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ABSTRACT

Knowledge editing is a crucial technique for daily updates in LLMs, requiring a
balance between accurately modifying incorrect knowledge and preserving existing
information. The recently proposed AlphaEdit method achieves competitive editing
performance by updating parameters under null-space constraints. However, our
theoretical analysis reveals that AlphaEdit struggles with high knowledge conflicts
and inconsistencies during editing. To address this, we propose a new editing
method AlphaEdit`, featuring three key improvements: 1) relaxing null-space
constraints by adding a matrix perturbation through optimization to resolve conflicts
between new and preserved knowledge; 2) introducing a weighting scheme on
previously updated knowledge constraints to mitigate conflicts between new and
historical editing; 3) developing a value smoothing algorithm to resolve high
knowledge inconsistencies. These enhancements collectively ensure robust editing
while maintaining model coherence. Comprehensive experiments show that our
approach AlphaEdit` not only resolves the brittleness of the original method
on carefully constructed challenging datasets but also achieves slightly better
performance than AlphaEdit on existing benchmark datasets.

1 INTRODUCTION

Knowledge editing enables precise modifications to factual associations in LLMs, bypassing costly
full retraining (Gupta et al., 2024; Zhang et al., 2024; Pan et al., 2025). Current approaches pri-
marily comprise two paradigms: parameter-modifying techniques (e.g., UnKE (Deng et al., 2025),
IFMET (Zhang et al., 2025), BaFT (Liu et al., 2025)) that directly edit critical model weights,
and parameter-preserving methods (e.g., SERAC (Mitchell et al., 2022), MELO (Yu et al., 2024),
postEdit (Song et al., 2024)) that store new knowledge in external modules or in-context editing via
prompts(e.g., IKE (Zheng et al., 2023)). Although first-line techniques are efficient, the core challenge
is integrating new knowledge while preserving existing capabilities, a balance difficult to achieve
due to parameter shifting and limited effects on stored information. Recently, AlphaEdit (Fang
et al., 2025) has emerged as an effective solution, strategically updating parameters via null-space
projection to minimize interference with retained knowledge while ensuring accurate edits.

Despite significant advancements, existing knowledge editing studies critically overlook multifaceted
conflicts between newly introduced knowledge, preserved foundational knowledge, and previously
edited facts. In addition, severe inconsistencies may occur when edited knowledge diverges signifi-
cantly from the model’s existing parametric knowledge, manifested as logical contradictions (e.g.,
‘Paris is the capital of France’ vs. new edit ‘Roma is the capital of France’) or cascading inference
errors. Through mathematical analysis of AlphaEdit, we further characterize how these discrep-
ancies destabilize its projection mechanism: highly conflicting between new edits and preserved
knowledge spaces or pre-edits ultimately causing edit failure; and high levels of inconsistency exert
significant adverse effects even on knowledge that is relatively easy to edit. While limited prior work
has acknowledged these conflicts and inconsistencies, to the best of our knowledge, a systematic
investigation and comprehensive solution remain unaddressed.

In this study, we formally quantify knowledge conflict and inconsistency for knowledge editing.
We then propose AlphaEdit`, a novel approach that systematically resolves these conflicts and
inconsistency with three improvements. First, we introduce a perturbation matrix into the existing
null-space matrix to alleviate its stringent constraints; this perturbation matrix is added as an additional
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optimization variable within the overall objective function to resolve conflicts arising between new
edits and existing knowledge. Additionally, we incorporate a conflict-based weighting factor for the
residual terms of previous edits, reducing the negative effects of knowledge within previous edits
that conflicts with new edits. Finally, for edits exhibiting high inconsistency, we adopt a progressive
smoothing strategy for their objectives, facilitating incremental updates to the model parameters that
progressively approaches the desired editing goal.

