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Abstract

Logical reasoning is essential for large lan-001
guage models (LLMs) to ensure accurate and002
coherent inference. However, LLMs struggle003
with reasoning order variations and fail to004
generalize across logically equivalent transfor-005
mations. LLMs often rely on fixed sequential006
patterns rather than true logical understanding.007
To address this issue, we introduce an order-008
centric data augmentation framework based009
on commutativity in logical reasoning. We010
first randomly shuffle independent premises to011
introduce condition order augmentation. For012
reasoning steps, we construct a directed acyclic013
graph (DAG) to model dependencies between014
steps, which allows us to identify valid015
reorderings of steps while preserving logical016
correctness. By leveraging order-centric017
augmentations, models can develop a more018
flexible and generalized reasoning process.019
Finally, we conduct extensive experiments020
across multiple logical reasoning benchmarks,021
demonstrating that our method significantly022
enhances LLMs’ reasoning performance023
and adaptability to diverse logical structures.024
We release our codes and augmented data025
in https://anonymous.4open.science/r/026
Order-Centric-Data-Augmentation-822C/.027

1 Introduction028

Large language models (LLMs) have demonstrated029

exceptional performance across various real-world030

applications (Jaech et al., 2024; Dubey et al., 2024;031

Liu et al., 2024a). Logic reasoning (Cummins et al.,032

1991) is essential for LLMs. It allows models to033

draw valid conclusions, maintain coherence, and034

make reliable decisions across tasks (Pan et al.,035

2023; Liu et al., 2023).036

However, LLMs are sensitive to reasoning order037

and struggle with logically equivalent transforma-038

tions (Chen et al., 2024; Berglund et al., 2023b;039

Tarski, 1956). First, the models are highly sensitive040

to the order of premises, with perturbing the order041

1. All mammals are living beings.                 2. All elephants are mammals.
3. All baby elephants are elephants.            4. Some baby elephants are sleepy.
5. If Jumbo is a living being, then Jumbo is not both an elephant and a mammal.
6. If Jumbo is sleepy, then Jumbo is either a baby elephant or a mammal.
Is conclusion “Jumbo is not sleepy” ture, false, or uncertain ?

1. If Jumbo is not sleepy, there is no conflict.

2. If Jumbo is sleepy, Jumbo is a living being.

 

3. If Jumbo is a living being, Jumbo cannot be both an elephant and a mammal.

4. All elephants are mammals, which conflicts with the conclusion in step 3.

5. Therefore, Jumbo is not sleepy.
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Figure 1: A logical reasoning example. Independent
premises can be freely reordered, while reasoning steps
must be reordered without violating dependencies.

leading to up to a 40% performance drop (Chen 042

et al., 2024; Liu et al., 2024b). Additionally, if the 043

testing order is reversed compared to the training 044

order, accuracy drops drastically. For example, in 045

the case of data involving two entities within a sin- 046

gle factual statement, accuracy drops from 96.7% 047

to 0.1% when training is left-to-right and testing is 048

right-to-left. (Berglund et al., 2023b,a; Allen-Zhu 049

and Li, 2023). This suggests that LLMs follow 050

a rigid logical reasoning order driven by learned 051

patterns rather than true logical understanding. 052

Existing LLM logical data augmentation meth- 053

ods do not effectively address the sensitivity to 054

equivalent transformations. First, many logical 055

datasets are specifically designed for certain do- 056

mains, such as specialized fields or exam ques- 057
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tions, primarily to broaden the scope of logical058

