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Abstract

Large Language Models (LLMs) have ad-
vanced natural language processing signifi-
cantly with Chain-of-Thought (CoT) reason-
ing and In-Context Learning (ICL), but their
deployment is limited by high computational
and operational costs. This paper intro-
duces Personalized Chain-of-Thought Distilla-
tion (PeCoTD), a novel approach to transfer rea-
soning capabilities from LLMs to smaller, more
deployable models. Recognizing the compre-
hension difficulties small LMs face with LLM-
generated rationales, we first develop a metric
called Self Logic Consistency (SLC) to assess
rationale quality. This refinement process en-
sures the maintenance of semantic equivalence
with the original LLM rationales, facilitating
more effective fine-tuning and avoiding distri-
bution shifts. This approach, focusing on data
quality in Knowledge Distillation (KD), miti-
gates comprehension variability in small LMs
and extends the applicability of CoT KD strate-
gies. Our experiments show that PeCoTD sig-
nificantly improves the reasoning abilities of
small models across diverse datasets.

1 Introduction

Large language models (LLMs) have achieved
state-of-the-art performances in many natural lan-
guage processing tasks (Wang et al., 2019), due to
emergence capabilities, such as Chain-of-Thought
(CoT) (Wei et al., 2022a; Wang et al., 2023c; Ko-
jima et al., 2022) capability and In-Context learning
(ICL) (Brown et al., 2020; Min et al., 2022; Wang
et al., 2023b) capability. To address complex tasks,
LLM utilize their CoT capability, or reasoning ca-
pability to generate intermediate steps that lead to
the final answer, referred to as the rationales. (Ko-
jima et al., 2022) found that the CoT capability can
be stimulated just by executing an instruction.
Nonetheless, a critical shortcoming of rationale-
generating CoT reasoning approaches is their need
for large models, with parameter counts reaching
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Figure 1: Personalized CoT Distillation Process. This
illustrates our method, where high SLC scored examples
are used as prompts to refine rationales, enhancing the
training of student models through iterative refinements.

into the hundreds of billions (Wei et al., 2022b; Ko-
jima et al., 2022). The scalable deployment of these
models is significantly impeded by their formidable
computational requisites and the substantial costs
associated with inference.

Consequently, our endeavor is to facilitate same
capable reasoning within small language models
(small LMs), which present a more viable option
for widespread deployment. Knowledge Distilla-
tion (KD) (Hinton et al., 2015) is a powerful tool
to transfer the ability of large models (i.e., teacher
models) into small ones (i.e., student models) with
a minimal loss of reasoning capability.

The current KD of CoT capabilities are primar-
ily based on rationale and black-box style. (Ho
et al., 2023a) uses LLMs to generate rationales,
then combines the rationales and answers together
as completions for training small language mod-
els. (Hsieh et al., 2023) uses LLMs to generate
rationales and answers separately, and then trains
small language models step-by-step with the ratio-
nale and answer as the target objectives. SCoTD



(Li et al., 2023b) explored the factors influencing
the KD of CoT capabilities through rationales, and
concluded that the number of rationales is key to
the distillation of CoT capabilities. However, it did
not reveal the underlying reasons why the number
of rationales is so significant.

Inspired by SCoTD (Li et al., 2023b), we im-
plement 3 knowledge distillation strategies from
GPT-3 to OPT-1.3B. The 'Random’ strategy selects
five random rationales from thirty, ’Diversity-a-b’
uses SBERT for clustering and selects b rationales
from a clusters, and *All CoTs’ uses all thirty ratio-
nales. Intuitively, because rationales contain more
knowledge, KD with rationales helps small LM
to better understand the world than KD with only
label. Nonetheless, the experimental findings, as
related to Figure 2, demonstrate that the perfor-
mance of CoT distillation, when limited to merely
five rationales, even though these cover the com-
prehensive knowledge contained within thirty ra-
tionales, significantly underperforms compared to
CoT distillation using thirty rationales. When more
rationales are selected uniformly within each clus-
ter, the performance of CoT distillation approaches
that of using all cot distillation. Therefore, for KD
LLM into small LM, it is not enough for rationale
to only include sufficient knowledge.