To investigate the limitations of existing approaches, we constructed three challenging datasets
(AlphaSet1, AlphaSet2, and AlphaSet3) designed to target high-conflict and inconsistency scenarios.
These are collectively referred to as AlphaSet. Experimental results reveal that existing methods
suffer from a notable decline in editing scores under these settings, whereas our approach consistently
demonstrates superior performance and robustness. These findings highlight that, in the presence
of conflict and/or inconsistency, our method achieves progressively larger advantages over current
SOTA techniques, particularly AlphaEdit. Our main contributions are summarized as follows:

• Building upon the AlphaEdit framework, we first establish a pioneering mathematical systematiza-
tion of knowledge conflicts and inconsistencies in model editing, providing formal quantification
and analyzing their detrimental impacts on editing performance.

• We then introduce AlphaEdit`, a novel methodology incorporating three key enhancements:
perturbation-based adaptive null-space matrix relaxation for conflict alleviation between new edits
and model knowledge, conflict-aware weighting for regulating pre-edit constraints, and objective-
oriented smoothing for progressively refining knowledge exhibiting inference inconsistencies.

• Through comprehensive comparative experiments accompanied by ablation studies and sensitive
tests, we conclusively demonstrate the efficacy of our proposed approach.

2 THEORETICAL ANALYSES FOR ALPHAEDIT

2.1 PRELIMINARIES FOR ALPHAEDIT

Let K0, K1, and Kp be the key sets of the preserved, the to-be-updated, and previously updated
knowledge, respectively. Their value sets are denoted by V0, V1, and Vp, respectively. Let W be the
parameters to be updated. Model editing seeks a perturbation ∆ of W so that a pK1,V1q is correctly
stored, while pK0,V0q and pKp,Vpq are kept. Several classical methods, such as ROME (Meng
et al., 2022) and AnyEdit (Jiang et al., 2025), have been developed based on this mechanism.

Recently, AlphaEdit (Fang et al., 2025) imposes a null-space constraint on ∆. Concretely, let P be
the orthogonal projector onto the left null space of K0, constructed via the SVD of K0K

J
0 so that

P “ pUpUJ with pU spanning the zero-eigen space. Consequently, the resulting objective1 is:

min
∆̃

›

›pW ` ∆̃PqK1 ´ V1

›

›

2

F
`

›

›∆̃PKp

›

›

2

F
` λ

›

›∆̃P
›

›

2

F
, (1)

where the second term penalizes interference with prior updated knowledge Kp (sequential editing)
and the third term is a Tikhonov regularizer for numerical stability. Let R fi V1 ´ WK1. Eq. 1 is a
convex linear least-squares problem in ∆ and admits a closed form (Lang, 2012). The solution is:

∆˚
“ ∆̃P “ RKJ

1 P
´

KpK
J
p P ` K1K

J
1 P ` λI

¯´1

, (2)

where λ is a hyperparameter. As P can be obtained in advance, computation is efficient. Experiments
in Fang et al. (2025) sufficiently validate the superior performances of AlphaEdit.

2.2 DEFECT ANALYSIS OF ALPHAEDIT

This subsection mathematically demonstrates that AlphaEdit fails or produces suboptimal edits when
severe knowledge conflicts and inconsistencies exist. We formally define knowledge conflict as
follows: given a target edit pk,vq, its conflict with a knowledge set K is quantified by:

spk,Kq “ max
k1PK

|kJk1
|

}k} }k1}
P r0, 1s. (3)

1In this study, we omit a minor weighting coefficient β on the prior-edit term and this simplification does not
affect the theoretical analysis (see Appendix A.5).
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Figure 1: Edit scores versus conflict (similarity s) and inconsistency (residual }r}) for AlphaEdit on
AlphaSet1, AlphaSet2, and AlphaSet3. The x-axis bins are left-open and right-closed intervals.

K can be K0 or Kp. A high score reflects strong overlap with either preserved or previously updated
knowledge, thereby indicates a high conflict between k and K. In addition, knowledge inconsistency
is captured by the residual norm }r} “ }v ´ Wk}, which measures the gap between the model’s
current knowledge (i.e., Wk) and the target value. A large }r} implies a high inconsistency. In the
following, we provide a detailed mathematical analysis of the impacts arising from three scenarios.

