Dual-Flow: Transferable Multi-Target,
Instance-Agnostic Attacks via In-the-wild Cascading
Flow Optimization

Yixiao Chen'*, Shikun Sun'} Jianshu Li?, Ruoyu Li?, Zhe Li?, Junliang Xing'
!Tsinghua University, 2Ant Group
{chenyixi22, ssk21}@mails.tsinghua.edu.cn,
{jianshu.l, ruoyu.li, lizhe.lz}@antgroup.com, jlxing@tsinghua.edu.cn

Abstract

Adversarial attacks are widely used to evaluate model robustness, and in black-box
scenarios, the transferability of these attacks becomes crucial. Existing generator-
based attacks have excellent generalization and transferability due to their instance-
agnostic nature. However, when training generators for multi-target tasks, the
success rate of transfer attacks is relatively low due to the limitations of the
model’s capacity. To address these challenges, we propose a novel Dual-Flow
framework for multi-target instance-agnostic adversarial attacks, utilizing Cas-
cading Distribution Shift Training to develop an adversarial velocity function.
Extensive experiments demonstrate that Dual-Flow significantly improves trans-
ferability over previous multi-target generative attacks. For example, it increases
the success rate from Inception-v3 to ResNet-152 by 34.58%. Furthermore, our
attack method shows substantially stronger robustness against defense mecha-
nisms, such as adversarially trained models. The code of Dual-Flow is available at:
https://github.com/Chyxx/Dual-Flow.

1 Introduction

Deep neural networks (DNNs) are highly vulnerable to adversarial attacks [53 22} 3| [19], which
can significantly compromise their reliability. Among these, targeted black-box attacks—where
adversaries manipulate a model into misclassifying an input as a specific target class without direct
access to the model—are the most challenging and impactful [1} 2, 39].

Adversarial attacks can be classified into instance-specific and instance-agnostic approaches. Instance-
specific attacks [[121 167, [16] optimize perturbations for each input image using victim model gradients
but often suffer from poor transferability. Instance-agnostic attacks [65) 42| |69, [17] generalize
perturbations over the dataset, leading to stronger black-box transferability. These methods typically
rely on universal adversarial perturbations [4 1} [70] or generative models [46} 43]].

Generative model-based attacks can be further divided into single-target [42,[18}|61]] and multi-target
[69. 17] approaches. While single-target attacks achieve high success rates, they require training
a separate model per target class, making them impractical for large-scale attacks. Multi-target
attacks address this by conditioning a single generator on target labels but often suffer from reduced
transferability and weak robustness against adversarial defenses.

Diffusion models [29] 51} 48] offer strong generative capabilities, making them a promising tool for
adversarial attacks. However, current diffusion-based attacks are all instance-specific methods, which
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Figure 1: The comparison between Cascading ODE, Cascading SDE, and Random SDE for the
second flow. The star shape represents the input for training the reverse flow. Notably, the Random
SDE is observed to optimize in an incorrect distribution.

means they need to access the target model’s gradient information during inference. Moreover, choos-
ing between stochastic and deterministic sampling methods for adversarial perturbation generation
remains an open challenge.

To address these challenges, we propose a novel Dual-Flow framework for multi-target instance-
agnostic adversarial attacks. Our approach integrates (1) a pretrained diffusion model to generate an
intermediate perturbation distribution as the forward flow and (2) a fine-tuned lightweight LoRA-
based velocity function as reverse flow for targeted adversarial refinement. We introduce Cascading
Distribution Shift Training to improve attack capability and employ dynamic gradient clipping to
enforce the ¢, constraint.

As illustrated by the Cascading ODE and Cascading SDE in Figure [1] we first follow the black
trajectory to introduce a slight perturbation to the image. Then, we follow either the red or blue
trajectory to generate an altered image, effectively exploiting this process to attack the target model.
Our main contributions are:

* First application of flow-based ODE velocity training for adversarial attacks, extending
diffusion-based techniques beyond conventional score function training.

* Dual-Flow algorithm, integrating a pretrained diffusion-based forward ODE with a fine-tuned
adversarial velocity function for structured perturbation generation.

* Theoretical contribution on cascading improvement mechanism, demonstrating how our method
facilitates cascading improvements at later timesteps.

Extensive experiments demonstrate that our attack method achieves state-of-the-art black-box trans-
ferability in multi-target scenarios and exhibits high robustness against defense mechanisms.

2 Preliminary

2.1 Instance-Agnostic Attacks

Instance-agnostic attacks [39] 33160, 46, 69| 43| 42] learn perturbations based on data distributions
rather than individual instances. These approaches, employing universal adversarial perturbations[41}
70] or generative models, have demonstrated superior transferability. This paper primarily focuses on
the latter due to its greater flexibility and attack effectiveness.



Early generative model-based methods were primarily single-target attacks[65), 142} 43| 18], 611,
requiring a separate model to be trained for each target class. Although these models exhibited high
attack capabilities, the excessive training overhead limited their applicability when many target classes
needed to be attacked. Recent research has proposed several multi-target attack methods[|69, [17]] that
condition the perturbation generative model on class labels[69] or text embeddings[17] of classes.
These approaches allow a single model to be trained to attack multiple target classes, significantly
reducing the training overhead.

Consider a white-box image classifier characterized by the parameter 0, denoted as f : X — ),
where the input space X C RE*H*W corresponds to the image domain, and the output space
Y C R¥ represents the confidence scores across various classes. Here, L denotes the total number
of classes. Given an original image x € X and a target class ¢ € C, the goal of transferable
multi-target generative attack is to generate the perturbation § = G(x, ¢) and the pertubed image
x€ = x + 4, in such a way that an unseen victim model F' predicts ¢ for the perturbed image, i.e.,
arg max;cc F(x€); = c. Here G is the generator trained on the known source model fy. To ensure
that the manipulated images remain visually indistinguishable from the originals, the perturbation is
constrained using the o, norm such that [|x — x¢||cc = [|0]|0c < €.

2.2 Diffusion Models and Flow-based Models

Diffusion models [50, 29} 51} |52] have emerged as powerful generative models, particularly for
continuous data such as audio [32] and images [48]]. Recently, Flow-based generative models [36 15}
371, developed directly from ordinary differential equations, have also gained significant momentum.
Given their strong generative capabilities, exploring their applications in adversarial attacks is natural.

Sampling Algorithms. One of the most appealing aspects of diffusion models is the flexibility in
designing the sampling process. The generation process of diffusion models primarily follows two
formulations: one based on the Stochastic Differential Equation (SDE) and the other on the Ordinary
Differential Equation (ODE). Each approach has strengths and weaknesses, making them suitable for
different scenarios.

Diffusion Models in Adversarial Attack. Currently, diffusion models have found some appli-
cations in adversarial attacks. Some utilize diffusion models to create unrestricted adversarial
examples[, 8], while others perform instance-specific attacks[68| 4]. However, they all rely on
iterative optimization using the classifier model’s gradients while generating adversarial examples,
thus not qualifying as instance-agnostic attacks.

3 Dual-Flow for Adversarial Attack

We propose a Dual-Flow pipeline designed to transform an image x € & through a perturbed distribu-
tion X, and ultimately into a constrained output space X¢, which is {x¢|Ix € X, ||x¢ — x[|c0 < €}
By construction, X'¢ enforces a maximum ¢, perturbation of e. Our method is instance-agnostic,
which means that once training is completed, our model can generate adversarial examples during
inference without requiring any access to the classifier model.