Notably, (Moschella et al., 2023) has observed
that the representations within the latent space, gen-
erated across various training instances of neural
networks, demonstrate significant variability. This
indicates that the distribution of a small language
model (small LM) significantly diverges from that
of a large language model (LLM), needing an align-
ment to solve this problem (Yang et al., 2024). Con-
sequently, this variability suggests that small LMs
may not consistently interpret or “understand” the
outputs from LLMs. Furthermore, the use of ra-
tionales generated by LLMs as training inputs for
small LMs can lead to instances where these ra-
tionales are not effectively comprehended by the
small LMs, resulting in limited training effective-
ness.

In this paper, to address the challenge wherein
small LMs struggle to comprehend the rationales
produced by LLMs during CoT KD, we first mod-
eled the relationship between the question, ratio-
nale, and label, identifying a metric called Self
Logic Consistency (SLC) that effectively evalu-
ates the quality of the rationale for student mod-
els. Secondly, we adopted a simple strategy, which
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Figure 2: Comparison of CoT distillation using different
rationale selection strategies.

we call personalized Chain-of-Thought Distillation
(PeCoTD), requiring a personalized refining pro-
cess to bridge the distribution gap between LLMs
and small LMs.

We hypothesize that obstacles to rationale uti-
lization stem from this distribution gap. To address
the issue, as shown in Figure 1, PeCoTD uses a
question-completion pair that aligns with the small
model’s learning distribution as a prompt to gener-
ate new rationales that maintain semantic equiva-
lence with the original rationales offered by LLMs.
This process, called refinement, can be repeated
multiple times. After refinements, the refined ratio-
nales serve as surrogate targets during subsequent
finetuning. Through this approach, PeCoTD inher-
ently maintains the original distribution, avoiding
distribution shifts and thereby better utilizing ratio-
nales. Given that PeCoTD focuses on data quality,
it is orthogonal to the majority of CoT KD methods,
making its applicability extensive.

Our experiments demonstrate that PeCoTD
significantly improves the reasoning abilities of
small models across various datasets. Specifically,
PeCoTD demonstrates enhanced accuracy, improv-
ing T5-large by 1.75% on Strategy QA and 1.70%
on CommonSense QA (CQA) as shown in Figure 3.
Moreover, alignment with the teacher model is also
improved, increasing similarity by 0.012 on Strat-
egy QA and 0.011 on CQA as depicted in Figure 7,
effectively bridging the distribution gap.

2  Method

2.1 Vanilla CoT Knowledge Distillation

The existing CoT (Chain of Thought) KD (Knowl-
edge Distillation) generally utilizes both the CoT,
referred to as rationale r; generated by a teacher
model 7 in response to a query ¢; and the corre-
sponding answer a;. ¢ is the index of the specific
question. These elements are collectively used as
the completion ¢; = (7, a;) to fine-tune a small
LM (Small Language Model), denoted as the stu-
dent model S and parameterized by 6, as described
in the equation below:

Lyr(0) = — Zlog&a(ci | i), (1)



The method we follow to generate rationales and
reformat them into prompt-completion pairs is
based on the work of (Ho et al., 2023b). The
final data prompt-completion pair, query ¢ and
completion ¢, takes the form of "<g;> ###" and
"<r;> —— > <a;> END".

2.2 Self-Logic Consistency (SLC)

In our work, we address the need for smaller lan-
guage models (LMs) to be trained not merely on
general rationales but on those that are most suited
to their specific learning capacities. This approach
is motivated by the observation that conventional
training methods, which use a one-size-fits-all strat-
egy for data, do not optimize for the internal cogni-
tive structures of smaller models. To this end, we
propose a refined metric based on Pointwise Mu-
tual Information (PMI), which we term Self-Logic
Consistency (SLC), to identify and utilize the most
effective data for training these models.

Adapting PMI for Language Model Distilla-
tion. PMI is traditionally used in linguistic studies
to measure the association between words within
specific contexts. The standard PMI formula is

given by:
Py | )

PMI(z, y) = log 22 Y) )
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We extend the application of PMI from simple word
pairs to the evaluation of entire rationales. This
adaptation is crucial as it allows us to gauge the
coherence and relevance of the rationales generated
by LLMs when used for training smaller models.
Self-Logic Consistency (SLC). Building di-
rectly on the PMI framework, the SLC score is
a metric designed to specifically assess how well
the rationales align with the intrinsic reasoning pat-
terns of small LMs. It quantifies the suitability of
each rationale by comparing the conditional and
marginal probabilities of the completions:

Py(cilgi)
Py(c;)

Here, Py is the probability distribution estimated
by the small model Sy, g; is a question, and ¢; is its
associated completion, including both a rationale
r; and an answer a;. This metric leverages the in-
ternal logic of the small model to identify which
data samples will best aid its learning process, re-
flecting a shift towards more personalized training
approaches.