Conflict with Preserved Knowledge (K0). To simplify the analysis, we assume that K1 contains
only a single knowledge tuple pk1,v1q with }k1} “ 1 requiring editing, and we disregard Kp. In this
scenario, the AlphaEdit solution simplifies as ∆˚ “ RkJ

1 P
`

k1k
J
1 P ` λI

˘´1
. Through algebraic

derivation, the solution simplifies to:

∆˚
“

λ

λ ` }Pk1}2
r1 pPk1q

J. (4)

We first establish the relationship between this solution and the conflict coefficient s. The vector k1

decomposes into components parallel and orthogonal to the column space of K0:

k1 “ k1∥ ` k1K,

#

k1∥ P colpK0q

k1K P nullpKJ
0 q

. (5)

After projection, Pk1 “ k1Kpsince P projects onto the nullspaceq. s relates to the norms as:

}k1∥}
2

« s2, }k1K}
2

“ }k1}
2

´ }k1∥}
2

“ 1 ´ s2 pgiven }k1} “ 1q. (6)

Therefore, }Pk1} “ }k1K} “
?
1 ´ s2. Then we have:∆˚ “ λ

λ`1´s2 r1 pPk1qJ. Accordingly, we
have the following conclusion.

Lemma 1 The residual for k1 after editing is:

}pW ` ∆˚
qk1 ´ v1} “

λ

λ ` }Pk1}2
}r1} “

λ

λ ` 1 ´ s2
}r1}. (7)

The proof of algebraic derivation and Lemma 1 is in the Appendix A.1. In the experiments, λ « 0.1N ,
where N is the number of new edits. Therefore in this theoretical case, λ can be considered as 0.1 (only
one edit pk1,v1q). This lemma reveals that knowledge conflicts adversely affect editing success:
smaller s yields better edits (this conclusion well explains the observation of Duan et al. (2025),
while s Ñ 1 results in complete edit failure (zero residual change). Our theoretical conclusion
is further validated through real editing tasks. We construct three datasets(AlphaSet1, AlphaSet2
and AlphaSet3) to evaluate high conflicts with K0, high conflicts with Kp, and high inconsistency,
respectively. Using AlphaEdit, we analyze how editing performance relates to the degree of conflict
or inconsistency; datasets details are in Section 4.1. As shown in Fig. 1(a), editing scores decrease
consistently for both models as K0 conflict rises in AlphaSet1, with an average reduction of 11.82%
from low to high conflict conditions.

Conflict with Prior Edits (Kp). Consider a single new edit pk1,v1q and one prior edit kp with
}k1} “ }kp} “ 1. Assume both are orthogonal to the preserved knowledge (KJ

0 k1 “ KJ
0 kp “ 0),

hence Pk1 “ k1 and Pkp “ kp. Therefore, s “ |kJ
1 kp| P r0, 1s and }r1} “ }v1 ´ Wk1} denote

the conflict and the inconsistency degrees, respectively. Restricting Eq. 1 to spantk1,kpu and solving
yields the closed-form update (detailed in the Appendix A.2):

∆˚
“ r1 k

J
1

`

λI ` k1k
J
1 ` kpk

J
p

˘´1
“ r1

pλ ` 1qkJ
1 ´ skJ

p

pλ ` 1q2 ´ s2
. (8)
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Struggle with high conflict
and inconsistency

Adaptation to high conflict
and inconsistency

Three items addressing high
conflict and inconsistency.

Figure 2: Comparison between AlphaEdit and our AlphaEdit`. Best viewed in color.

Consequently, we obtain the following.

Lemma 2 The post-edit residual for the new edit satisfies:
›

›pW ` ∆˚
qk1 ´ v1

›

› “
λpλ ` 1q

pλ ` 1q2 ´ s2
}r1}. (9)

When s Ñ 0 (no conflict with the prior edit), the factor reduces to λ
λ`1 (in this theoretical case, λ

can be considered as 0.2), recovering the single-edit case. As |s| Ñ 1, pλ ` 1q2 ´ s2 shrinks and the
residual increases, indicating stronger interference from prior edits. Fig. 1(b) shows on AlphaSet2,
editing scores decrease by an average of 10.59% across both models as Kp conflict levels increase.

