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Abstract

Large Language Models (LLMs) have ad-001
vanced natural language processing signifi-002
cantly with Chain-of-Thought (CoT) reason-003
ing and In-Context Learning (ICL), but their004
deployment is limited by high computational005
and operational costs. This paper intro-006
duces Personalized Chain-of-Thought Distilla-007
tion (PeCoTD), a novel approach to transfer rea-008
soning capabilities from LLMs to smaller, more009
deployable models. Recognizing the compre-010
hension difficulties small LMs face with LLM-011
generated rationales, we first develop a metric012
called Self Logic Consistency (SLC) to assess013
rationale quality. This refinement process en-014
sures the maintenance of semantic equivalence015
with the original LLM rationales, facilitating016
more effective fine-tuning and avoiding distri-017
bution shifts. This approach, focusing on data018
quality in Knowledge Distillation (KD), miti-019
gates comprehension variability in small LMs020
and extends the applicability of CoT KD strate-021
gies. Our experiments show that PeCoTD sig-022
nificantly improves the reasoning abilities of023
small models across diverse datasets.024

1 Introduction025

Large language models (LLMs) have achieved026

state-of-the-art performances in many natural lan-027

guage processing tasks (Wang et al., 2019), due to028

emergence capabilities, such as Chain-of-Thought029

(CoT) (Wei et al., 2022a; Wang et al., 2023c; Ko-030

jima et al., 2022) capability and In-Context learning031

(ICL) (Brown et al., 2020; Min et al., 2022; Wang032

et al., 2023b) capability. To address complex tasks,033

LLM utilize their CoT capability, or reasoning ca-034

pability to generate intermediate steps that lead to035

the final answer, referred to as the rationales. (Ko-036

jima et al., 2022) found that the CoT capability can037

be stimulated just by executing an instruction.038

Nonetheless, a critical shortcoming of rationale-039

generating CoT reasoning approaches is their need040

for large models, with parameter counts reaching041
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Figure 1: Personalized CoT Distillation Process. This
illustrates our method, where high SLC scored examples
are used as prompts to refine rationales, enhancing the
training of student models through iterative refinements.

into the hundreds of billions (Wei et al., 2022b; Ko- 042

jima et al., 2022). The scalable deployment of these 043

models is significantly impeded by their formidable 044

computational requisites and the substantial costs 045

associated with inference. 046

Consequently, our endeavor is to facilitate same 047

capable reasoning within small language models 048

(small LMs), which present a more viable option 049

for widespread deployment. Knowledge Distilla- 050

tion (KD) (Hinton et al., 2015) is a powerful tool 051

to transfer the ability of large models (i.e., teacher 052

models) into small ones (i.e., student models) with 053

a minimal loss of reasoning capability. 054

The current KD of CoT capabilities are primar- 055

ily based on rationale and black-box style. (Ho 056

et al., 2023a) uses LLMs to generate rationales, 057

then combines the rationales and answers together 058

as completions for training small language mod- 059

els. (Hsieh et al., 2023) uses LLMs to generate 060

rationales and answers separately, and then trains 061

small language models step-by-step with the ratio- 062

nale and answer as the target objectives. SCoTD 063
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(Li et al., 2023b) explored the factors influencing064

