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ABSTRACT

Zero-shot coordination (ZSC) is a popular setting for studying the ability of AI
agents to coordinate with novel partners. Prior formulations of ZSC make the
assumption that the problem setting is common knowledge i.e. each agent has
the knowledge of the underlying Dec-POMDP, every agent knows the others have
this knowledge, and so on ad infinitum. However, in most real-world situations,
different agents are likely to have different models of the (real world) environment,
thus breaking this assumption. To address this limitation, we formulate the noisy
zero-shot coordination (NZSC) problem, where agents observe different noisy
versions of the ground truth Dec-POMDP generated by passing the true Dec-
POMDP through a noise model. Only the distribution of the ground truth Dec-
POMDPs and the noise model are common knowledge. We show that any noisy
ZSC problem can be reformulated as a ZSC problem by designing a meta-Dec-
POMDP with an augmented state space consisting of both the ground truth Dec-
POMDP and its corresponding state. In our experiments, we analyze various
aspects of NZSC and show that achieving good performance in NZSC requires
agents to make use of both the noisy observations of ground truth Dec-POMDP,
knowledge of each other’s noise models and their interactions with the ground truth
Dec-POMDP. Through experimental results, we further establish that ignoring the
noise in problem specification can result in sub-par ZSC coordination performance,
especially in iterated scenarios. On the whole, our work highlights that NZSC adds
an orthogonal challenge to traditional ZSC in tackling the uncertainty about the
true problem.

1 INTRODUCTION

Cooperation and coordination are central to human society (Editorial, 2018; Smith & Szathmary,
1997). Humans are able to work together with novel partners, even under uncertain conditions, to
achieve common goals. This is evident in a variety of human activities, from driving a car to playing a
team sport to carrying out moonshot projects such as the Apollo Program (Melis & Semmann, 2010;
Pennisi, 2005). While AI has had many surprising successes in recent years, developing AI agents
that can successfully coordinate with novel partners in complex environments remains an outstanding
challenge in artificial intelligence research (Dafoe et al., 2020).

There are two prominent formulations under which the problem of coordinating with novel agents
is currently being studied. Ad-hoc teamplay (Stone et al., 2010; Mirsky et al., 2022) and zero-shot
coordination (ZSC) (Hu et al., 2020; 2021). In ad-hoc teamplay, the challenge is for a learning agent
to join an existing team and efficiently and robustly learn the unknown conventions of that team to
coordinate with its members. In ZSC, the central idea is to modify the training process in such a
way that any two independently trained agents end up learning the same (meta) conventions and thus
are able to coordinate successfully at test time. However, both formulations make the strong and
unrealistic assumption that all the coordinating agents have complete and precise knowledge of the
problem setting (Stone et al., 2010; Hu et al., 2020; 2021). In other words, the problem setting is
assumed to be common knowledge. Crucially, most interesting real world settings are excluded under
such a scenario as it is often difficult to correctly & fully specify a complex problem setting (Amodei
et al., 2016; Hendrycks et al., 2021; Di Langosco et al., 2022).
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Figure 1: In zero-shot coordination, the environment E∗ is assumed to be common knowledge.
In noisy zero-shot coordination, agents still have to act and coordinate in E∗ but E∗ is no longer
common knowledge. Instead each agent has a distinct (private) model of the problem setting which is
assumed to be a noisy copy of E∗.
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Figure 2: In the noisy lever game, depicted here, there are three levers corresponding to three different
reward values. (a) shows the ground truth game E∗. (b) shows EA, the noisy version of E∗ observed
by the player A. Similarly, (c) shows EB , the noisy version of E∗ observed by the player B. To earn
a reward corresponding to a particular lever, both agents must (independently) pull that same lever -
a task made considerably difficult due to agents only observing noisy versions of the ground truth
game.

In this work, we propose noisy zero-shot coordination (NZSC), a novel problem formulation which
removes this assumption (that the problem setting is common knowledge among all agents). At a
high level, our framework instead assumes that each agent observes (assumes) a private version of the
coordination problem which is sampled from some noise model. While the ground truth distribution
and the noise models are common knowledge, the agent specific realizations are not. Instead, agents
observe only a noisy version of the sampled coordination problem. This setup models a setting where
two principals need to separately set up simulators to train their respective agents and are unable to
agree on the exact environment or its implementation. However, they share a common high-level
understanding of the task and their mutual uncertainty.

Our main contributions are as follows:

• We introduce a novel problem setting the noisy zero-shot coordination (NZSC) problem;
which does away with the assumption that the environment is common knowledge for all
agents attempting to coordinate zero-shot (Section 3).

• We show that any NZSC problem can be reduced to a ZSC problem; this in principle allows
repurposing existing ZSC algorithm(s) for solving NZSC problems (Section 3.2).

• We propose different toy environments for NZSC, where we introduce noise into the payoff
functions and into the set of agents active in the environment (Section 4).