Knowledge Inconsistency (Wk1 vs. v1). We consider two edits to be updated:
K1 “ rk1,1,k1,2s, V1 “ rv1,1,v1,2s, R “ V1 ´ WK1 “ rr1,1, r1,2s, (10)

we disregard Kp and assume only the magnitude relation }r1,2} “ ρ }r1,1} with ρ ě 1. Define the
projection Gram matrix G fi KJ

1 PK1, which encodes the pairwise inner products of the projected
keys and thereby collapses the high-dimensional problem onto spantPk1,1,Pk1,2u, enabling closed-
form residuals via pG ` λIq´1.

G fi KJ
1 PK1 “

„

g11 g12
g12 g22

ȷ

ě 0, gij “ kJ
1,iPk1,j , Dλ “ pλ ` g11qpλ ` g22q ´ g212 ą 0. (11)

Solving the ridge objective restricted to the projected subspace gives the residual matrix identity:

E fi pW ` ∆˚
qK1 ´ V1 “ ´λR pG ` λIq

´1, (12)

where
pG ` λIq

´1
“

1

Dλ

„

λ ` g22 ´g12
´g12 λ ` g11

ȷ

. (13)

Let E “ re1,1, e1,2s denote the post-edit residual columns.

Lemma 3 If }r1,2} “ ρ }r1,1} with ρ ě 1, the post-edit residual for the new edit satisfies:

}e1,1} ď
λ

Dλ

´

pλ ` g22q ` ρ |g12|

¯

}r1,1}, }e1,2} ď
λ

Dλ

´

|g12| ` ρ pλ ` g11q

¯

}r1,1}. (14)

The upper bound for the second key grows linearly with ρ at slope λ
Dλ

pλ ` g11q, i.e., a larger initial
residual on the second edit inevitably raises its post-edit residual bound. The first key’s upper bound
also increases linearly with ρ at slope λ

Dλ
|g12|, reflecting cross-key coupling via g12. Fig. 1(c)

shows that on AlphaSet3, with increasing inconsistency levels, editing scores of both models decline,
averaging a 5.76% reduction. Thus, editing algorithms must consider highly inconsistent data’s harm.

3 METHODOLOGY

This section describes our proposed our new method AlphaEdit`. First, we establish an iterative
optimization objective to resolve the aforementioned knowledge conflicts and inconsistencies, along
with an iterative solution framework and detailed algorithmic implementation.

4
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3.1 A UNIFIED OPTIMIZATION OBJECTIVE

As shown in Lemma 1, when the updated knowledge K1 is in high conflict with K0, the projected
norm }Pk1} approaches zero, leading to poor performance. To address this, one may either modify
K0-which requires recomputing the SVD and incurs high computational cost-or adjust K1 in a
semantically invariant way to reduce conflict. We propose a novel alternative by introducing a
perturbation to P. As indicated in Lemma 2, high conflict between K1 and Kp also severely impairs
editing efficacy. To mitigate this, one can modify either K1 or Kp without altering their semantics
to reduce conflict. This work prioritizes modifying K1 to implicitly reduce the influence of Kp.
Furthermore, Lemma 3 demonstrates that the presence of hard samples in the dataset can substantially
affect overall performance. Motivated by curriculum learning, we adopt a progressive editing strategy
that smooths such samples to dynamically adjust their difficulty. Building on these three insights, we
formulate the following optimization objective:

min
∆̃, P̃

›

›

`

W ` ∆̃Pmod
˘

K1 ´ V t
1

›

›

2

F
`

›

›∆̃PmodKpΛ
1{2
p

›

›

2

F
` λ

›

›∆̃Pmod
›

›

2

F
,

s.t. Pmod “ P ` P̃, P K P̃, rankpP̃q is minimized.
(15)