Specifically, we leverage the original ODE-based diffusion flow to map X’ to X’;. Using a pretrained
diffusion model’s velocity function v, (-, -) and a given input image x ~ X, we select a fixed timestep
7 € (0,1). The perturbed image x, ~ X is obtained by integrating the following equation:

D e t) = vo(@(x0).1), B(x,0)~ X, m
fromt =0tot =1.

To further map X to X'¢, we fine-tune a LoRA-based score function[30], yielding a new velocity
function vy. Then by integrating another equation:

D e t) = vo(We 1), 1), W) ~ X, @

fromt=7tot=0.



To train this second flow, we introduce a novel Cascading Distribution Shift Training strategy, which
addresses the challenges posed by the inaccessibility of intermediate distributions during training.

Finally, to ensure that outputs remain within X', we apply dynamic gradient stops during train-
ing, coupled with hard clipping operations at the final timestep. This approach allows for richer
intermediate representations while maintaining the required perturbation bounds.

Details of our approach are provided in the following subsections.

3.1 A Construction of Better Extend Flow

Firstly, we construct an extended flow based on j, which is the negative value of the cross-entropy
function:

j = —CE(f(x),0), ©)

where f is the source model and c is the target label.

Proposition 1 (Morse Flow Construction). Under mild assumptions on the X € and the function j,
there exists € > 0, a unique smooth flow.

(D . XG X [0,6} % X€7 (4)
satisfying:
d
006 ) = v(®(x,1), Q)
(I)(X, 0) =X,
such that:

1. v = a(x)Vxj(x) almost everywhere
2. j(®(x,€)) > j(x) forall x € X<, and > holds almost everywhere if j is not trivial
3. Each ®(-,t) : X — X°€ is a diffeomorphism

A detailed proof is provided in Appendix [A.1] Proposition [I]indicates we can find better extend flow
to hack j by Vj. In the following paragraphs, we will construct a concrete algorithm to realize it
along with an existing flow.

3.2 Cascading Distribution Shift Training

Although the in-the-wild ODE trajectory is deterministic, obtaining exact intermediate samples
remains a significant challenge, which poses difficulties for our approach. To address this issue, we
propose the Cascading Distribution Shift Training Algorithm, specifically designed to enhance
adversarial attack efficacy through two key mechanisms: (1) Enforcing a cascading hacking effect,
where each perturbation step incrementally contributes to misleading the source model. (2) Ensuring
the final perturbation follows the prescribed ¢, constraint. Further details are provided in Algorithm(T}
where [ denotes the conditional input in real diffusion models.

Our proposed training framework not only circumvents the challenge of inaccessible intermediate
timesteps but also offers additional advantages. Proposition [2| formalizes that our algorithm progres-
sively refines a coarse-to-fine representation, thus effectively leveraging information from ahead
timesteps. More concretely, due to the continuity of the ODE, our training algorithm enables a
cascading optimization within an increasingly refined space.

Theorem 2 (Cascading Improvement at Adjoint Timesteps). Consider two consecutive timesteps
t,t — . Following Algorithm[I] when comparing the cases with and without updating 0 at t, updating
0 results in an equal or lower cross-entropy for Xg at t — § when § is sufficiently small and all
functions are smooth.

One crucial consideration is constraining the final result within X'¢. There are two primary methods
to achieve this. The first approach incorporates the original ODE trajectory during model tuning,



Algorithm 1 Cascading Distribution Shift Training

Input: 7 = N4, stepsize 6, model param. ¢, 0, source model f, target labels set C, training dataset
{I"};ez, learning rate [,
Initialize 6 = ¢.

repeat
forteZdo
getxg =1"

sample ¢ ~ C
fort =1to N do
Xt5 = X(1-1)5 T Vo (X(1-1)s, (t — 1)3,2)d
end for
fort = N to1do
X(t—1)5 = Xts — Vo(Xus,16,¢)6
X0 = Xt5 — Vo (Xt5,18, ¢)td
iﬁ = Clip(§B7x_ 63X+6)
end for
end for
until vy convergence
Return: Dual-Flow {v4, vy}

Algorithm 2 Dual-Flow Sampling

Input: 7 = N, stepsize ¢, image I, target label ¢, Dual-Flow {v,vg}
x =1L
fort =1to N do
Xt5 = X(1-1)5 T Vo(X(1-1)s, (t — 1)3,2)d
end for
fort = N to1ldo
X(1—1)5 = Xt5 — Vo(Xs5, 10, ¢)0
end for
xo = clip (xg, X — €,X + €)
Return: x

ensuring the output remains close to the original ODE flow. The second approach enforces the
£, constraint or applies gradient clipping to suppress the influence of out-of-range image regions,
guaranteeing that only in-range rewards contribute to model optimization. Our experiments show that
dynamic gradient clipping yields the best performance among these methods.

Given the fixed model capacity, the Cascading Distribution Shift Training algorithm ensures greater
consistency between the training and sampling processes, improving performance. This is visually
illustrated in Figure[I]

3.3 Dual-Flow Sampling

During the sampling process, following the proposed training algorithm, a given image x € X’ is first
mapped to x, via Eq. (I). Subsequently, it is transformed into an intermediate state x|, using Eq. (2).
Finally, a hard truncation is applied to obtain the qualified perturbed sample xo € X°.

3.4 Deterministic Flow vs. Stochastic Flow

An important consideration is the choice between a deterministic flow, modeled by an ODE, and a
stochastic flow, modeled by an SDE. This decision primarily depends on the second flow, as the first
is inherited from a pretrained diffusion model.

When translating the distribution X7 to X'¢, a simple rescaling and noise injection into X’¢ is
insufficient to fully recover X'7. Consequently, this transformation falls outside the standard diffusion-
based framework.



Table 1: Attack success rates (%) for multi-target attacks on normally trained models using the
ImageNet NeurIPS validation set. The perturbation budget is constrained to lo, < 16/255. *
indicates white-box attacks. The results are averaged across 8 different target classes, and the overall
average on the far right is computed solely for black-box attacks.