the KD of CoT capabilities through rationales, and065

concluded that the number of rationales is key to066

the distillation of CoT capabilities. However, it did067

not reveal the underlying reasons why the number068

of rationales is so significant.069

Inspired by SCoTD (Li et al., 2023b), we im-070

plement 3 knowledge distillation strategies from071

GPT-3 to OPT-1.3B. The ’Random’ strategy selects072

five random rationales from thirty, ’Diversity-a-b’073

uses SBERT for clustering and selects b rationales074

from a clusters, and ’All CoTs’ uses all thirty ratio-075

nales. Intuitively, because rationales contain more076

knowledge, KD with rationales helps small LM077

to better understand the world than KD with only078

label. Nonetheless, the experimental findings, as079

related to Figure 2, demonstrate that the perfor-080

mance of CoT distillation, when limited to merely081

five rationales, even though these cover the com-082

prehensive knowledge contained within thirty ra-083

tionales, significantly underperforms compared to084

CoT distillation using thirty rationales. When more085

rationales are selected uniformly within each clus-086

ter, the performance of CoT distillation approaches087

that of using all cot distillation. Therefore, for KD088

LLM into small LM, it is not enough for rationale089

to only include sufficient knowledge.090

Notably, (Moschella et al., 2023) has observed091

that the representations within the latent space, gen-092

erated across various training instances of neural093

networks, demonstrate significant variability. This094

indicates that the distribution of a small language095

model (small LM) significantly diverges from that096

of a large language model (LLM), needing an align-097

ment to solve this problem (Yang et al., 2024). Con-098

sequently, this variability suggests that small LMs099

may not consistently interpret or “understand” the100

outputs from LLMs. Furthermore, the use of ra-101

tionales generated by LLMs as training inputs for102

small LMs can lead to instances where these ra-103

tionales are not effectively comprehended by the104

small LMs, resulting in limited training effective-105

ness.106

In this paper, to address the challenge wherein107

small LMs struggle to comprehend the rationales108

produced by LLMs during CoT KD, we first mod-109

eled the relationship between the question, ratio-110

nale, and label, identifying a metric called Self111

Logic Consistency (SLC) that effectively evalu-112

ates the quality of the rationale for student mod-113

els. Secondly, we adopted a simple strategy, which114
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Figure 2: Comparison of CoT distillation using different
rationale selection strategies.
we call personalized Chain-of-Thought Distillation 115

(PeCoTD), requiring a personalized refining pro- 116

cess to bridge the distribution gap between LLMs 117

and small LMs. 118

We hypothesize that obstacles to rationale uti- 119

lization stem from this distribution gap. To address 120

the issue, as shown in Figure 1, PeCoTD uses a 121

question-completion pair that aligns with the small 122

model’s learning distribution as a prompt to gener- 123

ate new rationales that maintain semantic equiva- 124

lence with the original rationales offered by LLMs. 125

This process, called refinement, can be repeated 126

multiple times. After refinements, the refined ratio- 127

nales serve as surrogate targets during subsequent 128

finetuning. Through this approach, PeCoTD inher- 129

ently maintains the original distribution, avoiding 130

distribution shifts and thereby better utilizing ratio- 131

nales. Given that PeCoTD focuses on data quality, 132

it is orthogonal to the majority of CoT KD methods, 133

making its applicability extensive. 134

Our experiments demonstrate that PeCoTD 135

significantly improves the reasoning abilities of 136

small models across various datasets. Specifically, 137

PeCoTD demonstrates enhanced accuracy, improv- 138

ing T5-large by 1.75% on Strategy QA and 1.70% 139

on CommonSense QA (CQA) as shown in Figure 3. 140

Moreover, alignment with the teacher model is also 141

improved, increasing similarity by 0.012 on Strat- 142

egy QA and 0.011 on CQA as depicted in Figure 7, 143

effectively bridging the distribution gap. 144

2 Method 145

2.1 Vanilla CoT Knowledge Distillation 146
The existing CoT (Chain of Thought) KD (Knowl- 147

edge Distillation) generally utilizes both the CoT, 148

referred to as rationale ri generated by a teacher 149

model T in response to a query qi and the corre- 150

sponding answer ai. i is the index of the specific 151

question. These elements are collectively used as 152

the completion ci = (ri, ai) to fine-tune a small 153

LM (Small Language Model), denoted as the stu- 154

dent model S and parameterized by θ, as described 155

in the equation below: 156

LFT(θ) = −
∑
i

logSθ(ci | xi), (1) 157
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The method we follow to generate rationales and158

reformat them into prompt-completion pairs is159

based on the work of (Ho et al., 2023b). The160

final data prompt-completion pair, query q and161

completion c, takes the form of "<qi> ###" and162

"<ri> −− > <ai> END".163

2.2 Self-Logic Consistency (SLC)164

In our work, we address the need for smaller lan-165

guage models (LMs) to be trained not merely on166

general rationales but on those that are most suited167

to their specific learning capacities. This approach168

is motivated by the observation that conventional169

training methods, which use a one-size-fits-all strat-170

egy for data, do not optimize for the internal cogni-171

tive structures of smaller models. To this end, we172

propose a refined metric based on Pointwise Mu-173

tual Information (PMI), which we term Self-Logic174

Consistency (SLC), to identify and utilize the most175

effective data for training these models.176

Adapting PMI for Language Model Distilla-177

tion. PMI is traditionally used in linguistic studies178

to measure the association between words within179

specific contexts. The standard PMI formula is180

given by:181

PMI(x, y) = log
P (x, y)

P (x)P (y)
= log

P (y | x)
P (y)

(2)182

We extend the application of PMI from simple word183

pairs to the evaluation of entire rationales. This184

adaptation is crucial as it allows us to gauge the185

coherence and relevance of the rationales generated186

by LLMs when used for training smaller models.187

Self-Logic Consistency (SLC). Building di-188

rectly on the PMI framework, the SLC score is189

a metric designed to specifically assess how well190

the rationales align with the intrinsic reasoning pat-191

terns of small LMs. It quantifies the suitability of192

each rationale by comparing the conditional and193

marginal probabilities of the completions:194

SLCθ(qi, ci) =
Pθ(ci|qi)
Pθ(ci)

