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Abstract

Kaplan et al. [2020] and Hoffmann et al. [2022]
developed influential scaling laws for the optimal
model size as a function of the compute budget,
but these laws yield substantially different predic-
tions. We explain the discrepancy by reproduc-
ing the Kaplan et al. scaling law on two datasets
(OpenWebText2 and RefinedWeb) and identify-
ing three factors causing the difference: last layer
computational cost, warmup duration, and scale-
dependent optimizer tuning. With these factors
corrected, we obtain excellent agreement with the
Hoffmann et al. (i.e., “Chinchilla”) scaling law.
Counter to a hypothesis of Hoffmann et al. [2022],
we find that careful learning rate decay is not es-
sential for the validity of their scaling law. As a
secondary result, we derive scaling laws for the
optimal learning rate and batch size, finding that
tuning the AdamW β2 parameter is essential at
lower batch sizes.

1 Introduction

We consider the problem of compute-optimal language
model training: given a compute budget C, we wish to
predict how to best allocate it across model size (in parame-
ters) and dataset size(in tokens). With pretraining budgets
ever-increasing, compute-optimal scaling is a question of
paramount importance. In their seminal work, Kaplan et al.
[2020] proposed a scaling law predicting that the optimal
ratio of tokens to parameters decays as a power of C. This
scaling law was influential in determining the size of GPT-3
and several subsequent models [Brown et al., 2020, Shoeybi
et al., 2019, Rae et al., 2021, Lieber et al., 2021, Scao et al.,
2022, Zhang et al., 2022, Smith et al., 2022]. However, Hoff-
mann et al. [2022] challenged its validity, arguing instead
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that the optimal token-to-parameter ratio should be approx-
imately independent of C, and that contemporary models
had too many parameters relative to their number of training
tokens. Based on this prediction, they trained a 67B parame-
ters model called Chinchilla and which outperformed larger
models with a similar compute budget.

While Hoffmann et al. [2022] and subsequent work [Tou-
vron et al., 2023a,b, Gadre et al., 2024, Hu et al., 2024,
DeepSeek, 2024] established that following the Hoffmann
et al. scaling law leads to better performance than Kaplan
et al. scaling, it is still important to understand why the two
works arrived at different conclusions. Is the difference
due to architecture, training setup, pretraining data, results
analysis, or perhaps something else entirely? The answer
could teach us important lessons on how to correctly predict
and perform model scaling.

Hoffmann et al. [2022] hypothesize that the scaling law
discrepancy is due to Kaplan et al. [2020] not tailoring the
learning rate decay schedule for each token budget sepa-
rately. While they demonstrate that mismatched learning
rate decay results in a higher loss, they do not show it leads
to a different compute-optimal scaling law. To the best
of our knowledge, this hypothesis is the only explanation
offered in the literature so far.

Our contribution. In this work, we uncover three factors
contributing to the discrepancy, and disprove Hoffman et
al.’s hypothesis about the role of learning rate decay; Fig-
ure 1 illustrates our main results. We begin by reproducing
the Kaplan et al. scaling law in a Llama-derived pretraining
setup using the OpenLM library [Gururangan et al., 2023]
and the RefinedWeb dataset [Penedo et al., 2023] (Figure 1a).
Our first observation is that accounting for the computa-
tional cost of the decoding layer (as done in Hoffmann
et al. [2022] but not in Kaplan et al. [2020]) shifts compute-
optimal scaling toward a more constant token-to-parameter
ratio (Figure 1b). Second, we note that the constant-length
warmup period of Kaplan et al. [2020] is too long for smaller
models, inflating the optimal number of tokens at lower com-
pute budgets; scaling the warmup period with the model size
further shifts the scaling in the Hoffmann et al. direction
(Figure 1c). Next, we match the learning rate decay to the
token budget of each configuration we test (as Hoffmann
et al. [2022] conjecture to be essential) but observe little
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Figure 1: By analyzing over 900 training runs, we uncover the factors leading to the discrepency between the scaling laws
of Kaplan et al. (panel a) and Hoffmann et al. (panel e). Each panel shows observations of the optimal model size N⋆ as a
function of the compute budget C, as well as power law fits of the form N⋆(C) ∝ Ca. Labels show point estimates and 95%
confidence intervals for a and for the optimal model at CC = 5.88e23, the compute budget used for training Chinchilla.

effect on the compute-optimal scaling law (Figure 1d). Fi-
nally, we set the learning rate, batch size, and the AdamW
β2 parameters individually for each model size, leading to
compute-optimal scaling that agrees closely with Hoffmann
et al. (Figure 1e). Notably, the latter configuration uses a
constant learning rate schedule, showing that learning rate
decay is not essential for the Hoffmann et al. scaling law to
emerge. We repeat our experiment on the OpenWebText2
dataset [Gao et al., 2020], observing similar results despite
performing hyperparameter tuning only on RefinedWeb.

We complement our main results with the following analy-
ses:

1. In the last phase of our experiments (Figure 1e) we
choose different hyperparameters for each model size.
To do so, we conduct a hyperparameter sweep for small-
scale models and use the results to fit power laws for
the optimal batch size and learning rate as a function
of model parameters. This approach is inspired by
DeepSeek [2024], and our hyperparameter scaling laws
roughly agree. However, we observe that setting the

AdamW β2 parameter to be 0.95 is suboptimal at smaller
batch sizes (128 and below), and increasing it allows
establishing clear trends from our small-scale hyperpa-
rameter sweep.

2. We study the scaling of the optimal loss as a function
of the compute budget. We show that the steps we take
to settle the Kaplan et al./Hoffmann et al. discrepancy
(namely shortening warmup and scaling learning rate
and batch size) significantly decrease this loss at smaller
scales, but only marginally improve it at larger scales. In
contrast, introducing a cosine learning rate decay sched-
ule substantially decreases the loss, with benefits persist-
ing at larger scales. Similar to Hoffmann et al. [2022], we
observe some curvature on the optimal loss curve. Nev-
ertheless, the optimal loss with tuned hyperparameters is
fairly consistent with a saturating power law.

3. We calculate the computational cost of each of our exper-
iments and plot how prediction quality improves as we
consider larger training runs. We observe that the cost
of our hyperparameter sweep is comparable to that of a
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scaling law fit experiment, but the compute saved by us-
ing a constant instead of a cosine learning rate schedule
roughly makes up for that cost.

Code and data release. To facilitate future research, we
share our data and the code necessary to reproduce our anal-
yses and figures at https://github.com/formll/
resolving-scaling-law-discrepancies.

Limitations. We discuss the limitations of our work in
??.

2 Preliminaries and experiment design

2.1 Notation and problem setting

We train language models of size N on D tokens of data
(essentially without repetition). The precise definition of
N plays an important role in this paper: Unless mentioned
otherwise, N denotes the number of parameters in all the
linear layers of the model. That is, N excludes embedding
layers, but includes the model’s head: the final linear layer
producing the predicted token logits. (In the models we
train there is no tying of the embeddings and the head).

Let FLOPs(N,D) be the ammount of floating point oper-
ations (FLOPs) required to train a model of size N on D
tokens. Throughout, we employ the approximation

FLOPs(N,D) ≈ 6ND (1)

In Sections 3.1 and 3.2 we compare our definition of N to
the one used in Kaplan et al. [2020]. In Appendix C we also
discuss the effect of taking attention FLOPs into account
and FLOP estimation approaches in other works.