reasoning data collection and application (Han059

et al., 2022; Liu et al., 2020; Yu et al., 2020). Sec-060

ond, a line of work aims to enhance the model’s061

reasoning by mapping natural language to sym-062

bolic reasoning (Olausson et al., 2023; Xu et al.,063

2024; Pan et al., 2023), but it primarily provides064

symbolic tools for understanding logical language065

rather than enhancing the logical structure itself.066

Lastly, another augmentation method creates a067

“vacuum” world to block interference from real-068

world logic (Saparov and He, 2022), but it focuses069

on the impact of the model’s prior experience on070

reasoning, without addressing the design of logical071

equivalence.072

In fact, commutativity is a crucial property073

of logical reasoning. As established by Gödel’s074

completeness theorem (Gödel, 1930) and Tarski’s075

model theory (Tarski, 1956), commutativity means076

that independent logical units can be freely re-077

ordered without changing the essence of the logical078

structure. Therefore, in logical reasoning, first, in-079

dependent premises are commutative. As shown080

in the upper half of Fig. 1, different orders of081

premises represent equivalent problem structures.082

Furthermore, as demonstrated by Gentzen’s proof083

theory (Gentzen, 1935), reasoning steps are also084

commutative, provided their dependencies are in-085

tact. As shown in the lower half of Fig. 1, changing086

the order of steps without disrupting the depen-087

dencies results in an equivalent reasoning process.088

However, altering the order of dependent steps dis-089

rupts inference and prevents a coherent path to the090

correct conclusion.091

In this work, we propose an order-centric data092

augmentation framework that explicitly incorpo-093

rates logical commutativity into LLM training. For094

condition order, we randomly shuffle all indepen-095

dent premises. For reasoning steps, we construct a096

structured, step-by-step reasoning process, identify097

step dependencies using a directed acyclic graph098

(DAG), and apply topological sorting to reorder rea-099

soning steps while preserving logical dependencies.100

Order-centric data augmentation allows models to101

learn logical equivalence through commutativity,102

leading to a deeper understanding of logic, rather103

than relying solely on fixed patterns to solve prob-104

lems. Our experiments show that order-centric aug-105

mentation outperforms training on datasets with a106

fixed logical structure, enhancing the model’s over-107

all reasoning ability and improving its performance108

in complex shuffled testing scenarios.109

Our contributions are summarized as follows: 110

(1) We propose an order-centric logic data aug- 111

mentation method based on commutativity, which 112

permutes both condition order and reasoning step 113

order, helping models gain a deeper understanding 114

of logical equivalence. (2) We introduce a method 115

that uses DAGs to model the dependencies between 116

reasoning steps, helping to identify valid step re- 117

orderings. (3) We conduct extensive experiments 118

to prove the effectiveness of our approach in en- 119

hancing logical reasoning. 120

2 Related Work 121

2.1 Order Effect of Language Models 122

Large language models are sensitive to reason- 123

ing order. While word order variations in natu- 124

ral language have little impact (Cao et al., 2023; 125

Abdou et al., 2022), disrupting the order in rea- 126

soning tasks significantly degrades performance. 127

Chen et al. (2024) show that models perform op- 128

timally only when the premise order matches the 129

sequence required for the reasoning process. To ad- 130

dress this, Liu et al. (2024b) propose reorganizing 131

premise order to reduce order sensitivity. However, 132

this approach is task-specific and lacks generaliz- 133

ability. Furthermore, the Reversal Curse reveals 134

that models fail to grasp logical equivalence when 135

trained with a fixed linguistic order (Berglund et al., 136

2023b). Golovneva et al. (2024) mitigate this by 137

proposing reverse training, where LLMs learn both 138

forward and reverse reasoning by randomly shuf- 139

fling words or segments within a sentence. This 140

highlights the need for diverse training data with 141

varied orderings. 142

Compared to the above works, we extend to 143

more complex logical reasoning scenarios, build- 144

ing upon this concept by leveraging commutativity 145

for data augmentation in logical reasoning, which 146

helps models generalize across different reasoning 147

structures and enhances robustness. 148

2.2 Logical Reasoning Enhancing 149

Existing methods to enhance LLMs’ logical reason- 150

ing ability mainly fall into three categories: inte- 151

grating symbolic reasoning, training and inference 152

strategies, and leveraging data augmentation. 153

Symbolic reasoning enhances LLMs by trans- 154

forming natural language into formal logic, pro- 155

viding a symbolic approach that helps models un- 156

derstand logic (Olausson et al., 2023; Xu et al., 157

2024; Zhang et al., 2023). Training and inference 158
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1. All mammals are living beings. 

2. All elephants are mammals.

3. All baby elephants are elephants.           

4. Some baby elephants are sleepy.

5. If Jumbo is a living … a mammal.

6. If Jumbo is sleepy, … a mammal.

Premises 

1. If Jumbo is not sleepy, there is no conflict.

2. If Jumbo is sleepy, Jumbo is a living being. 

3. If Jumbo is a living being, Jumbo cannot 

be both an elephant and a mammal.

4. All elephants are mammals, which 

conflicts with the conclusion in step 3.

5.Therefore, Jumbo is not sleepy.
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1. Some baby elephants are sleepy.

2. All mammals are living beings. 

3. All elephants are mammals.

4. All baby elephants are elephants.

5. If Jumbo is sleepy, … a mammal.           

6. If Jumbo is a living … a mammal.
…

Renumbered

1. If Jumbo is sleepy, Jumbo is a living being. 

2. If Jumbo is a living being, Jumbo cannot 

be both an elephant and a mammal.

3. All elephants are mammals, which 

conflicts with the conclusion in step 3.

4. If Jumbo is not sleepy, there is no conflict

5.Therefore, Jumbo is not sleepy.

Chain-Of-Thought Reordered

…
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Figure 2: The framework of order-centric data augmentation method. First, we apply condition augmentation by
randomly reordering independent premises. Then, we enhance reasoning step order through a directed acyclic graph
(DAG) to identify step dependencies and reorder them while preserving logical correctness.

strategies use adversarial pre-training, contrastive159

learning, and multi-step explicit planning to im-160

prove training efficiency and reasoning effective-161

ness (Pi et al., 2022; Jiao et al., 2022; Zhao et al.,162

2023). ata augmentation creates diverse training163

and testing data, aiding models in generalizing bet-164

ter across logical tasks (Han et al., 2022; Tafjord165

et al., 2021; Clark et al., 2020). LogiGLUE (Luo166

et al., 2023) builds a large-scale logical benchmark167

through instruction fine-tuning across deductive,168

abductive, and inductive tasks. LogicBench (Par-169

mar et al., 2024) focuses on single-rule inference,170

evaluating LLMs on 25 reasoning patterns and ex-171

posing their weaknesses in complex reasoning and172

negation handling.173

Our work falls into the last category. Unlike174

the previous approaches, we perform order-centric175

data augmentation on existing logical reasoning176

datasets, leveraging logical commutativity to en-177

hance the model’s understanding of logical equiva-178

lence and improve overall logical reasoning ability.179

3 Problem Formulation180

In this paper, we formulate the problem of log-181

ical reasoning in a unified representation. Let182

D = {P,C, L} represent a logical reasoning prob-183

lem, where P = {P1, P2, . . . , Pn} is the set of184

premises, C is the conclusion, and L is the la-185

bel, which takes a value from a finite set, such186

as {true, false, uncertain}, indicating whether C187

can be logically inferred from P . In step-based188

data augmentation, we extend the representation to189

include a solution S = {S1, S2, . . . , Sm}, where190

S consists of reasoning steps that derive the con- 191

clusion from the premises. This process can be 192

abstracted as a directed acyclic graph (DAG). Typi- 193

cal logical reasoning datasets only provide labels. 194

Therefore, we construct S ourselves. The specific 195

construction of S will be detailed in Sec. 4.2. 196

4 Method 197

In this section, we introduce condition order aug- 198

mentation in Sec. 4.1 and answer order augmenta- 199

tion in Sec. 4.2. The framework is shown in Fig. 200

2. 201

4.1 Condition Order Augmentation 202

Due to the commutativity of premises, swapping 203

independent premises results in the same solution. 204

Hence, we perturb the order of premises, enabling 205

models to learn the logical equivalence of condition 206

reordering. 207

4.1.1 Shuffling the Order of Premises 208

Given a logical reasoning dataset DC = 209

{P,C, L}, we first extract the premise set P = 210

{P1, P2, . . . , Pn}. To generate augmented data, we 211

apply a random permutation σ to the premise set P , 212

producing a new ordered premise set Pran. Specif- 213

ically: 214

Pran = {Pσ(1), Pσ(2), . . . , Pσ(n)} 215

For example, if the original order is 216

[P1, P2, P3, P4, . . . , Pn], after applying the 217

permutation σ, the new order might be 218

[P3, P4, P1, Pn, . . . , P2, . . . ]. 219
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(3) Premise and Prerequisite Step Used

Using Premise 6, Premise 3,
Premise 2, Premise 1

Using Premise 5, Step 2

Using Premise 2, Step 3

Using Step 1, Step 4

Data Instance

1. If Jumbo is not sleepy, there is no conflict.
2. If Jumbo is sleepy, Jumbo is a living being.
3. If Jumbo is a living being, Jumbo cannot be both an elephant and a mammal.
4. All elephants are mammals, which conflicts with the conclusion in step 3.
5. Therefore, Jumbo is not sleepy.