• Our empirical analysis suggests that learning agents are able to effectively leverage the
knowledge of noise models and their noisy observations to coordinate. Further, this co-
ordination performance improves significantly when agents are allowed to interact over a
long horizon, indicating that agents are able to effectively exchange information to mitigate
uncertainty about the true problem (Section 5).
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2 BACKGROUND

Multi-Agent Reinforcement Learning: A general fully cooperative multi-agent reinforcement
learning problem (MARL) with n-agents is represented as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) (Albrecht et al., 2023), which is defined as a tuple
⟨D,S,A, I, T, {Oi}1:n, {Ωi}1:n, Ri

1:n, h⟩. Here, D refers to the set of n agents involved in the
game, S is the finite set of states over which the Dec-POMDP is defined, A is the shared action space
and T : S ×A× S → [0, 1] is the state transition function that maps a state-action pair (s, a) to the
probability of reaching a new state s′, i.e., T (s, a, s′) = Pr(s′|s, a). I ∈ P(S) refers to the initial
state distribution at stage t = 0. Oi, Ωi and Ri respectively represent the set of observations, the
observation function and the reward function for any agent i. The variable h represents the horizon
of the game.

In each round of the game, every agent i receives an observation oit ∈ Oi. Based on their respective
action-observation history, players select actions ait ∼ πi(·|oit, oit−1, at−1, ..., a1, o

i
0), then each

player receives a reward rit(st, at = a1t , . . . , a
n
t ), and the game transitions into a new state st+1.

Each player i aims to maximize the expected reward of the team, and the optimal policy π∗
i usually

depends on the policies π−i = {π1, . . . , πi−1, πi+1, . . . , πn} of the other players.

Common Knowledge: Common knowledge for a group of agents consists of facts that all agents
know and “each individual knows that all other individuals know it, each individual knows that all
other individuals know that all the individuals know it, and so on” (Osborne & Rubinstein, 1994).
Specifically, in MARL, for a problem setting, described by some Dec-POMDP E to be common
knowledge means that all parties have the same knowledge of E; and that everyone knows that
everyone has same knowledge of E and so on.

Zero Shot Coordination: In a fully cooperative setting, jointly trained reinforcement learning agents
are prone to develop highly specialized and non-robust conventions that do not generalize to agents
that were not part of the training process. This limits their ability to coordinate with novel partners
in real-world scenarios. To address this issue, the zero-shot coordination problem, introduced by
(Hu et al., 2020), modifies the optimization objective to maximize reward when paired with a novel
partner, trained independently with the same algorithm, with whom no prior communication is
allowed. This modification limits the utility of learning specialized conventions. Consequently, the
agents independently must learn mutually compatible conventions and policies.

IPPO: Independent PPO (IPPO) (Yu et al., 2022) is a popular MARL algorithm in which all the
agents are updated individually using PPO based on their own experiences and rewards. IPPO is
a relatively simple algorithm to implement and often does not require extensive hyperparameter
tuning. Further, because all agents are trained independently and no central coordination mechanism
is involved, IPPO is well-suited for ZSC settings. In our experiments, we use IPPO with self-play
and other-play objectives (Hu et al., 2020) which we respectively term IPPO-SP and IPPO-OP.

3 NOISY ZERO-SHOT COORDINATION

As the ZSC formulation is based on the coordination game, it inherits the assumption that the ground
truth Dec-POMDP which defines the coordination game is common knowledge. In the ZSC setting,
this is equivalent to assuming that all the independently trained agents have an identical (and exact)
copy of the environment simulator. In practice, if agents are to be trained in a simulator, then this
will have to be realized by having a prior agreement among all parties training the agents as to what
the implementation of the simulator should be (or exact sharing of the code). This is hard to achieve
when there are several different parties involved who are not known to each other. In contrast, a more
practical solution is to assume that all parties training the agents share a high-level understanding of
the problem only but are not able to share low-level details of their respective training environments -
resulting in different agents (trained by different principals) having different noisy specifications of
the problem setting but still having to act and coordinate in the (unknown) ground truth Dec-POMDP.

To address this, we propose the novel setting of noisy zero-shot coordination (NZSC) which removes
the common knowledge assumption and leads to a more realistic ZSC problem setting. In NZSC,
agents are not informed about the ground-truth Dec-POMDP they are acting in at test time. Instead,
the agents each observe a different noisy Dec-POMDP which reveals partial information about the
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ground-truth Dec-POMDP. However, the distribution over ground truth Dec-POMDPs and the noise
models (which are used to generate noisy Dec-POMDPs given a ground truth Dec-POMDP) are
common knowledge.

We formally present the problem setting below and further show the reduction of NZSC to ZSC. Our
presentation assumes that action space of the agents is never misspecified.