Let L(N,D) be the log loss (in expectation over the training
data distribution and any randomness of the training proce-
dure) obtained by a model of size N trained for D tokens.1

Assuming a fixed compute budget C, we aim to predict

N⋆(C) := argmin
N>0

L

(
N,

C

6N

)
≈ argmin

N>0
min

D:FLOPs(N,D)=C
L(N,D)

(2)

i.e., the model size yielding the smallest loss when trained
with compute budget C under the approximation (1).

1This notation abstracts away the fact that there are many dif-
ferent models of size N and many different ways to train them for
D tokens. Ideally, L(N,D) represents the loss attained by the op-
timal architecture of size N trained with the best possible training
method that uses D tokens. In practice, for any value of (N,D)
we consider only a single configuration, but this configuration is
the result of architecture search and optimizer tuning, performed
either directly or indirectly by building on prior work.

We also let

D⋆(C) :=
C

6N⋆
and

ρ⋆(C) :=
D⋆(C)

N⋆(C)
=

C

6[N⋆(C)]
2

(3)

denote the optimal number of tokens and the optimal token-
to-parameter ratio. To predict these quantities, we use power
laws of the form:

N⋆(C) ≈ N⋆
0 · Ca , D⋆(C) ≈ D⋆

0 · Cb

and ρ⋆(C) ≈ ρ⋆0 · Cr,
(4)

and fit the exponents a, b, r and coefficients where
N⋆

0 , D
⋆
0 , ρ

⋆
0 from data as described below.

2.2 Training setup

We train decoder-only Transformer language models using
OpenLM [Gururangan et al., 2023], which integrates many
of the architecture and training advances in Llama [Touvron
et al., 2023a,b] and subsequent works. We largely base our
initial training configuration on the hyperparameter search
in Gadre et al. [2024]. Our setup does not replicate Kaplan
et al. [2020], but we match or closely approximate several
key hyperparameters as discussed in Section 3. See Ap-
pendix B for a detailed description of our setup and chosen
hyperparameters.

Model set. We search for compute-optimal models over
a set consisting of 16 models with sizes ranging from 5M
to 901M. We pick model layer numbers l and widths d
such that N increases by multiples of roughly

√
2 while

the aspect ratio d/l stays between 32 and 64 as suggested
in Kaplan et al. [2020]. The number of attention heads in
each configuration is 4, as preliminary experiments showed
this is optimal for smaller models, and increasing it did not
noticeably improve larger models. Table 2 in the appendix
specifies all the models in our grid.

Data. We perform our experiments on OpenWeb-
Text2 [Gao et al., 2020] which contains roughly 30B tokens
of data from Reddit and resembles the WebText2 dataset
used in Kaplan et al. [2020], as well a RefinedWeb [Penedo
et al., 2023] dataset which contains roughly 600B tokens
from CommonCrawl [com] and resembles the MassiveWeb
dataset that formed roughly half of the data mix in Hoffmann
et al. [2022].

Evaluation and FLOP grid. We evaluate models on
160M tokens held out from the training data. We perform
the evaluation whenever the product of 6N and the number
D of training tokens seen so far crosses an element of a
FLOP grid of the form {1.25e16 · 2i}11i=0. This grid plays a
central role in our data analysis. We also record the average
training loss every 20 steps.
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2.3 Data analysis

Our technique for estimating the compute-optimal power
law is akin to the second (IsoFLOP-based) approach of
Hoffmann et al. [2022], but differs in several details. The
approach consists of two steps: directly estimating N⋆(Ci)
for all Ci in our FLOPs grid, and fitting a power law to these
estimates. We briefly outline each step below and provide
full details in Appendix D.

Estimating N⋆(Ci). For each value of Ci, we train sev-
eral models from our set (Table 2) for Ci FLOPs and ex-
tract an IsoFLOP curve of loss vs. model size (see Fig-
ure 9). For FLOP values where validation loss is not avail-
able (specifically Section 3.1 and Appendix C) we use the
smoothed training loss instead. We estimate N⋆(Ci) and its
uncertainty using a noise-and-interpolate procedure based
on Gaussian noise with empirically-calibrated magnitude
and Akima interpoaltion [Akima, 1970]. For every Ci,
this yields a “bootstrap sample” population optimal size
estimates; we take their median as the point estimate for
N⋆(Ci). The procedure also yields an estimate of the log-
scale standard deviation of N⋆(Ci) (shown as error bars in
Figure 1).

Fitting a power law. We fit power laws of the form (4) by
performing weighted linear regression in log space, with the
weights inversely proportional to the squared log-space stan-
dard deviations computed above (i.e., log-space Gaussian
maximum likelihood estimation). To obtain a point estimate
for the power law parameters we fit the point estimates for
each N⋆(Ci) value. To quantify uncertainty, we fit power
laws to bootstrap samples, obtaining a population of N⋆

0 , a,
and N⋆(·) samples. We construct confidence intervals from
their quantiles.

3 Main results: settling the scaling law
discrepancy

In this section, we describe in detail our main results, visual-
ized in Figure 1, tabulated in Table 1 and plotted in detail in
Appendix E. The following subsections address each panel
of Figure 1 in order.

3.1 Reproducing the Kaplan et al. scaling law

To reproduce the Kaplan et al. scaling law, we match the
setup of [Kaplan et al., 2020] in terms of the batch size (219

tokens) and in terms of the learning rate schedule (warmup
for 3000 · 219 ≈ 1.57B tokens followed by cosine decay to
zero at 2.5e5 · 219 ≈ 131B tokens). Other configurations do
not match exactly, but the suite of models we train covers a
range of sizes and compute similar to Kaplan et al. [2020].
For this reproduction only, we also take the “model size” N

to be the number of parameters in all linear layers except
the head (last decoding layer). That is, for a model of width
d and vocabulary size v, we subtract d · v from our usual
definition of N (see Table 2, last column).

As Figure 1a shows, with this setting we obtain a compute-
optimal exponent a and power law fits close to the power
law 1.6e9(C/8.64e19)0.88 obtained by Kaplan et al. [2020,
Figure 14, left].

3.2 Counting last layer FLOPs

Kaplan et al. [2020] chose to define model size without
counting embedding parameters since they found this makes
scaling laws in the infinite-compute regime more consistent
across network depths [Kaplan et al., 2020, Figure 6]. Per-
haps because their model head and embeddings had tied
weights, this led them to also discount the contribution of the
model head to the model’s FLOPs per token [Kaplan et al.,
2020, Table 1, last row]. However, as Table 2 reveals, not
accounting for the model head leads to under-approximation
that grows smoothly as model size decreases, from roughly
10% at larger models to roughly 90% at smaller models.
Thus, counting the head FLOPs (i.e., using our definition of
N ) results in a significantly more accurate approximation.
As shown in Figure 1b, switching to our model size count
also reduces the exponent a by more than 0.1, closer to
Hoffmann et al. but not all the way there.