2

1

3

4

1

2 3 4

5

Dependency DAG

Premises:
1. All mammals are living beings.                 2. All elephants are mammals.
3. All baby elephants are elephants.            4. Some baby elephants are sleepy.
5. If Jumbo is a living being, then Jumbo is not both an elephant and a mammal.
6. If Jumbo is sleepy, then Jumbo is either a baby elephant or a mammal.
Conclusion: Jumbo is not sleepy
Label: True

(2) Reasoning Steps

(1) FOL
Premises:
1. ∀x(Mammal(x)→LivingBeing(x)).                 2. ∀x(Elephant(x)→Mammal(x)).
3. ∀x(BabyElephant(x)→Elephant(x)).            4. ∃x(BabyElephant(x)∧Sleepy(x)).
5. LivingBeing(Jumbo)→¬(Elephant(Jumbo)∧Mammal(Jumbo)).
6. Sleepy(Jumbo)→(BabyElephant(Jumbo)∨Mammal(Jumbo)).
Conclusion:
¬Sleepy(Jumbo)

Figure 3: An example of generating a specific solu-
tion from data containing only labels and constructing
a Directed Acyclic Graph (DAG) to represent the de-
pendencies between steps. Due to space limitations, we
only list the conclusions of each step without showing
the detailed content.

4.1.2 Generating Augmented Data220

We denote the original dataset as DC = {P,C, L}221

and the augmented dataset as D′
C = {Pran, C, L},222

where Pran represents the randomly shuffled223

premises. The transformation from DC to D′
C in-224

volves perturbing the order of the premises while225

keeping the conclusion C and the label L un-226

changed. Each original data sample generates k227

instances of condition order augmentation, leading228

to an augmented dataset D′
C containing k × |DC |229

instances, where |DC | is the size of the original230

dataset.231

4.2 Answer order Augmentation232

Due to the commutativity of reasoning steps, we233

perturb the order of solution steps to help mod-234

els learn the logical equivalence of the reasoning235

process. However, reasoning steps often have de-236

pendencies, where the execution of one step may237

rely on the result of another. To address this, we238

propose a method for identifying valid step reorder-239

ings that ensures these dependencies are preserved.240

4.2.1 Leveraging LLMs for Logical Reasoning 241

Solutions 242

Since logical reasoning datasets typically provide 243

only a single label (e.g., true/false) without a Chain- 244

of-Thought (CoT) reasoning process, we generate 245

detailed step-by-step reasoning solutions to bridge 246

this gap (Xu et al., 2024). We use LLMs1 for this 247

process. As shown in Fig. 3, the methodology 248

consists of three main steps: (1) For datasets with- 249

out First-Order Logic (FOL) expressions, We ex- 250

tract their premises and conclusion and convert 251

them into the corresponding FOL representations. 252

(2) The FOL-augmented premises, along with the 253

ground truth labels, are fed into the model, prompt- 254

ing it to generate a step-by-step solution. Each 255

step must clarify its purpose and reasoning, leading 256

to a final conclusion. (3) The generated solutions 257

are then reprocessed by the model to extract the 258

premise indices and prerequisite step indices used 259

in each reasoning step. 260

4.2.2 Constructing the Step Dependency DAG 261

After obtaining the logical reasoning solutions, 262

the current data can be represented as DS = 263

{P,C, L, S}, where S = {S1, S2, . . . , Sm} con- 264

sists of reasoning steps. We represent S as a 265

directed acyclic graph (DAG), denoted as G = 266

(V,E), where V = {S1, S2, . . . , Sm} is the set of 267

reasoning steps, and E ⊆ V × V is the set of di- 268

rected edges. An edge (Si, Sj) indicates that step 269

Sj depends on the result of step Si. 270

Each step Si is represented as a tuple: 271

Si = (Goali,P(i)
used,S

(i)
used,Resulti) 272

where Goali describes the goal of the step, P(i)
used 273

represents the directly used atomic premises, 274

S(i)
used ⊆ V denotes the prerequisite steps that must 275

be executed before Si, and Resulti is the result 276

derived from the execution of Si. 277

4.2.3 Generating Augmented Solution 278

Sequences 279

A valid reasoning process must maintain all logical 280

dependencies between steps while allowing flexi- 281

bility in ordering interchangeable steps. We define 282

the dependency constraints as follows: 283

• A step Si is independent if S(i)
used = ∅ (i.e., it 284

has no prerequisite steps). 285

1In our experiment, we use GPT-4o-mini.
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• A step Sj is dependent if S(i)
used ̸= ∅, meaning286

that it requires prior steps to be completed287

before execution.288

• Two steps Si and Sj are order-invariant if289

neither step appears in the other’s prerequisite290

set, i.e., Si /∈ S(j)
used and Sj /∈ S(i)