3.1 NOISY ZSC PROBLEM FORMULATION

Formally, consider a distribution P(E) over the space of ground truth Dec-POMDPs E where Ei ∈ E
is given by the tuple ⟨D,S,A, I, T, {Oi}1:n, {Ωi}1:n, Ri

1:n, h⟩1. Further, let an agent Ai’s noise
model be PAi

)(EAi |E∗) which gives a distribution over the noisy Dec-POMDP that Ai might observe
given that the ground truth Dec-POMDP is E∗. Given a ground truth Dec-POMDP E∗ ∼ P(E),
an agent A1 observes EA1 ∼ PA1

(EA1 |E∗), agent A2 observes EA2 ∼ PA2

(EA2 |E∗) and so on.
While both the distribution over ground truth Dec-POMDPs P(E) and noise models of all agents are
common knowledge - an agent only knows the concrete realization of its own noisy Dec-POMDP i.e.
{EAi}1:n are not common knowledge. The goal in noisy-ZSC is for agents A and B to coordinate
zero-shot in the ground truth Dec-POMDP E∗ at test-time.

We next present the reduction of noisy ZSC to standard ZSC. To simplify the presentation, we
restrict our presentation to two agent setup (agents A and B) here and further assume that all the
Dec-POMDPs under consideration have identical state space and horizon. In appendix B, we relax
these assumptions.

3.2 REDUCTION TO “STANDARD” ZSC

Standard ZSC assumes that all agents at test time act in a Dec-POMDP which is common
knowledge to all agents during their independent training. We show that NZSC can be reduced
to a standard ZSC problem by creating a common knowledge meta Dec-POMDP. This meta
Dec-POMDP has an augmented state space and observation space, covering the space of Dec-
POMDPs E . Specifically, the aforementioned two-agent NZSC problem is equivalent to stan-
dard ZSC with both the agents acting in the following (common knowledge) meta-DecPOMDP
M = ⟨D̃, S̃, Ĩ, Ã, {ÕA, T̃ , ÕB}, {Ω̃A, Ω̃B}, R̃, h̃⟩ where

• D̃ = {A,B}

• S̃ = S × E is the state space of the meta Dec-POMDP

• Ĩ = I(S)P (E)

• Ã = A
• T̃ : S̃ × Ã × S̃ → [0, 1] is the transition function where

T̃ (s̃, a, s̃′) = T̃ [(s, Ei), a, (s
′, Ej)] =

{
Ti(s, a, s

′) i = j

0 i ̸= j

• ÕA = OA × E is the observation space for agent A. Observation space for agent B is
defined similarly.

• Ω̃A : ÕA × S̃ → [0, 1] gives the observation probability function for agent A where

Ω̃A(õ, s̃, a) = Ω̃A((o,Ei), (s, Ej), a)

=

{
[ΩA

Ei
(o, s, a), EA] i = j

undefined i ̸= j

where EA is the noisy DecPOMDP observed by agent A and ΩA
Ei

denotes the observation
function of agent A in the Dec-POMDP Ei ∈ E . The observation function for agent B, Ω̃B ,

1See Section 2 for a more descriptive presentation of Dec-POMDP.
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is defined similarly as follows

Ω̃B(õ, s̃, a) =

{
[ΩB

Ei
(o, s, a), EB ] i = j

undefined i ̸= j

where EB is the noisy DecPOMDP observed by agent B.

• R̃ : S̃ ×A× S̃ → (−∞,∞) is the reward function given by

R̃(s̃, a, s̃′) = R̃[(s, Ei), a, (s
′, Ej)] =

{
Ri(s, a, s

′) i = j

undefined i ̸= j

• h̃ = h

Intuitively, this reduction works by creating a new problem setting that is common knowledge, where
respective observations of noisy Dec-POMDPs EA and EB are modeled as the private knowledge
of agents A and B and the ground truth Dec-POMDP is modeled as part of the (augmented) state
space. Agents then keep a belief over what the true Dec-POMDP may be which they can refine as
they interact with the ground truth Dec-POMDP.

The main benefit of this reduction is that this allows the reuse of reinforcement learning algorithms
developed for standard ZSC problem out of the box for NZSC. We exploit this by using IPPO-OP, a
standard ZSC algorithm (Hu et al., 2020), in our experiments.

4 EXPERIMENTAL SETUP

In this section, we focus on developing a better understanding of the challenges posed by the NZSC
problem setting over the standard ZSC problem. To do so, we develop various environments for the
NZSC problem and empirically analyze the policies learned by the agents in these environments.
We note that standard ZSC benchmarks are based on popular games (and not reflective of possible
real-world applications) and, hence, are not amenable to studying the NZSC problem. We briefly
introduce our environments below, with further comprehensive details available in the Appendix C.

One-Shot Noisy Lever Game (OS-NLG): This is a simple one-step lever game consisting of three
levers; with each lever i having an associated reward value R∗

i sampled from a predefined distribution
P (Ri) at the start of every round. However, in the noisy Dec-POMDP observed by agents A and
B, the reward values are corrupted according to public noise models PA(RA

i |R∗
i ) and PA(RA

i |R∗
i ).