3.3 Correcting learning rate warmup

Next, we address the duration of the learning rate warmup
period, which Kaplan et al. [2020] set proportionally to their
full training duration, designed to reach complete conver-
gence. Figure 2 (left) shows this warmup period is too long:
for smaller-scale models, the optimal number of tokens as a
function of compute is less than or close to the number of
warmup tokens, and therefore these models are suboptimally
trained. The same issue is evident in Figure 14 (right) of
Kaplan et al. [2020] which shows that for many compute
budgets the optimal number of steps is below or close to the
number of warmup steps (fixed at 3000). Figure 2 (left) also
provides an intuitive explanation for the increased value of
a: at smaller compute scales, models are ‘forced’ to use
more training tokens than would otherwise be optimal in
order to ‘escape’ the long warmup period. Having escaped,
the warmup Once this warmup period is escaped, the opti-
mal number of tokens grows only slowly, leading to a fast
rate of increase in the optimal model size and hence the
large exponent.

With the problem identified, we propose a simple heuristic
for more appropriately choosing the warmup duration: for
each model, we set the number of warmup tokens to be
identical to the model size N . The bottom row of Figure 2b
illustrates the validity of our new choice of warmup, show-
ing that the optimal number of tokens is always at least 5
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Table 1: Summary of our main results (described in Section 3).

Experiment Dataset a estimate R2 of a fit ρ⋆ range

Hoffmann et al. [2022] MassiveText 0.5

Kaplan et al. [2020] WebText2 0.88

Adjusted Kaplan et al. [2020] WebText2 0.73

Reproducing Kaplan et al. (§3.1) OpenWebText2 0.864 (0.82, 0.90) 0.998 (5, 2617)
RefinedWeb 0.835 (0.82, 0.85) 0.999 (8, 1536)

Counting last layer FLOPs (§3.2) OpenWebText2 0.699 (0.66, 0.72) 0.998 (8, 262)
RefinedWeb 0.706 (0.69, 0.72) 0.998 (9, 232)

Correcting warmup (§3.3) OpenWebText2 0.603 (0.57, 0.63) 0.994 (7, 55)
RefinedWeb 0.602 (0.59, 0.62) 0.993 (7, 50)

Cosine decay (§3.4) OpenWebText2 0.574 (0.54, 0.61) 0.999 (7, 42)
RefinedWeb 0.571 (0.56, 0.59) 0.998 (10, 39)

Optimizer tuning (no decay) (§3.5) OpenWebText2 0.518 (0.49, 0.54) 0.998 (11, 22)
RefinedWeb 0.497 (0.49, 0.50) 0.997 (14, 16)

Reprod. adjusted Kaplan et al. (§G) RefinedWeb 0.717 (0.71, 0.72) 0.992 (12, 345)

times greater than the (interpolated) duration of the warmup
period corresponding to the model of the appropriate size.
As is evident from this figure and from Figure 1c, shorten-
ing the warmup shifts the scaling law in the direction of
Hoffmann et al. further, yielding an exponent a of roughly
0.6.

3.4 Learning rate decay has limited impact on
compute-optimal allocation

With learning rate warmup corrected, we turn to study learn-
ing rate decay, which Hoffmann et al. [2022] conjecture to
be a main cause of the difference between their result and
Kaplan et al. [2020]. We observe that the long 131B tokens
decay period in Kaplan et al. [2020], which is aimed to-
ward training to full convergence, means that their compute-
constrained experiments see virtually no learning rate decay:
Figure 2 shows that, at our compute scales, it is never opti-
mal to train for more than 10B, which corresponds to less
than 1.5% decay with a cosine schedule.

To correct this, we follow the second approach of Hoffmann
et al. [2022] and choose the learning rate schedule for ev-
ery model and FLOP budget individually. For each FLOP
value in our grid, we pick the 7 models from Table 2 which
yield token-to-parameter ratios in the range 1 to 100, and
train them with a cosine learning rate schedule that decays
to 1% of the maximum learning when reaching the target
FLOP value.2 This is roughly twice as expensive as pre-
vious experiments, which required only a single training

2We set the warmup period to be the minimum of the model
size N and 20% of the total token budget.

run for each model size (see additional discussion in Sec-
tion 4.2). As Figure 1d shows, adding cosine decay results
in a slightly cleaner linear trend (R2 improves from 0.993
to 0.998) and an exponent slightly closer to the Hoffmann
et al. scaling law (0.57 instead of 0.6), but most of the gap
remains. Therefore, even with the FLOP count and warmup
issues corrected, adding learning rate decay is not sufficient
to reproduce the Hoffmann et al. scaling law.

3.5 Correcting batch size, learning rate and β2

A final factor contributing to the Kaplan et al./Hoffmann et
al. discrepancy is the choice of optimization hyperparam-
eters, particularly the batch size: with a fixed batch size
of 219 tokens, compute-optimal models at smaller scales
train for only a few hundred steps, which is likely too little.
Kaplan et al. [2020] notice this issue, and attempt to correct
for it using post-processing based on an empirical model
of large-batch size training [McCandlish et al., 2018]; we
return to their result at the end of this section.

Here, we take the more direct approach of predicting near-
optimal hyperparameters for each model size.3 Since chang-
ing the batch size often also requires re-tuning the learning
rate [Goyal et al., 2017, McCandlish et al., 2018, Shallue
et al., 2019, Zhang et al., 2019b], we sweep over both pa-
rameters for models of sizes 5M to 108M, with an additional

3More specifically, we predict the optimal hyperparameters
per model size when trained for 20 tokens per parameter. As we
discuss in Section 5.2, this choice of training budget is potentially
an issue but further analysis in Appendix F.4 suggests it does not
significantly impact our results.
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Figure 2: The optimal number of tokens D⋆ as a function of the compute budget C. Left: Using the warmup period of
Kaplan et al. [2020], smaller models reach compute-optimality during warmup. Right: Setting the number of warmup
tokens to be identical to the model size (visualized using the power law fit) ensures models reach compute-optimality well
after the warmup and yields a scaling law closer to Hoffmann et al.. We replicate these plots for all of our experiments in
Appendix E.

validation sweep over models of size 220M. Initially, we
kept β2 at its previous value of 0.95. However, this led to
poor results at smaller batch sizes: as the batch size gets
smaller, the squared gradients become noisier, and AdamW
requires more smoothing to obtain a correct denominator.
Therefore, we added 0.99 and 0.999 to the sweep, obtaining
improved performance on small batch sizes. In Appendix F
we describe the parameter sweep in full and provide addi-
tional discussion about the role of β2.

Figure 3 plots our estimates for the optimal values of batch
size and learning rate for each model size. It shows clear
trends, to which we fit power laws in the number of param-
eters N . Observing good extrapolation to nearby values
of N , we apply these power laws (with slight rounding) to
select the batch size and learning rate for all model sizes
and tabulate the results in Table 4. Our parameter tuning
approach is inspired by DeepSeek [2024], who predict the
optimal batch size and learning rate as a function of compute.
Translating compute to model size using the Hoffmann et al.
scaling law, we find remarkable agreement in the batch size
predictions (a difference of less than 0.05 in exponent and
less than 60% in predictions over our models), and some-
what different learning rate predictions (a difference of 0.11
exponent and a factor of 2–3 in predictions), potentially due
to using different weight decay. Both our results appear to
contradict the conventional wisdom about the existence of a
critical batch size [Shallue et al., 2019, Zhang et al., 2019b,
McCandlish et al., 2018] below which every batch size is
good, finding instead an optimal batch size below which
performance degrades. This suggests further tuning of β2

or other hyperparameters may be warranted. We discuss
DeepSeek [2024] further in ??.

