ) in the
sets corresponding to the instances activated by the corresponding features. Although preliminary, these
observations show the potential of COMMOD to explain the debiasing process.

6.3.2 Quantitative results

We now aim to generalize the previous observation by verifying that the concepts learned are diverse and
sparse over the features of X . To assess sparsity, we evaluate the total concept sparsity computed by summing
across concepts the sparsity of each matrix after applying a threshold of ϵ = 0.01:

∑
i≤k ||W i > ϵ||0. For

diversity, we measure the Jaccard Index between the signed non-null coefficients: diverse concepts may still
use the same feature of X if said feature contribution is in the opposite direction. As a baseline, we compare
COMMOD (with k = 2) with FRAPPE (Ţifrea et al., 2023), when the latter is trained using a linear network
with the same architecture as the one used for our ratio rwg

for their additive term. Figure 3, highlights
that for all levels of number of changes, the concepts learned using COMMOD are indeed more sparse and
diverse as expected. Finally, we aim to show that the instances targeted by COMMOD are generally located
in regions that are easier to interpret. In classification, there exists a theoretical understanding on how a
class of models is interpretable based on how it can be translated into a decision tree (Bressan et al., 2024).
Driven by this work, we propose a new evaluation protocol relying on measuring the accuracy of a decision
tree of constrained depth trained to predict whether an instance has its prediction changed or not (i.e. on
labels 1Ŷ ̸=Ŷf ). The idea behind this evaluation protocol is that a decision tree with a constrained depth will
more accurately model prediction changes if these changes can be described with a lower number of features,
and if these instances are more concentrated in the feature space. We report in Figure 4 the F1 scores of the
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Figure 4: Avg. F1 Score with standard deviations computed over 5 runs for each model (with similar levels
of both fairness and accuracy) of a decision tree trained on labels 1Ŷ ̸=Ŷf depending on the tree depth.

decision trees trained to predict the class changes of COMMOD, FRAPPE and AdvDebias. We observe that
for all values of maximum tree depth considered, thanks to the regularization with Lconcept, the predictions
changed by COMMOD are indeed much easier to interpret with a decision tree.

7 Conclusion

In this work, we introduced COMMOD, a novel model update technique that manages to enforce fairness and
accuracy while making less, and more interpretable, changes to the original biased classifier. Additionally,
we also provided theoretical results for this new optimization problem. Future works include researching
the Controlled Model Debiasing task in non-linear settings, and further exploring the tradeoffs between the
different hyperparameters to propose automated selection strategies.
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A Overview of post-processing approaches

In order to better have an overview of existing post-processing approaches, we decided to summarize (part
of) them into the following table.

Paper Model
agnostic

No
Sensitive

at test
time

Metric
optimized

Minimizes
changes

MNB Calders & Verwer (2010) ✗ (NB) ✗ DP ✗
Leaf Relabeling Kamiran et al. (2010) ✗ (C4.5) ✗ DP ✗
ROC Kamiran et al. (2012) ✓ ✗ DP ✗
EO post-processing Hardt et al. (2016) ✓ ✗ EO ✗
Information Withholding Pleiss et al. (2017) ✓ ✗ EO ✗
IGD post-processing Lohia et al. (2019) ✓ ✗ DP ✗
MultiaccuracyBoost Kim et al. (2019) ✓ ✗ other ✗
CFBC Chzhen et al. (2019) ✓ ✗ EO ✗
Wass-1 post-processing Jiang et al. (2020) ✓ ✗ DP ✓
Wass-1 Penalized LogReg Jiang et al. (2020) ✗ (LogReg) ✓ DP ✓
FST Wei et al. (2020) ✓ ✓ DP, EO ✗
RNF Du et al. (2021) ✗ (NN) ✓ DP, EO ✗
FCGP Nguyen et al. (2021) ✓ ✗ DP ✓
FairProjection Alghamdi et al. (2022) ✓ ✗ DP, EO ✓

FRAPPÉ Ţifrea et al. (2023) ✓ ✓ DP, EO ✓
LPP (sensitive-unaware) Xian & Zhao (2024) ✓ ✓ DP, EO ✗
LPP (sensitive-aware) Xian & Zhao (2024) ✓ ✗ DP, EO ✗

COMMOD (Ours) ✓ ✓ DP, EO ✓

Table 2: Comparison between post-processing methods. NB stands for Naive Bayes, and NN for Neural
Networks.