Source Method Inc-v3 Inc-v4 Inc-Res-v2 Res-152 DN-121  GoogleNet VGG-16  Average

MIM 99.90" 0.80 1.00 0.40 0.20 0.20 0.30 0.48
TI-MIM  98.50" 0.50 0.50 0.30 0.20 0.40 0.40 0.38
SI-MIM  99.80* 1.50 2.00 0.80 0.70 0.70 0.50 1.03

DIM 95.60* 2.70 0.50 0.80 1.10 0.40 0.80 1.05
TI-DIM 96.00" 1.10 1.20 0.50 0.50 0.50 0.80 0.77

Inc-v3 SI-DIM 90.20* 3.80 4.40 2.00 2.20 1.70 1.40 2.58

Logit 99.60" 5.60 6.50 1.70 3.00 0.80 1.50 3.18

SU 99.59* 5.80 7.00 3.35 3.50 2.00 3.94 4.26
C-GSP 93.40"  66.90 66.60 41.60 46.40 40.00 45.00 51.08
CGNC 96.03* 5943 48.06 42.48 62.98 51.33 52.54 52.80
Dual-Flow  90.08*  77.19 66.76 77.06 82.64 73.01 67.09 73.96

MIM 0.50 0.40 0.60 99.70* 0.30 0.30 0.20 0.38
TI-MIM 0.30 0.30 0.30 96.50" 0.30 0.40 0.30 0.32
SI-MIM 1.30 1.20 1.60 99.50* 1.00 1.40 0.70 1.20

DIM 2.30 2.20 3.00 92.30* 0.20 0.80 0.70 1.53
TI-DIM 0.80 0.70 1.00 90.60* 0.60 0.80 0.50 0.73

Res-152 SI-DIM 4.20 4.80 5.40 90.50* 4.20 3.60 2.00 4.03

Logit 10.10 10.70 12.80 95.70* 12.70 3.70 9.20 9.87

SU 12.36 11.31 16.16 95.08" 16.13 6.55 14.28 12.80
C-GSP 37.70  47.60 45.10 93.20" 64.20 41.70 45.90 47.03
CGNC 5339 5153 34.24 95.85* 85.66 62.23 63.36 58.40
Dual-Flow  69.58  71.92 56.10 92.39* 85.73 73.65 67.59 70.76

A natural solution is to construct an in-the-wild ODE (as we do) or SDE that maps '™ to X¢. In the
ODE formulation, we define a velocity function vy that satisfies Eq. (2). A similar approach applies
to the SDE case, where stochastic noise facilitates the distribution transition.

When comparing from the perspectives of randomness and determinism, as shown in Figure[T] we
label our framework as Cascading ODE and implement two SDE-based training algorithms. One
injects noise at a random timestep within (0, 7), labeled as Random SDE, while the other first directly
adds noise at 7 and then reverses the flow using DDPM, resulting in a weak cascading relationship,
labeled as Cascading SDE. While SDE-based training algorithms more closely resemble original
diffusion models, they present two key challenges.

First, Cascading SDE introduces a random term, which may make it more difficult to construct
the Cascading Improvement relationship as stated in Proposition [2] for Cascading ODE. Second,
sampling with SDEs tends to produce unstable results, where larger step sizes exacerbate accumulated
errors, further impacting reliability, as demonstrated in our experiments.

As for Random SDE, it exhibits the worst performance because when sampling x; by directly adding
noise, the distribution of x; remains unchanged. Consequently, even slight training of the reverse
flow leads to a distribution mismatch, as illustrated by the star in the last column of Figure[I]

4 Experiments

4.1 Experimental Settings

Dataset. Following [69 (18| [17], we train the model on the ImageNet training set[10] and evaluate
the attack performance using ImageNet-NeurIPS (1k) dataset proposed by NeurIPS 2017 adversarial
competition[44].

Victim Models. We consider various naturally trained models, including Inception-v3 (Inc-v3)
[55], Inception-v4 (Inc-v4) [56]], Inception-ResNet-v2 (Inc-Res-v2) [56], ResNet-152 (Res-152) [27],
DenseNet-121 (DN-121) [31]], GoogleNet [54], and VGG-16 [49].



Table 2: Attack success rates (%) for single-target attacks against normally trained models on
ImageNet NeurIPS validation set. Note that CGNC' and Dual-Flow denote the single-target variants
of CGNC and our proposed Dual-Flow, respectively. The perturbation budget is constrained to
loo < 16/255. * indicates white-box attacks. The results are averaged across 8 different target
classes, and the overall average on the far right is computed solely for black-box attacks.

Source Method Inc-v3 Inc-v4 Inc-Res-v2 Res-152 DN-121  GoogleNet VGG-16  Average

GAP 86.90°  45.06 34.48 3448 4174 26.89 34.34 36.16

CD-AP 9420  57.60 60.10 37.10  41.60 32.30 4170  45.07

TTP 9137 46.04 39.37 1640 3347 25.80 25.73 31.14

Inc-v3  DGTA-PI  94.63*  67.95 55.03 5050  47.38 47.67 48.11 5277
CGNCT  98.84*  74.76 64.48 62.00  78.94 69.06 7074 70.00

Dual-Flow  90.08*  77.19 66.76 7706 82.64 73.01 6709 7396
Dual-Flow! 91.41*  78.85 70.59 79.12  83.36 77.52 7129  76.79

GAP 3099 3143 20.48 84.86* 5835 29.89 39.70 35.14

CD-AP 3330 4370 42.70 96.60*  53.80 36.60 3410 40.70

TTP 62.03  49.20 38.70 95.12*  82.96 65.09 6282  60.13

Res-152 DGTA-PI 6683  53.62 4761 96.48*  86.61 68.29 69.58 65.42
CGNCT  68.86 6945 4571 98.61*  91.14 69.83 68.05 68.84

Dual-Flow  69.58  71.92 56.10 92.39*  85.73 73.65 6759 7076
Dual-Flow! 7225 7435 58.44 93.65*  87.61 75.45 71.11 76.12

Table 3: Attack success rates (%) for multi-target attacks against robust models on ImageNet NeurIPS
validation set. The perturbation budget [, < 16/255. The results are averaged on 8 different target
classes.

Source  Method  Inc-v3ay  IR-v2ens  Res50siv Res50ln ResS5Ofne  Res50a,, — Average

MIM 0.16 0.10 0.20 0.27 0.44 0.19 0.23
TI-MIM 0.21 0.19 0.33 0.49 0.68 0.31 0.37
SI-MIM 0.13 0.19 0.26 0.43 0.63 0.29 0.32

DIM 0.11 0.09 0.16 0.33 0.39 0.19 0.21
TI-DIM 0.15 0.13 0.16 0.21 0.33 0.14 0.19

Inc-v3 SI-DIM 0.19 0.21 0.43 0.71 0.84 0.46 0.47

Logit 0.30 0.30 0.70 1.23 3.14 0.86 1.09

SU 0.49 0.41 0.84 1.75 3.55 1.04 1.35
C-GSP 2041 18.04 6.96 33.76 44.56 21.95 24.28

CGNC 24.36 22.54 8.85 40.83 52.18 22.85 28.60

Ours 51.54 55.62 45.86 74.56 78.54 67.56 62.28

MIM 0.19 0.15 0.28 1.58 2.75 0.78 0.96
TI-MIM 0.61 0.73 0.50 2.51 4.75 1.76 1.81
SI-MIM 0.24 0.24 0.39 0.66 0.84 0.36 0.46

DIM 0.63 0.37 0.94 8.50 14.22 3.77 4.74
TI-DIM 0.23 0.30 0.28 0.76 1.49 0.49 0.59

Res-152  SI-DIM 0.71 0.71 0.75 2.73 3.89 1.37 1.69

Logit 1.15 1.18 1.65 6.70 15.46 593 5.34

SU 2.12 1.20 1.95 7.53 21.14 6.95 6.82
C-GSP 14.60 16.01 16.84 60.30 65.51 42.88 36.02
CGNC 22.21 26.71 29.83 79.80 84.05 63.75 51.06

Ours 44.50 54.09 59.35 83.05 84.28 76.35 66.94

For further evaluation, we also analyze the performance of our method on robustly trained models.
These include adv-Inception-v3 (Inc-v3,4y) [22], ens-adv-Inception-ResNet-v2 (IR-v2.,s) [26]], and
several robustly trained ResNet-50 models. The ResNet-50 variants are: Res50gn (trained on stylized
ImageNet), Res50py (trained on a mixture of stylized and Nature ImageNet), Res504,. (further
fine-tuned with an auxiliary dataset [21]), and Res50,,, (trained with advanced data augmentation
techniques from Augmix [28])).