With the new hyperparameters, we obtain a close reproduc-
tion of the Hoffmann et al. scaling law (Figure 1e) with

the scaling exponent matching 0.5 to within 0.6% and the
predicted model size at Chinchilla compute within 15% of
Chinchilla’s size. Notably, here we use a constant learning
rate schedule, demonstrating that careful learning rate decay
is not necessary for this scaling law to hold.

Finally, we reproduce the adjusted scaling law N⋆(C) =
1.3e9(C/8.64e19)0.73 which Kaplan et al. [2020] obtain by
estimating the compute required to reach the same results at
a sufficiently low batch size. To do so, we use our tuned hy-
perparameters as a proxy for suitable batch size and revert
our previous corrections (head FLOP count and warmup
duration). We obtain an exponent of 0.717 and good agree-
ment with their adjusted scaling law; see Figure 17 in the
appendix.

4 Additional Analysis

4.1 Trends in compute-optimal loss

Figure 4 shows the minimum loss achievable for each com-
pute budget C in the experiments shown in Figure 1. We
estimate the minimum loss using the same interpolation pro-
cedure we use to extract the optimal parameter number N⋆

and token count D⋆. The figure shows that, at low compute
scales, shortening the warmup duration and tuning hyper-
parameters leads to substantial loss improvements (each by
up to 0.5 nat per token). However, at larger scales these
interventions do not significantly improve the loss. In con-
trast, learning rate decay becomes increasingly beneficial
as compute grows, and appears to also improve the rate
of decrease in the loss. Perhaps coincidentally, the effects
of overestimating the optimal loss (due to long warmup
and large batch size) seem to closely offset the effect of
underestimating computational cost (by discounting the con-
tribution from the model’s head): the first and last curves in
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Figure 4 closely overlap.

Similarly to Hoffmann et al. [2022] we observe a curva-
ture in the optimal loss, while Kaplan et al. [2020] report a
near-perfect power law behavior. This difference is due to a
combination of the difference in FLOP counts discussed in
Section 3.2 and the fact that the experiments of Hoffmann
et al. [2022] extend to higher compute budgets where the
loss is closer to its irreducible level. Indeed, for the tuned
optimizer experiment (Section 3.5) we find that a saturating
power law fits the optimal loss and extrapolates well, while
extrapolating poorly for other experiments (see Figure 18
in the appendix). This suggests that a predictable trend in
L(N⋆(C), D⋆(C)) is an indicator of locally-optimal hyper-
parameters. The exponent of our saturating power fit is
approximately −0.1, twice as large as the exponent found
in Kaplan et al. [2020].
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Figure 5: Compute optimal exponent prediction, confi-
dence, and root-mean-square relative error as a function of
the total scaling experiment budget for the tuned optimizer
experiment described in Section 3.5.

4.2 Scaling law accuracy as a function of compute

We now estimate the computational cost of our scaling
law experiments, quantifying the effect of the learning rate
schedule, and plot how our predictions improve and become
more confident with increased computation. We find that the
training cost of each experiment that utilized a fixed learning
rate schedule was 1.54e20 FLOPs, while the experiments
that used a varying-length cosine learning rate schedule
required 2.99e20 FLOPs; essentially double the compute;
see Appendix I for more details. We also find that the
cost of the hyperparameter sweep described in Section 3.5
was 2.04e20 FLOPs—slightly less than the combined cost
of two scaling experiments that leveraged it (one on each
dataset). Moreover, in hindsight, we could have arrived at
similar hyperparameters using only models of size at most
57M and a simple heuristic for choosing β2 based on batch
size, which would have cost only 1.44e19 FLOPs.

Figure 5 shows the evolution of the predicted compute-
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optimal model size exponent a, its confidence interval, and
a measure of the prediction accuracy as we modulate the
experiment’s compute budget by truncating our FLOP grid.
The figure shows that the prediction becomes steadily more
accurate and confident as compute increases.

5 Discussion

5.1 Related work

We refer to Appendix A for discussion of prior related work.

Concurrent and independent work. Pearce and Song
[2024] also study the discrepency between the Kaplan et
al. and Hoffmann et al. scaling laws. By re-analyzing data
extracted from the Hoffmann et al. [2022] experiments by
Besiroglu et al. [2024], they identify the last layer FLOP
count as a cause for the discrepancy. Moreover, they report
on a small-scale experimental study (with model sizes up
to 5M and training tokens number up to 530M) in which
they observe that a non-decaying learning rate schedule is
sufficient for reproducing the Hoffmann et al. exponent and
that learning rate tuning is necessary. These results indepen-
dently corroborate part of our observations in Sections 3.2,
3.4 and 3.5. Pearce and Song [2024] do not identify the
warmup duration issue we describe in Section 3.3. As a
consequence, when reproducing the Kaplan et al. exponent
they reach a value close to 0.73 rather than the ‘raw’ value
0.88 reported in Kaplan et al. [2020] (see discussion in Sec-
tion 3.1, Section 3.5, and Appendix G). In addition, our
experiments roughly match the Kaplan et al. [2020] com-
pute budget, which is about 3 orders of magnitudes larger
than budget in Pearce and Song [2024], and we perform
careful tuning of both the learning rate and the batch size.

5.2 Limitations

Computational scale is a notable limitation, as well as a
defining feature, of our results: our experiments are roughly
on the scale of those in Kaplan et al. [2020] but are substan-
tially smaller than those of Hoffmann et al. [2022]. Scaling
may effectively mitigate each of the issues we identify: with
scale, the contribution of the model head becomes negligible,
any (fixed) warmup period eventually becomes reasonably
long, and hyperparameter sensitivity decreases, as shown
in Figure 4 and Figure 14. Nevertheless, we believe that
experimental protocols that induce correct scaling behav-
ior at low computational budgets are crucial for developing
the empirical science of machine learning, particularly in
academic settings.

Due to limited compute budgets, our hyperparameter sweep
only targeted the smaller models in our grid, and further-
more trained each model for only 20N steps, i.e., the op-
timal point according to the Hoffmann et al. scaling law.
This raises the concern that the hyperparameters we chose

unfairly favor models trained for that particular token-to-
parameter ratio, and rerunning our experiment with perfect
tuning for each model size and each token-to-parameter
ratio would have yielded different results. We believe this is
unlikely: at small scales (where hyperparameter tuning is
crucial) our original set of hyperparameters favored higher
token-to-parameter ratios because they still had a sufficient
number of steps to train for, and therefore choosing hyper-
parameters specifically for them is not likely to result in
significant gains. In Appendix F.4 we analyze our existing
tuning results to estimate the potential gains from perfect
tuning, and find that they are likely to have small impact on
our conclusions. Moreover, transferring our hyperparame-
ters to another dataset yields similar results.

Finally, a broader limitation of compute-optimal scaling as
defined by Kaplan et al. [2020], Hoffmann et al. [2022]
and our work, is that it only concerns the pretraining loss
rather than more direct measures of a model’s capabilities.
Here again, scale is an issue: most zero-shot and in-context
capabilities do not emerge at the scales we consider here,
and predicting them from small-scale proxies is an important
open problem [Schaeffer et al., 2024, Gadre et al., 2024].
Instead, it is possible to study downstream performance
via fine-tuning, though this may cause the clean scaling
patterns seen in pretraining to break down [Tay et al., 2022],
potentially because the fine-tuning procedure is sensitive to
the choice of hyperparameters [Ivgi et al., 2022].
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A Prior related work

While neural scaling laws precede the advent of large language models [Hestness et al., 2017, Rosenfeld et al., 2019],
breakthroughs in model [Vaswani et al., 2017] and data [Radford et al., 2019, Raffel et al., 2020] scaling allowed Kaplan
et al. [2020] to demonstrate the dramatic possibility of unbounded improvement with scale, triggering an explosion in the
literature on the topic. Here we focus on the relatively fewer works that tackle optimal resource allocation under a compute
constraint.

