
Numerical Goal-based Transformers
for Practical Conditions

Seonghyun Kim, Samyeul Noh, Ingook Jang∗
Electronics and Telecommunications Research Institute

218 Gajeong-ro, Daejeon, Korea
{kim-sh, samuel, ingook}@etri.re.kr

Abstract

Goal-conditioned reinforcement learning (GCRL) studies aim to apply trained
agents in realistic environments. In particular, offline reinforcement learning is
being studied as a way to reduce the cost of online interactions in GCRL. One
such method is Decision Transformer (DT), which utilizes a numerical goal called
"return-to-go" for superior performance. Since DT assumes an idealized environ-
ment, such as perfect knowledge of rewards, it is necessary to study an improved
approach for real-world applications. In this work, we present various attempts and
results for numerical goal-based transformers to operate under practical conditions.

1 Motivation

In the field of reinforcement learning, various works are researched to apply agents to the real world.
Goal-conditioned reinforcement learning (GCRL) is one of the research areas that focuses on this
direction. GCRL studies are conducted in realistic environments that can serve a variety of goals, and
various benchmarks and algorithms have been presented in this regard [1]-[3]. Previous works on
GCRL have considered online interaction with the environment. However, the need for such online
interaction with the environment can be costly and risky for real-world applications. To avoid the cost
of interacting with the environment, offline reinforcement learning approaches that utilize previously
collected offline datasets to train agents are gaining attention [4]-[7].

As one attempt to train agents using offline datasets, Decision Transformer (DT) that leverages
sequence modeling problems is proposed [8]. In [8], it is shown that superior performance can be
achieved by utilizing a numerical goal called return-to-go as a condition for a causal transformer.
However, DT assumes an idealized environment for numerical goals, where the agent knows exactly
the actual reward it receives from the environment at each step. This assumption is inconsistent with
the fact that humans do not check rewards for every action in their lives. Although it is possible to
utilize the diverse information in offline datasets to learn an agent’s policy model in the training phase,
it is necessary to consider practical conditions for real-world applications where learned models can
operate with minimal information such as state or raw data.

In this work, we present various attempts and experimental results for numerical goal-based trans-
formers to operate under practical conditions. In Section 2, the structure and objective functions of
the proposed algorithm are described. In Section 3, performance comparisons between our proposed
method and existing techniques are presented for various datasets and environments.

∗corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

𝐦𝐢𝐧
ො𝐫𝐭

ො𝐫𝐭 𝐬:𝐭−𝟏, 𝐚:𝐭−𝟏 − 𝐫𝐭
𝟐 +𝐦𝐚𝐱 ො𝐫𝐭 𝐬:𝐭−𝟏, ො𝐚:𝐭−𝟏 − ො𝐫𝐭 𝐬:𝐭−𝟏, 𝐚:𝐭−𝟏 , 𝟎

𝐦𝐚𝐱
ො𝐚𝐭

ො𝐫𝐭+𝟏 𝐬:𝐭, ො𝐚:𝐭 + 𝛂 𝒆𝒂 − ො𝐚𝐭 𝐑:𝐭, 𝐬:𝐭, 𝐚:𝐭−𝟏 − 𝐚𝐭
𝟐

Training Evaluation

s a s a s a
t-2 t-2 t-1 t-1 t t

ො𝐫
t-1

ො𝐫
t

ො𝐫
t+1

Causal transformer.

Causal transformer.

ො𝐚
t-1

ො𝐚
t

𝐑
t-1

𝐑
t

𝐬
t-1

𝐚
t-1

𝐬
t

𝐚
t

s ො𝐚 s ො𝐚 s ො𝐚
t-2 t-2 t-1 t-1 t t

ො𝐫
t-1

ො𝐫
t

ො𝐫
t+1

෡𝐑𝐭 = ෡𝐑𝐭−𝟏 − ො𝐫𝐭 𝐬𝐭−𝟏, 𝐚𝐭−𝟏

Causal transformer.

Causal transformer.

ො𝐚
t-1

ො𝐚
t

ො𝐚
t-1

ො𝐚
t

෡𝐑
t-1

෡𝐑
t

𝐬
t-1

𝐬
t

Figure 1: Conservative Decision Transformer (CDT): CDT consists of two types of causal
transformers. In the training phase, each transformer shares the trajectories in batches and updates
network parameters according to its own objective function. In the evaluation phase, the transformers
share and connect network outputs such as approximated action and reward, â and r̂, respectively.