where Λp “ diagp1 ´ |spkj ,K1q|q, kj P Kp and λ is a hyperparameter; V t
1 denotes the smoothed

targets2 at iteration t:

v t
1,i “ v1,i ` βiptq

`

v0,i ´ v1,i

˘

, βiptq “

$

&

%

0, if }ri} ď τr,

T ´ t

2T
, otherwise,

(16)

with ri “ v1,i ´ Wki, current iteration t, threshold τr, smoothing factor β, and total iterations T .
Eq. 15 yields our AlphaEdit`. For AlphaEdit and AlphaEdit` compared in Fig. 2, we have:

Lemma 4 If @ki P K1, spki,K0q ” 0, }ri} ď τr, and @kj P Kp, spkj ,K1q ” 0, then
AlphaEdit` is reduced to AlphaEdit.

The proof appears in Appendix A.4. The following section describe how to iteratively solve Eq. 15.

3.2 THE SOLVING FOR EQ. (15)

Our solving relies on a validation set to select the optimal solution among the candidates generated by
iteratively optimizing Eq. 15. Given that existing mainstream methods do not require validation sets,
our validation set construction adheres to the following principles: 1) Fairness: The dataset must not
leak any test set information to ensure unbiased method comparison; 2) Simplicity: The construction
process should be straightforward, as excessive complexity hinders practical application. The specific
construction steps include: 1) randomly sampling a subset of knowledge tuples for K0, K1, and Kp,
and 2) rewriting the selected samples via LLMs. Construction details for each experiment will be
provided in the experimental section and Appendix B.1.

Since Eq. 15 contains two coupled optimization variables, we propose a two-stage optimization
scheme to ensure effective solutions. In the first stage (t “ 0), we optimize P̃ independently as its
introduction is unrelated to V1. Given Pmod “ P ` P̃, we have:

∆
p0q

` “ ∆̃Pmod “ R0KJ
1 Pmod

´

KpΛpK
J
p Pmod ` K1K

J
1 Pmod ` λI

¯´1

, (17)

where R0 “ V0
1´WK1. Assuming that U and P are given, let Ǔ be the set of sort eigenvectors with

non-zero eigenvalues of U by ascending eigenvalue. We optimize P̃ through a search-based approach,
where at each search step we extract the eigenvector ul corresponding to the current minimum
eigenvalue from Ǔ (while removing it from Ǔ simultaneously), then update P̃ as P̃ “ P̃ ` ulu

J
l .

The modified Pmod is substituted into Eq. 17 to compute the new ∆̃, followed by evaluating the
current value of

›

› pW ` ∆̃PmodqK1 ´ V0
1

›

›

2

F
`

›

›∆̃PmodKpΛ
1
2
p

›

›

2

F
` λ

›

›∆̃Pmod
›

›

2

F
. If the total

value is not reduced, then the search stops and the previous P̃ is used as the solution.

2In this study, the average of v1 and v0 is set as the initial smoothed target.
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Algorithm 1: AlphaEdit`

Input: K1, V1, Kp, P, U and Σ from SVDpK0K
J
0 q, W, T , τr , ϵ, δ, λ, Λp “ 0, P̃ “ 0, ∆` “ 0,

Output: Final perturbation ∆`

Update Λp with Λprj, js “ 1 ´ |spkj ,K1q|, kj P Kp;
Set Ǔ Ð tul : σl ą 0, σl P Σu ordered by increasing σl;
Compute Rp0q, Vp0q

1 , βp0q, the objective in Eq. 15 with t “ 0;
for each ul P Ǔ in order do

P̃ Ð P̃ ` ulu
J
l ;

Recompute the objective in Eq. 15 with t “ 0;
if value reduction ă ϵ then P˚

mod Ð P ` P̃ ´ ulu
J
l ; break;

if }βp0q}1 “ 0 then ∆` Ð Eq. 17 using P˚
mod; return ∆` ;