The challenge is for the agents to coordinate on pulling the same lever i to earn reward R∗
i . Pulling

different levers results in a penalty set to be some constant c(−2 in our experiments). By default,
we set P (R∗

i ) to be the univariate normal distribution with mean rmean = 5 and standard deviation
σ∗ = 2 and the noise models to be additive normal noise with mean 0 and standard deviations σA and
σB respectively. Specifically, PA(RA

i |R∗
i ) = R∗

i + ϵAi ; ϵ
A
i ∼ N(0, σA) with PB defined similarly.

This models a commonly found situation where two coordinating agents have the options to pursue
multiple goals2; with the true payoffs of the goals being unknown and agents having different noisy
observations of the payoffs.

Iterated Noise Lever Game (I-NLG): This is an extension of OS-NLG to a longer horizon - which
is set to be 16 in our experiments. Identical to OS-NLG, agents get to observe noisy Dec-POMDPs at
the first timestep. For all subsequent timesteps, agents get to observe the action the other agent took
at the last timestep.

NoisyPartnerLeverGame (NP-LG): This environment models misspecification in the number of
agents present in the game. Specifically, there are two levers lh and lb in this game; the rewards on
both these levers are distributed normally according to N(rh, σ) and N(rb, σ) with rb < rh. To get
the reward corresponding to lever ll, at least one agent must pull on it. However, to earn the reward
on lever lh, both players must pull it. Further, the environment sets up to one agent to be ‘inactive’
with probability p. An inactive agent does not take any action in the environment. Further, an agent

2For example, a team of product designers trying to coordinate which new feature they should prioritize
building. Or researchers within a team trying to coordinate on their next project given multiple options.
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(a) OS-NLG (b) OS-NLG (c) I-NLG (d) I-NLG

Figure 3: Performance across different noise levels for IPPO-SP and IPPO-OP across OS-NLG and
I-NLG. x-axis represents the noise level i.e σA = σB and y-axis is either regret or coordination
failure rate (CFR). Error bars represent 95% confidence interval and are not visible for some data
points due to extremely low variance in the values.
IPPO-OP consistently performs better in the cross-play evaluation. Further, IPPO-OP achieves
considerably better coordinating performance in I-NLG - highlighting the usefulness of the longer
horizon for coordination.

receives a binary signal indicating whether the other agent is active or inactive in the environment -
however, this signal is noisy and may be flipped with probability pnoise

3.

4.1 METRICS

In our results, we report performance across two key metrics: regret measures the difference in
performance between the policy under study relative to the oracle ZSC policy that has access to the
true ground truth Dec-POMDP E∗. We normalize regret in all our experiments, so, that the orcle ZSC
policy (that has access to the ground truth Dec-POMDP) has a regret of 0. Coordination-failure-rate
measures the fraction of samples at which policies fail to coordinate. Unless stated otherwise, these
metrics are given for the cross-play in which ZSC performance between pairs of 8 independently
trained policies is evaluated.

5 RESULTS

5.1 SELF-PLAY IS NOT ROBUST TO NOISE

Our first experiment investigates how noise effects the policies discovered by IPPO-SP and IPPO-OP.
In both OS-NLG and I-NLG, regardless of noise level, IPPO-OP agents learn the robust convention of
playing argmax over the payoffs in noisy DecPOMPD they observe. However, while in the absence
of noise, IPPO-SP does learn a similar convention of playing argmax; under noise, and in iterated
setting in general, it learns the non-robust convention of choosing to coordinate on a lever with a
specific label regardless of its observed corresponding payoffs. Consequently, we see in Figure 3,
that while IPPO-OP does well under cross-play evaluation, however, IPPO-SP performs poorly under
cross-play evaluation.

5.2 LONGER HORIZON ENABLES BETTER COORDINATION

Next, we consider I-NLG. Recall that in I-NLG, at the first timestep, an agent gets to observe noisy-
Dec-POMDP and then at subsequent timesteps, it observes the action taken by the other agent at the
previous timestep. As shown by Figures 3(b) and 3(c), IPPO-SP also fails under this condition and
learns a label-based convention (even in the case of zero noise). So, on the whole, there is no marked

3This mimics a situation where two agents are playing a cooperative game online but they have unstable
internet connections.
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σA σB OS-NLG I-NLG

Regret Coordination Failure Rate Regret Coordination Failure Rate

0.0 3.0 0.42 (0.01) 0.44 (0.022) 0.19 (0.074) 0.10 (0.046)

0.0 5.0 0.51 (0.016) 0.53 (0.015) 0.24 (0.030) 0.12 (0.029)

0.0 7.0 0.56 (0.016) 0.56 (0.016) 0.27 (0.037) 0.10 (0.025)

Table 1: Cross play performance under asymmetric noise models. In OS-NLG, no communication is
possible whatsoever so both agents have to act independently. In contrast, in the iterated scenario, a
longer horizon allows the higher noise agent to observe, and then copy, the actions of its partner with
low. or no noise; thus allowing it to also behave as well as the low noise agent despite having very
high noise.