2 Methodology

Figure 1 represents the architecture of our proposed algorithm, Conservative Decision Transformer
(CDT). In the training phase, all data from the offline dataset, including returns and rewards, are
utilized to update the networks. In the evaluation phase, considering practical conditions, only states
are used to interact with the environment.

2.1 Preliminaries

A Markov decision process is defined by the tuple (S,A,P,R), where S is a state space, A is an
action space, P : S × A × S → R+ is a transition probability, and R : S × A → R is a reward
function. The numerical goal, return-to-go at time t, is given as Rt =

∑T−1
k=t rk+1(sk, ak), where T

is an episode horizon, and rk+1(sk, ak) is a reward for the state-action pair (sk, ak). Based on these
notations, a trajectory is defined as τ = (R0, s0, a0, r1, R1, ..., RT−1, sT−1, aT−1, rT).

2.2 Objective functions for Conservative Decision Transformer

The objective function for the reward estimation is defined as

Jθ = min
θ

{
∥r̂t(s:t−1, a:t−1)− rt∥2 +max

(
r̂t(s:t−1, â:t−1)− r̂t(s:t−1, a:t−1), 0

)}
, (1)

where r̂t is an output of a parameterized network with parameter θ, x:k is a history data as (x0, ..., xk),
ât is a generated action not in an offline dataset and (st, at, rt) are samples in an offline dataset.

Since the objective function in Eq. (1) is a minimization problem, the optimal value of the second
term in Eq. (1) is 0. It means that r̂t(s:t−1, â:t−1) should be lower than r̂t(s:t−1, a:t−1), i.e.,
r̂t(s:t−1, â:t−1) ≤ r̂t(s:t−1, a:t−1) . This means that the estimated reward for unseen actions is
conservatively lower than the reward for actions in the offline dataset.

The objective function for the action generation is defined as

Jϕ = max
ϕ

{
r̂t+1

(
s:t, â:t(R:t, s:t, a:t−1)

)
+ α

(
ea − ∥ât(R:t, s:t, a:t−1)− at∥2

)}
, (2)

where ât is an output of a parameterized network with parameter ϕ, α is a positive weight variable,
and ea is an action error threshold.

The objective function in Eq. (2) means that a generated action should be found by considering
maximizing the estimated reward and minimizing the action error. When α is large, the objective
function tends to minimize the action error, and when α is close to 0, it tends to maximize the
estimated reward. The weight α is automatically adjusted by solving a Lagrangian dual problem.

2

Table 1: Normalized returns for all algorithms in Mujoco locomotion tasks. The highest values for all
algorithms are highlighted in cyan and the highest values for the proposed algorithms are highlighted
in bold.

Dataset Environment CDT
ea =0.4

CDT
ea =0.38 DT-CR DT-R DT CQL

Medium
Expert

HalfCheetah 91.8 91.3 86.9 85.6 86.8 62.4
Hopper 107.7 107.5 105.2 91.0 107.6 111.0
Walker2d 107.2 107.9 107.0 106.7 108.1 98.7

Medium
HalfCheetah 40.1 40.8 40.8 40.0 42.6 44.4
Hopper 62.4 66.1 63.3 59.5 67.6 58.0
Walker2d 62.7 72.5 71.2 70.4 74.0 79.2

Medium
Replay

HalfCheetah 31.6 33.1 35.7 32.9 36.6 46.2
Hopper 62.9 73.7 77.2 69.5 82.7 48.6
Walker2d 55.0 58.7 59.7 59.0 66.6 26.7

For the objective function in Eq. (2), a constrained optimization problem can be derived as

max
ϕ

r̂t+1(s:t, â:t)

s.t. ∥ât(R:t, s:t, a:t−1)− at∥2 ≤ ea.