For language modeling, Hu et al. [2024] and DeepSeek [2024] repeat subsets of the analyses in Hoffmann et al. [2022] and
derive compute optimal scaling laws. Employing Approach 3 of Hoffmann et al. [2022] (see also [Besiroglu et al., 2024]),
Hu et al. [2024] find that, for their models, optimal scaling favors larger token-to-parameter ratios than in Hoffmann et al.
[2022] and in our results. They attribute this difference to modeling improvements since [Hoffmann et al., 2022] and argue
the same holds for Llama 2 [Touvron et al., 2023b]. However, our setup incorporates most of the advances in Llama 2
and still produces power laws very close to Hoffmann et al. [2022]. Like us, DeepSeek [2024] perform hyperparameter
tuning and use isoFLOP analysis to determine compute-optimal model sizes on multiple datasets. While they arrive at an
exponent on the order of Hoffmann et al. [2022] for the main dataset they study, they report a higher exponent a = 0.578
for OpenWebText2 (i.e., predicting lower token-parameter-ratio at scale), which they attribute to the superior quality of
the dataset. We also study this dataset but arrive much closer to the Hoffmann et al. scaling law. We conjecture the larger
exponent might be due to repeating training data, which likely occurred in their experiment given the dataset’s limited size
and their compute budget. Settling these discrepancies could be a source of further valuable lessons on optimal model
scaling.

Recent work also studies compute-bounded scaling laws beyond the compute-optimal regime. Informed by the increasingly
common practice of training medium-scale models beyond compute optimality [e.g., Touvron et al., 2023a,b, Jiang et al.,
2023], Sardana and Frankle [2023] account for the expected inference cost of the model, showing that it naturally skews
optimal settings toward smaller models. Gadre et al. [2024] directly predict the loss and downstream performance for
models trained past the point of compute optimality, and Muennighoff et al. [2024] model joint compute-data bottlenecks.
All three works rely on the Hoffmann et al. law as a reference point, with [Gadre et al., 2024, Muennighoff et al., 2024]
baking it to their parametric forms.

Compute-optimal scaling is studied beyond the language domain, particularly in vision. Henighan et al. [2020] study
autoregressive modeling for a variety of tasks and find scaling laws roughly consistent with the Kaplan et al. [2020] adjusted
scaling law (with exponent a = 0.73). That work shares the methodological issues described in the top row of Figure 1
(FLOP count and long warmup), but performs hyperparameter tuning for smaller scale models; in Appendix G we reach
similar results when doing the same. Zhai et al. [2022] characterize the compute-efficient frontier of Vision Transformers
(ViTs), while Cherti et al. [2023] studies compute constrained scaling of CLIP models. However, they do not offer a
power law for scaling model size with compute. Alabdulmohsin et al. [2023] tackle model design under an inference
compute constraint by fitting multi-term parametric forms to obtain predictions for the optimal ViT shape. Goyal et al.
[2024] point out an intricate interplay between data filtering and compute constraints. Finally, Bachmann et al. [2024]
study compute-optimal scaling of MLP’s and obtain exponent a = 0.35, suggesting that MLP require much more rapid data
growth than more sophisticated architecture. Overall, whether and to what extent does Hoffmann et al. scaling hold in the
vision domain remains a compelling open problem.

We also remark on two themes of our paper that draw from prior work. The first is the importance of hyperparameter
tuning: several works [Kaplan et al., 2020, Ivgi et al., 2022, Gadre et al., 2024, DeepSeek, 2024] make the case that smooth,
predictable scaling laws emerge when models on all scales are properly tuned. Our work (and particularly Section 4.1)
provides another example of this principle and agrees with previous observations that tuning is particularly important at
smaller scales. Second, previous studies [Zhai et al., 2022, Bellagente et al., 2024, DeepSeek, 2024, Hu et al., 2024] as well
as the concurrent work [Hägele et al., 2024], propose alternative learning rate schedules that address a key shortcoming
of cosine decay: the need to commit to a step budget in advance. We consider a constant learning rate that requires no
commitment at all. We show this simple choice suffices to reproduce the Hoffmann et al. law and quantify the computational
savings compared to a cosine schedule. However, Section 4.1 (and also [Hoffmann et al., 2022], among others) show that in
terms of loss, the constant schedule clearly underperforms the cosine schedule.
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Table 2: Model architectures and different parameter counts, in millions. The column N gives our definition of models size,
Nexact is the exact number of trainable parameters in the model, Neff is the effective size which also accounts for the cost of
attention operatoins, and NKaplan does not count parameters in the model’s head. See Appendix C for precise definitions
and discussion.

Depth Width N Nexact Neff NKaplan

3 96 5.173 5.176 (+0.05%) 5.763 (+11.4%) 0.331 (-93.5%)

4 128 7.504 7.508 (+0.06%) 8.552 (+13.9%) 1.049 (-86.0%)

5 160 9.810 9.817 (+0.07%) 11.45 (+16.7%) 1.741 (-82.2%)

6 224 15.60 15.61 (+0.07%) 18.35 (+17.6%) 4.301 (-72.4%)

8 288 22.49 22.51 (+0.08%) 27.21 (+20.9%) 7.963 (-64.5%)

9 320 28.67 28.70 (+0.08%) 34.57 (+20.5%) 12.53 (-56.2%)

10 384 37.06 37.09 (+0.08%) 44.92 (+21.2%) 17.69 (-52.2%)

12 480 57.38 57.43 (+0.08%) 69.18 (+20.5%) 33.18 (-42.1%)

14 576 84.79 84.85 (+0.08%) 101.3 (+19.4%) 55.74 (-34.2%)

15 640 108.5 108.5 (+0.07%) 128.1 (+18.1%) 76.19 (-29.7%)

18 704 149.0 149.1 (+0.07%) 175.0 (+17.4%) 113.5 (-23.8%)

21 832 220.9 221.0 (+0.06%) 256.7 (+16.2%) 178.9 (-19.0%)

23 1024 347.1 347.3 (+0.05%) 395.3 (+13.9%) 295.4 (-14.8%)

26 1120 455.3 455.5 (+0.05%) 514.9 (+13.1%) 398.8 (-12.4%)

26 1312 612.0 612.2 (+0.05%) 681.8 (+11.4%) 545.8 (-10.8%)

30 1504 901.7 902.1 (+0.04%) 994.1 (+10.2%) 825.9 (-8.41%)

B Additional training setup description

Modeling. We train decoder-only Transformer [Vaswani et al., 2017] language models for next-token prediction using
OpenLM, a Pytorch [Paszke et al., 2019] for efficient training of medium scale language models. We use the library with
largely the same configuration as [Gadre et al., 2024], leveraging xFormers [Lefaudeux et al., 2022], bfloat16 automatic
mixed precision, (qk)-LayerNorm [Ba et al., 2016, Dehghani et al., 2023, Wortsman et al., 2024], SwiGLU [Shazeer,
2020], depth-scaled initialization [Zhang et al., 2019a], and rotary positional embeddings [Su et al., 2024]. We use the
GPT-NeoX-20B tokenizer [Black et al., 2022] whose vocabulary size of 50432 closely matches the vocabulary size of
Kaplan et al. [2020]. We use a sequence length of 2048 which is twice the sequence length used in Kaplan et al. [2020], but
we attempt to match parameters like batch size and warmup duration in their size in tokens. We do not tie the weights of the
embeddings and head layers.