used.291

Our goal is to generate a reasoning sequence292

that integrates all steps while maintaining depen-293

dency constraints, based on the principles outlined294

above. First, we identify all independent steps295

where S(i)
used = ∅ from the dataset, remove them296

from the DAG, and add them to the list of feasi-297

ble step sequences List. Then, we iterate over all298

possible combinations of these steps to generate299

multiple different lists of valid sequences. Next,300

for each step still present in the DAG, we iterate301

through the steps of its Sused. If Sused contains302

a step from the current List, we remove that step303

from Sused.304

We repeat these two steps until every List con-305

tains all the steps from S, resulting in a collection306

of new valid step sequences. We refer to each newly307

generated sequence as Sran. The final augmented308

dataset is represented as D′
S = {P,C, L, Sran}.309

Details of the prompts used in order-centric data310

augmentation are provided in Appendix A.1.311

5 Experiments312

We conduct experiments to evaluate the effective-313

ness of our method, focusing on overall perfor-314

mance, training efficiency, and generalization capa-315

bility.316

5.1 Experiment Setup317

Datasets (1) FOLIO (Han et al., 2022) is a natu-318

ral language inference dataset annotated with first-319

order logic (FOL), consisting of 1001 training sam-320

ples and 231 test samples. (2) RuleTaker (Clark321

et al., 2020) requires models to determine whether322

a conclusion is entailed by a set of premises, cover-323

ing various reasoning difficulties. Due to its large324

scale, we uniformly sample 1000 training and 1000325

test instances across different difficulty levels. (3)326

LogicNLI (Tian et al., 2021) is an NLI-style dataset327

that isolates first-order logic reasoning from com-328

monsense inference for precise logical evaluation.329

Similarly, we sample 1000 instances from both its330

training and test sets.331

Models We conduct experiments on Llama- 332

3-8B-Instruct (AI@Meta, 2024), Llama-2-13B- 333

Chat (Touvron et al., 2023) and Mistral-7B-Instruct- 334

v0.3 (Jiang et al., 2023), evaluating model per- 335

formance under five training conditions: (1) Un- 336

trained: The original model without any additional 337

training. (2) Vanilla SFT: Models fine-tuned only 338

on the original training set, i.e., DC = {P,C, L}. 339

(3) Vanilla SFT + Condition Shuffling: Models 340

trained on both the original dataset and an aug- 341

mented version with shuffled condition orders, i.e., 342

DC = {P,C, L} and D′
C = {Pran, C, L}. (4) 343

SFT with COT: Models fine-tuned with training 344

data that includes Chain-of-Thought (COT) reason- 345

ing steps, i.e., DS = {P,C, L, S}. (5) SFT with 346

COT + Answer Steps Shuffling: A model trained 347

with COT data and additional augmentations with 348

shuffled reasoning steps, i.e., DS = {P,C, L, S} 349

and D′
S = {P,C, L, Sran}. 350

All models are trained using full fine-tuning, 351

with a 1:1 mix of ShareGPT (Chiang et al., 2023) in 352

each dataset. Training is conducted on four A100 353

GPUs for four epochs. Each model is trained ex- 354

clusively on a single dataset, with augmentation 355

applied only to that dataset, and evaluated on the 356

corresponding test set without cross-dataset mix- 357

ing. 358

Set Type FOLIO RuleTaker LogicNLI

Train
Original 1001 1000 1000
Condition Shuffled 1001 1000 1000
Answer Step Shuffled 619 594 627

Test
Original 203 2000 2000
Condition Shuffled 406 2000 2000

Table 1: The data sizes of the training and test sets used
in the main experiments.

We applied random shuffling to the premises 359

of each training sample to generate one condition- 360

augmented instance. Due to some data containing 361

multiple valid step orderings, we randomly selected 362

one transformation from each original data to con- 363

trol the data size. Additionally, we shuffled the 364

premises in the test set to create a condition shuffled 365

test set, enabling better evaluation of the model’s 366

performance across different logical orders. The 367

data sizes for both the training and test sets are 368

provided in Tab. 1. 369

5.2 Overall Performance 370

Tab. 2 shows that our method effectively im- 371

proves model reasoning performance. Compared 372
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Models Training
FOLIO RuleTaker LogicNLI Avg.

Seq. Shf. Seq. Shf. Seq. Shf. Seq. Shf.

LLaMA3-8B-Instruct

Untrained 57.64% 55.17% 57.95% 57.95% 28.85% 25.50% 48.15% 46.21%
Vanilla SFT 63.55% 61.82% 70.65% 68.65% 54.40% 54.90% 62.87% 61.79%
+ Condition Shuffled 70.44%(+6.89) 67.49%(+5.67) 81.70%(+11.05) 80.15%(+11.50) 59.95%(+5.55) 59.45%(+4.55) 70.70%(+7.83) 69.03%(+7.24)
SFT with COT 76.35% 73.65% 81.05% 78.80% 42.20% 41.65% 66.53% 64.70%
+ Answer Steps Shuffled 77.34%(+0.99) 76.85%(+3.20) 84.60%(+3.55) 82.70%(+3.90) 43.80%(+1.60) 42.80%(+1.15) 68.58%(+2.05) 67.45%(+2.75)

LLaMA2-13B-Chat

Untrained 39.16% 35.47% 53.30% 52.50% 28.45% 26.95% 40.30% 38.31%
Vanilla SFT 53.69% 51.71% 65.35% 62.80% 45.65% 44.20% 54.90% 52.90%
+ Condition Shuffled 63.05%(+9.36) 62.32%(+10.61) 72.20%(+6.85) 71.30%(+8.50) 54.00%(+8.35) 54.10%(+9.90) 63.09%(+8.19) 62.57%(+9.67)
SFT with COT 73.40% 70.69% 76.60% 74.65% 43.70% 39.30% 64.57% 61.55%
+ Answer Steps Shuffled 76.35%(+2.95) 73.89%(+3.20) 75.50%(-1.10) 72.25%(-2.40) 46.90%(+3.20) 42.75%(+3.45) 66.25%(+1.68) 62.97%(+1.42)

Mistral-7B-Instruct-v0.3

Untrained 56.16% 57.39% 54.55% 54.55% 26.55% 24.90% 45.75% 45.61%
Vanilla SFT 54.68% 55.17% 52.90% 53.20% 25.15% 25.05% 44.24% 44.47%
+ Condition Shuffled 62.07%(+7.39) 61.82%(+6.65) 70.95%(+18.05) 69.20%(+16.00) 43.00%(+17.85) 44.20%(+19.15) 58.67%(+14.43) 58.41%(+13.94)
SFT with COT 67.47% 66.75% 81.55% 77.00% 46.40% 44.85% 65.14% 62.87%
+ Answer Steps Shuffled 72.91%(+5.44) 72.17%(+5.42) 84.10%(+2.55) 82.80%(+5.80) 47.35%(+0.95) 47.30%(+2.45) 68.12%(+2.98) 67.42%(+4.55)