The constrained optimization problem means that the parameter ϕ is found to maximize the estimated
reward r̂ within the action error threshold ea. A dual problem for the constrained optimization
problem is defined as

Jα = min
α

r̂t+1

(
s:t, â:t(R:t, s:t, a:t−1)

)
+ α

(
ea − ∥ât(R:t, s:t, a:t−1)− at∥2

)
, (3)

where α is the Lagrange multiplier. Under the consideration of parameterized outputs r̂ and â with
fixed parameters θ and ϕ, the estimated reward r̂t+1 in Eq. (3) does not affect to the Lagrange
multiplier. Then the objective function in Eq. (3) can be simplified as

Jα = min
α

α
(
ea − ∥ât(R:t, s:t, a:t−1)− at∥2

)
. (4)

Since the objective function in Eq. (3) is a minimization problem, α is going to 0 for the condition
∥ât(R:t, s:t, a:t−1)− at∥2 ≤ ea, which means that the generated action is within the threshold range
of the action in the offline dataset. For the opposite condition, α is going to be larger.

3 Experimental Results

All experimental results for different datasets and environments are summarized in Table 1, where
CQL and DT numbers are reported from the original papers [6] and [8], respectively. As shown in
Table 1, for most datasets and environments, the proposed algorithms have similar performance with
slightly lower values than those of DT due to estimation errors. For the Medium Expert dataset, it
is observed that CDT has better or comparable performance to DT. However, for the Medium and
Medium Replay datasets, it is observed that the performance gap between CDT and DT gradually
increases. These results show that, from the perspective of the quality of the dataset, the performance
of the proposed algorithm decreases as the proportion of highly rewarded trajectories in the overall
dataset decreases and the consistency of actions decreases.

Comparing DT-R and DT-CR over the entire datasets and environments, it is shown that the reward
estimation to minimize the error in a conservative manner outperforms the reward estimation to
minimize the error only. For the Medium Expert and Medium datasets, comparing CDT and DT-CR,
it is observed that CDT has higher performance because it generates actions by considering the
maximization of the conservatively estimated reward. However, for the Medium Replay dataset, it is
observed that DT-CR outperforms CDT. This means that if the dataset has few trajectories with high
rewards and low consistency of actions in trajectories, it is better to only minimize the action error
rather than maximize the conservatively estimated reward. In other words, a conservatively estimated
reward on this dataset is susceptible to OOD problems.

3

2 4 6 8 10
Number of iterations

50

60

70

80

90

100

N
or

m
al

iz
ed

 R
et

ur
ns

Medium expert-Halfcheetah

2 4 6 8 10
Number of iterations

50

60

70

80

90

100

110

120

N
or

m
al

iz
ed

 R
et

ur
ns

Medium expert-Hopper

2 4 6 8 10
Number of iterations

20

40

60

80

100

120

N
or

m
al

iz
ed

 R
et

ur
ns

Medium expert-Walker2d

2 4 6 8 10
Number of iterations

32

34

36

38

40

42

44

46

N
or

m
al

iz
ed

 R
et

ur
ns

Medium-Halfcheetah

2 4 6 8 10
Number of iterations

30

40

50

60

70

N
or

m
al

iz
ed

 R
et

ur
ns

Medium-Hopper

2 4 6 8 10
Number of iterations

20

30

40

50

60

70

80

90

N
or

m
al

iz
ed

 R
et

ur
ns

Medium-Walker2d

2 4 6 8 10
Number of iterations

10

15

20

25

30

35

40

N
or

m
al

iz
ed

 R
et

ur
ns

Medium replay-Halfcheetah

2 4 6 8 10
Number of iterations

10

20

30

40

50

60

70

80

90

N
or

m
al

iz
ed

 R
et

ur
ns

Medium replay-Hopper

2 4 6 8 10
Number of iterations

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
ns

Medium replay-Walker2d

CDT(0.4) CDT(0.38) DT-CR DT-R DT

Figure 2: Training curves of all algorithms in Mujoco locomotion tasks.

When actions are highly consistent, such as in the Medium Expert dataset, CDT shows that there is no
significant difference in performance according to the action error threshold. However, if the actions
are somewhat less consistent, such as in the Medium and Medium Replay datasets, it is observed that
CDT has better performance when setting the action error threshold conservatively. This is consistent
with the results that DT-CR, which does not consider reward maximization but only action errors,
outperforms CDT on the Medium Replay dataset.