(3)195

Here, Pθ is the probability distribution estimated196

by the small model Sθ, qi is a question, and ci is its197

associated completion, including both a rationale198

ri and an answer ai. This metric leverages the in-199

ternal logic of the small model to identify which200

data samples will best aid its learning process, re-201

flecting a shift towards more personalized training202

approaches.203

We employ the SLC metric to evaluate various204

generated rationales for each question. Based on205

these SLC scores, we curate datasets, separating 206

the highest from the rest. This targeted selection 207

ensures that smaller language models train on the 208

most suitable rationales, potentially boosting their 209

reasoning capabilities and effectiveness. 210

2.3 Iterative Refinement Using ICL 211

To further enhance the alignment between the ratio- 212

nales generated by the teacher model T and the stu- 213

dent model S’s learning capabilities, we implement 214

an iterative refinement process using In-Context 215

Learning (ICL). This approach leverages highest- 216

scoring SLC samples as the prompts for generating 217

new, more suitable rationales. 218

Initial Data Generation. We begin by generat- 219

ing a diverse set of rationales for the total dataset 220

Dtotal. When generating rationales for the first time, 221

we followed the zero-shot method of (Ho et al., 222

2023b). This initial generation is crucial for estab- 223

lishing a baseline of CoT distillation: 224

{(qi, rij , ai)}|D̂total|
i=1 ← T (qi)|D̂total|

i=1 (4) 225

Here, D̂total represents the total dataset with ratio- 226

nales; i indexes the question, and j indexes the 227

rationales corresponding to each question, with ai 228

representing the answers. 229

Data Selection and Organization in Refine- 230

ment After initial data generation, we compute 231

the SLC scores for these rationales with the corre- 232

sponding small LM. 233

The rationales of the highest scoring dataset 234

D̂h total is composed by selecting the rationale r 235

with the highest SLC for each question qi: 236

D̂h total = {(qi, ri, ai) |
if SLCθ(qi, ci)

is highest for qi in D̂total
}

(5) 237

Then five samples, question-completion pairs, 238

are selected from D̂h total as the context of prompt 239

Pc for the next phase of rationales generation in 240

refinement. Similarly, the rationales of D̂l total is 241

also composed of selecting the rationale r with the 242

lowest SLC from each question qi. 243

Using Pc as context, followed closely by a ques- 244

tion qi , through ICL, we employ the teacher model 245

through ICL to generate new rationales that are 246

more personalized to the student model’s prefer- 247

ences: 248

{(qi, rij , ai)}|D̂total|
i=1 ← T (Pc, qi)|D̂total|

i=1 (6) 249

Each iteration aims to produce rationales that better 250

aligns with the small model’s intrinsic logic. 251
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Method Size SLC
Single Add Multi

GSM8K SVAMP
Date Last Coin Common Strategy

Eq Sub Arith Understanding Letter Flip SenseQA QA

Random 0.00 0.00 0.00 0.00 0.00 17.12 0.00 50.00 20.00 50.00

Teacher: Llama2

zero-shot 74.84 68.9 79.26 40.12 58.0 72.07 52.67 88.33 60.78 60.48

Student: GPT-2 (small, medium, large)

(Ho et al., 2023b)

small-124M
low 1.32 3.36 7.22 2.12 8.67 19.82 5.33 56.0 24.0 48.33
random 2.63 10.08 11.11 2.05 9.33 18.02 8 55.33 26.21 49.64
high 3.29 5.04 8.89 3.03 8.33 17.12 7.33 57.33 27.6 50.95

medium-354M
low 4.61 6.72 8.33 2.96 7.67 17.12 6.67 55.33 21.9 52.55
random 2.63 5.04 11.11 2.65 8 15.32 7.33 54.67 23.36 49.34
high 7.24 5.88 9.44 3.41 5.67 19.82 5.33 56.67 22.85 50.22

large-774M
low 3.95 8.40 11.67 2.96 8 19.82 2.67 65.33 24.41 50.07
random 1.97 5.88 7.78 3.18 6.67 14.41 4.67 66.67 25.5 51.82
high 5.26 9.24 11.67 2.88 7.33 12.61 2.67 69.33 26.7 50.36

Student: T5 (small, base, large)