Figure 4: Regret and CFR for n-agent NLG. Figure 5: Robustness to using a flat prior in NZSC.

difference in the performance of IPPO-SP across OS-NLG and I-NLG. On the other hand, we see
that IPPO-OP exploits the fact that an agent can observe the action of the other agent from the last
timestep to coordinate better, resulting in an average 40% improvement in terms of regret over the
OS-NLG.

In Appendix D.2, we further present results from an ablation showing that this improvement in
coordination and performance is significantly helped by observing noisy DecPOMDP.

5.3 ASYMMETRIC NOISE MODELS

In NZSC, agents may have asymmetric information if their noise models differ. In the noisy lever
game, if σA ̸= σB , then agents will have asymmetric information. We specifically focus on the case
where one agent has no noise and gets to observe the ground truth Dec-POMDP while the other
agent only gets to observe noisy Dec-POMDP. In Table 1, we show that while in OS-NLG, one agent
getting to observe ground truth Dec-POMDP yields only marginal gain in terms of performance, in
I-NLG, it results in significant performance improvements. This indicates that even though the agent
with high noise can not observe the ground truth Dec-POMDP, it can still do very well by following
the agent with lower or zero noise.

5.4 NZSC AMONG n AGENTS

We develop generalized n-agent versions of OS-NLG and I-NLG to understand how the number of
participating agents affects coordination and general performance in NZSC. The results, presented in
Figure 4 for two noise levels 0.0 and 1.0, give the cross-play performance for agents trained with
IPPO-OP. For OS-NLG, in the case of zero noise (i.e. standard ZSC), agents are able to coordinate
almost perfectly regardless of their number; however, for the NZSC (i.e. noise of 1.0), there is a
marked degradation in coordination performance with the increase in the number of agents. For
I-NLG, surprisingly, the degradation in performance with an increase in the number of agents is
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Environment Train Noise Test Noise Regret CFR

OS-NLG 0.0 1.0 0.28(0.004) 0.29(0.004)

1.0 1.0 0.28(0.006) 0.30(0.005)

I-NLG 0.0 1.0 0.21(0.017) 0.15(0.008)

1.0 1.0 0.11(0.011) 0.05(0.005)

0.0 2.0 0.36(0.034) 0.25(0.024)

2.0 2.0 0.18(0.009) 0.08(0.013)

OS-NLG-β 0.0 1.0 0.81(0.004) 0.36(0.001)

1.0 1.0 0.68(0.018) 0.24(0.011)

Table 2: While in OS-NLG, being aware of noise in problem specification does not provide a great
advantage, it proves highly beneficial in I-NLG and in OS-NLG-β.

significantly less drastic. Note that for I-NLG, we only give results up to 5 agents as we failed to
train policies for greater than 5 agents.

5.5 MISSPECIFICATION IN NUMBER OF AGENTS

Figure 6: Proportion of
IPPO-OP agents playing
bail lever at different
noise levels.

In NoisyPartnerLeverGame (NP-LG), we investigate the effects of mis-
specification in the number of active agents in the environment. NP-LG
contains two levers: a high reward lever which gives agents a higher
reward if both agents are active and pull this lever and a bail lever which
gives a smaller reward if at least one agent pulls this lever. In Figure 6,
we plot the proportion of an agent pulling the bail lever as a function of
misspecification noise for different probabilities of an agent being absent.
We show that misspecification noise causes agents (trained via IPPO-OP)
to pull the bail lever considerably more often even though the underlying
ground truth Dec-POMDP does not change characteristically; hinting at
the fact that noise may cause agents to prefer risk dominant strategies
over payoff dominant strategies.

5.6 USEFULNESS OF INCORPORATING KNOWLEDGE OF MISSPECIFICATION

In this section, we evaluate the performance penalty agents may have to suffer if they ignore that
the Dec-POMDP they are observing is misspecified. For this, we train one set of agents, termed
misspecification unaware agents, under standard ZSC setup i.e. in a noise-free setting (where it
is mistakenly assumed that the observed Dec-POMDP is (common knowledge) ground-truth Dec-
POMDP). While the other set of agents, termed misspecification aware agents, are trained under
NZSC setup. We then evaluate how well the two sets of agents perform when there is misspecification
present in the environment.

In OS-NLG, both the misspecification aware (trained under NZSC with σA = σB = 1.0) and
misspecification unaware agents (trained under ZSC with σA = σB = 0.0) perform well. However, in
I-NLG, the misspecification-aware agents perform considerably better compared to misspecification-
unaware agents. Finally, we consider a modified version of OS-NLG, denoted OS-NLG-β where
rewards on the levers in the ground truth Dec-POMPD are distributed according to a bimodal beta
distribution with α = β = 0.01 and then scaled by 5 and shifted by 3 (we show this distribution in
Figure 7). Everything else remains the same as OS-NLG. In OS-NLG-β, misspecification-aware
agents perform better relative to misspecification-unaware agents. On the whole, it is better to be
misspecification aware, especially in iterated games where repeated interactions present an opportunity
to exchange information in a bid to minimize adverse effects of misspecification.
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Environment σA
train σB

train σtest Regret Ref. Regret CFR Ref. CFR

OS-NLG 1.0 3.0 2.0 0.50(0.016) 0.46(0.016) 0.48(0.016) 0.47(0.014)