Compute ∆
p0q

` with Eq. 17; evaluate val scorep0q;
for t “ 1 to T do

Compute Rptq, Vptq

1 , βptq;
Compute ∆

ptq

` with Eq. 18; evaluate val scoreptq;
if

ˇ

ˇval scoreptq
´ val scorept´1q

ˇ

ˇ ď δ then break;

return ∆
ptq

` ;

In the second stage (t ě 1), we fixed P˚
mod and search the optimal ∆̃. In the t-th iteration, the current

temporal optimal solution is as follows:

∆
ptq

` “ RtKJ
1 P

˚

mod

´

KpΛpK
J
p P

˚

mod ` K1K
J
1 P

˚

mod ` λI
¯´1

, (18)

where Rt “ Vt
1 ´ WK1 and ∆

ptq
` “ ∆̃P˚

mod. For this temporary optimal solution, we evaluate it
using the previously constructed validation set and record the performance score. The optimization
stops when the performance score no longer increases or when t ą T .

The steps of the entire solving procedure is presented in Algorithm 1. Compared to AlphaEdit, the
overall computational overhead primarily stems from repeated evaluations of Eqs. 17 and 18. Since
only the term involving Rt changes in Eq. 18, other components can be reused to accelerate the
process. Overall, the additional computational cost remains moderate, as confirmed experimentally,
with only a marginal increase observed. Future work will explore efficient approximations for
inverting the matrix in Eq. 17 to further enhance computational efficiency.

4 EXPERIMENTS

We conduct systematic experiments to answer three core questions: (1) robustness & efficacy: whether
AlphaEdit` reduces editing failures under high conflict with preserved knowledge and prior edits,
as well as high inconsistency, and its runtime overhead relative to AlphaEdit; (2) general capability
preservation: how well models edited by AlphaEdit` retain downstream abilities after sequences of
challenging edits; and (3) effects on hidden representations: whether the new components (projection
perturbation, conflict-aware weighting, value smoothing) alter representations of unedited knowledge.

4.1 EXPERIMENT SETUP

Base LLMs & Baselines. Our experiments are conducted on two LLMs: GPT2-XL (1.5B) (Radford
et al., 2019) and GPT-J (6B) (Wang & Komatsuzaki, 2021). We compare our method against several
model editing baselines, including MEMIT (Meng et al., 2023), PRUNE (Ma et al., 2025), RECT (Gu
et al., 2024), and AlphaEdit (Fang et al., 2025). For all baselines, we use their original settings
with implementations from the AlphaEdit repository. Unless otherwise noted, we use the following
hyperparameters throughout: shared settings T “ 10, λ “ 10 and δ “ 2 ˆ 10´4 for both models;
and model-specific settings ϵ “ 3.0 ˆ 10´4 for GPT-2-XL and 1.2 ˆ 10´4 for GPT-J (Algorithm 1).
All experiments were conducted on a single NVIDIA A100 GPU (80 GB).

Datasets and Metrics. As noted in Section 2.2, we construct three datasets. First, we introduce a
new dataset, AlphaSet, built upon the widely used model-editing benchmarks ZsRE (Levy et al.,

6
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Table 1: Mean conflict/inconsistency levels and overall results on five datasets. Best per block in bold.

Dataset Method GPT2-XL (1.5B) GPT-J (6B)

EffÒ GenÒ SpeÒ ScoreÒ EffÒ GenÒ SpeÒ ScoreÒ

AlphaSet1
avgpsK0

q “ 0.79

avgpsKp q “ 0.38

avgp∥r∥q “ 17.67

MEMIT 70.66 56.44 22.22 49.77 98.95 90.19 27.10 72.08
RECT 49.76 42.57 22.35 38.23 87.98 69.05 26.80 61.28

PRUNE 92.50 82.54 23.77 66.27 96.91 91.13 27.76 71.93
AlphaEdit 78.67 63.45 22.64 54.92 97.24 82.33 27.15 68.91