(Ho et al., 2023b)

small-60.5M
low 1.97 3.36 6.11 2.20 7 19.82 12 82.33 35.14 50.36
random 1.32 4.20 5.56 2.05 6.33 20.72 15.33 92 36.2 51.82
high 4.61 4.20 5.0 2.35 5.33 26.13 15.33 92.67 37.1 53.57

base-222
low 3.29 2.52 10.0 5.76 7.67 63.96 38.67 100 50.45 56
random 3.29 3.36 12.22 6.37 9.33 68.47 40.67 100 51.68 56.62
high 3.95 4.20 12.22 5.91 8.33 72.07 43.33 100 53.32 57.8

large-737M
low 5.92 8.40 12.78 8.20 10.33 77.48 44.67 100 65.36 58.95
random 7.90 10.92 11.11 8.41 11.67 81.08 44.67 100 66.75 59.24
high 4.61 10.08 18.89 8.35 10.67 83.78 47.33 100 67.4 59.97

Table 1: Performance of T5 and GPT-2 model families across various datasets with different SLC levels. SLC levels
are categorized as high, random, and low, indicating the highest, randomly selected, and lowest SLC scores for the
CoTs generated by the teacher model for each question.

Iterative Process and Evaluation in Refine-252

ment. The iterative nature of this refinement al-253

lows for continual improvement. After generating254

new rationales, we reassess the SLC scores and255

select the highest scoring new samples for subse-256

quent ICL. Notably, by focusing only on refine-257

ment, we can generate rationales for just 100 ques-258

tions, thereby saving computational resources. The259

pseudocode for iterative refinement is shown in the260

Table 4.261

3 Experiments262

We empirically validate the effectiveness of our263

method. First, we demonstrated the impact of264

PMI on distillation performance. Second, we show265

that when compared to direct task distillation ap-266

proaches, our method achieves better performance267

with much fewer number of training examples of268

diverse CoTs, and reduces the distribution gap be-269

tween teacher and student models.270

Setup. In the experiments, We use Llama2-7B271

(Touvron et al., 2023) as the teacher model to gen-272

erate correct rationales or CoTs. We sample from273

Llama2 with a temperature of T = 0.9. For each274

training example, we sample N = 8 rationales.275

We use GPT-2 {Small, Medium, Large} (Rad-276

ford et al., 2019) and T5 {Small, Base, Large} (Raf-277

fel et al., 2020) as representative model families for278

decoder-only and encoder-decoder architectures, 279

respectively, serving as student models. All Stu- 280

dent models is fine-tuned with a batch size of 32 281

and a learning rate of 6× 10−5. 282

Datasets. We evaluate our method on 10 283

datasets pertaining to four categories of complex 284

reasoning, following (Kojima et al., 2022) These 285

include arithmetic math word problems(SingleEq, 286

AddSub, MultiArith, GSM8K, SVAMP(Patel et al., 287

2021)), other (Date Understanding), symbolic (Last 288

Letter Concatenation, Coin Flip), and common 289

sense (CommonSense QA(Talmor et al., 2019), 290

Strategy QA) reasoning. 291

3.1 Results 292

Higher SLC Makes Better CoT Distillation Per- 293

formance. As demonstrated in Table 1, higher SLC 294

values correlate with enhanced CoT or reasoning 295

capabilities in small LMs trained on datasets orga- 296

nized around selected rationales, except in cases 297

where performance approach randomness. For ex- 298

ample, in Strategy QA and CQA datasets, the ac- 299

curacy differences between the lowest and high- 300

est SLC levels for the T5-large model are 1.02% 301

and 2.04%, respectively. However, across vari- 302

ous arithmetic math word problem datasets (Sin- 303

gleEq, AddSub, MultiArith, GSM8K, SVAMP), 304

small LMs consistently exhibit poor performance, 305
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Figure 3: The performance of PeCoTD across the small, base, large size of T5 on datasets such as Date Understand-
ing, Last Letter Concatenation, CQA, and Strategy QA improves as the number of refinement iterations increases.
regardless of the dataset size. This indicates that306