Table 2: The overall performance on FOLIO, RuleTaker, and LogicNLI, where the value in parentheses after each
model’s Condition Shuffled represents the improvement relative to Vanilla SFT, and the value in parentheses after
each model’s Answer Steps Shuffled represents the improvement relative to SFT with COT.

to Vanilla SFT, condition shuffling significantly373

enhances performance. LLaMA3-8B-Instruct374

achieves +11.05% and +11.5% improvements on375

RuleTaker’s sequential and shuffled evaluations,376

respectively. Similarly, Mistral-7B-Instruct-v0.3377

shows improvements of 17.85% and 19.15% on378

the two LogicNLI test sets. Overall, the general379

performance gain ranges from 7% to 15%.380

Similarly, adding answer step shuffling fur-381

ther improves performance over COT train-382

ing. LLaMA3-8B-Instruct achieves +3.55% and383

+3.90% improvements on RuleTaker’s sequential384

and shuffled evaluations. Mistral-7B-Instruct-v0.3385

shows improvements of +5.44% and +5.22% on386

FOLIO’s sequential and shuffled evaluations. Over-387

all, the average performance gain is between 2%388

and 3%. It is worth noting that LLaMA3-8B-389

Instruct and LLaMA2-13B-Chat perform worse on390

the LogicNLI dataset in SFT with COT compared391

to Vanilla SFT. This could be due to the fact that392

COT does not always improve model performance393

across all tasks (Liu et al., 2024c).394

Additionally, LLaMA models generally perform395

2-3% better on sequential evaluations than shuf-396

fled ones, highlighting their sensitivity to order.397

Nonetheless, condition and answer steps shuffling398

mitigates this effect. In contrast, Mistral-7B main-399

tains stable performance across both settings, some-400

times even outperforming sequential evaluations in401

shuffled tests.402

5.2.1 Training Efficiency403

To ensure fairness and exclude the effect of in-404

creased data size, we test the accuracy of check-405

points with the same number of training steps, com-406

paring the performance of condition order augmen-407

25 50 75 100 125 150 175 200
Training Steps

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

Original Seq_test
Original Shf_test

Shuffled Seq_test
Shuffled Shf_test

Figure 4: The performance of training efficiency across
different training steps in condition order augmentation.

tation with the original order. As shown in Fig. 408

4, even with the same data size, condition shuffle 409

training consistently outperforms the original order, 410

with the performance gap widening as training pro- 411

gresses. This highlights that the improvement in 412

accuracy is due to the augmentation process itself, 413

rather than the increase in data. 414

6 Analysis 415

6.1 Condition Augmentation with Varying 416

Shuffling Degrees 417

To investigate the effects of premise order trans- 418

formations, we divide the Kendall tau distance τ 419

between different premise orders and the original 420

order into 10 groups, each spanning a 0.2 range 421

within [-1,1). A τ value of 1 indicates forward 422

order, -1 indicates a complete reversal, and 0 rep- 423

resents a more uniform shuffling. Additionally, 424

random shuffle means that τ values from the entire 425

range may be included. We conduct experiments 426

on RuleTaker using different τ values for condition- 427

based data augmentation. 428
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Model Test -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 Random

LLaMA3-8B-Instruct
Sequential 69.45% 80.00% 80.55% 75.90% 64.25% 74.80% 69.65% 73.15% 74.40% 67.50% 81.05%
Shuffled 67.55% 77.90% 77.95% 74.85% 64.10% 72.90% 68.50% 70.05% 73.30% 66.20% 78.80%

LLaMA2-13B-Chat
Sequential 68.20% 65.25% 71.40% 66.90% 70.60% 60.40% 71.65% 70.35% 72.50% 73.20% 72.20%
Shuffled 67.65% 63.65% 69.60% 65.10% 69.40% 58.75% 69.00% 68.75% 69.55% 70.60% 71.30%

Mistral-7B-Instruct-v0.3
Sequential 64.75% 64.80% 54.50% 65.60% 69.05% 50.95% 68.95% 69.65% 67.55% 54.65% 70.95%
Shuffled 64.80% 64.10% 55.55% 66.25% 67.75% 51.15% 67.90% 66.70% 67.40% 54.55% 69.20%

Table 3: The performance of the models on RuleTaker with conditionally shuffled premises at different tau values.
Tau = 1 represents the original order, tau = -1 indicates a complete reversal, tau = 0 means uniform shuffling, and
"Random" refers to a fully random shuffle.

As shown in Tab. 3, random shuffling provides429

the best performance across all τ values. The level430

of perturbation in premise order significantly af-431

fects model accuracy, with differences exceeding432

10%. LLaMA3-8B-Instruct excels with negative433

τ values, while LLaMA2-13B-Chat and Mistral-434

7B-Instruct-v0.3 do better with positive τ values.435

Random shuffled in training data achieves the best436

overall performance, emphasizing the value of di-437

verse data augmentation for more flexible and ro-438

bust models.439

6.2 The Importance of DAG-based Step440

Dependency441

To explore the importance of using DAG for step442

dependencies in step augmentation, we use the An-443

swer Step Shuffled data from Tab. 1 as a baseline.444

We randomly shuffle the steps in the original COT445

process and assess its performance to evaluate the446

impact of random step reordering without DAG447

dependencies.448

As shown in Tab. 4, not utilizing DAG dependen-449

cies leads to a performance drop compared to DAG-450

based augmentation. The decline is particularly451

severe on FOLIO, where LLaMA3-8B-Instruct and452

LLaMA2-13B-Chat show a drop of 7.64% and453

4.68% in the shuffled test. In contrast, Ruletaker454

and LogicNLI experience a smaller decline.455

To explore the underlying cause of this phe-456

nomenon, we investigate the degree of dependency457

between steps in the step dependency DAG. We458

introduce the Topological Freedom Index (TFI).459

This metric measures how loosely or tightly con-460

nected a DAG is, and it is calculated as follows:461

TFI =
Number of valid sequences

Factorial of the number of steps
(1)462

Number of valid sequences represents the num-463

ber of valid topological orderings that respect the464

dependency constraints within the DAG. Factorial465

of the number of steps corresponds the number of466

49.9%

30.1%

2.2%
7.0%

6.2%4.7%

FOLIO

19.3%

13.6%

2.9%
5.7%

14.5%

44.0%

RuleTaker

19.8%

18.5%

11.2% 16.7%

6.7%

27.0%

LogicNLI

0-0.1
0.1-0.2

0.2-0.3
0.3-0.4

0.5-0.6
0.9-1.0

Figure 5: The distribution of TFI index across different
intervals in the training sets of FOLIO, RuleTaker, and
LogicNLI. Since none of the datasets contain data in
the [0.6-0.9) interval, this portion is omitted from the
presentation.