Optimization. Throughout the paper, we use the AdamW optimizer [Loshchilov and Hutter, 2017] to minimize the
standard log loss with an additive z-loss term for stabilization [Chowdhery et al., 2023] (coefficient 1e− 4) as an auxillary
loss (for our analysis, we record the log loss without the z-loss term in both train and validation). As advocated for in
Wortsman et al. [2024], we use independent weight decay [Loshchilov and Hutter, 2017] with parameter 1e− 4, i.e., we set
the “weight decay” parameter in the standard PyTorch AdamW implementation to be 1e− 4/η, where η is the base learning
rate. In Table 3 and Table 4 we describe our choice of hyperparameter in our experiments.

Hardware and computational cost. We train our models on a cluster with 40GB A100 GPU’s, using between 4–32
GPU’s in parallel per training run. We use the OpenLM/PyTorch distributed data parallel implementation as well as gradient
checkpointing. According to our logs, the total compute cost of all the experiments going into this paper is 22.3K GPU
hours., and the total FLOP count is 3.03e21 FLOPs.
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Table 3: Fixed hyperparameters. We use these values in the experiments in Sections 3.1 to 3.4 and later tune part of them as
described in Section 3.5 and Table 4 below.

Name Value

Batch size 256

Learning rate 3e− 3

AdamW independent weight decay 1e− 4

AdamW β1 0.9

AdamW β2 0.95

Z-loss weight 1e− 4

Data repetition. The datasets we work with are large enough to allow us to perform all of our training runs without any
data repetition. However, due to two software issues, some experiments experienced limited data repetition. In particular,
data going into our hyperparameter sweep might have been repeated up to 10 times. Moreover, on OpenWebText2, some of
our larger-scale training runs might have seen data repeated up to 4 times. We believe this had limited to no impact on our
results, as the hyperparameter sweep involved fairly small models unlikely to be able to memorize, while [Muennighoff
et al., 2024] show that 4 data repetitions have only a marginal effect on model performance. In our main experiments on the
much larger RefinedWeb dataset we have verified that no data repetition occurred.

C Estimating FLOPs and accounting for attention

In this section, we compare our definition of model size N to three alternatives and also discuss choices made by related
work. Before that, we provide the precise expression for computing N (by our definition) from the model depth l, width d,
and vocabulary size v = 50 432. Due to efficient implementation considerations, OpenLM sets the model’s feedforward
dimension to dFF = 256

⌊
255+⌊8h/3⌋

256

⌋
. Since each SwiGLU feedforward block has 3 dff × d parameter matrices, and since

each attention block has 4d2 parameters in linear layers, our total estimate is:

N = (3dFF + 4d)dl + dv. (5)

We begin by considering, instead of the number of weights in linear layers, the total number of non-embedding learnable
weights Nexact (e.g., including also LayerNorm gains). The fourth column of Table 2 shows that the difference between this
number and N is negligible. We also note that embedding layers have a negligible contribution to the model FLOP counts,
since they do not require matrix-vector products.

Consequently, the only non-negligible source of error in the approximation FLOPs(N,D) = 6ND is the attention layers.
Since in OpenLM the attention dimension is identical to the model width, Kaplan et al. [2020, Table 1] shows that the
attention operation costs an additional 6nd FLOPs per token per layer for a forward and backward pass, where n = 2048 is
the sequence length. Thus, if we define an effective model size of

Neff := N + ndl, (6)

we have that 6NeffD captures the cost of training the model for D tokens, including attention.

We now consider the difference between these approximations and its effect on compute-optimal scaling laws. The fifth
column of Table 2 compares Neff to N . It shows that the ratio Neff/N changes smoothly between roughly 1.1 to roughly
1.2 and back to 1.1 as our model sizes grow. We note that had this ratio been completely constant, there would have been no
essentially no difference between working with N and working with Neff since a power law in one would correspond directly
to a power law in the other. Since in our model grid this ratio is approximately constant, we expect to see limited differences
between the scaling laws resulting from each definition. Figure 6 confirms this expectation, showing quantitatively and
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Table 4: Tuned hyperparameters. We choose these parameters according to the scaling law we present in Section 3.5. Due
to parallelization requirements, we round batch size to be a multiple of number of GPUs used in each run. We also round
learning rate to two significant digits. All other hyperparameters are as in Table 3.

N (millions) Learning rate Batch size β2

5 0.013 20 0.99

7 0.011 28 0.99

9 0.011 32 0.99

15 0.009 44 0.99

22 0.008 56 0.99

28 0.0074 64 0.99

37 0.0068 80 0.99

57 0.0059 104 0.99

84 0.0051 128 0.99

108 0.0047 160 0.99

149 0.0043 192 0.99

220 0.0038 256 0.95

347 0.0032 320 0.95

455 0.003 448 0.95

611 0.0027 512 0.95

901 0.0024 640 0.95

qualitatively similar results to Figure 1. Consequently, we cannot determine with certainty which definition is more
appropriate for predicting compute-optimal model sizes. Nevertheless, we observe our final experiment (with parameter
tuning) predicts that the optimal (effective) model size at the Chinchilla/Gopher compute scale to be about 16 B parameters
larger than the one size predicted using our standard definition. These predictions are directly comparable since model size
and effective model size are essentially identical at these scales. If we take the Hoffmann et al. scaling law as ground truth,
then the prediction we get using Neff is a bit worse.

Finally, we touch on a third measure of model size, which does not count the contribution of the model’s head to the FLOP
count. That is, we consider

NKaplan := N − dv. (7)

This is the definition that Kaplan et al. [2020] use in their experiment, approximating the flop count as 6NKaplanD. Their
main motivation for this choice is an observation that not counting embedding parameters leads to more predictive scaling
laws in the unlimited compute regime. However, as the final column of Table 2 shows, this approximation leads to a large,
systematic error in FLOPs counts for smaller models. In Sections 3.1 and 3.2 we show that this is one of the primary factors
behind the Kaplan et al./Hoffmann et al. discrepancy.

We conclude this section with an overview of the model size definitions used by related works other than Kaplan et al.
[2020]. Henighan et al. [2020] use NKaplan as Kaplan et al. [2020] and observe high scaling exponents as a result. Hoffmann
et al. [2022] account for both linear and attention layers in their FLOP computation essentially using Neff in their first two
estimation approaches. However, their third approach appears to ignore the attention FLOPs and also count the embeddings
parameters, i.e., setting N ′ = N + dv. DeepSeek [2024] compare 3 definitions of model size, including NKaplan, N , and a
hybrid of Neff and NKaplan that takes attention into account and ignores the model head. They report that the latter option
gives the best prediction of the compute-optimal loss at large scales. However, we note that both [Hoffmann et al., 2022]
and [DeepSeek, 2024] claim that attention costs double the FLOPs mentioned in Kaplan et al. [2020]; we believe this is
likely because they do not account for the fact that the attention is causal, meaning it requires only half the FLOPs of an
unstructured matrix-vector product. Finally Muennighoff et al. [2024], Gadre et al. [2024], Hu et al. [2024] use N as we do.
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Figure 6: A reproduction of Figure 1 where we replace our standard definition of model size N with the effective model
size Neff (defined in eq. (6)) for which the approximation 6NeffD also captures the FLOPs cost of attention operations in
the model. We observe similar results to Figure 1, though our final experiment produces a mildly higher prediction for the
optimal model size at the Chinchilla/Gopher compute scale.
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Figure 7: Training loss vs. compute for our main experiments on the RefinedWeb dataset. The smoothed loss is overlaid on
semi-transparent raw loss.