I-NLG 1.0 3.0 2.0 0.23(0.001) 0.18(0.009) 0.09(0.017) 0.08(0.013)

OS-NLG 1.0 2.0 3.0 0.59(0.012) 0.56(0.017) 0.56(0.011) 0.55(0.018)

I-NLG 1.0 2.0 3.0 0.38(0.010) 0.29(0.060) 0.18(0.012) 0.10(0.016)

OS-NLG 3.0 2.0 1.0 0.36(0.013) 0.27(0.014) 0.32(0.010) 0.30(0.015)

I-NLG 3.0 2.0 1.0 0.17(0.017) 0.10(0.014) 0.11(0.009) 0.05(0.008)

Table 3: NZSC provides reasonable robustness to misspecified and inconsistent noise models.

5.7 IS NZSC ROBUST TO MISSPECIFICATION?

NZSC assumes prior distribution over ground truth Dec-POMDP and the noise models to be common
knowledge. However, it is possible that in practice these assumptions may be violated. We consider
the impact of these violations on ZSC performance.

Robustness To Misspecified Prior: First, for OS-NLG and I-NLG, we consider the effect of all
parties assuming flat or uniform prior over ground truth Dec-POMDPs and show the coordination
performance of these agents when evaluated under true ground-truth distribution of Dec-POMDP
(i.e. normal distribution) in Figure 5. We note that there is only a small degradation in performance,
indicating that NZSC formulation is relatively robust against misspecification of the prior.

Robustness To Inconsistent Noise Models: Second, we evaluate the effects of inconsistent noise
models in OS-NLG and I-NLG. Specifically, the noise model (for both agents) assumed by agent A
differs from the noise model assumed by agent B and they both differ from the true noise model. We
present our results in Table 3.

6 DISCUSSION

In this work, we presented NZSC as a better model of real world zero-shot coordination problems.
However, NZSC also presents a number of additional interesting challenges on the top of standard
ZSC problem. Firstly, in the standard ZSC, the primary challenge is to disallow learning of non-
universal conventions, but NZSC also adds an orthogonal challenge of handling uncertainty about
the true problem. Via our experiments, we show that NZSC also exacerbates the challenge of
learning non-universal conventions (Sec. 5.1). Further, as our results in Sec. 5.5 indicate, when a
problem setting is misspecified, not being aware of misspecification can result in significantly worse
coordination performance. Further, using empirical results, we have argued that NZSC problem
setting is itself reasonably robust to misspecification. Our experiments with NoisyPartnerLeverGame
further highlight the challenge of NZSC as it demonstrates that noise tend to cause agents to prefer risk-
dominant strategies over payoff strategies. However, we note that our experiments also highlight that
allowing agents to interact over longer horizons can be highly beneficial as agents learn to efficiently
exchange and combine information about the problem setting to improve their performance.

Limitations: As our goal is to primarily introduce the problem setting of NZSC, we use an existing
algorithm for learning ZSC policies in our experiments. Future works should consider developing
improved reinforcement learning algorithms specific to the NZSC setup and also consider designing
benchmarks specific to NZSC problem.

It is clear from our results that the presence of noise in problem specification can result in worse
performance. Prior work in inverse reinforcement learning (Reddy et al., 2018) has shown that the
sub-optimality of human policies in single-agent reinforcement learning can be explained by mis-
specification in problem setting, specifically the dynamics model. Future research should investigate
to what extent the sub-optimality of human policies in multi-agent reinforcement learning scenarios
can similarly be explained by misspecification in problem setting.
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A RELATED WORK

ZSC & Ad-Hoc Teamwork: The Zero-shot coordination (ZSC) problem was introduced by Hu
et al. (2020) who then proposed other play as a solution to the ZSC problem. (Treutlein et al.,
2021) provided a formal treatment of this setup as the label-free coordination problem and noted
that in iterated games, other-play is not the optimal solution to the label-free coordination problem.
Separately, Bullard et al. (2021) focus on identifying symmetries in a given Dec-POMDP to learn a
coordination strategy that may be resilient to the arbitrary breaking of symmetries. Several works
take inspiration from human learning and reasoning processes to propose methods for ZSC. Cui
et al. (2021) use K-level reasoning (Costa-Gomes & Crawford, 2006) to train ZSC capable policies
in Hanabi (Bard et al., 2020). off-belief learning (Hu et al., 2021) is another prominent method for
ZSC which prevents agents from learning arbitrary conventions by replacing the real rewards seen
during a transition, by reward from a fictitious trajectory sampled from a belief model Bπ0 which is
independent of the policy. A closely related setting to zero-shot coordination is ad-hoc teamwork
(Mirsky et al., 2022; Barrett et al., 2011; Barrett & Stone, 2015). The goal in ad-hoc teamwork is
to train an agent which does well when placed in a team of unknown agents (Stone et al., 2010).
This ultimately amounts to learning the best response to a population of agents. However, training
a diverse population remains an open challenging problem and has attracted considerable attention
Lupu et al. (2021); Cui et al. (2023); Zhao et al. (2021); Lou et al. (2023). Different to all the above
mentioned works, we consider the challenge of zero-shot coordination when the problem setting is
not common knowledge.