possible orderings if no dependencies were present. 467

The closer the TFI value is to 1, the looser the 468

DAG structure, indicating higher reordering flexi- 469

bility and greater step independence. Conversely, 470

the closer the TFI value is to 0, the stronger the step 471

dependencies, meaning the sequence must follow 472

a strict order with little to no flexibility. Fig. 5 473

presents the TFI distribution across three datasets, 474

illustrating the degree of step dependency in differ- 475

ent reasoning tasks. 476

In FOLIO, the majority of samples (49.9%) fall 477

within the 0.0–0.1 range, indicating strong depen- 478

dency constraints and minimal reordering flexibil- 479

ity. In contrast, RuleTaker and LogicNLI exhibit 480

a significantly higher proportion of high-TFI sam- 481

ples (e.g., 44.0% and 27.0% in the 0.9–1.0 range, 482

respectively), suggesting that these datasets con- 483

tain more loosely connected reasoning structures. 484

These trends highlight that FOLIO imposes stricter 485

logical dependencies. In contrast, the latter datasets 486

have weaker step dependencies, offering greater re- 487

ordering flexibility. However, this may also imply 488

that the quality of the generated COT needs im- 489

provement. 490

The difference in TFI across datasets aligns with 491

the conclusions we obtained from the Random Step 492

Shuffled experiment. Specifically, stronger step de- 493
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Models Training data
FOLIO Ruletaker LogicNLI

Sequential Shuffled Sequential Shuffled Sequential Shuffled

LLaMA3-8B-Instruct
Answer Steps Shuffled 77.34% 76.85% 84.60% 82.70% 43.80% 42.80%

Random Steps Shuffled 76.85%(-0.49) 69.21%(-7.64) 82.10%(-2.50) 81.20%(-1.50) 45.20%(+1.40) 42.75%(-0.05)

Condition&Answer Shuffled 74.88% (-2.46) 75.86% (-0.99) 81.15% (-3.45) 79.60% (-3.10) 42.80% (-1.00) 43.50% (+0.70)

LLaMA2-13B-Chat
Answer Steps Shuffled 76.35% 73.89% 75.50% 72.25% 46.90% 42.75%

Random Steps Shuffled 71.92%(-4.43) 69.21%(-4.68) 74.75%(-0.75) 72.75%(+0.50) 43.70%(-3.20) 42.45%(-0.30)

Condition&Answer Shuffled 70.94% (-5.41) 67.24% (-6.65) 77.40% (+1.90) 73.80% (+1.55) 44.20% (-2.70) 41.60% (-1.15)

Mistral-7B-Instruct-v0.3
Answer Steps Shuffled 72.91% 72.17% 84.10% 82.80% 47.35% 47.30%

Random Steps Shuffled 71.43%(-1.48) 72.41%(+0.24) 82.95%(-1.15) 79.95%(-2.85) 44.75%(-2.60) 45.25%(-2.05)

Condition&Answer Shuffled 70.94% (-1.97) 70.44% (-1.73) 82.55% (-1.55) 81.70% (-1.10) 41.50% (-5.85) 42.00% (-5.30)

Table 4: The performance of three different augmentation methods: the first row represents the original DAG-based
Answer Steps Shuffled augmentation, the second row represents random step shuffling without dependencies in Sec.
6.2, and the third row represents the combined condition and answer augmentation method in Sec. 6.3.

pendencies result in greater performance loss from494

random shuffling. Therefore, when performing495

answer order augmentation, it is important to main-496

tain the integrity of these dependencies.497

6.3 Combined Condition and Step Shuffling498

Leads to Performance Degradation499

To investigate the combined effect of condition and500

step order augmentation, we apply an additional501

premise shuffle to Answer Steps Shuffled data, ad-502

justing premise references in the answers accord-503

ingly. As shown in Tab. 4, Condition&Answer504

Shuffled results in lower performance compared to505

Answer Steps Shuffled alone.506

We believe the key reason is that premise and507

step shuffling serve different learning purposes.508

Premise shuffling enables the model to recognize509

that independent conditions with commutativity510

can lead to the same answer, while step shuffling al-511

lows it to understand that different reasoning paths512

under the same condition can yield consistent con-513

clusions. When applied separately, each augmen-514

tation enhances the model’s understanding of logi-515

cal equivalence, thereby improving its overall rea-516

soning ability. However, when condition and step517

shuffling are applied together, the logical structure518

is perturbed in two ways, requiring the model to519

simultaneously align different orders of both con-520

ditions and steps, increasing learning difficulty and521

reducing generalization. This suggests that exces-522

sive augmentation may introduce noise, making it523

harder for models to establish logical equivalence.524

6.4 Effect of Augmentation Frequency525

In the main experiment, we set |D′
C | = |DC |,526

meaning that the parameter k = 1. To investigate527

the impact of augmentation quantity, we increase k528

and generate k = 5 augmented instances for each529

Test k=1 k=2 k=3 k=4 k=5

Sequential 77.30% 81.35% 83.45% 83.15% 77.65%
Shuffled 76.65% 80.35% 81.95% 83.55% 79.85%

Table 5: The performance under different augmentation
frequencies, where k represents the number of condi-
tion order augmentation instances applied per training
sample.