From the table above, we can observe that our method is one of the few that is simultaneously model-
agnostic, does not require the sensitive variable during inference, and explicitly minimizes the difference
between the black-box scores and the edited ones.
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B Proofs of results in Section 4

In this section, we present the proofs for the propositions and lemmas stated in the paper. Additionally, we
offer some context for certain lemmas from Menon & Williamson (2018), which remain necessary within our
new framework of Equation 1.

B.1 Bayes-Optimal Classifier (Result 1)

Building on the results proposed in the paper, we first analyze the Bayes-Optimal Classifier of Equation 1.
To facilitate this analysis, we draw upon the work of Menon & Williamson (2018), who demonstrated that
by translating the components of the optimization problem into a cost-sensitive framework, the problem
becomes analytically equivalent but more tractable to solve.

B.1.1 A cost-sensitive view of fairness Menon & Williamson (2018).

For any randomized classifier g : X×[0, 1]→ [0, 1] that post-process the prediction of a classifier f : X → [0, 1]
we can write FNR(g; D̄) = P (Ŷ = 0 | S = 1) and FPR(g; D̄) = P (Ŷ = 1 | S = 0), where we recall that
Ŷ = 1g(X)>0.5.
If we want to study for example Demographic Parity, we can refers and compute the following quantity to
measure fairness:

Rfair(g) = DI(g; D̄) = FPR(g; D̄)/(1− FNR(g; D̄)). (6)

Then, we can translates this quantity into a cost-sensitive risks.
Lemma B.1 (Lemma 1 in Menon & Williamson (2018)). Pick any random classifier g. Then, for any
τ ∈ (0,∞), if k = τ

1+τ

DI(g; D̄) ≥ τ ⇔ CSbal(g; D̄, 1− k) ≥ k,

where CSbal(g; D̄, c) = (1− c) · FNR(g; D̄) + c · FPR(g; D̄).
Further, we can also rewrite the desired “symmetrised” fairness constraint as

min(Rfair(g), Rfair(1− g)) ≥ τ ⇔ CSbal(g; D̄, c̄) ∈ [k, 1− k],

for a suitable choice of c̄.

B.1.2 A cost-sensitive view of minimal changes (Ours).

In the paper, we propose then to find an equivalence of the extra (compared to the usual optimization problem
in fairness) constraint we have in our new optimization problem. To achieve this, we present Lemma 4.1,
whose proof is provided below.

Lemma 4.1 of Section 4.1. By law of total probability we have:

P (Ŷ f ̸= Ŷ ) = P (Ŷ f ̸= Ŷ | Ŷ = 1)P (Ŷ = 1) + P (Ŷ f ̸= Ŷ | Ŷ = 0)P (Ŷ = 0)

Since we are in a binary classification setting, i.e. Ŷ g ∈ {0, 1}, we can define

c∗ = P (Ŷ = 1), 1− c∗ = P (Ŷ = 0).

Hence,
P (Ŷ f ̸= Ŷ ) ≤ p⇔ c∗P (Ŷ f ̸= Ŷ | Ŷ = 1) + (1− c∗)P (Ŷ f ̸= Ŷ | Ŷ = 0)P ≤ p

⇔ c∗FNR(g;D∗) + (1− c∗)FPR(g;D∗) ≤ p

⇔ CSbal(g;D∗, c∗) ≤ p.
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B.1.3 Bayes-Optimal-Classifier.

Finally, we can rewrite in a Lagrangian version the cost-sensitive problem and solve it analytically.
Lemma B.2. Pick any distributions D, D̄,D∗, fairness measure DI and constraint on number of changes.
Pick any c, τ, p ∈ (0, 1). Then, ∃λfair, λratio ∈ R, c̄, c∗ ∈ (0, 1) with

min
g

CS(g;D, c)

s.t. min(Rfair(g), Rfair(1− g)) ≥ τ

P (Ŷ f ̸= Ŷ ) ≤ p

(7)

is equivalent to
min

g
CS(g;D, c)− λfairCSbal(g; D̄, c̄)− λratioCSbal(g;D∗, c∗).