D Additional data analysis details

This section provides a comprehensive description of our procedure for fitting the power law for N⋆(C). Our procedure for
the D⋆ power law is analogous, using the relationship (3).

Training loss smoothing. We smooth the training loss using a variable-length smoothing averaging window. In particular,
we estimate the loss at step i as the average of the losses in steps i− ⌊pi⌋ to i+ ⌊pi⌋, for p = 0.05. We also compensate
for the lag introduced by logging the averaged training loss every k = 20 by shifting the training loss’s index k/2; this
compensation is quite important for matching the validation loss early in the optimization. We have verified that the
smoothed training loss matches the validation loss (where it is available) roughly to the validation loss’s sampling error.

Fetching the loss at Ci FLOPs from a single run. To estimate the loss of a model of size N trained to compute Ci

we linearly interpolate the validation/training loss (in log-space) at the two steps closest to Ci/(6NB), where B is the
batch size in tokens. We also require the nearest step to be within 10% of Ci/(6NB), and do not return the loss if not such
step exists. For most of our experiments, we compute the validation loss precisely at step ⌈Ci/(6NB)⌉. However, for the
experiments in Section 3.1 and Appendix C, which consider alternative definitions of N we do not have validation loss
samples, and we use the training loss instead.

Estimating loss noise. Defining the ideal loss as the population log loss in expectation over model training, there are two
sources of error in estimating it: finite samples in the validation set, and variation between training seeds. We estimate
the former directly by storing the validation loss on 100 subsamples of the holdout data and find the standard deviation
to be in the range 0.001–0.002 across the different experimental settings. To gauge the error due to seed variance, we
train smaller-scale models from our grid on 7 seeds using the tuned hyperparameters for 20N tokens each. We find a
roughly log-linear relationship (see Figure 11) between the (post-warmup) smoothed training loss and the inter-seed standard
deviation. For RefinedWeb (Table 4), it appears to saturate around the sampling error, and we heuristically assign standard
deviation 0.05 to samples with loss > 7, standard deviation 0.002 to samples with loss < 3, and linearly interpolate the
standard deviation in log-space to samples with loss in the range [3, 7]. For OpenWebText2 we observe significantly more
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Figure 8: Training loss vs. compute for our main experiments on the OpenWebText2 dataset. The smoothed loss is overlaid
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estimates of N⋆(Ci) for the depicted Ci values. See Appendix D for a related discussion.

cross-seed variance as well as less stable loss during training (compare the loss curves in Figures 7 and 8), potentially due to
a difference in document lengths. Therefore, we set our standard deviation estimate to go from 0.1 at loss 6 to 0.01 at loss 3,
saturating outside the interval and log-space interpolating inside it.

Estimating N⋆(Ci) and its uncertainty. Given a list of N values and their respective loss samples at compute Ci (fetched
as described above), we estimate the optimal value N⋆(Ci) using the following bootstrap-like procedure. For each bootstrap
sample, we add independent Gaussian noise to each loss, whose standard deviation is determined according to the heuristic
formula described above. We then interpolate the curve of loss vs. N using Akima [1970] interpolation in log-space and
find the value minimizing the interpolant; this forms our population of bootstrap samples for N⋆(Ci) estimate. We estimate
their standard deviation in log-space, and take the maximum between that value and one-third of the average log-spacing on
the grid (roughly 1

3 log
√
2). Occasionally, N⋆ appears on the edge of the N grid (though we attempt to avoid this in our

experiment design). If more than half of the bootstrap samples land at the edge of the grid, we omit the value of Ci from the
subsequent power law fit. Otherwise, we keep only the samples outside the grid edge, and blow up the standard deviation
estimate by the fraction of omitted samples.

E Additional plots for main experiments

In Figure 12 we complement Figure 1 by plotting our observation and power law fits for D⋆, ρ⋆ and N⋆ for all the
experiments described in Figure 1. In Figure 13 we reproduce this figure for the OpenWebText2 dataset, showing consistent
qualitative and quantitative results.

F Fitting hyperparmaeters

This section provides a detailed description of our hyperparameter tuning procedure.
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(see Appendix D). The dash-dot lines indicate the standard deviation due to finite validation set size, estimated on the last
validation checkpoint and averaged across seeds.

F.1 Full parameter sweep results

We perform an extensive parameter sweep over 6 models from our grid (Table 2) with sizes between 5M and 221M
parameters. For each model, we sweep over learning rate and batch sizes, as well as three values of β2. We train each
model of size N for 20N tokens (i.e., following the Hoffmann et al. scaling law) and record the validation loss that the
end of training. Overall, our hyperparameter sweep includes 642 training runs, and we perform it on only a single dataset
(RefinedWeb). Figure 14 plots all the loss values recorded in the sweep. Compared to analogous plots in Wortsman et al.
[2024], we observe more sensitivity to the choice of learning rate, particularly for smaller models. We conjecture that this is
because all the models in [Wortsman et al., 2024] train for the same amount of tokens, so the smaller models become fully
convergence for a wide range of learning rates.

F.2 Estimating the optimal batch size and learning rate via interpolation

To estimate the optimal batch size and learning rate for each model size, we adopt a two-stage interpolation approach. In the
first stage, for each model size and batch size, we estimate the optimal learning rate by interpolating (in log-space) the loss
as a function of learning rate using Akima [1970] interpolation, where for every learning rate we assign the lowest loss
obtained from the three values of β2. We minimize the interpolant and save its minimizing argument and minimum value.
In the second stage, repeat this procedure over the sequence of batch size and interpolated loss pairs, finding an optimal
batch size for each model size. To extract an estimate of the optimal learning rate, we simply interpolate the (batch size,
minimizing learning rate) sequence and evaluate it at the optimal batch size.

F.3 The necessity of tuning β2

To demonstrate the importance of tuning β2, we repeat the analysis described above except while only considering
experiments β2 = 0.95. Figure 15 shows the result of this experiment, illustrating that breaks part of the clean scaling trend
depicted in Figure 3.

F.4 Estimating scaling law with ideal tuning

We determine our learning rate and batch size scaling laws by sweeping over hyperparameters for models of sizes N ≤ 108M
with each model trained for 20N tokens. As discussed in section 5.2, this is a limitation as it potentially “bakes in” a
preference toward Hoffmann et al. scaling. An ideal tuning strategy would select different hyperparameters for each model
size and each compute budget, or equivalently each model size and each token-to-parameter ratio ρ.

In this section, we use the training loss data from our hyperparameter sweep to approximate such ideal tuning and estimate
its effect on the compute-optimal scaling law. We do so in three steps.