original training sample in RuleTaker. This leads to 530

an augmented dataset D′
C containing 5× |DC | in- 531

stances. As shown in Tab. 5, adding a few shuffled 532

instances improves model accuracy, but excessive 533

augmentation results in performance degradation. 534

This highlights the need to control the augmenta- 535

tion frequency. The increase in k can lead to a 536

certain degree of performance improvement, in- 537

dicating that our order-centric data augmentation 538

method has room for further enhancement. 539

7 Conclusion 540

In this paper, we systematically study how to en- 541

hance the logical reasoning ability of LLMs by 542

addressing their limitations in reasoning order vari- 543

ations. We introduce an order-centric data aug- 544

mentation framework based on the principles of 545

independency and commutativity in logical reason- 546

ing. Our method involves shuffling independent 547

premises to introduce order variations and con- 548

structing directed acyclic graphs (DAGs) to identify 549

valid step reorderings while preserving logical de- 550

pendency. Extensive experiments across multiple 551

logical reasoning benchmarks demonstrate that our 552

method significantly improves LLMs’ reasoning 553

performance and their adaptability to diverse logi- 554

cal structures. 555
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8 Limitations556

Our work primarily focuses on logical commutativ-557

ity within propositional reasoning tasks. However,558

this property extends beyond these tasks. It is also559

prevalent in many other reasoning scenarios, such560

as mathematical problems and other logic-based561

tasks. This remains an area for future exploration.562

Additionally, while we have explored the impact563

of condition order and answer order augmentations564

on model performance, how to further integrate565

and refine these augmentations for better logical566

reasoning capability is still an open question. We567

believe our exploration will provide valuable in-568

sights for future work on logical equivalence and569

commutativity in reasoning.570
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A Appendix738

A.1 Details of Generating Solutions739

In Sec. 4.2, We discuss how to generate step-by-740

step solutions through D = {P,C, L}. Specifi-741

cally, we follow these steps:742

(1) For datasets that do not have first-order logic743

(FOL) expressions, such as RuleTaker and Log-744

icNLI, we extract their premises and conclusions,745

and use GPT-4o-mini with prompts as shown in746

Tab. 6 to convert them into corresponding FOL747

representations. FOLIO, on the other hand, already748

includes FOL expressions, so no conversion is re-749

quired.750

(2) The FOL-enhanced premises and ground751

truth labels are input into the model, prompting752

it to generate step-by-step solutions. As shown753

in the prompt in Tab. 7, we add two domain-754

specific examples from each dataset to the prompt,755

requiring the model to clearly define the purpose756

and reasoning for each step, eventually leading757

to the final conclusion. The Task prompt speci-758

fies the possible values for the label. Specifically,759

in FOLIO, the label values are {True, False, Un-760

known}, in RuleTaker they are {entailment, not761

entailment}, and in LogicNLI they are {entailment,762

neutral, self_contradiction, contradiction}.763

(3) The model then reprocesses the generated764

solutions, using prompts like the one shown in Tab.765

8, to extract the premise indices and premise step766

indices used in each reasoning step.767

A.2 Kendall Tau Distance768

In our study, we investigate the effects of premise769

order transformations by using the Kendall tau dis-770

tance τ . This coefficient measures the correlation771

between two ordered lists, providing a quantitative772

way to assess how much one order differs from an-773

other. We use τ to categorize various permutations774

of premise orders and assess their impact on model775

performance.776

The Kendall tau coefficient τ is calculated as777

follows:778

τ =
C −D(

n
2

)779

where C is the number of concordant pairs (pairs780

of items that are in the same relative order in both781

lists), and D is the number of discordant pairs782

(pairs that are in opposite order in both lists). The783

total number of possible pairs is
(
n
2

)
, where n is784

the number of items being compared.785

Data Instance

Premises:

1. The lion needs the squirrel.

2. The lion visits the squirrel..

3. The squirrel visits the lion.

4. If someone visits the lion then the lion eats the squirrel.

5. If someone eats the lion then the lion is round.

6. If someone eats the squirrel and the squirrel eats the lion then the squirrel is big.

7. If someone eats the lion then they are kind.

8. If someone visits the lion then they visit the squirrel.

9. If someone eats the squirrel then the squirrel eats the lion.

10. If someone is nice then they are big.

11. If someone needs the lion then they visit the lion.

1 2 3 4 5 6 7 8 9 10 11

Data Instance

Tau=1.0

3 4 1 2 5 6 10 9 11 7 8Tau=0.6

1 6 10 5 3 2 11 8 7 4 9Tau=0.2

5 7 11 3 4 1 10 8 6 2 9Tau=0.0

3 6 11 7 10 5 1 9 4 8 2Tau=-0.2

6 11 10 7 3 9 5 8 4 2 1Tau=-0.6

11 10 9 8 7 6 5 4 3 2 1Tau=-1.0

Figure 6: An example of showing the arrangement of
premises with different tau values. The tau values do
not represent exact values but rather the closest intervals
for demonstration purposes.

We divide τ values into 10 groups, each span- 786

ning a 0.2 range within the interval [-1, 1). A τ 787

value of 1 indicates that the order of the premises is 788

exactly as required for the reasoning process, while 789

-1 indicates a complete reversal of order. A τ value 790

of 0 indicates that the order is completely random, 791

with no correlation to the original sequence. 792

For example, if the original premise order is 793

[P1, P2, P3, . . . , Pn], a permutation function σ 794

might rearrange it to [P3, P1, P2, . . . , Pn]. This 795

process allows us to explore different levels of or- 796

der perturbation, with the goal of analyzing how 797

such variations affect model performance. Exam- 798

ples of premise orders corresponding to different τ 799

values can be seen in Fig. 6. 800
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/* Task prompt */
Please parse the context and question into First-Order Logic formulas. Please use symbols as much as possible to express,
such as ∀, ∧, →, ⊕, ¬, etc.

/* Example */
Premises:
If a cartoon character is yellow, it is from the Simpsons.
If a cartoon character is from Simpsons, then it is loved by children.
Ben is ugly or yellow.
Ramon being real is equivalent to Rhett being not modest and Philip being lazy.
Hypothesis:
James does not have lunch in the company.
Premises-FOL:
∀x(Y ellow(x) → Simpsons(x))
∀x(Simpsons(x) → Loved(x))
(Y ellow(ben) ∨ Ugly(ben))
real(Ramon) ⇐⇒ (modest(Rhett) ∧ lazy(Philip))
Hypothesis-FOL:
¬HasLunch(james, company)

/* Input */
—INPUT—
Premises:
{Given_premises}
Hypothesis:
{Given_hypothesis}
—OUTPUT—

Table 6: The prompt for generating First-Order Logic (FOL) expressions corresponding to natural language logical
propositions.
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/* Task prompt */
Please solve the question step by step based on First-Order Logic rules such as Modus Ponens, determine whether the
hypothesis is true, false, or unknown based on these premises.