a relatively small number of parameters is inade-307

quate for effectively handling arithmetic math word308

problems.309

Regrettably, GPT-2 {Small, Medium, Large}310

performs almost at random across all datasets.311

Nonetheless, the decoder-only model definitely312

possess CoT capability. We think the poor perfor-313

mance of GPT-2 is primarily due to the insufficient314

number of parameters. Further experiments and315

analysis is in Sec 4.316

The Encoder-Decoder Style Have More Rea-317

soning Capability in Small Size. However, we ob-318

served that the GPT-2 family’s performance across319

all datasets approximated random responses. This320

indicates that GPT-2 lacks CoT capabilities in small321

size. Meanwhile, we observed that within the T5322

family, there is a notable enhancement in CoT capa-323

bilities with an increase in parameter count in Date324

Understanding, Last Letter Concatenation, Coin325

Flip, CQA, and Strategy QA. This demonstrates326

that SLC is effective in assessing the quality of CoT327

data for small models. This indicates that, when328

sizes are equal and small, the encoder-decoder mod-329

els demonstrates greater reasoning capabilities than330

the decoder-only models.331

Considering the structure of SLC, when the332

conditional probability Pθ(ci | qi) exceeds the333

marginal probability Pθ(ci), it implies that the334

incorporation of the question qi positively influ-335

ences the likelihood of generating the completion336

ci. This relationship indicates a higher logical con-337

sistency between the question and the completion,338

thereby suggesting a stronger SLC. Conversely, if339

Pθ(ci | qi) is less than Pθ(ci), it implies that, par-340

ticularly for smaller language models, there is a341

logical discrepancy between the question and its342

completion. This inconsistency results in a reduced343

SLC.344

Figure 4 compares SLC scores across four345

datasets: CQA, Strategy QA, Last Letter, and Date346
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Figure 4: Comparison of SLC scores between T5-large
and GPT2-large on the datasets of CQA, Strategy QA,
Last Letter Concatenation, and Date Understanding.

Understanding, using T5 large and GPT-2 large. 347

The T5 model consistently scores above 1 across 348

all datasets, with scores in the Date Understanding 349

dataset surpassing 2.0. This indicates strong and 350

coherent logical consistency in T5’s responses, par- 351

ticularly evident in its robust handling of diverse 352

prompts. This suggests that the encoder-decoder ar- 353

chitecture is better suited to adapting across diverse 354

distributions. 355

In contrast, the GPT-2 model scores below 1.0 in 356

all datasets, suggesting its struggle to align reason- 357

ing effectively with the posed questions. The con- 358

sistently low scores and minimal variability point 359

to a significant limitation in handling tasks that de- 360

mand nuanced understanding and logical reasoning, 361

likely due to its decoder-only architecture. 362

PeCoTD Help Small LM Reason. Since our 363

method focuses on data, while other existing CoT 364

methods concentrate on fine-tuning approaches, 365

our method is orthogonal to other CoT KD meth- 366

ods. Therefore, our method is compared solely 367

with the baseline (Ho et al., 2023b) to demonstrate 368

its effectiveness in data operations. 369

Considering that small LMs struggle with arith- 370

metic math word problems but attain 100% ac- 371

curacy on Coin Flip, we exclusively present 372

PeCoTD’s performance on datasets: Strategy QA, 373

CQA, Last Letter Concatenation, and Date Under- 374
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Figure 5: The performance of the T5 {Small, Base, Large} on the datasets for Date Understanding, Last Letter
Concatenation, CQA, and Strategy QA, CoT KD with 3 CoTs, PeCoTD method with 3 CoTs, and CoT KD with
eight CoTs.
standing. For simplicity and clarity, we will only375

display the performance of T5, which is shown in376

Figure 3. When the number of iterations is 0, we377

randomly select from the rational generated by the378

teacher model.379

Figure 3 shows that as the number of refinement380

iterations increases, the performance of CoT distil-381

lation improves. For instance, following 3 refine-382

ment iterations, the T5-large model demonstrated383

accuracy improvements of 1.75%, 1.70%, 3.66%,384

and 2.90% across four respective datasets. This385

indicates that the teacher model has generated ra-386

tionales that are more suitable for small LMs to387

learn from, aligning better with the distribution of388

small models.389

Larger Language Models Possess a Greater390

Capability to Bridge the Distribution Gap. Fig-391

ure 3 reveals that as the number of parameters in-392

creases, the marginal benefit from iterative refine-393

ment decreases. This indicates that models with394

larger parameter quantities are more adept at learn-395

ing information from texts with varying distribu-396

tions. One possible reason is that larger models,397

characterized by increased complexity and parame-398

ter count, exhibit enhanced capability in capturing399

subtle nuances and intricate patterns present within400

disparate datasets. This heightened capacity facil-401

itates the seamless transition of knowledge from402

one distribution to another. (Goyal et al., 2024)403

also pointed out that in models with a large number404

of parameters, the model will converge to the same405

level regardless of the quality of the training data,406

as long as sufficient training resources are available,407

which confirms our point of view.408

Fewer CoTs with PeCoTD is Near Equivalent409

to More CoTs. Following (Li et al., 2023b), we410

use SBERT (Reimers and Gurevych, 2019) to cal-411

culate embeddings for the rationales and apply hier-412

archical clustering to organize the eight rationales413

per question into 3 clusters, selecting one rationale414

from each. These selected rationales are used for415

Figure 6: Comparison of a typical CQA example with a
typical Strategy QA example. Every example contains
a question and a completion.