Baseline Methods. We compare our attack with several attack methods. For instance-specific
attacks, we consider MIM [12]], DIM [66], SIM [35]], DIM [13], Logit [[/1], and SU [62]. For
instance-agnostic attacks, we consider C-GSP [69], CGNC [17], GAP [46], CD-AP [42], TTP [43]],
and DGTA-PI[18]. Among them, C-GSP [69]and CGNC [17]]are multi-target generative attacks, and
the others are single-target generative attacks. For SU attack [[62]], we choose to compare with its best
version DTMI-Logit-SU. For CGNC [17]], we also consider its single target variant and compare it to
a single target attack method.

Implementation Details. We adopt stable-diffusion [48] as our pre-trained diffusion model. We
set 7 = 0.25 and N = 6 for training and testing. The LoRA rank is 16.

Following previous work [69} 18, [17], we choose Res-152 and Inc-v3 as source models to train
our model. The perturbation budget € is 16/255. We conduct 50k steps of training for multi-target
tasks. To compare our method with other single-target attacks, we further fine-tune our model for
an additional 10k steps to specialize in a single target class(more details provided in Appendix [D.2).
For multi-target training, we use a learning rate of 2.5 x 1075 and a total batch size of 8 (distributed
across two NVIDIA RTX 3090 GPUs, each with 24GB memory and batch size 4). Training under this
setting takes approximately one day to complete. For single-target fine-tuning, we set the learning
rate to 1 x 10~° and a batch size of 4, conducted on a single NVIDIA RTX 3090 GPU, which requires
approximately 4 hours. In total, the experiments involve approximately 160 GPU hours.

4.2 Transferability Evaluation

We assess the effectiveness of our proposed Dual-Flow for black-box target attacks through a series
of experiments. To ensure consistency with previous work [69 [18} [17], we select eight distinct target
classes [[70] to conduct the target black-box attack testing protocol. We use the average attack success
rate (ASR) across 8 target classes as an evaluation metric.

Multi-Target Black-Box Attack. We initially conduct attacks on normally trained models to
evaluate the performance of multi-target attacks. The results in Table [1| show that our proposed
Dual-Flow method exhibits significantly superior transferability, outperforming state-of-the-art
instance-specific and instance-agnostic methods. Specifically, our method achieves an average ASR
improvement of 21.16% and 12.36% over CGNC [[17]] using Inc-v3 and Res-152 as source models,
respectively, on black-box models. Notably, instance-specific methods, despite higher success rates
in white-box settings, tend to overfit the source models’ classification boundaries, resulting in poor
performance when transferred to black-box models.

Single-Target Black-Box Attack. To further evaluate our method’s effectiveness, we compare it
with other state-of-the-art instance-agnostic single-target attacks. Multi-target attacks are inherently
more challenging than single-target ones, disadvantaging our model in such comparisons. To ensure
fairness, we applied a masked fine-tuning technique similar to CGNC [17]], allowing us to fine-tune
our model separately for each target class and create single-target variants.

The results in Table [2{show that after fine-tuning, Dual-Flow' achieves higher attack success rates
and generally outperforms leading single-target methods. Notably, our method excels in average
black-box attack capability even without individual fine-tuning for the eight target classes. This
demonstrates our approach’s significant capacity and effectiveness in multi-target attacks, reducing
the need for separate models for each target class in resource-constrained scenarios.

4.3 Attack Under Defense Strategies

To demonstrate the robustness of our proposed Dual-Flow, we evaluate its performance against several
widely used defense mechanisms.

Robustly Trained Networks. We first consider attacking six robustly trained networks, with results
in Table Attacking robustness-augmented models is challenging, as previous methods see a
significant drop in success rates. However, our approach consistently misleads black-box classifiers
into predicting the specified classes, showing marked improvement over earlier multi-target methods.
Notably, using Inc-v3 as the source model, the average attack success rate against the six robust
models increases significantly from 28.60% to 62.28%, highlighting our method’s effectiveness.



Original Rock python Barometer Fig

Figure 2: Visualization results of different input images targeting various classes. For each text
prompt of the target class, the left column displays the adversarial examples generated before clipping,
the middle column shows the adversarial examples after clipping, and the right column presents
the corresponding adversarial perturbations, which represent the differences between the clipped
adversarial examples and the original images. Note that the perturbations are scaled to a range
between 0 and 1. The source model used is Inc-v3.

Input Process Defense. We compared our

method’s performance with the state-of-the-art = caes = oo Zcioes = onicies
multi-target attack method CGNC against input

preprocessing defenses, such as image smooth-
ing [[11] and JPEG compression [14]. As shown
in Figure 3] our method consistently outperforms
CGNC under these defenses. For example, using
Inc-v3 as the source model and DN-121 as the "
target model, our method achieves a 52.99% suc- T ey S oot ety
cess rate under Gaussian smoothing, compared ) )
to CGNC’s 28.27%. This highlights the superior (@) JPEG compression  (b) Input smoothing

effectiveness of our approach in overcoming input )
preprocessing defenses. Figure 3: A comparison of CGNC and our

method regarding attack success rates against
various input processing defense strategies. The
results against JPEG compression are shown in
(a), while (b) presents the outcomes against dif-
ferent input smoothing methods. Inc-v3 is the
source model and Inc-Res-v2, along with DN-
121, are the target models.
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4.4 Visualization

To gain a deeper understanding of the effective-
ness of our method, we visualized both the un-
clipped and clipped samples generated by our ap-
proach. Additionally, for consistency with other
perturbation-based attack methods, we visualized
the equivalent adversarial perturbations, defined as the pixel differences between the clipped samples
and the clean images. As illustrated in Figure 2] our method first transforms the original image into
one that maintains a similar layout and color scheme but becomes semantically closer to the target
class. This transformed image is subsequently clipped to ensure its pixel differences from the original
image remain within the epsilon bound. Visually, the clipped image retains substantial semantic
features of the target class. Notably, the adversarial perturbations also exhibit distinct semantic
patterns aligned with the target class, further validating the effectiveness of our approach.

4.5 Ablation Study

To further validate the effectiveness of our chosen Cascading ODE, we conducted a se-
ries of ablation experiments in this section. Here, Dual-Flow-co represents the original
method, Dual-Flow-cs denotes the Cascading SDE variant, and Dual-Flow-rs denotes the
Random SDE variant. During the reverse process at inference time, these variants em-



ploy either the DDPM scheduler or the DDIM scheduler. ~As shown in Table @ our
method significantly outperforms the other variants in white-box and black-box transfer attacks.