We employ the SLC metric to evaluate various
generated rationales for each question. Based on

SLCy(gi, i) = €)

these SLC scores, we curate datasets, separating
the highest from the rest. This targeted selection
ensures that smaller language models train on the
most suitable rationales, potentially boosting their
reasoning capabilities and effectiveness.

2.3 [Iterative Refinement Using ICL

To further enhance the alignment between the ratio-
nales generated by the teacher model 7 and the stu-
dent model S’s learning capabilities, we implement
an iterative refinement process using In-Context
Learning (ICL). This approach leverages highest-
scoring SLC samples as the prompts for generating
new, more suitable rationales.

Initial Data Generation. We begin by generat-
ing a diverse set of rationales for the total dataset
Diora1. When generating rationales for the first time,
we followed the zero-shot method of (Ho et al.,
2023b). This initial generation is crucial for estab-
lishing a baseline of CoT distillation:
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Here, ﬁmta] represents the total dataset with ratio-
nales; ¢ indexes the question, and j indexes the
rationales corresponding to each question, with a;
representing the answers.

Data Selection and Organization in Refine-
ment After initial data generation, we compute
the SLC scores for these rationales with the corre-
sponding small LM.

The rationales of the highest scoring dataset
Dh total 18 composed by selecting the rationale r
with the highest SLC for each question g;:
if SLCg(qi, Ci)

is highest for ¢; in ﬁmml
)

Then five samples, question-completion pairs,
are selected from Dh total @S the context of prompt
‘P, for the next phase of rationales generation in
refinement. Similarly, the rationales of 151 total 18
also composed of selecting the rationale r with the
lowest SLC from each question g;.

Using P, as context, followed closely by a ques-
tion g; , through ICL, we employ the teacher model
through ICL to generate new rationales that are
more personalized to the student model’s prefer-
ences:

ﬁmta ﬁtota
{(gimij, a) P25 = T(Pe, g 25 (6)

Each iteration aims to produce rationales that better
aligns with the small model’s intrinsic logic.

Dh ot = {(¢i, 74, a;)



. Single  Add Multi Date Last Coin Common Strategy
Method Size SLC Eq  Sub Arith GSMBK - SVAMP Understanding Letter ~ Flip SenseQA QA
Random 000 000 0.00 000 000 1712 000 5000 2000  50.00
Teacher: Llama2
sero-shot 7484 689 7926 4012 580 7207 5267 8833 6078 6048
Student: GPT-2 (small, medium, large)
low 132 336 722 212 867 1982 533 560 240 4833
small-124M  random  2.63 1008 1111 205 933 18.02 8 5533 2621  49.64
high 329 504 889 3.03 833 1712 733 57.33 276 5095
low 461 672 833 296 767 1712 667 5533 219 5255
(Hoetal,2023b) |\ jium-354M random  2.63 504 1111 265 8 1532 733 5467 2336 4934
high 724 588 944 341 5.67 1982 533 5667 2285  50.22
low 395 840 11.67 2.96 8 1982 267 6533 2441 5007
large-774M  random 197 588 778 3.18 6.67 1441 467 66.67 255 51.82
high 526 924 1167 2.88 733 1261 267 69.33 267 5036
Student: T5 (small, base, large)
Tow 197 336 611 2.20 7 1982 12 8233 3514 5036
small-60.5M  random 132 420 5.56 2.05 633 2072 1533 92 362 5182
high 461 420 50 235 533 2613 1533 92.67 371 5357
L 2023 low 329 252 100 576 767 6396 3867 100 5045 56
(Hoetal,2023b) o0 52y random 329 336 12.22 637 933 6847 40.67 100 5168  56.62
high 395 420 1222 5.91 833 7207 4333 100 5332 578
low 592 840 1278 820 1033 7748 4467 100 6536 5895
large-737M  random  7.90 1092 1111 841 1167 81.08 4467 100 6675  59.24
high 461 1008 18.89 835 1067 83.78 4733 100 674 5997

Table 1: Performance of T5 and GPT-2 model families across various datasets with different SLC levels. SLC levels
are categorized as high, random, and low, indicating the highest, randomly selected, and lowest SLC scores for the

CoTs generated by the teacher model for each question.