vanilla CoT KD. Similarly, we use the PeCoTD 416

method to produce rationales, employing the ratio- 417

nales derived from each cluster of each question for 418

CoT KD. We set the PeCoTD refinement iterations 419

to 3. In the final experimental group, CoT KD is 420

conducted using all eight rationales. All results are 421

illustrated in Figure 5. We find that in most cases, 422

PeCoTD has led to improvements. 423

When analyzing the Strategy QA results, the 424

performance of PeCoTD with 3 CoTs closely ap- 425

proaches that of vanilla CoT KD with eight CoTs. 426

However, in the case of CQA, while the PeCoTD 427

method with 3 CoTs shows improved performance 428

over the vanilla CoT KD, it still lags behind the 429

vanilla CoT KD with eight CoTs by gaps of 0.59%, 430

1.19%, and 1.66% for the small, base, and large 431

sizes, respectively. 432

Upon examining the two datasets, we identified 433

distinct differences. CQA is knowledge-intensive, 434

relying more on whether the model possesses rele- 435

vant knowledge. In contrast, Strategy QA is primar- 436

ily reasoning-intensive, demanding robust logical 437

capabilities of the model. 438
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Figure 7: Distribution of cosine similarity between SBERT embeddings of completions from teacher and student
models across various tasks. The tasks include CQA, Strategy QA, Date Understanding, and Coin Flip. PeCoTD
shows higher overall similarity, indicating better alignment between teacher and student models.

In Figure 6, we display a representative example439

from CQA alongside one from Strategy QA. (Wang440

et al., 2024) revealed that there actually exists a di-441

rected graph in the corpus consisting of concepts442

as points and relationships as edges, where the443

chain-of-thoughts is paths in this directed graph.444

Hence, we also constructed the corresponding rea-445

soning paths based on the completions. From Fig-446

ure 6, we can see that the inference in the CQA447

example is simpler, with fewer edges representing448

reasoning; Conversely, the Strategy QA example449

has more edges, suggesting a greater presence of450

reasoning, commonly associated with multi-hop451

questions. This suggests that questions in Strat-452

egy QA lead to more complex rationales generated453

by the teacher model, resulting in a distribution of454

rationales that is too broad for the student model455

to effectively learn. However, PeCoTD is specif-456

ically designed to bridge distribution gaps. The457

larger the gap, the more significant the enhance-458

ments PeCoTD can provide. This explains why459

PeCoTD achieves greater enhancements in Strat-460

egy QA compared to CQA.461

4 Analysis462

Decoder-Only Can Also Logic-Consist. Undoubt-463

edly, decoder-only style language models possess464

chain-of-thought capabilities. We did not observe465

clear chain-of-thought performance on GPT-2, pos-466

sibly due to scaling law. The size of {Small,467

Medium, Large} is not yet sufficient to possess468

chain-of-thought ability. However, we find that469

math word problems are too challenging for small470

language models to perform effectively. Therefore,471

we employ GPT-2 XL, with 1.6 billion parameters,472

to conduct experiments on the other five datasets,473

as shown in Table 2.474

As illustrated in Table 2, while GPT-2 XL475

achieves non-zero scores in Date Understanding,476

Strategy QA and Last Letter Concatenation, the477

results are not substantial enough to conclusively478

SLC
Date

Understanding
Last

Letter
Coin
Flip

Common
SenseQA

Strategy
QA

17.12 0.00 50.00 20.00 50.00

Student: GPT-2 XL

low 13.51 5.0 72.0 25.31 49.05
random 11.71 6.33 75.33 28.42 49.34

high 15.32 4.0 78.0 29.48 49.2

Table 2: The performance of GPT-2 xl with different
levels in SLC on Date Understanding, Last Letter, Coin
Flip, CQA, and Strategy QA.
demonstrate problem-solving capabilities, suggest- 479

ing that the model may have recognized only su- 480

perficial patterns. In contrast, in the Coin Flip task, 481

GPT-2 XL, getting score of 75.33% with randomly 482

selected data, appears to have effectively learned 483

to predict the final state of the coin, likely due to 484

the simplicity of the problem. For CQA, GPT-2 485

XL’s performance significantly deviates from ran- 486

domness, showing a clear improvement between 487

the lowest and highest SLC with 4.17%. 488

Iterations of
Refinement

Date
Understanding

Last
Letter

Coin
Flip

Common
SenseQA

Strategy
QA

0 11.71 6.33 75.33 28.42 49.34
1 15.32 3.67 87.67 (+12.34) 34.66 (+6.24) 49.64
2 8.11 7.33 96.0 (+20.67) 38.19 (+9.77) 52.69
3 12.61 8.67 100 (+24.67) 35.98 (+7.56) 50.51

Table 3: Performance of GPT-2 XL across various
datasets with increasing refinement iterations.