Furthermore, we compared the impact of different
sampling steps N during the reverse process. As
shown in Figure[d] increasing the sampling steps
steadily increases success rates for both Dual-
Flow-co and Dual-Flow-cs. However, for Dual-
Flow-ts, the success rate quickly declines as the
inference steps increase, supporting our analyses

—&— Dual-Flow-co —A— Dual-Flow-rs
-8~ Dual-Flow-cs

S 2
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in Section [3.4] and Figure|[l]
AT e ;- -
. . ,"‘—.—X\'\b.\
5 Discussion ) e
i
Potential Advantage of SDE. Although our " i : 5 T
N

experiments with Cascading SDE have not yet
surpassed the performance of Cascading ODE,
we believe that methods based on Schrodinger
bridges [9]] have the potential to bring significant
improvements. Schrodinger bridge formulations
provide a principled way to learn stochastic transport maps, which could offer better control over the
reverse trajectory and enhance the stability of the cascading distribution shift.

Figure 4: The multi-target black-box attack suc-
cess rates of several variants of our method. The
source model used is Res-152.

Table 4: The multi-target attack success rates of several variants of our method. The source model
used is Res-152. The white-box attack success rate refers to the performance on Res-152, while the
black-box attack success rate represents the average performance across six black-box models.

Method White-box  Black-box
Dual-Flow-co 92.39 70.76
Dual-Flow-cs + DDIM 68.56 40.12
Dual-Flow-cs + DDPM 74.58 46.04
Dual-Flow-rs + DDIM 55.39 33.00
Dual-Flow-rs + DDPM 29.19 14.86

6 Conclusion

We have introduced Dual-Flow, a novel framework for highly transferable multi-target adversarial
attacks. By employing Cascading Distribution Shift Training to develop an adversarial velocity
function, our approach addresses the limitations of existing methods. Extensive experimental results
demonstrate that Dual-Flow achieves remarkable improvements in transferability and robustness
compared to previous multi-target generative attacks. These findings highlight the potential of
Dual-Flow as a powerful tool for evaluating and improving the robustness of generative models.
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e The answer NA means that the abstract and introduction do not include the claims
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much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the Appendix.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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Justification: In the Appendix we provide the complete proofs.
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide full experimental details for reproducing the main results in

and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will release our data, models and codebase in the final version of the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide full details in and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide statistical significance information in Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources in and
Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide discussion about potential societal impacts in Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The benchmarks and data splits are publicly available. All licenses are
respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

20


paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Assets will be released, and all instructions and details will be included for
reproduction.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

A.1 Proof of Morse Flow Construction

Proposition 3 (Morse Flow Construction). Let B C R"™ be a bounded open set with smooth boundary,
and let j : B — R be a smooth Morse function that extends to C*°(B). There exists € > 0, a smooth
vector field X € X(B), and a unique smooth flow

®:Bx[0,e] » B

satisfying:

such that:
1. j(®(z,¢e)) > j(x) forallx € B
2. Each ®(-,t) : B — B is a diffeomorphism

3. Trajectories remain bounded away from OB fort € [0, €]

Constructive Proof. We proceed through coordinated geometric and analytic constructions.

Step 1: Geometric Preparations
1. Smooth Defining Function: By the smooth boundary assumption, there exists 1 €
C>*(B,[0,00)) with:

« u'(0)=0B
* Vu(z) #0forx € OB
o p(x) ~ dist(z,0B) near 0B

For explicit construction, take u(x) = f(dist(z, 0B)) where f € C*°([0,00)) satisfies
f(r) = rnear 0.

2. Critical Point Isolation: Since j is Morse on compact B, its critical points € (j) =
{p1,...,pn} are finite and non-degenerate. Choose pairwise disjoint neighborhoods
U; > p; with: o o
U, CB \ OB and U; N cg(]) = {pl}
Step 2: Vector Field Construction

1. Partition of Unity: Let {p; })¥_; be smooth functions with:

N
supp(pi) CU;, 0<p; <1, Zpi <1
i=1
Define the cutoff function:
N
n(@)=1-> pi(x)
i=1

Note 77 = 0 near critical points and = 1 outside | U;.
2. Decay Modulation: Fix m > n + 1. Define the boundary decay factor:

Um(x) = :u(x)m

This ensures sufficient regularity at 0B.
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3. Synthesized Vector Field: Define
X(2) = n(@)pm(x)Vi(z)

This field vanishes at critical points and near 0B.

Step 3: Flow Analysis
Boundary Avoidance: For x € B, let r(t) = u(®(z,t)). Compute:

dr .
= = V@) X (@) = 0(2)pm (@) Vi(®) - V(@)
Using |V - Vj| < C near 9B:
@ m—+1 m+1
7| S On(@)u(®)"™ < Cr(t)

Solutions to * < Cr™*+! satisfy it will never reach 0 in finite time, establishing boundary avoidance.
Step 4: Monotonicity & Diffeomorphism
1. Energy Gain: Along trajectories:
d . . ,
Z71(@(@,1)) = Vj(®) - X(2) = n(@)um (®)[|V5(@)[* > 0
Thus j is non-decreasing, with strict increase except at critical points.
2. Flow Diffeomorphisms: The differential D®(x, t) satisfies:

%Dcp(x,t) — DX(®(z,))DP(z, 1)

Since X is smooth with bounded derivatives on B, Gronwall’s inequality gives:

Dot <e ([ DX (@G 9)1ds) < o

Thus ®(-, t) remains locally diffeomorphic, and properness follows from boundary avoid-
ance.

Step 5: Isotopy Synthesis
The time-¢ map ®(0, €) provides the required isotopy through diffeomorphisms. O

A.2 Proof of Cascading Improvement at Adjoint Timesteps

Proposition 4 (Cascading Improvement at Adjoint Timesteps). Consider two consecutive timesteps
t,t — 0. Following Algorithm[I] when comparing the cases with and without updating 6 at t, updating
0 results in an equal or lower cross-entropy for Xg at t — & when § is sufficiently small and all
functions are smooth.

Proof. We want to show
CE(f(x5°),¢) < CE(f(x3"),¢)
for sufficiently small § with the following statement:

—~1

X0 = Xi_s — Vg (xt,g,t — 5) (t—19)

and
Xo0 = Xi—5 — Vo+ao (x¢—5,t — 8) (t —6),
where
Ab = 1, Vg(@E(f(iEO),c)), <" = x — va(xt)t.
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Step 1. Relating )/cal and EBO. Since x;_; is close to x; for small §, the smoothness of vy (-, -)
implies

56" = %ol = |[[xims = Volxis,t =) (= 8)] — [xe —volxi, 1) 1]

can be made arbitrarily small by taking § sufficiently small (and using continuity/Lipschitz arguments).
Consequently,

VgC]E(f(iBl), ¢) and Vg(C]E(f()/(BO), ¢)

are also close for small ¢.

Step 2. First-order comparison at ¢ — . By a first-order expansion of vy g around 6 and the
smoothness of vy (-, -), we have

Vorao(Xi—s,t —0) = vo(xe_5,t —8) + Vovg(xe—s,t —0) A + O(||A|%).

Hence,

—~2
X0

— )/(61 = —[V9+A9(Xt,§,t—5) — Vg(Xt,(;,t—(S)} (t—(S) =~ —(t—(S) V@V@(Xt,(;,ﬁ—é) AG.

Step 3. Cross-entropy decrease. Using the smoothness of the cross-entropy and another first-order
expansion,

CE(f(%57),¢) ~ CE(f(<").¢)

(VCE(/).0) &7 = %0') + 015" ~ ')
(VoCE(f(%5").c). A8) + O(1a0] |1]).