Iterative Process and Evaluation in Refine-
ment. The iterative nature of this refinement al-
lows for continual improvement. After generating
new rationales, we reassess the SLC scores and
select the highest scoring new samples for subse-
quent ICL. Notably, by focusing only on refine-
ment, we can generate rationales for just 100 ques-
tions, thereby saving computational resources. The
pseudocode for iterative refinement is shown in the
Table 4.

3 Experiments

We empirically validate the effectiveness of our
method. First, we demonstrated the impact of
PMI on distillation performance. Second, we show
that when compared to direct task distillation ap-
proaches, our method achieves better performance
with much fewer number of training examples of
diverse CoTs, and reduces the distribution gap be-
tween teacher and student models.

Setup. In the experiments, We use L1lama2-78B
(Touvron et al., 2023) as the teacher model to gen-
erate correct rationales or CoTs. We sample from
Llama2 with a temperature of 7' = 0.9. For each
training example, we sample /N = 8 rationales.

We use GPT-2 {Small, Medium, Large} (Rad-
ford et al., 2019) and TS {Small, Base, Large} (Raf-
fel et al., 2020) as representative model families for

decoder-only and encoder-decoder architectures,
respectively, serving as student models. All Stu-
dent models is fine-tuned with a batch size of 32
and a learning rate of 6 x 1075,

Datasets. We evaluate our method on 10
datasets pertaining to four categories of complex
reasoning, following (Kojima et al., 2022) These
include arithmetic math word problems(SingleEq,
AddSub, MultiArith, GSM8K, SVAMP(Patel et al.,
2021)), other (Date Understanding), symbolic (Last
Letter Concatenation, Coin Flip), and common
sense (CommonSense QA(Talmor et al., 2019),
Strategy QA) reasoning.

3.1 Results

Higher SLC Makes Better CoT Distillation Per-
formance. As demonstrated in Table 1, higher SLC
values correlate with enhanced CoT or reasoning
capabilities in small LMs trained on datasets orga-
nized around selected rationales, except in cases
where performance approach randomness. For ex-
ample, in Strategy QA and CQA datasets, the ac-
curacy differences between the lowest and high-
est SLC levels for the T5-large model are 1.02%
and 2.04%, respectively. However, across vari-
ous arithmetic math word problem datasets (Sin-
gleEq, AddSub, MultiArith, GSM8SK, SVAMP),
small LMs consistently exhibit poor performance,
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Figure 3: The performance of PeCoTD across the small, base, large size of T5 on datasets such as Date Understand-
ing, Last Letter Concatenation, CQA, and Strategy QA improves as the number of refinement iterations increases.

regardless of the dataset size. This indicates that
a relatively small number of parameters is inade-
quate for effectively handling arithmetic math word
problems.

Regrettably, GPT-2 {Small, Medium, Large}
performs almost at random across all datasets.
Nonetheless, the decoder-only model definitely
possess CoT capability. We think the poor perfor-
mance of GPT-2 is primarily due to the insufficient
number of parameters. Further experiments and
analysis is in Sec 4.

The Encoder-Decoder Style Have More Rea-
soning Capability in Small Size. However, we ob-
served that the GPT-2 family’s performance across
all datasets approximated random responses. This
indicates that GPT-2 lacks CoT capabilities in small
size. Meanwhile, we observed that within the T5
family, there is a notable enhancement in CoT capa-
bilities with an increase in parameter count in Date
Understanding, Last Letter Concatenation, Coin
Flip, CQA, and Strategy QA. This demonstrates
that SLC is effective in assessing the quality of CoT
data for small models. This indicates that, when
sizes are equal and small, the encoder-decoder mod-
els demonstrates greater reasoning capabilities than
the decoder-only models.

Considering the structure of SLC, when the
conditional probability Py(c; | ¢;) exceeds the
marginal probability Py(c;), it implies that the
incorporation of the question ¢; positively influ-
ences the likelihood of generating the completion
c;. This relationship indicates a higher logical con-
sistency between the question and the completion,
thereby suggesting a stronger SLC. Conversely, if
Py(c;i | gi) is less than Py(c;), it implies that, par-
ticularly for smaller language models, there is a
logical discrepancy between the question and its
completion. This inconsistency results in a reduced
SLC.