Robustness To Misspecifciation In RL: Within single agent reinforcement learning, many works
consider the misspecification in reward function (Pan et al., 2022; Skalse et al., 2022; Krakovna
et al., 2020; Clark & Amodei, 2016) and propose algorithms to sidestep its effects (Shah et al.,
2019; Hadfield-Menell et al., 2016). Robust reinforcement learning considers the misspecification
in environment dynamics (Roy et al., 2017; Panaganti et al., 2022) with techniques such as domain
randomization (Tobin et al., 2017; Zhao et al., 2020) having been proposed to counter this specification.
While several works study robust MARL, the common forms of robustness studied are to adversarial
partners (Shen & How, 2019; Li et al., 2023), state uncertainties (He et al., 2023) and partner agent’s
polices (Li et al., 2019; Sun et al., 2022; van der Heiden et al., 2020). However, in this work, we
study the misspecification in the problem setting for different agents with the focus on ZSC.

B FORMULATION

In the main text, we presented the reduction for the special case of two agent setting and all Dec-
POMDPs sharing the state space. Here, we show how to handle the general cases.

B.1 n-AGENTS NZSC REDUCTION

The reduction for the two-agent setting can be extended to n agents straightforwardly by making
following modifications:

• The set of agents D̃ = A1, .., An.

• ÕAi
= OAi

× E is the observation space for ith agent Ai.

• Ω̃A : ÕA × S̃ ×A → [0, 1] gives the observation probability function for agent A where

Ω̃A(õ, s̃, a) = Ω̃A((o,Ei), (s, Ei), a) = [ΩEi

A (o, s, a), EA]

where EA is the noisy DecPOMDP observed by agent A and ΩEi

A denotes the observation
function of agent A in the Dec-POMDP Ei ∈ E .

B.2 DIFFERENT STATE SPACES

If not all Dec-POMDPs in E share the identical state space, then if the state space in the meta-
DecPOMDP is naively set to the state space of ground truth Dec-POMDP, this may leak information
about the ground truth Dec-POMDP. This is not permitted in NZSC. Thus, to prevent this the state
space in the meta-dec POMDP is set to be the union of state spaces of all Dec-POMDPs in E i.e.
S̃ = (∪i∈ISi)× E where E is the space of Dec-POMDPs and I is an index set over E

13
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C ENVIRONMENTS

C.1 ONE-SHOT NOISY LEVER GAME

This game involves two agents and three levers. The aim for both agents is to pull the same lever
simultaneously, with each lever having an associated reward value sampled from a predefined
distribution P (R). The game only lasts one timestep every round. At the start of each round, reward
values are resampled from P (R). In the noiseless scenario, both agents get to observe the ground
truth Dec-POMDP, including the exact reward values for each lever. However, in the noisy setting,
agents can only observe a noisy Dec-POMDP. The noisy Dec-POMDP is identical to the ground truth
Dec-POMDP, except for the reward function, which incorporates additive noise sampled from public
noise models P (RA|R) and P (RB |R) for agents A and B, respectively.

By default, the reward value for each lever i is drawn from a univariate normal distribution with
mean rmean and standard deviation σ, i.e., P (Ri) = N(rmean, σ

2) in the ground truth Dec-POMDP.
In the noisy Dec-POMDP, the noise model for agent A is represented by oAi = Ri + ϵAi , where
ϵAi ∼ N(0, σ2

A) independently for each i and σA controls the level of noise relative to the ground
truth Dec-POMDP. Conversely, for agent B, the noise model is represented by oBi = Ri + ϵBi , where
ϵBi ∼ N(0, σ2

B) independently for each i. The non-coordinating penalty c is unchanged across both
the ground truth Dec-POMDP and corresponding noisy Dec-POMDPs.

In our experiments, unless indicated otherwise, we set rmean = 5 and σ = 2 and we vary σ1 and σ2

across experiments to control for noise level. Note that σ1 = σ2 = 0 corresponds to the noiseless
setting.

C.1.1 FORMULATION AS DEC-POMDP AND META DEC-POMDP

The noisy lever game can be represented as a Dec-POMDP with a set of agents D = {A,B} and a
state space S = {1, 2, 3} denoting the three levers. The action space is identical for the two agents,
where each action i ∈ {1, 2, 3} corresponds to pulling the lever with label i.

The reward function R is bivariate and dependent on the joint actions taken by both agents. It yields
a reward value r(aA, aB) if the actions of both agents are the same, and incurs a non-coordinating
penalty c otherwise.