By definition of the gradient step A9 = —[, VoCE (f(;(ao)7 ¢) and the fact that Vg(CE(f(iBO), ¢)

is close to VyCE ( f ()’(51), c) for small 0, the above inner product is non-positive up to higher-order
(small) terms. Concretely,

%

Q

(VeCE(f(X5'),¢), —l VoCE(f(X5"),¢)) < 0
when ¢ is sufficiently small so that these gradients align (up to small errors). Therefore,
CE(f(%5°),¢) < CE(f(Xa')c),

which completes the proof. O

B Related Works

B.1 Targeted and Untargeted Attacks

Targeted Attacks. The objective of targeted attacks is to force the classifier to output a specified
label. In other words, the attacker seeks to cause the model to produce incorrect classification results
and aims for the result to be a specific target class. This type of attack is more hazardous due to its
ability to manipulate the model’s output precisely but is typically more challenging to execute.

Untargeted Attacks. The goal of untargeted attacks is to make the classifier output any incorrect
label. The attacker merely needs to mislead the model so that its classification result does not
match the true label. Despite having lower requirements, untargeted attacks can still have severe
consequences in certain situations.

B.2 White-Box and Black-Box Attacks
White-Box Attacks. White-box attacks assume that the attacker has complete access to the target

model, including its architecture, parameters, and gradient information. Using this information, the
attacker can generate efficient adversarial examples through iterative optimization methods.
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Black-Box Attacks. Black-box attacks assume that the attacker does not have access to the internal
information of the target model. A common method to implement black-box attacks is to utilize
transferability, where adversarial examples are first generated against a known source model and then
used to attack the unknown target model.

B.3 Instance-Specific and Instance-Agnostic Attacks

Instance-Specific Attacks. Instance-specific attacks [[12} 20, [16l 67, 159 38} 134] and instance-
agnostic generate adversarial perturbations for specific input samples. The attacker uses gradient
information from the target model and iterative optimization algorithms to create minimal pertur-
bations that achieve the attack on a given sample. Such attacks usually have high success rates on
individual samples but lack generalization and transferability.

Instance-Agnostic Attacks. Instance-agnostic attacks [65}[39]133] 42| 143| 18] do not target specific
input samples but instead learn universal adversarial perturbations or generative functions based on
data distribution. These attack methods have better generalization across different samples, thus
exhibiting stronger transferability.

B.4 Subcategories of Instance-Agnostic Attacks

Instance-agnostic attacks can be further subdivided into the following categories:

Universal Adversarial Perturbations. These methods learn a universal perturbation [41} [70]
applicable to the entire dataset. The classifier can be misled by superimposing this perturbation on
any input sample.

Generative Models. Generative attacks [46, 42| train a generator that, upon receiving an input
sample, can produce specific adversarial perturbations. This approach often surpasses universal
adversarial perturbations regarding flexibility and attack efficacy.

B.5 Single-Target and Multi-Target Attacks

Single-Target Attacks. Single-target attacks train an individual generative model for each target
class [42, 143,118 161]. Although these models achieve high success rates for single-target classes,
the training cost becomes substantial when the number of target classes is large, thereby limiting
practical usability.

Multi-Target Attacks. Multi-target attacks simultaneously train the attack capabilities for multiple
target classes within a single model [24 169, 17]. Class labels or text embeddings are typically used
as conditional inputs to generate corresponding adversarial perturbations. This method significantly
reduces training costs and enhances feasibility in real-world applications.

C Comparison with Other Diffusion-Based Methods

Currently, diffusion models have been explored in several adversarial attack methods [5, 168, 16} 4, [8]].
Among them, ACA [6] and DiffAttack [4]] leverage DDIM inversion to obtain the latent space
of diffusion models and optimize adversarial examples within this latent space. AdvDiffuser [3],
DiffPGD [68], and AdvDiff [8] incorporate adversarial guidance during the reverse denoising process
of diffusion models. Notably, although these methods are diffusion-based, they are all instance-
specific attacks, requiring access to the target classifier’s gradient information during inference for
each input sample to perform the attack.

In contrast, our method, once trained, does not require any further information from the classifier,
enabling more efficient generation of adversarial examples.

Furthermore, since these prior methods either only support untargeted attacks[3\ 168,16, 4] or focus
on unrestricted adversarial examples[3] 6] |4, 18], their settings are not directly compatible with ours,
making direct comparisons infeasible.
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D Method Details

D.1 Target Class Condition Representation

For each label c in the target label set C, we first obtain its class description and format it into a
text condition using the template "a photo of a {class}"[47]. Subsequently, we utilize CLIP’s text
encoder to derive this textual input’s embedding e. Finally, this embedding is fed into our model via
cross-attention mechanisms:

Q = ZWQ,K = eWK, V= er,

T
K )V (6)

Attention(Q, K, V) = softmax( @

Vd

where z € R% denotes the flattened intermediate features of the unet model, Wq € Ra=%d
Wy € R¥%xd Wy, € R4*? are learnable parameters.

By employing this approach, we can leverage the rich semantic priors associated with the target
classes embedded in the pre-trained diffusion model, thereby facilitating a more effective training
process.

Algorithm 3 Single-Target Fine-Tuning Mechanism

Input: 7 = NJ, stepsize d, model param. ¢, 6, model f, target label ¢, training dataset {Ii}iez,
learning rate [,

repeat
fori € Zdo
getxg =1"

fort =1to N do
Xts = X(¢—1)5 + V¢(X(t_1)5, (t—1)5,2)0
end for
fort = N to1ldo
X(t—1)5 = Xt5 — Vo(Xs5,10,¢)0
ia = X5 — Vo (Xt5; t(s» C)t(s
get random mask M
X0 =X+ M - (X0 — X0)
)/(B - Clip()/(B,X— 65X+€>
end for
end for
until vy convergence
Return: Dual-Flow {v4, vy}

D.2 Fine-Tuning on Single-Target Tasks

We fine-tune our model for single-target tasks to enhance its performance further. Specifically, we
fix the target label during training, enabling the model to focus on targeted attacks for a specific
label. To mitigate the perturbations being confined to some areas of the image, which can reduce
the robustness and transferability of adversarial examples in single-target training, we apply the
mechanism introduced in [17].

In detail, we generate a random mask M of the same size as the image, where several randomly
positioned square pixel areas are set to 0, and the rest are set to 1. By multiplying this mask with the
perturbation, we ensure the generated adversarial samples remain consistent with the original image
in the masked square areas. This forces the model to create adversarial patterns distributed across the
entire image rather than being localized to specific regions, as illustrated in Algorithm 3]

Like other single-target methods, we must fine-tune a separate model for each target. However,
due to our model’s powerful capabilities in multi-target attacks, once the model is trained on the
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multi-target task, it requires only a few additional steps to adapt to each single-target task. This
results in significantly lower training overhead compared to other methods.

E Computational Cost

For training the multi-target Dual-Flow (e.g., using Res-152 as the source model), we require
approximately 24 hours of training on 2 NVIDIA RTX 3090 GPUs, which is equivalent to 48 GPU
hours. To further fine-tune on single-target tasks, we need an additional 4 hours per class on a single
NVIDIA RTX 3090 GPU, totaling 4 hours x 8 classes = 32 GPU hours. Once training is complete,
our method only requires 15 minutes of inference on a single GPU to generate adversarial samples
for 8 target classes across the entire ImageNet NeurIPS validation set.