Figure 4 compares SLC scores across four
datasets: CQA, Strategy QA, Last Letter, and Date
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Figure 4: Comparison of SLC scores between T5-large
and GPT2-large on the datasets of CQA, Strategy QA,
Last Letter Concatenation, and Date Understanding.

Understanding, using T5 large and GPT-2 large.
The TS5 model consistently scores above 1 across
all datasets, with scores in the Date Understanding
dataset surpassing 2.0. This indicates strong and
coherent logical consistency in TS5’s responses, par-
ticularly evident in its robust handling of diverse
prompts. This suggests that the encoder-decoder ar-
chitecture is better suited to adapting across diverse
distributions.

In contrast, the GPT-2 model scores below 1.0 in
all datasets, suggesting its struggle to align reason-
ing effectively with the posed questions. The con-
sistently low scores and minimal variability point
to a significant limitation in handling tasks that de-
mand nuanced understanding and logical reasoning,
likely due to its decoder-only architecture.

PeCoTD Help Small LM Reason. Since our
method focuses on data, while other existing CoT
methods concentrate on fine-tuning approaches,
our method is orthogonal to other CoT KD meth-
ods. Therefore, our method is compared solely
with the baseline (Ho et al., 2023b) to demonstrate
its effectiveness in data operations.

Considering that small LMs struggle with arith-
metic math word problems but attain 100% ac-
curacy on Coin Flip, we exclusively present
PeCoTD’s performance on datasets: Strategy QA,
CQA, Last Letter Concatenation, and Date Under-
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Figure 5: The performance of the TS5 {Small, Base, Large} on the datasets for Date Understanding, Last Letter
Concatenation, CQA, and Strategy QA, CoT KD with 3 CoTs, PeCoTD method with 3 CoTs, and CoT KD with

eight CoTs.

standing. For simplicity and clarity, we will only
display the performance of T5, which is shown in
Figure 3. When the number of iterations is 0, we
randomly select from the rational generated by the
teacher model.

Figure 3 shows that as the number of refinement
iterations increases, the performance of CoT distil-
lation improves. For instance, following 3 refine-
ment iterations, the T5-large model demonstrated
accuracy improvements of 1.75%, 1.70%, 3.66%,
and 2.90% across four respective datasets. This
indicates that the teacher model has generated ra-
tionales that are more suitable for small LMs to
learn from, aligning better with the distribution of
small models.

Larger Language Models Possess a Greater
Capability to Bridge the Distribution Gap. Fig-
ure 3 reveals that as the number of parameters in-
creases, the marginal benefit from iterative refine-
ment decreases. This indicates that models with
larger parameter quantities are more adept at learn-
ing information from texts with varying distribu-
tions. One possible reason is that larger models,
characterized by increased complexity and parame-
ter count, exhibit enhanced capability in capturing
subtle nuances and intricate patterns present within
disparate datasets. This heightened capacity facil-
itates the seamless transition of knowledge from
one distribution to another. (Goyal et al., 2024)
also pointed out that in models with a large number
of parameters, the model will converge to the same
level regardless of the quality of the training data,
as long as sufficient training resources are available,
which confirms our point of view.

Fewer CoTs with PeCoTD is Near Equivalent
to More CoTs. Following (Li et al., 2023b), we
use SBERT (Reimers and Gurevych, 2019) to cal-
culate embeddings for the rationales and apply hier-
archical clustering to organize the eight rationales
per question into 3 clusters, selecting one rationale
from each. These selected rationales are used for

a CommonSense QA example:

Q:Google Maps and other highway and street GPS services have replaced what? Answer choices: (A)
united states, (B) mexico, (C) countryside, (D) atlas, (E) oceans.

C:The answer must be something that used to do what Google Maps and GPS services do, which is to
give directions. Of the above choices, only atlas is used to give directions. The answer is D. —> D

google
mapsand ~
GPs A (
7/

atlas.
» isusedto

direct
» directions —

a Strategy QA example:

Q:ls it common to see frost during some college commencements?