By leveraging the result from the previous section, the noisy lever game can be reformulated as a
meta-Dec-POMDP by augmenting the state space with the reward values for each lever in the ground
truth Dec-POMDP. This augmented state space is sufficient to uniquely identify any ground truth
Dec-POMDP.

C.1.2 LABEL SYMMETRY IN THE NOISY LEVER GAME

Recall that state and action space in the noisy lever game consists of labels {1, 2, 3} for identifying
the levers. As all the levers in the noisy lever game have identical reward distribution, the labels on
any two levers can be flipped without meaningfully altering the game. For example, we can flip the
labels on the first and second lever without altering the Dec-POMDP in a meaningful way.
Lemma 1. The following is a symmetry in the noisy lever game where ϕs, ϕa, ϕo are permutation
maps of the state space, the action space, and the observation space respectively.

ϕs((R1, R2, R3))
.
= (R2, R1, R3)

ϕa(2)
.
= 1;ϕa(1)

.
= 2;ϕa(3)

.
= 3

ϕo((o1, o2, o3))
.
= (o2, o1, o3)

C.2 ITERATED NOISY LEVER GAME

Iterated noisy lever game (I-NLG) is the extension of OS-NLG to a longer horizon. While after
one timestep, OS-NLG gets reset, I-NLG lasts 16 timesteps. Identical to OS-NLG, agents get to
observe noisy Dec-POMDP at first timestep. For all subsequent timesteps, agents get to observe the
action the other agent took at the last timestep. In some experiments, we also include some additional
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Figure 7: Beta distribution used in our experiments on OS-LG-β.

information regarding the reward received at the last timestep in the observation of the agent for
timesteps t ≥ 1.

C.3 OS-NLG-β

OS-NLG-β is identical to OS-NLG with two differences. The distribution of payoff in ground truth
Dec-POMDP is set to be a bimodal beta distribution with parameters α = β = 0.01. Further, the
non-coordinating reward penalty is set to −10. The bimodal nature of beta distribution (shown in
Figure 7) causes agents to learn a bimodal policy based on the most distinguishing lever. This policy
performs better than a simple argmax policy under medium noise levels.
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D ADDITIONAL RESULTS

D.1 CROSS PLAY MATRICES

Figure 8: Cross play matrices showing regret for IPPO-SP on OS-NLG across various noise levels.
The noise level is given in the title of each plot. Note that at higher noise levels, all agents learn
a label-based convention which results in high regret when paired with an agent that has learnt a
different convention. This is shown by bipolar nature of colors in the matrices.

Figure 9: Cross play regret for IPPO-OP on OS-NLG. All the independently trained policies when
paired together are able to coordinate effectively.

D.2 Blind Agent SETTING

Considering agents can act in the ground-truth Dec-POMDP and explore it, how beneficial is it to
observe noisy-Dec-POMDP at the start of the round? To understand this, we run an experiment in
which agents do not receive any signal whatsoever about the ground-truth Dec-POMDP. We call this
setting blind agent setting. In Table 4, we compare the performance of IPPO-OP in the blind agent
setting and in the standard noisy observation setting where agents observe the noisy-Dec-POMDP.
To better understand the behavioural differences between policies learned at different noise levels,
we additionally report max lever rate, mid lever rate and min lever rate. These metrics respectively
measure how often agents are able to coordinate on the lever with maximum reward value (according
to ground truth Dec-POMDP), lever with middle reward value and lever with minimum reward value.

However, the agents who observe noisy-Dec-POMDP with a high amount of noise only perform
almost as well as the blind agents. The results in Figure 3 also show that there is graceful degradation
in the performance of IPPO-OP relative to the noise in the noisy-Dec-POMDP observed by the
agents.
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Regret Coordination
Failure
Rate

Max Lever
Rate

Mid Lever
Rate

Min Lever
Rate

Noisy Observation Setting
σA = σB = 0.0 0.00

(0.001)
0.00 (0.00) 0.98

(0.010)
0.05
(0.009)

0.01
(0.000)

σA = σB = 2.0 0.18
(0.014)

0.08
(0.013)

0.59
(0.053)

0.23
(0.024)

0.07
(0.017)

σA = σB = 5.0 0.32
(0.049)

0.10
(0.015)

0.36
(0.063)

0.29
(0.018)

0.23
(0.044)

Blind Agent Setting
Action Only 0.35

(0.074)
0.14
(0.067)

0.36 (0.07) 0.28
(0.028)

0.22
(0.059)

Table 4: Cross-play evaluation results for blind agent setting where agents do not receive any
information about the ground-truth Dec-POMDP compared to when agents receive noisy observations
about the ground truth Dec-POMDP. The value added by noisy observation of ground truth Dec-
POMDP is modulated by how noisy it is. At low and medium noise levels, it is extremely useful,
however, at high levels of noise e.g. σA = σB = 5, it has almost no utility. This can be seen by the
fact that metrics for blind agent setting and σA = σB = 5 match very closely.
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