Table 5: Training and inference time for Dual-Flow with Res-152 as the source model.

Train (only multi-target)  Train (multi-target + single-target)  Inference

48 GPU hours 80 GPU hours 15 min

‘We highlight that once our method completes training, it can rapidly generate adversarial samples
with high transferability and robustness without requiring any gradient information from the classifier
models.

F More Experiments

Evaluation on Transformer Models. We tested our attack method’s success rate when transferred
to transformer models. Specifically, we utilized Res152 as the source model. The results, included
in Table[6] demonstrate that despite the fundamental architectural differences between transformer
models and our source model based on convolutional networks (Res152), our method maintains a
high attack success rate, significantly outperforming baseline methods. This further corroborates the
advantage of our method in terms of transferability.

Table 6: Attack success rates (%) for multi-target attacks on transformer models. The source model
is Res-152.

Method ViT-B/16 [64] CaiT-S/24 [58]  Visformer-S [7] DeiT-B [57] LeViT-256 [23] TNT-S [25]

C-GSp 11.78 32.00 36.60 35.58 37.85 31.00
CGNC 19.46 54.56 58.70 59.90 57.53 48.40
Dual-Flow 36.39 74.24 76.72 78.50 79.34 67.86

Evaluation on DiffPure. We evaluate our attack method using Diffusion Models for Adversarial
Purification (DiffPure)[45]. The experimental results show the attack success rates of our method
under various DiffPure ¢* settings and compare them with the baseline method. As illustrated in Table
[7] the baseline method is easily nullified by the purification process, whereas our method maintains a
significant success rate. This further demonstrates the robustness of our approach.

Table 7: Attack success rates (%) for multi-target attacks on normally trained models with DiffPure.
The source model is Res-152.

t* Method Inc-v3  Inc-v4 Inc-Res-v2 Res-152 DN-121  GoogleNet VGG-16

0.05 CGNC 1626 1991 8.53 67.76 49.81 21.79 29.81
’ Dual-Flow  49.60  51.92 37.56 79.50 70.20 51.30 52.26
0.10 CGNC 2.41 2.96 1.25 14.65 10.10 3.46 4.59
' Dual-Flow 2431  25.32 18.76 48.05 39.81 25.06 24.78
0.15 CGNC 0.47 0.46 0.34 1.84 1.46 0.62 0.92
’ Dual-Flow  7.20 7.87 5.89 16.70 13.72 7.71 8.34
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Table 8: Attack success rates (%) for multi-target attacks on normally trained models using the
ImageNet validation set. The perturbation budget is constrained to I, < 16/255. * indicates
white-box attacks. The results are averaged across 8 different target classes, and the overall average
on the far right is computed solely for black-box attacks.

Source Method Inc-v3 Inc-v4 Inc-Res-v2 Res-152 DN-121  GoogleNet VGG-16  Average

Ine-v3 CGNC 96.59* 57.82 46.84 44.13 65.90 53.40 56.27 54.06
v Dual-Flow 89.89*  75.74 65.05 75.73 82.75 72.21 66.20 72.95
Res-152 CGNC 56.00 5037 32.26 96.44* 86.69 63.84 63.90 58.84
Dual-Flow  69.75  72.53 54.11 92.70* 86.71 74.08 68.22 70.90

Transferability Evaluation On ImageNet Validation Set. In addition to the evaluation on the
ImageNet-NeurIPS (1k) dataset[44], we conducted an assessment of our attack method on the
ImageNet validation set (50k)[10] and compared it with the state-of-the-art multi-target attack
method, CGNC[17]. The experimental results presented in Table [§]indicate that our method achieves
a significantly higher average black-box attack success rate than CGNC, demonstrating its superior
transferability. This outcome is consistent with the results observed on the ImageNet-NeurIPS (1k)
dataset.

Evaluation on Smaller Perturbation Budgets. To validate the effectiveness of our method when
adversarial perturbations are more imperceptible, we conducted experiments at lower perturbation
budgets for black-box targeted attacks. We used the e = 16,/255 versions of trained models (CGNC
and Dual-Flow) and clipped the generated samples to meet the e = 12/255 and ¢ = 8/255 limits.
The results are shown in Tab[0] The results show that our method achieves better attack performance
than the baseline across various perturbation budgets.

Table 9: Attack success rates (%) for multi-target attacks on normally trained models with different
perturbation budgets. The source model is Inc-v3.

€ Method Inc-v4  Inc-Res-v2 Res-152 DN-121  GoogleNet VGG-16
16/255 CGNC 59.43 48.06 42.48 62.98 51.33 52.54
Dual-Flow  77.19 66.76 77.06 82.64 73.01 67.09
12/255 CGNC 43.23 30.34 28.48 46.96 33.65 37.95
Dual-Flow  55.80 41.82 54.41 63.19 47.66 44.94
8255 CGNC 13.33 6.54 6.95 14.65 7.51 10.29
Dual-Flow  23.86 14.04 21.21 27.68 13.39 15.55

Evaluation on Single-Target Attacks against Robustly Trained Models. We validate the effec-
tiveness of our attack method in single-target settings against the robust models mentioned in the
main text and compare it with other single-target attacks. As shown in Table[I0] the conclusions
are similar to those in the multi-target case in the main text, demonstrating that our method can
effectively mislead robustly trained classifiers.

Table 10: Attack success rates (%) for single-target attacks against robust models on ImageNet
NeurIPS validation set. The perturbation budget I, < 16/255. The results are averaged on 8
different target classes. The source model is Res-152.

Method Inc-v3asv  IR-V2ens  Res50siv' Res50n ResSOgne  ResS50ayg

GAP 5.72 4.51 7.33 71.04 83.64 52.07
CD-AP 3.77 6.48 7.09 63.72 76.79 49.67
TTP 27.99 26.08 24.61 72.47 74.51 70.96
DGTA-PI 31.10 30.07 27.70 77.13 80.55 76.78
CGNC' 31.55 33.63 33.31 88.34 89.74 72.96

Dual-Flow ' 47.32 56.22 60.66 84.15 85.18 78.56
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G Victim Model Details

All the victim models we used employ the official weights provided for the 1K-class ImageNet
dataset [10]. For normally trained models (including transformer models), we directly call these
models and their weights through the torchvision [40] or timm [63] libraries. For robust models
(adversarially trained models):

¢ Inc-v3,4y and IR-v2.,, we call their official weights through the timm library.

* Res50gsin, Res50yn, and Res50g,., we use the weights provided by the open-source repository
Texture-vs-Shape [21]].

* Res504ug, we use the weights provided by the open-source repository AugMix [28].

We report the accuracy of these models on the ImageNet NeurIPS validation set in Tab[TT]

Table 11: Accuracy (%) of victim models on ImageNet NeurIPS validation set.