As shown in Table. 3, due to GPT-2 XL’s fail- 489

ure to effectively solve the Date Understanding 490

and Last Letter Concatenation tasks, refining the 491

rationales used to train student models does not 492

enhance the model’s performance. However, in the 493

Coin Flip and Strategy QA tasks, although each 494

refinement iteration enhances model performance, 495

the marginal gains diminish with each subsequent 496

iteration. For CQA, the third refinement failed to 497

benefit the student model and even resulted in a 498

4.3% decrease in performance. 499

Feedback Helps LLM learn the Distribution 500
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of the Small LM. On the test dataset, we conduct501

inferences using four models: the vanilla teacher502

model, the teacher model with refined prompts,503

the student model of T5-base trained with vanilla504

CoT KD, and the student model of T5-base trained505

with personalized CoT via PeCoTD. The number506

of iterations of refinement is 3. Subsequently, we507

calculate the cosine similarity between the embed-508

dings from the SBERT outputs of the completions509

from each teacher-student pair. The distribution of510

these similarities is shown in Figure 7. For clarity511

and simplicity, we only present data from CQA,512

Strategy QA, Date Understanding, and Coin Flip.513

Intuitively, a higher cosine similarity between514

the teacher and student models’ output indicates515

a narrower distribution gap. In the case of CQA,516

Strategy QA, and Date Understanding, PeCoTD517

results in the overall similarity shifting towards518

1.0, with the mean increasing by 0.012, 0.011, and519

0.05. Despite the simplicity of the Coin Flip task520

and the small distribution gap between teacher and521

student models, PeCoTD still manages to enhance522

similarity.523

SLC Affects Length of Rationales Differently524

in Different Architecture. When employing small525

LMs to evaluate the rationales generated by teacher526

models, it has been observed that for models within527

the T5 family, rationales selected with higher SLC528

are notably shorter. Conversely, in the case of the529

GPT-2 family, higher SLC correlates with longer530

rationales. It’s worth noting that they may not be531

the longest or shortest among all rationales. This532

should be related to the decoder-only style and the533

encoder-decoder style.534

For instance, for Strategy QA, the average535

lengths and SLCs of rationales selected by different536

models are shown in the Figure 8. We observed537

that for both T5 and GPT-2 models, the average538

length of rationales filtered by each SLC level is539

converging. Moreover, further statistic analysis re-540

vealed that their overlap is very high in the same541

style models. For instance, in the Strategy QA, the542

GPT models small, medium, large simultaneously543

select 62.63% of the data when the SLC is low, and544

60.37% of the data when the SLC is high, which is545

shown in Figure 9. This suggests that models of the546

same style exhibit consistency in their rationales547

selection.548

5 Related Work549
CoT represents intermediate reasoning steps from550

problem to answer, encompassing logical relation-551

t5-small t5-base t5-large
180
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240
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ti
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ng
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PMI Low
PMI Random
PMI High

gpt2 gpt2-medium gpt2-large

SLC Low
SLC Random
SLC High

Figure 8: Comparison of the average length of CoTs
about Strategy QA for T5 and GPT-2 under different
levels of SLC.

ships and knowledge concepts. (Li et al., 2022) 552

enhances smaller reasoning models by leveraging 553

explanations from large language models (LLMs) 554

in a multi-task learning approach, boosting their 555

reasoning and explanatory capabilities. (Magis- 556

ter et al., 2023) explores transferring these reason- 557

ing skills to smaller models via knowledge distilla- 558

tion, balancing model size and dataset for optimal 559

reasoning skills. (Fu et al., 2023) advocates fine- 560

tuning instruction-tuned models, distilling CoT rea- 561

soning trajectories from larger models to enhance 562

task performance outside the training distribution. 563

(Geva et al., 2022) incorporates LLM-generated 564

rationales into a multi-task training regimen for 565

smaller models. (Ho et al., 2023a; Li et al., 2023b) 566

use explicit CoTs for CoT distillation. (Shridhar 567

et al., 2023) develops two specialized models: a 568

problem decomposer and a subproblem solver. The 569

decomposer breaks down problems into subprob- 570

lems, while the solver focuses on these segments. 571

(Wang et al., 2023a) uses contrastive decoding to 572

ensure rationales are relevant to their correspond- 573

ing answers, promoting appropriate and counterfac- 574

tual reasoning. (Zhu et al., 2023) enables learner 575

models to benefit from program-aided reasoning, 576

detecting and correcting erroneous reasoning steps. 577

6 Conclusion 578

In this study, we introduced a data-focused method- 579

ology called Personalized Chain-of-Thought Dis- 580

tillation that enhances the reasoning capabilities of 581

small LMs by personalizing rationales from LLMs 582

based on self logic consistency. Our results demon- 583

strate significant improvements in reasoning accu- 584

racy across multiple datasets compared to existing 585

methods. PeCoTD effectively reduces the distri- 586

bution gap between teacher and student models, 587

ensuring that small LMs not only receive informa- 588

tion but also effectively understand and utilize it. 589

We look forward to further explorations into the 590

scalability of this approach and its broader applica- 591

tion potential. 592
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7 Limitations593