Figure 2 represents the training curves of all algorithms. Each iteration consists of 10000 steps, and
Table 1 is organized based on the performance of the 10th iteration 1. Overall results show that most
of the performance of the proposed algorithms converges around DT. As shown in Figure 2, from the
Medium Expert to the Medium Replay of datasets, CDT with ea = 0.4 has higher variances than
those of CDT with ea = 0.38. It means that this high variance of CDT with ea = 0.4 due to relaxed
error threshold has positive effects on good quality datasets, such as the Medium Expert dataset, but
on the other hand, it is difficult to achieve positive effects on slightly lower quality datasets, such as
the Medium and Medium Replay datasets.

4 Conclusion

In this work, we propose CDT for numerical goal-based transformers to operate in practical envi-
ronments. Experimental results show that the CDT can achieve stable performance with only state
information and no actual reward information. In future work, we would like to study a generalized
GCRL for 3D locomotion and robot manipulation tasks by considering various types of goals such as
images, text, symbols, etc.

1Since the graphs of DT are run by us, the values of the 10th iteration are slightly different from those of
Table 1, which are directly reported from [8].

4

Acknowledgments and Disclosure of Funding

This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant
funded by the Korean government. [23ZR1100, A Study of Hyper-Connected Thinking Internet
Technology by autonomous connecting, controlling, and evolving ways].

References
[1] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. To-

bin, O. Pieter Abbeel, and W. Zaremba, “Hindsight experience replay,” Advances in neural
information processing systems, vol. 30, 2017.

[2] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal generation for reinforcement
learning agents,” in International conference on machine learning. PMLR, 2018, pp. 1515–
1528.

[3] Y. Ding, C. Florensa, P. Abbeel, and M. Phielipp, “Goal-conditioned imitation learning,”
Advances in neural information processing systems, vol. 32, 2019.

[4] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial, review, and
perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020.

[5] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets for deep data-driven
reinforcement learning,” arXiv preprint arXiv:2004.07219, 2020.

[6] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for offline reinforcement
learning,” Advances in Neural Information Processing Systems, vol. 33, pp. 1179–1191, 2020.

[7] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. Devin, B. Eysenbach, and S. Levine, “Learning to reach
goals via iterated supervised learning,” arXiv preprint arXiv:1912.06088, 2019.

[8] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch, “Decision transformer: Reinforcement learning via sequence modeling,” Advances
in neural information processing systems, vol. 34, pp. 15 084–15 097, 2021.

5

A Conservative Decision Transformer Algorithm

Based on the objective functions in Eqs. (1), (2) and (4), the parameters θ, ϕ and α are updated by a
recursive optimization as shown in Algorithm 1.

Algorithm 1 Conservative Decision Transformer

1: Initialize parameters θ, ϕ and α.
2: Load offline dataset D = {(Rt, st, at, rt+1)|(Rt, st, at, rt+1) over all t in all episodes.}
3: for each iteration do
4: Sample K trajectories with batch size B:
5: DK,B ∼ D(Rt:t+K−1, st:t+K−1, at:t+K−1, rt+1:t+K)
6: for each gradient step do
7: Update the reward estimation:
8: θ ← θ − λ∇θJθ using Eq. (1)
9: Update the action generation:

10: ϕ← ϕ− λ∇ϕJϕ using Eq. (2)
11: Update the weight:
12: α← α− λα∇αJα using Eq. (4)
13: end for
14: end for

B Experimental Details

In this section, we describe experimental details. The algorithm implementation is based on DT [8].

B.1 Network architectures

Our two types of network architectures are the same as DT, where the number of layers is 3, the
number of attention heads is 1, the embedding dimension is 128, and the nonlinearity function is
ReLU for each network.

B.2 Hyperparameters

Hypermaraters are summarized in Table 2.

Table 2: Hyperparameters of CDT
Hyperparameters Value

batch size 64
context length K 20
learning rate for r̂ and â 10−4

learning rate for α 2 · 10−5

weight decay 10−4

gradient norm clip 0.25
dropout 0.1
initial return-to-go 6 · 103 for HalfCheetah

3.6 · 103 for Hopper
5 · 103 for Walker

action error threshold 0.38, 0.4

6

	Motivation
	Methodology
	Preliminaries
	Objective functions for Conservative Decision Transformer

	Experimental Results
	Conclusion
	Conservative Decision Transformer Algorithm
	Experimental Details
	Network architectures
	Hyperparameters