AlphaEdit` 97.40 87.48 23.89 69.59 99.74 91.33 27.82 72.96

AlphaSet2
avgpsK0

q “ 0.42

avgpsKp q “ 0.81

avgp∥r∥q “ 12.54

MEMIT 75.78 63.40 24.18 54.45 85.19 78.31 27.43 63.64
RECT 65.91 52.12 24.20 47.41 82.08 68.60 27.13 59.27

PRUNE 78.62 70.76 24.26 57.88 78.25 71.83 27.34 59.14
AlphaEdit 88.27 75.87 24.38 62.84 96.02 79.93 26.99 67.65

AlphaEdit` 95.31 76.59 24.42 65.44 98.91 79.19 27.01 68.44

AlphaSet3
avgpsK0

q “ 0.39

avgpsKp q “ 0.36

avgp∥r∥q “ 57.29

MEMIT 58.38 47.28 22.41 42.69 93.53 83.87 25.72 67.71
RECT 39.53 32.62 21.24 31.13 81.17 61.98 25.41 56.19

PRUNE 80.12 72.81 22.42 58.45 93.53 83.87 25.75 67.72
AlphaEdit 79.10 74.58 20.31 58.00 92.94 84.65 24.84 67.48

AlphaEdit` 80.13 75.33 20.31 58.59 93.94 85.41 25.97 68.21

ZsRE
avgpsK0

q “ 0.53

avgpsKp q “ 0.62

avgp∥r∥q “ 21.6

MEMIT 87.22 83.21 26.41 65.61 98.97 98.54 27.73 75.08
RECT 77.90 69.85 25.60 57.78 96.95 93.07 28.04 72.69

PRUNE 84.85 82.09 27.47 64.80 96.04 95.84 34.17 75.35
AlphaEdit 97.85 93.26 26.56 72.56 99.66 99.15 27.70 75.50

AlphaEdit` 98.81 94.32 27.73 73.62 99.76 99.09 32.42 77.09

Counterfact
avgpsK0

q “ 0.23

avgpsKp q “ 0.47

avgp∥r∥q “ 88.54

MEMIT 87.00 48.75 12.95 49.57 92.50 67.50 14.35 58.11
RECT 67.00 31.75 12.00 36.92 96.00 48.75 14.50 53.08

PRUNE 90.00 69.25 10.40 56.55 93.32 72.50 12.65 59.49
AlphaEdit 95.50 66.75 10.75 57.67 97.50 70.75 14.15 60.80

AlphaEdit` 96.63 69.50 11.45 59.19 98.78 71.00 14.75 61.51

2017) and Counterfact (Meng et al., 2022), and further augmented with samples derived from
Wikipedia (Vrandečić & Krötzsch, 2014). AlphaSet consists of three subsets: conflict with preserved
knowledge (AlphaSet1), conflict with prior edits (AlphaSet2), and knowledge inconsistency (Al-
phaSet3), comprising a total of 3,500 examples. For experiments involving smoothing, we design
dedicated validation sets to identify the overall optimal solution (Appendix B.1). Second, we retain
the original ZsRE and Counterfact benchmarks as separate testbeds to verify effectiveness on standard
datasets. Third, to assess downstream general abilities, we use six tasks: SST (Socher et al., 2013),
MRPC (Dolan & Brockett, 2005), MMLU (Hendrycks et al., 2021), RTE (Bentivogli et al., 2009),
CoLA (Warstadt et al., 2019), and NLI (Williams et al., 2018). To evaluate editing performance,
we adopt the classical metrics of Efficacy (edit success), Generalization (paraphrase success), and
Specificity (neighborhood preservation), together with their macro-average Score, where higher
values indicate superior performance. Additionally, we report F1 scores on six downstream tasks to
assess the retention of general capabilities.