Proof (Lemma B.2). By Lemma B.1 and Lemma 4.1 we have that

min(Rfair(g), Rfair(1− g)) ≥ τ ⇔ CSbal(g; D̄, c̄) ∈ [k, 1− k],
P (Ŷ f ̸= Ŷ ) ≤ p⇔ CSbal(f ;D∗, c∗) ≤ p.

Consequently, for λ1, λ2, λ3 ≥ 0, the corresponding Lagrangian version will be

min
g

CS(g;D, c) + λ1(CSbal(g; D̄, c̄)− (1− k))− λ2(CSbal(g; D̄, c̄)− k)− λ3(CSbal(g;D∗, c∗)− p).

Letting λfair = λ1 − λ2 and λratio = λ3 shows the results.

Lemma B.3. Pick any randomised classifier g. Then, for any cost parameter c ∈ (0, 1),

CS(g; c) = (1− c)π + EX [(c− η(X))g(X)],

where η(x) = P (Y = 1|X = x) and π = P (Y = 1)

Proof (Lemma B.3). For the case of accuracy and fairness constraints the proof is in Lemma 9 of Menon &
Williamson (2018). For what concerns the constraint on similarity between the black-box predictions Ŷ f

and the one coming from the post-processed classifier g(X), FPR and FNR refers to Ŷ f and no more to S.
Hence, in the same spirit of the above mentioned proofs,

CS(g;D∗, c∗) = (1− c∗)π∗EX|Ŷ f =1[1− g(X)] + c∗(1− π∗)EX|Ŷ f =0[g(X)]

= (1− c∗)π∗EX [(c∗ − η∗(X))g(X)],

where η∗(X) = P (Ŷ f = 1|X = x) and π∗ = P (Ŷ f = 1).

After introduced all these lemma and definitions, we are now able to provide the proof of Lemma 4.2 stated
in the paper and that provides the definition of the Bayes-Optimal Classifier.

Proof (Lemma 4.2). By Lemma B.3, measures of accuracy, fairness and minimal changes are

CS = (1− c)π + EX [(c− η(X))g(X)],

CSfair
bal = (1− c̄)π̄ + EX [(c̄− η̄(X))g(X)],

CSratio
bal = (1− c∗)π∗ + EX [(c∗ − η∗(X))g(X)].

Then, ignoring constants not dependent from g, the overall objective becomes

min
g

RCS(g;D, D̄,D∗) = min
g

CS(g;D, c)− λfairCSbal(g; D̄, c̄)− λratioCSbal(g;D∗, c∗)

= min
g

EX [{η(x)− c− λratio(η̄(x)− c̄)− λfair(η∗(x)− c∗)}g(X)]

= min
g

EX [−s∗(X)g(X)].

Thus, at optimality, when s∗(x) ̸= 0, gopt = [[s∗(x) > 0]]. When s∗(x) = 0, any choice of gopt is admissible.
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B.2 Fairness Level Under a Maximum Change Constraint (Result 2)

Proof of Proposition 4.4. Without loss of generality, let us suppose that P-Rule(f) = C · γ11
γ10

. Then, by doing
K changes with K < Ks, we get a new value of P-Rule′ that is given by

P-Ruleα(g) = C · γ11(f) + α

γ10(f)− (K − α) ,

Further, if we compute the derivative with respect to alpha of P-Rule′ we get
d

dα
P-Ruleα(g) = C

γ11(f)−K − γ10(f)
(γ10(f)− (K − α))2 , (8)

and we observe that P-Ruleα(g) is either everywhere decreasing or increasing. Hence,

max
0≤α≤K

P-Ruleα(g) =
{

P-Rule0(g) if K > γ10(f)− γ11(f)
P-RuleK(g) otherwise

.

Finally, the same reasoning applies to the case where the starting value of the P-Ruleα(f) is 1
C

γ11(f)
γ10(f) .