1. Estimating suboptimality as a function of token-to-parameter ratio. We estimate the best hyperparameters for ρ < 20
using the same interpolation logic as in section 3.5 but for the training loss after D = ρN tokens. (We do not consider
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Figure 12: Observations and power law fits of ρ⋆, N⋆ and D⋆ for our main experiments on the RefinedWeb [Penedo et al.,
2023] dataset. Here CC = 5.88e23 denotes the compute budget used to train Chinchilla [Hoffmann et al., 2022].
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Figure 13: Observations and power law fits of ρ⋆, N⋆ and D⋆ for our main experiments on the OpenWebText2 [Gao et al.,
2020] dataset. Here CC = 5.88e23 denotes the compute budget used to train Chinchilla [Hoffmann et al., 2022].
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Figure 14: Full hyperparameter sweep results, plotting validation loss after 20N training steps as a function of the learning
rate for different model sizes N , values of β2 and batch sizes. Plot design inspired by Wortsman et al. [2024].
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Figure 15: A reproduction of Figure 3 using only β2 = 0.95. When we only use this value of β2, for small models the
optimal batch size saturates, resulting in a less consistent trend. Here the “rounded fit” is the one obtained using all values of
β2, as in Figure 3.

values of ρ below 2 since they are too close to the warmup period.) Thus, for every value of N and ρ, we obtain an
estimate of the loss with optimal hyperparameters, denoted L⋆. We also use interpolation to estimate the loss under our
chosen hyperparameters for each model size (given by Table 4), denoted L. Figure 16 top-left shows the (smoothed)
estimated suboptimality of our hyperparmaeters, i.e. L− L⋆ as a function of ρ for each value of N in the sweep.

2. Updating IsoFLOP curves. For all model sizes in Table 4 up to 220M and FLOP values in our grid up to 1.6e18, we
estimate the loss attained by an ideal tuning by subtracting the from our observed loss the smoothed sub-optimality as
estimated above at the corresponding value of ρ. For model sizes below 220M that are not present in the hyperparameter
sweep we interpolate the smoothed sub-optimality based on neighboring model sizes (while keeping the ρ fixed).
We include all model size/FLOP combinations with token-to-parameter ratio in between 2 and 30. To estimate the
sub-optimality for token multipliers between 20 and 30 (not present in sweep), we extend our smoothed sub-optimality
measures symmetrically around ρ = 20. Figure 16 top-right shows the original IsoFLOP curves (as in Figure 9) along
with our estimated loss with ideal tuning.

3. Re-fitting the scaling law. To estimate the effect of ideal tuning on our estimate of the compute-optimal exponent a, we
apply our ‘bootstrap’ fitting procedure described in Appendix D on the updated IsoFLOP curves described above. To fit
the scaling law we only use FLOP values in {2k · 1.25e16}7k=0. For k > 7 we do not have data to estimate loss under
ideal tuning.

Conclusions. The top-left panel of Figure 16 shows that our hyperparameters yield losses within 1e− 2 of the optimal
value for models sizes above 15M and ρ values above 10. For smaller models or ρ values, the potential loss reduction from
ideal tuning is greater, as is also evident in the top-right panel of the figure. Nevertheless, the top-right panel also shows
that the compute-optimal model size (marked by stars on the IsoFLOP curves) do not move much due to the loss reduction.
The bottom panel further reveals that for most FLOP values the difference between compute-optimal model sizes is within
their estimated standard deviations. It also shows that approximating ideal hyperparameter tuning moves the estimate of the
compute-optimal exponent by less than 0.032, bringing further away from the Kaplan et al. exponent. Furthermore, since
learning rate and batch size sensitivities decrease with model size, we expect ideal tuning to have an even smaller effect at
larger compute budgets, so we are likely to see even better agreement in a if we introduce larger models to our ideal tuning
estimate (which would require extending the hyperparameter sweep to larger models as well). Indeed, dropping the two
smallest FLOP values from the power law fit (that is, using FLOP values {2k · 1.25e16}7k=2) yields exponent a = 0.489
for the original observations and exponent a = 0.5 for ideal tuning. Overall, we estimate that ideal hyperparameter tuning
would produce similar results to our scaling-law-based hyperparameter choices.
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Figure 16: Top-left: The estimated excess loss caused by using the hyperparameters in Table 4 instead of the ideal
hyperparameters for each model size N and token-to-parameter ratio ρ. Light dashed lines show the raw excess loss
estimates. To these we apply a median filter of width 2 (in terms of token-top-parameter ratio) and plot the results in solid
lines. Top-right: The estimated IsoFLOP curves with ideal tuning, obtained by subtracting the excess loss from the actual
loss. Bottom: Comparing the compute-optimal model sizes obtained from direct observations (with hyperparameters as in
Table 4) with our estimate for compute-optimal model sizes given ideal tuning per model.
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Figure 17: The optimal model size N⋆ as a function of the compute budget C, for models trained with the tuned
hyperparameters of Section 3.5 but with the long warmup and discounting the model head in the FLOP counts as done in
Kaplan et al. [2020].

G Reproducing the adjusted Kaplan et al. scaling law

Figure 17 shows that by reintroducing the FLOP count and long warmup issues from Sections 3.1 to 3.3 but training with
optimized hyperparameters, we recover the “adjusted” form of the Kaplan et al. [2020] compute-optimal scaling law, given
by 1.3e9 · (C/8.64e19)0.73. Kaplan et al. [2020] derive this scaling law by theoretically compensating for the fact that they
used a too-large batch size for smaller models. It is reassuring to observe that when we add back the other issues we have
identified but appropriately decrease the batch size via parameter tuning, we obtain very close agreement with this adjusted
scaling law.

H The compute-optimal loss

In Figure 18 we fit a saturating power law of the form L(C) = E + L0C
−ℓ to each of the compute-optimal loss curves in

our experiments. As the figure shows, the fit is predictive only for the experiment where hyperparameters are tuned. We fit
the saturating power law similarly to Hoffmann et al. [2022], by minimizing the Huber prediction loss for logL(C) over
ℓ, log(E) and log(L0).

I The computational cost of our experiments

We now discuss the calculation of the cost of each of our main experiments, comparing fixed learning rate schedules
(constant or fixed-length cosine as in Kaplan et al. [2020]) with a cosine schedule tailored for each. Each of our experiments
consists of directly estimating N⋆(C) for a grid of C values of the form Ck = 2k · 1.25e16 FLOPs and k going from 0 to
K = 11. With a cosine learning rate schedule, each value of C requires distinct training runs, so the cost of the experiment
is
∑K

k=0 mkCk, where mk is the number of models we train for Ck FLOPs—between 6 and 7 in our experiments. A
constant learning rate schedule offers savings since we can extract performance at different FLOP values from the same run,
so the cost of the experiment is

∑K
k=0 m

′
kCk where m′

k is the number of models we train for at most Ck FLOPs. At the
maximum budget we have m′

K = mK between 6 and 7, but for all smaller k < K we have m′
k between 0 and 2 (typically

1). Thus, we save
∑K−1

k=0 (mk −m′
k)Ck ≈ ∑K−1

k=0 mkCk, which for our doubling grid of C is roughly half the cost. For a
fair comparison, when empirically summing over the cost of our experiments omit runs where the number of tokens is more
than 100 times the model size or where loss is more than 1 nat above the optimal loss for the compute budget since they do
not contribute to the analysis and when experimenting with a cosine schedule we were more careful not execute them.
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Figure 18: An expanded version of Figure 4 showing a saturating power law fit for each experiment.
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