C:Winter commencements typically occur in December or January, which are winter months. Frost is
a common occurrence during winter months. Thus, it is common to see frost during some college
commencements. The answer is yes. > Yes

December

frost —~ /  / or January *Q
| December or
\ January occurs in 1 |
\ winter / \\
N . N / ~
>  winter AN 4

commence
ments

Figure 6: Comparison of a typical CQA example with a
typical Strategy QA example. Every example contains
a question and a completion.

vanilla CoT KD. Similarly, we use the PeCoTD
method to produce rationales, employing the ratio-
nales derived from each cluster of each question for
CoT KD. We set the PeCoTD refinement iterations
to 3. In the final experimental group, CoT KD is
conducted using all eight rationales. All results are
illustrated in Figure 5. We find that in most cases,
PeCoTD has led to improvements.

When analyzing the Strategy QA results, the
performance of PeCoTD with 3 CoTs closely ap-
proaches that of vanilla CoT KD with eight CoTs.
However, in the case of CQA, while the PeCoTD
method with 3 CoTs shows improved performance
over the vanilla CoT KD, it still lags behind the
vanilla CoT KD with eight CoTs by gaps of 0.59%,
1.19%, and 1.66% for the small, base, and large
sizes, respectively.

Upon examining the two datasets, we identified
distinct differences. CQA is knowledge-intensive,
relying more on whether the model possesses rele-
vant knowledge. In contrast, Strategy QA is primar-
ily reasoning-intensive, demanding robust logical
capabilities of the model.
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Figure 7: Distribution of cosine similarity between SBERT embeddings of completions from teacher and student
models across various tasks. The tasks include CQA, Strategy QA, Date Understanding, and Coin Flip. PeCoTD
shows higher overall similarity, indicating better alignment between teacher and student models.

In Figure 6, we display a representative example
from CQA alongside one from Strategy QA. (Wang
et al., 2024) revealed that there actually exists a di-
rected graph in the corpus consisting of concepts
as points and relationships as edges, where the
chain-of-thoughts is paths in this directed graph.
Hence, we also constructed the corresponding rea-
soning paths based on the completions. From Fig-
ure 6, we can see that the inference in the CQA
example is simpler, with fewer edges representing
reasoning; Conversely, the Strategy QA example
has more edges, suggesting a greater presence of
reasoning, commonly associated with multi-hop
questions. This suggests that questions in Strat-
egy QA lead to more complex rationales generated
by the teacher model, resulting in a distribution of
rationales that is too broad for the student model
to effectively learn. However, PeCoTD is specif-
ically designed to bridge distribution gaps. The
larger the gap, the more significant the enhance-
ments PeCoTD can provide. This explains why
PeCoTD achieves greater enhancements in Strat-
egy QA compared to CQA.

4 Analysis

Decoder-Only Can Also Logic-Consist. Undoubt-
edly, decoder-only style language models possess
chain-of-thought capabilities. We did not observe
clear chain-of-thought performance on GPT-2, pos-
sibly due to scaling law. The size of {Small,
Medium, Large} is not yet sufficient to possess
chain-of-thought ability. However, we find that
math word problems are too challenging for small
language models to perform effectively. Therefore,
we employ GPT-2 XL, with 1.6 billion parameters,
to conduct experiments on the other five datasets,
as shown in Table 2.

As illustrated in Table 2, while GPT-2 XL
achieves non-zero scores in Date Understanding,
Strategy QA and Last Letter Concatenation, the
results are not substantial enough to conclusively

SLC Date Last Coin Common Strategy
Understanding Letter ~ Flip SenseQA QA
17.12  0.00 50.00 20.00 50.00

Student: GPT-2 XL
low 13.51 50 720 25.31 49.05
random 11.71 6.33 75.33 28.42 49.34
high 15.32 4.0 780 29.48 49.2

Table 2: The performance of GPT-2 x1 with different
levels in SLC on Date Understanding, Last Letter, Coin
Flip, CQA, and Strategy QA.

demonstrate problem-solving capabilities, suggest-
ing that the model may have recognized only su-
perficial patterns. In contrast, in the Coin Flip task,
GPT-2 XL, getting score of 75.33% with randomly
selected data, appears to have effectively learned
to predict the final state of the coin, likely due to
the simplicity of the problem. For CQA, GPT-2
XL’s performance significantly deviates from ran-
domness, showing a clear improvement between
the lowest and highest SLC with 4.17%.