Proof of Proposition 4.5. Writing out the sum,

DM(x) = ∆TPR − γx + ∆FPR − δ(K − x) =
(
∆TPR + ∆FPR − δK

)
+ (δ − γ) x.

Thus DM(x) is an affine (linear) function of x with slope δ − γ.

• If δ − γ > 0, the slope is positive, so DMsum(x) is increasing in x and its minimum on [0, K] occurs
at x = 0 (all flips to FPR-adjustment).

• If δ−γ < 0, the slope is negative, so DMsum(x) is decreasing in x and its minimum occurs at x = K
(all flips to TPR-adjustment).

• If δ = γ, the function is constant and any allocation x ∈ [0, K] yields the same DM.

In all cases, an “extreme” allocation—putting all K flips into the single most effective action—minimizes
the sum-based Disparate Mistreatment.

C Implementation details

C.1 COMMOD Algorithm

In this section we give a more detailed walk-through of our end-to-end training procedure for COMMOD,
as well as a compact pseudocode listing.

Discussion. At each training step, for a minibatch of examples (xi, yi, si) we first convert the biased
model’s output probability f(xi) into logits

flogit(xi) = log
(
f(xi)/(1− f(xi))

)
.

We then concatenate (or otherwise condition on) both xi and flogit(xi) as input to a small rescaling network
rwg , which produces a scalar multiplier r(xi). The corrected score

g(xi) = r(xi) flogit(xi)

is fed both to the final classification loss LY (against yi) and to an adversary h that predicts the sensitive
attribute si, giving LS . In addition we regularize r to stay close to 1 via

Lratio(r(xi)) =
∥∥r(xi)− 1

∥∥2
,

and add a concept-based penalty Lconcepts. All four terms are weighted and summed, and we backpropagate
through r and h jointly.
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Algorithm 1 COMMOD Training (simplified pseudocode)
Require: Pretrained biased model f , rescaler r, adversary h, data {(xi, yi, si, ŷi)}. {ŷi = f(xi) are proba-

bilities, yi ∈ {0, 1} are true labels}.
1: for each epoch do
2: for each minibatch (x, y, s, ŷ) do
3: flogit ← log

(
ŷ/(1− ŷ)

)
4: r ← r(x)
5: g ← σ

(
r × flogit

)
6: (optional) Warm-up adversary: update h on (g, s)
7: Compute losses:

LY , LS , Lratio, (optional concept losses)

8: Combine into total loss L (with weights and epoch gates)
9: Update parameters of r (and any concept modules) by backpropagating ∇L

10: end for
11: end for

C.2 Loss and Hyperparameters

As with any deep learning-based method, fine-tuning hyperparameters has been crucial for our COMMOD
algorithm. Specifically, we adjusted the weights of the terms in the loss function using the hyperparameters
λfair, λratio, and λconcepts. To explore the entire Pareto frontier of Fairness vs. Accuracy, as presented
in this paper, we performed a grid search over these hyperparameters. For implementation purposes, we
occasionally found it easier to decompose the concept loss Lconcepts into the sum of sparsity loss and diversity
loss, each controlled by separate hyperparameters. The range of values we tested remained consistent across
different datasets, with λfair ≤ 10, λratio ≤ 0.5, and λconcepts ≤ 1.

C.3 Quartiles definition

In the paper, we referred several times to the quartiles of fairness and accuracy. We used them in order
to compare the methods in the region of the Pareto for which they have approximately the same levels of
fairness and accuracy. These quartiles have been computed on the AdvDebias method and their values are
shown in the tables below.

C.4 Law School Dataset

C.4.1 Demographic Parity.

We recall that in order to measure Demographic Parity we used the P-Rule (the higher, the better). The
value of the point (fairness, accuracy) of the black-box model (Logistic Regression) is (0.2764, 0.7970).

Quartile Fairness range Accuracy range
Q1 [0, 0.5587) [0, 0.6709)
Q2 [0.5587, 0.7212) [0.6709, 0.7294)
Q3 [0.7212, 0.8719) [0.7294, 0.7550)
Q4 [0.8719, 1] [0.7550, 1]

Table 3: Fairness (Demographic Parity) and Accuracy Quartiles on Law School dataset.
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C.4.2 Equalizing Odds.