Type Model & Accuracy
Normal Inc-v3 Inc-v4 Inc-Res-v2  Res-152 DN-121 GoogleNet VGG-16
95.1 94.7 97.3 94.5 90.7 87.0 87.2
Robust Inc-v3aav IR-V2ens Res50siv Res50N Res506ne Res504ug
u 86.7 94.5 68.4 89.5 93.2 94.1
Transformer ViT-B/16  CaiT-S/24  Visformer-S  DeiT-B LeViT-256 TNT-S
84.4 98.1 96.5 96.9 94.7 91.3

H More Ablation Studies

Ablation on LoRA Fine-tuning. To demonstrate that the adversarial attack capability of our model
stems from LoRA fine-tuning, we evaluated the model’s performance when performing attacks
directly without applying LoRA. As shown in Table|12] the original model fails to achieve effective
adversarial attacks, which validates the necessity of incorporating LoRA for fine-tuning.

Table 12: Attack success rates comparing the model with and without LoRA. The source model is
Res-152.

Method Inc-v3 Inc-v4 Inc-Res-v2 Res-152 DN-121  GoogleNet VGG-16

w/o LoRA  0.075  0.075 0.05 0.05 0.075 0.05 0.075
w/LoRA 6958 7192 56.10 92.39 85.73 73.65 67.59

Ablation on Dynamic Gradient Clipping. To evaluate the effect of dynamic gradient clipping, we
designed a variant that does not apply dynamic clipping during training and only clips the outputs to
satisfy the norm constraints during inference. As shown in Table XXX, if the model is not trained
with clipping, it fails to adapt to the norm constraints at inference time and thus cannot perform
effective attacks.

Table 13: Attack success rates comparing the model with and without Dynamic Gradient Clipping.
The source model is Res-152.

Method Inc-v3 Inc-v4 Inc-Res-v2 Res-152 DN-121  GoogleNet VGG-16

w/o clip 1.85 2.32 1.96 2.84 3.51 1.82 1.19
w/clip  69.58  71.92 56.10 92.39 85.73 73.65 67.59
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Ablation on Loss. We designed a variant: during training, we use a new L loss function to make
the model’s output as close as possible to the original ODE trajectory, ensuring it does not deviate too
far from the original ODE flow. We call this variant Dual-Flow-L. The experimental results in Table
[[4]indicate that the attack capability of this variant is not ideal, as described in Section[3.2]

Table 14: Comparison of Dual-Flow and Dual-Flow-Ls. The source model is Res-152.

Method Inc-v3 Inc-v4 Inc-Res-v2 Res-152 DN-121  GoogleNet VGG-16  Average

Dual-Flow 69.58  71.92 56.10 92.39 85.73 73.65 67.59 70.76
Dual-Flow-L> 5490  56.26 42.94 86.80 78.41 57.71 46.36 56.10

I More Analysis

Barometer Sea lion

Figure 5: Visualization results comparing the adversarial perturbations generated by our method with
those produced by CGNC.

Table 15: Comparison of different types of adversarial inputs. CGNC-P and Dual-Flow-P represent
the adversarial perturbations generated by CGNC and our method, respectively, while Dual-Flow-A
denotes the unclipped adversarial samples produced by our method. The adversarial perturbations are
scaled to a range between 0 and 1 before input into the classifier.

Source Method Inc-v3  Inc-v4 Inc-Res-v2 Res-152 DN-121  GoogleNet VGG-16
CGNC-P 56.80*  19.15 22.06 10.56 13.14 14.56 3.41
Inc-v3  Dual-Flow-P  86.55*  81.20 74.55 74.55 70.66 76.15 55.10
Dual-Flow-A  99.12* 9531 92.79 97.39 96.80 95.62 87.95
CGNC-P 23.61 2572 39.07 58.29* 39.09 37.47 17.21
Res-152  Dual-Flow-P  68.44  81.48 78.26 86.29" 80.44 74.59 55.35
Dual-Flow-A 9438  96.60 94.62 99.19* 97.92 93.54 90.85

Semantic Adversarial Attack. We compared the adversarial perturbations generated by our method
and those produced by the state-of-the-art multi-target attack method, CGNC[17]]. As illustrated in
Figure[3] the visual results indicate that while CGNC’s perturbations contain some semantic features
of the target class, they are primarily confined to small, repetitive patterns. In contrast, our method
generates perturbations that are semantically more representative of the complete target class.

To further validate this observation, we directly input the adversarial perturbations generated by
CGNC and our method into the target classifier. As shown in Table[I3] our adversarial perturbations
alone can induce the classifier to predict the target class with a relatively high probability. Conversely,
the perturbations produced by CGNC exhibit a lower likelihood, particularly when transferred to
black-box models. This demonstrates that our perturbations incorporate more semantic features of
the target class.
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Moreover, as depicted in Figure 2] the unclipped samples generated by our method are semantically
very close to the target class. We also input these unclipped samples directly into the target classifier.
Table[T5]shows that these samples are highly likely to be classified as the target class. This confirms
that semantic proximity to the target class effectively increases attack success rates.

These findings collectively suggest that our attack method’s robustness and transferability result
from embedding substantial target class semantics into the images, thereby reducing dependence on
specific target model decision boundaries.

J More Visualization

e

Original Sea lion Combination lock Barometer

Figure 6: Visualization results of different input images targeting various classes. For each text
prompt of the target class, the left column displays the adversarial examples generated before clipping,
the middle column shows the adversarial examples after clipping, and the right column presents
the corresponding adversarial perturbations, which represent the differences between the clipped
adversarial examples and the original images. Note that the perturbations are scaled to a range
between 0 and 1. The source model used is Inc-v3.

K Limitations

While our proposed Dual-Flow framework demonstrates strong adversarial attack performance and
transferability, several limitations remain. First, the training process involves additional computational
overhead compared to some simpler attack methods, which may affect scalability to extremely large
datasets or models. Second, although we observe improved semantic consistency in generated
perturbations, there is still room to enhance the interpretability and controllability of adversarial
patterns in more complex scenarios. Lastly, our evaluations focus primarily on standard image
classification benchmarks; extending the approach to other tasks or modalities warrants further
investigation.

L Statistical Significance

To rigorously evaluate the reliability of our attack success rates, we partitioned the test dataset
into 5 disjoint subsets, each containing 200 images. We computed the attack success rate for each
subset independently and derived the overall 95% confidence intervals (CIs) for our method. These
confidence intervals provide a quantitative measure of variability and statistical uncertainty. We
further compared our results against the baseline method by examining the overlap of their respective
confidence intervals. As shown in Table[I6] the non-overlapping intervals observed in our experiments
indicate that the improvement in attack success rate achieved by our method is statistically significant
with high confidence.
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Table 16: Attack success rates with 95% confidence intervals over 5 data splits, compared to the
baseline method. The source model is Res-152.

Method Inc-v3 Inc-v4 Inc-Res-v2 DN-121 GoogleNet VGG-16

CGNC 53.3942.77 51.53+£2.52 34.2441.72 85.66+£1.53 62.23+£2.20 63.361+2.95
Dual-Flow  69.58+3.70 71.924+3.27 56.104£3.31 85.73+1.57 73.65+2.83 67.59+2.28

M Societal Impacts

Our work contributes to a deeper understanding of adversarial vulnerabilities in deep learning models,
which is essential for improving model robustness and security. By developing more effective attack
methods, we provide valuable tools for evaluating and strengthening defenses against malicious
exploitation. However, as with any adversarial technique, there is a potential risk of misuse in
compromising Al systems. We advocate for responsible use of such methods strictly within research

and security auditing contexts, and encourage the community to develop corresponding mitigation
strategies to safeguard Al applications.
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