Generalization for All Size of Models and Types594

of Datasets. While our study introduces Personal-595

ized Chain-of-Thought Distillation (PeCoTD) as596

an effective method, several limitations related to597

its generalization across different model sizes and598

datasets warrant attention. Firstly, the effectiveness599

of PeCoTD heavily depends on the initial quality600

and diversity of rationales generated by the teacher601

model. his dependency may limit its utility when602

the teacher model’s outputs are suboptimal or lack603

sufficient diversity, particularly affecting its per-604

formance across various model sizes. Secondly,605

although PeCoTD enhances small language mod-606

els’ performance, it does not uniformly address607

all types of reasoning tasks. This is evident from608

the varied performance observed across different609

datasets, indicating that tasks requiring advanced610

mathematical reasoning or extensive factual knowl-611

edge pose significant challenges that PeCoTD may612

not fully overcome. Additionally, the approach’s613

scalability and effectiveness across different model614

sizes and task complexities remain constrained,615

highlighting the need for further research to im-616

prove its generalization capabilities.617

The Computational Demands. Resource for618

computing, though reduced compared to training619

large models directly, remain significant, espe-620

cially when scaling up to larger datasets or more621

complex model architectures. This scalability is-622

sue could limit practical deployments in resource-623

constrained environments. Lastly, the refinement624

process within PeCoTD, though effective, intro-625

duces additional complexity in training workflows,626

which might complicate its adoption without spe-627

cialized knowledge or adjustments in existing in-628

frastructure.629

Does SLC Accurately Reflect Suitability for630

Small LMs? Although higher SLC showed higher631

performance in CoT distillation, we cannot intu-632

itively let small LMs tell us that they prefer ratio-633

nales with higher SLC. Socreval (He et al., 2023)634

employed ChatGPT to evaluate the quality of ra-635

tionales from multiple dimensions. We adopted a636

similar approach, assessing rationales based on our637

criteria: logical coherence, comprehensibility, and638

the use of advanced vocabulary. Our results indi-639

cate that the scoring outcomes are largely random,640

regardless of the rationales’ effectiveness in aiding641

small model learning. Furthermore, the scores gen-642

erated by ChatGPT reflect its biases rather than the643

suitability of small models, as these models often 644

fail to provide consistent evaluations based on the 645

given prompts. Consequently, it is valuable to ex- 646

plore methods that enable small models to express 647

in human language which rationale they prefer. 648
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A Appendix829

Iterative Refinement Process
Initialize parameters: iterations, Dtotal,
T (teacher model), S (student model)

Step 1: Initial Data Generation
Generate initial rationales for Dtotal:
D̂total ← T (Dtotal)

Step 2: Iterative Refinement
for i = 1 to iterations do

Compute SLC scores: SLCθ(qi, ci)
Select highest SLC rationales:

D̂h total = {(qi, ri, ai) |
if SLCθ(qi, ci) is

highest for qi in D̂total}
Select five samples as prompt context Pc

from D̂h total
Generate new rationales using T with Pc:

D̂total ← T (Pc, qi)
end for
Step 3: Final Model Training
Compute final SLC scores: SLCθ(qi, ci)
Select best rationales for training:
D̂final = {(qi, ri, ai) |
SLCθ(qi, ci) is highest}
Fine-tune student model S with D̂final

Table 4: Pseudocode for Iterative Refinement Process

Repetition of teacher model’s output results in830

degeneration. When there are many repetitions in831

the rationales generated by the teacher model, the832

student model will generate more repetitions. (Li833

et al., 2023a) also found the similar phenomenon.834

Figure 9: When SLC is low and high, the overlap of
rationales selected by GPT-2 small, medium, and large.
The count of each part represents the number of ratio-
nales for that section.

For example, when the training data is highly repeti- 835

tive and has an average length of 473, after training, 836

the T5-small model outputs an average length of 837

1419. By reading the outputs, we found that in 838

a large proportion, the trained T5-small continu- 839

ously generates repetitive sentences until it exceeds 840

the max_length parameter, thereby avoiding the 841

generation of answers. 842
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