Iterations of Date Last Coin Common Strategy
Refinement  Understanding  Letter Flip SenseQA QA
0 11.71 6.33 75.33 28.42 49.34
1 15.32 3.67 87.67 (+12.34) 34.66 (+6.24)  49.64
2 8.11 7.33  96.0(+20.67) 38.19 (+9.77)  52.69
3 12.61 8.67 100 (+24.67)  35.98 (+7.56)  50.51

Table 3: Performance of GPT-2 XL across various
datasets with increasing refinement iterations.

As shown in Table. 3, due to GPT-2 XL'’s fail-
ure to effectively solve the Date Understanding
and Last Letter Concatenation tasks, refining the
rationales used to train student models does not
enhance the model’s performance. However, in the
Coin Flip and Strategy QA tasks, although each
refinement iteration enhances model performance,
the marginal gains diminish with each subsequent
iteration. For CQA, the third refinement failed to
benefit the student model and even resulted in a
4.3% decrease in performance.

Feedback Helps LLM learn the Distribution



of the Small LM. On the test dataset, we conduct
inferences using four models: the vanilla teacher
model, the teacher model with refined prompts,
the student model of T5-base trained with vanilla
CoT KD, and the student model of T5-base trained
with personalized CoT via PeCoTD. The number
of iterations of refinement is 3. Subsequently, we
calculate the cosine similarity between the embed-
dings from the SBERT outputs of the completions
from each teacher-student pair. The distribution of
these similarities is shown in Figure 7. For clarity
and simplicity, we only present data from CQA,
Strategy QA, Date Understanding, and Coin Flip.

Intuitively, a higher cosine similarity between
the teacher and student models’ output indicates
a narrower distribution gap. In the case of CQA,
Strategy QA, and Date Understanding, PeCoTD
results in the overall similarity shifting towards
1.0, with the mean increasing by 0.012, 0.011, and
0.05. Despite the simplicity of the Coin Flip task
and the small distribution gap between teacher and
student models, PeCoTD still manages to enhance
similarity.

SLC Affects Length of Rationales Differently
in Different Architecture. When employing small
LMs to evaluate the rationales generated by teacher
models, it has been observed that for models within
the TS5 family, rationales selected with higher SLC
are notably shorter. Conversely, in the case of the
GPT-2 family, higher SLC correlates with longer
rationales. It’s worth noting that they may not be
the longest or shortest among all rationales. This
should be related to the decoder-only style and the
encoder-decoder style.

For instance, for Strategy QA, the average
lengths and SLCs of rationales selected by different
models are shown in the Figure 8. We observed
that for both T5 and GPT-2 models, the average
length of rationales filtered by each SLC level is
converging. Moreover, further statistic analysis re-
vealed that their overlap is very high in the same
style models. For instance, in the Strategy QA, the
GPT models small, medium, large simultaneously
select 62.63% of the data when the SLC is low, and
60.37% of the data when the SLC is high, which is
shown in Figure 9. This suggests that models of the
same style exhibit consistency in their rationales
selection.

5 Related Work
CoT represents intermediate reasoning steps from

problem to answer, encompassing logical relation-
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Figure 8: Comparison of the average length of CoTs
about Strategy QA for TS and GPT-2 under different
levels of SLC.

ships and knowledge concepts. (Li et al., 2022)
enhances smaller reasoning models by leveraging
explanations from large language models (LLMs)
in a multi-task learning approach, boosting their
reasoning and explanatory capabilities. (Magis-
ter et al., 2023) explores transferring these reason-
ing skills to smaller models via knowledge distilla-
tion, balancing model size and dataset for optimal
reasoning skills. (Fu et al., 2023) advocates fine-
tuning instruction-tuned models, distilling CoT rea-
soning trajectories from larger models to enhance
task performance outside the training distribution.
(Geva et al., 2022) incorporates LLLM-generated
rationales into a multi-task training regimen for
smaller models. (Ho et al., 2023a; Li et al., 2023b)
use explicit CoTs for CoT distillation. (Shridhar
et al., 2023) develops two specialized models: a
problem decomposer and a subproblem solver. The
decomposer breaks down problems into subprob-
lems, while the solver focuses on these segments.
(Wang et al., 2023a) uses contrastive decoding to
ensure rationales are relevant to their correspond-
ing answers, promoting appropriate and counterfac-
tual reasoning. (Zhu et al., 2023) enables learner
models to benefit from program-aided reasoning,
detecting and correcting erroneous reasoning steps.