We recall that in order to measure Equalizing Odds we used the Disparate Mistreatment (the lower, the
better). The value of the point (fairness, accuracy) of the black-box model (Logistic Regression) is
(0.4935, 0.7970).

Quartile Fairness range Accuracy range
Q1 (0.3429, 1] [0, 0.7230)
Q2 (0.2415, 0.3429] [0.7230, 0.7458)
Q3 (0.1503, 0.2415] [0.7458, 0.7577)
Q4 [0, 0.1503] [0.7577, 1]

Table 4: Fairness (Equalizing Odds) and Accuracy Quartiles on Law School dataset.

C.5 COMPAS Dataset

C.5.1 Demographic Parity

. We recall that in order to measure Demographic Parity we used the P-Rule (the higher, the better). The
value of the point (fairness, accuracy) of the black-box model (Logistic Regression) is (0.6310, 0.6580).

Quartile Fairness range Accuracy range
Q1 [0, 0.7345) [0, 0.6242)
Q2 [0.7345, 0.7695) [0.6242, 0.6391)
Q3 [0.7695, 0.8058) [0.6391, 0.6537)
Q4 [0.8058, 1] [0.6537, 1]

Table 5: Fairness (Demographic Parity) and Accuracy Quartiles on COMPAS dataset.

C.5.2 Equalizing Odds.

We recall that in order to measure Equalizing Odds we used the Disparate Mistreatment (the lower, the
better). The value of the point (fairness, accuracy) of the black-box model (Logistic Regression) is
(0.2828, 0.6580).

Quartile Fairness range Accuracy range
Q1 (0.2198, 1] [0, 0.6242)
Q2 (0.2079, 0.2198] [0.6242, 0.6391)
Q3 (0.1869, 0.2079] [0.6391, 0.6537)
Q4 [0, 0.1869] [0.6537, 1]

Table 6: Fairness (Equalizing Odds) and Accuracy Quartiles on COMPAS dataset.
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D Additional Experiments and Further Results

D.1 Experiment 1: robustness over segment definition

To ensure that the results of Experiment 1 are robust to the choice of the segment definitions for accuracy
and fairness, we propose in this section to reproduce the experiment with other segment definitions. To define
these segments, we thus propose, to take the quartile values of the results achieved by LPP (Definition 2)
and ROC (Definition 3), instead of AdvDebias.

D.1.1 Definition 2.

The quartiles values obtained through the result of LPP are the following

Quartile Fairness range Accuracy range
Q1 [0, 0.4709] [0, 0.7459)
Q2 (0.4709, 0.5918] [0.7459, 0.7541)
Q3 (0.5918, 0.7763] [0.7541, 0.7723)
Q4 [0.7763, 1.0] [0.7723, 1]

Table 7: Fairness (DP) and Accuracy Quartiles (Definition 2) on Law School dataset.

Using this values, we can then plot the analogue of Fig. 1
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Figure 5: Experiment 1 results, with Definition 2 for Accuracy and Fairness segments

D.1.2 Definition 3.

The quartiles values obtained through the results of ROC are the following
Using this values, we can then plot the analogue of Fig. 1

D.2 Accuracy and Fairness Performance

As traditionally done for bias mitigation methods, we evaluate the efficacy of COMMOD to preserve accuracy
when enforcing fairness through the so-called Pareto plot. Figure 7 shows the accuracy and fairness scores
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Quartile Fairness range Accuracy range
Q1 [0, 0.3247] [0, 0.7033)
Q2 (0.3247, 0.4127] [0.7033, 0.7559)
Q3 (0.4127, 0.5695] [0.7559, 0.7793)
Q4 [0.5695, 1] [0.7793, 1]