/* Example */
Premises:
1. Walter Folger Brown was an American politician and lawyer who served as the postmaster general.
2. Walter Folger Brown graduated from Harvard University with a Bachelor of Arts.
3. While they were both in Toledo, Walter Folger Brown’s father practiced law with Walter Folger Brown.
4. Katherin Hafer married Walter Folger Brown.
Premises-FOL:
1. AmericanPolitician(walterBrown) ∧ Lawyer(walterBrown) ∧ ServedAs(walterBrown, postMasterGeneral)
2. Graduated(walterBrown, harvard) ∧ GraduatedWith(walterBrown, bachelorsOfArt)
3. ∃t (In(walterBrown, toledo, t) ∧ In(walterBrownFather, toledo, t) ∧ PracticedLawTogether(walterBrown, walterBrownFa-
ther, t))
4. Married(katherinHafer, walterBrown)
Hypothesis:
Walter Folger Brown was not in Toledo.
Hypothesis-FOL:
∃t (¬In(walterBrownFather, toledo, t))
Label:
False
Solution:
Step 1: Analyze Walter Folger Brown’s presence in Toledo
The third premise states that there exists a time t such that:
In(walterBrown, toledo, t) ∧ In(walterBrownFather, toledo, t) ∧ PracticedLawTogether(walterBrown, walterBrownFather, t).
This means that Walter Folger Brown and his father were both in Toledo at the same time, and they practiced law together
there.
Thus, we have clear evidence that Walter Folger Brown was indeed in Toledo at some point.
Step 2: Analyze the hypothesis’s claim
The hypothesis states that Walter Folger Brown was not in Toledo, represented in FOL as:
∃t (¬In(walterBrownFather, toledo, t))
However, this contradicts the third premise, which explicitly states that both Walter Folger Brown and his father were in
Toledo at the same time.
Therefore, the hypothesis that Walter Folger Brown was not in Toledo is False based on the premises.
Final Hypothesis:
The hypothesis "Walter Folger Brown was not in Toledo" is False.

/* Input */
—INPUT—
Premises:
{Given_premises and premises-FOL}
Hypothesis:
{Given_hypothesis and hypothesis-FOL}
Label:
{Given_label}
—OUTPUT—

Table 7: The prompt for generating a step-by-step Chain of Thought (CoT) process based on premises, hypothesis,
and label. Different datasets have different sets of labels and examples. For convenience, we only show the prompt
on FOLIO here. In practice, we listed two examples, but for brevity and clarity in display, we only present one.
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/* Task prompt */
I will provide you with a description of the question and its answer, and the condition of the question is specific. The answer
is done in steps. I hope you can extract the conditions and prerequisite steps used in each step of the answer. Please note that
I am not asking you to regenerate the answer yourself, but rather to extract the conditions and prerequisite steps used in each
step from the answer I have given you. Meanwhile, the conditions used in the steps are quite explicit, but the prerequisite
steps used are quite implicit. I hope you can understand and summarize the prerequisite steps used in each step. Your answer
should only include Conditions and prerequisite steps used.

/* Example */
Question:
Premises:
1. Lana Wilson directed After Tiller, The Departure, and Miss Americana.
2. If a film is directed by a person, the person is a filmmaker.
3. After Tiller is a documentary.
4. The documentary is a type of film.
5. Lana Wilson is from Kirkland.
6. Kirkland is a US city.
7. If a person is from a city in a country, the person is from the country.
8. After Tiller is nominated for the Independent Spirit Award for Best Documentary.
Premises-FOL:
1. DirectedBy(afterTiller, lanaWilson) ∧DirectedBy(theDeparture, lanaWilson)
∧DirectedBy(missAmericana, lanaWilson)
2. ∀x∀y(DirectedBy(x, y) → Filmmaker(y))
3. Documentary(afterTiller)
4. ∀x(Documentary(x) → Film(x))
5. From(lanaWilson, kirkland)
6. In(kirkland, unitedStates)
7. ∀x∀y∀z((From(x, y) ∧ In(y, z)) → From(x, z))
8. Nomination(afterTiller, theIndependentSpiritAwardForBestDocumentary)
Conclusion:
Miss Americana is not directed by a filmmaker from Kirkland.
Conclusion-FOL: ¬∃x(Filmmaker(x) ∧ From(x, kirkland) ∧DirectedBy(missAmericana, x))
Answer:
Step 1: Analyze the premises regarding Lana Wilson’s role as a filmmaker
From premise 1, we know that Lana Wilson directed Miss Americana. Therefore, we can conclude that Lana Wilson is a
filmmaker based on premise 2, which states that if a film is directed by a person, that person is a filmmaker. Thus, we have:
DirectedBy(missAmericana, lanaWilson) → Filmmaker(lanaWilson)
Step 2: Analyze Lana Wilson’s origin
From premise 5, we know that Lana Wilson is from Kirkland. Therefore, we can conclude: From(lanaWilson, kirkland)
Step 3: Combine the information
Since we have established that Lana Wilson is a filmmaker and she is from Kirkland, we can conclude: Filmmaker(lanaWilson)
∧From(lanaWilson, kirkland)
Step 4: Analyze the conclusion’s claim
The conclusion states that Miss Americana is not directed by a filmmaker from Kirkland, represented in FOL as:
¬∃x(Filmmaker(x) ∧ From(x, kirkland) ∧DirectedBy(missAmericana, x))
However, we have already established that Lana Wilson, who directed Miss Americana, is indeed a filmmaker from Kirkland.
This directly contradicts the conclusion.
Final Conclusion:
The conclusion "Miss Americana is not directed by a filmmaker from Kirkland" is False.
Conditions and prerequisite steps used:
step 1: condition 1, condition 2
step 2: condition 5
step 3: step 1, step 2
step 4: step 3

/* Input */
—INPUT—
Question:
{Given_question}
Answer:
{Given_answer}
—OUTPUT—

Table 8: The prompt for extracting Conditions and prerequisite steps used in each step of step-by-step solutions.
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