6 Conclusion

In this study, we introduced a data-focused method-
ology called Personalized Chain-of-Thought Dis-
tillation that enhances the reasoning capabilities of
small LMs by personalizing rationales from LL.Ms
based on self logic consistency. Our results demon-
strate significant improvements in reasoning accu-
racy across multiple datasets compared to existing
methods. PeCoTD effectively reduces the distri-
bution gap between teacher and student models,
ensuring that small LMs not only receive informa-
tion but also effectively understand and utilize it.
We look forward to further explorations into the
scalability of this approach and its broader applica-
tion potential.



7 Limitations

Generalization for All Size of Models and Types
of Datasets. While our study introduces Personal-
ized Chain-of-Thought Distillation (PeCoTD) as
an effective method, several limitations related to
its generalization across different model sizes and
datasets warrant attention. Firstly, the effectiveness
of PeCoTD heavily depends on the initial quality
and diversity of rationales generated by the teacher
model. his dependency may limit its utility when
the teacher model’s outputs are suboptimal or lack
sufficient diversity, particularly affecting its per-
formance across various model sizes. Secondly,
although PeCoTD enhances small language mod-
els’ performance, it does not uniformly address
all types of reasoning tasks. This is evident from
the varied performance observed across different
datasets, indicating that tasks requiring advanced
mathematical reasoning or extensive factual knowl-
edge pose significant challenges that PeCoTD may
not fully overcome. Additionally, the approach’s
scalability and effectiveness across different model
sizes and task complexities remain constrained,
highlighting the need for further research to im-
prove its generalization capabilities.

The Computational Demands. Resource for
computing, though reduced compared to training
large models directly, remain significant, espe-
cially when scaling up to larger datasets or more
complex model architectures. This scalability is-
sue could limit practical deployments in resource-
constrained environments. Lastly, the refinement
process within PeCoTD, though effective, intro-
duces additional complexity in training workflows,
which might complicate its adoption without spe-
cialized knowledge or adjustments in existing in-
frastructure.

Does SLC Accurately Reflect Suitability for
Small LMs? Although higher SLC showed higher
performance in CoT distillation, we cannot intu-
itively let small LMs tell us that they prefer ratio-
nales with higher SLC. Socreval (He et al., 2023)
employed ChatGPT to evaluate the quality of ra-
tionales from multiple dimensions. We adopted a
similar approach, assessing rationales based on our
criteria: logical coherence, comprehensibility, and
the use of advanced vocabulary. Our results indi-
cate that the scoring outcomes are largely random,
regardless of the rationales’ effectiveness in aiding
small model learning. Furthermore, the scores gen-
erated by ChatGPT reflect its biases rather than the

suitability of small models, as these models often
fail to provide consistent evaluations based on the
given prompts. Consequently, it is valuable to ex-
plore methods that enable small models to express
in human language which rationale they prefer.
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A Appendix

Iterative Refinement Process

Initialize parameters: iterations, Diotal,

T (teacher model), S (student model)

Step 1: Initial Data Generation

Generate initial rationales for Diotar:

Dtotal — T(Dtotal)

Step 2: Iterative Refinement

for : = 1 to iterations do
Compute SLC scores: SLCy(qi, c;)
Select highest SLC rationales:

{(gisriyai) |

Dh totar
if SLCg(qi, Ci) is
highest for ¢; in Dmtal}
Select five samples as prompt context I
from Dy, total
Generate new rationales using 7 with P,:
Dioral < T(Pm Qi)
end for
Step 3: Final Model Training
Compute final SLC scores: SLCy(qi, ¢;)
Select best rationales for training:
Deinai {(qi, 73, a5) |
SLCy(gi,ci) is highest}
Fine-tune student model S with _Dﬁna]

Table 4: Pseudocode for Iterative Refinement Process

Repetition of teacher model’s output results in
degeneration. When there are many repetitions in
the rationales generated by the teacher model, the
student model will generate more repetitions. (Li
et al., 2023a) also found the similar phenomenon.
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Figure 9: When SLC is low and high, the overlap of
rationales selected by GPT-2 small, medium, and large.
The count of each part represents the number of ratio-
nales for that section.

For example, when the training data is highly repeti-
tive and has an average length of 473, after training,
the T5-small model outputs an average length of
1419. By reading the outputs, we found that in
a large proportion, the trained T5-small continu-
ously generates repetitive sentences until it exceeds
the max_length parameter, thereby avoiding the
generation of answers.
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