Table 8: Fairness (DP) and Accuracy Quartiles (Definition 3) on Law School dataset.
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Figure 6: Experiment 1 results, with Definition 3 for Accuracy and Fairness segments

achieved by all methods on Law School and Compas datasets (each dot represents one run). In terms
of direct competitors, we observe that COMMOD outperforms LPP (resp. FRAPPE) on the Law School
dataset (resp. Compas) and achieves similar results in the Compas dataset (resp. Law School). Further,
we show here that even by adding the Minimal Changes and Interpretability constraints in Equation 4
COMMOD achieves almost similar results on all datasets as the in-processing method AdvDebias. Finally,
as expected, Oracle (and also by ROC in Compas) generally outperform all methods. Hence, COMMOD
remains a competitive algorithm in terms of fairness and accuracy, regardless of its other benefits, addressed
in the next sections.

D.3 Intuition behind linear self-explainable model.

One might question why we chose to introduce explainability into our method through a linear architecture
that learns concepts as linear combinations of the input features. Typically, using a linear model instead of
a more complex one can lead to a decrease in model performance. However, the rationale behind our choice
is clarified through the following experiment, where we evaluate different architectures for the network that
learns the multiplicative ratio. From the plot above, we can observe that the linear architecture performs
similarly to more complex models. This observation aligns with the findings in Ţifrea et al. (2023), where a
similar conclusion was drawn regarding their additive term, which is conceptually similar to our multiplicative
ratio. Based on these insights, we decided to design the architecture of the ratio as a one-hidden-layer linear
network. In this design, the hidden layer acts as a bottleneck that represents the concepts, and the output
layer computes the ratio as a linear combination of these concepts.
Additionally, maintaining linearity between the concepts and the output ratio allows us to easily determine
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Figure 7: Fairness (x-axis) vs Accuracy (y-axis) trade-offs on Law School and Compas datasets for Demo-
graphic Parity (top) and Equalized Odds (bottom).

the direction (positive or negative) in which each concept influences the ratio’s value. This design choice
enhances both the interpretability and transparency of the model.

D.4 Benefits of MSE Loss

In this section, we propose a visualization in support to the MSE loss we chose to keep as similar as possible
the edited scores with the ones outputted by the black-box algorithm. To do so, we used a "calibration" plot
on edited scores vs black-box scores for our COMMOD algorithm and for AdvDebias for similar levels of
(fairness, accuracy). From such a plot, one can observe that the curve of COMMOD is more stick to the
dashed line, representing when probabilities are not changed at all by the editing. On the other hand, we
observe that in AdvDebias even if we do not change a prediction label, the probabilities are more scattered
in the area of the dashed line. This behavior is beneficial for our motivation. When you want to edit a
model for fairness, you usually want to do changes that flip labels (and hence that modifies the values of
your fairness definition) and keep the other instances at the same confidence they were before.
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Figure 8: Fairness vs Accuracy trade-off on Law School for different ratio architectures. Each dot corresponds
to one model run.
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Figure 9: Calibration plot (predicted probabilities vs black-box probabilities) on Law School dataset for
Demographic Parity.

D.5 Posthoc vs self explainable

As a final experiment, we aim to demonstrate the need for an approach specifically designed for Controlled
Model Debiasing such as COMMOD. For this purpose, we build on the previous experiment and show
that the combination of FRAPPE (which minimizes the number of changes) and a post-hoc interpretability
tool leads to less efficient models in terms of debiasing; in other words, that adding interpretability in a
post-hoc way comes at a higher cost for fairness. We train FRAPPE and COMMOD on the Law School
dataset such that their scores in terms of accuracy, fairness and number of changes are comparable. We then
train a decision tree to model FRAPPE’s additive output, and show in Figure 10 the final P-Rule obtained
by COMMOD and this built competitor. We observe that, regardless of the tree’s depth, controlling the
debiasing by introducing interpretability in a post-hoc way heavily degrades fairness, contrary to COMMOD.

25



Under review as submission to TMLR

2 3 4 5 6 7 8 9
Depth

0.60

0.65

0.70

0.75

0.80

0.85

Fa
irn

es
s

max_depth=None

FRAPPE + CART
COMMOD

Figure 10: Comparison of fairness levels of FRAPPE+CART (trained on the additive term) with the one of
a self-explainable model for different levels of depth
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