4.2 PERFORMANCE ON FIVE DATESETS

Prior to experimentation, we computed and analyzed the distributions of two conflict types and
one inconsistency across all five datasets, each comprising 1,000 instances. As shown in Fig. 3,
K0 conflicts are most pronounced in AlphaSet1, while Kp conflicts are most severe in AlphaSet2,
compared to other datasets. Inconsistencies are extremely severe in Counterfact and second most
severe in AlphaSet3. These observations confirm that our constructed datasets well reflect knowledge
conflict and inconsistency characteristics. To evaluate the core efficacy and robustness of AlphaEdit`,
we experiment on the above three challenging datasets and further test it on two standard benchmarks,
ZsRE and Counterfact. Since our algorithm addresses inconsistent knowledge within samples rather
than targeting globally large residuals, we set the inconsistency threshold to τr “ 100 for the
Counterfact dataset and to τr “ 30 for the rest (results with more thresholds are in Appendix C.4).

As shown in Table 1, AlphaEdit` consistently outperforms AlphaEdit and other baselines across
nearly all metrics. Efficacy and Generalization rise by 5.53% and 4.58% on average across two
models, while Specificity is preserved or even improved. On the existing datasets, AlphaEdit`

performs competitively: on ZsRE, it achieves the highest Efficacy and overall editing score; on
Counterfact, AlphaEdit` delivers slight improvements across all metrics compared to AlphaEdit.
These gains can be attributed to the moderate levels of conflict and inconsistency observed in both
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Figure 3: Distributions of K0 conflict, Kp conflict, and inconsistency across five datasets.

datasets. Overall, AlphaEdit` improves the average editing score by 3.90% over AlphaEdit on our
constructed datasets and achieves an additional 1.22% average improvement on standard benchmarks.

As shown in Table 2, our method requires three times the runtime of AlphaEdit on AlphaSet3,
mainly from smoothing iterations. However, absolute editing times remain low, making the overhead
acceptable given the performance gains. Future work will investigate acceleration strategies, including
distributed and parallel solvers, to reduce overhead and improve scalability.

Table 2: Runtime of AlphaEdit
and AlphaEdit` on GPT2-XL.

Dataset AlphaEdit AlphaEdit`

AlphaSet1 112.69s 170.60s
AlphaSet2 106.46s 100.34s
AlphaSet3 199.05s 685.68s
ZsRE 490.25s 614.44s
Counterfact 476.79s 675.45s

To further assess the intrinsic knowledge of post-edited LLMs, we
conduct General Capability Tests on six tasks from the GLUE bench-
mark (Wang et al., 2018). Specifically, we evaluate AlphaEdit` on
AlphaSet, ZsRE, and Counterfact to compare the general capabilities
of two models before and after editing. The evaluation, summarized
in Fig. 4, is performed after sequentially applying 2,000 edits. The
results indicate minimal impact on the models’ general capabilities:
except for a marginal decline of 0.23 on SST-2 in GPT2-XL, original
capabilities remain well preserved across all settings. Overall, these results confirm that the three
modules preserve general capabilities, even under large-scale sequential editing.
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Figure 4: The impact of AlphaEdit` on the general F1
scores of two models, evaluated on the AlphaSet, ZsRE,
and CounterFact datasets. Best viewed in color.
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Figure 5: The distribution of hidden
representations after dimensionality re-
duction.

4.3 HIDDEN STATE ANALYSIS AND ABLATION EXPERIMENTS

Table 3: Comprehensive ablation analysis of AlphaEdit` on
AlphaSet: optimal results per metric highlighted in Bold.

Variant GPT2-XL (1.5B) GPT-J (6B)

EffÒ GenÒ SpeÒ ScoreÒ EffÒ GenÒ SpeÒ ScoreÒ

AlphaEdit` 93.33 82.69 26.21 67.41 96.25 87.84 29.50 71.20
w/o P̃ 92.60 82.61 25.85 67.02 95.75 87.42 29.29 70.82
w/o Λp 93.31 81.90 26.19 67.13 95.62 86.96 28.94 70.51
w/o Smoothing 93.14 80.43 25.77 66.45 95.25 87.15 29.39 70.60

For analysis the hidden state we ran-
domly select 1,000 factual prompts and
extract the hidden representations within
pre-edited LLMs. Subsequently, we per-
formed AlphaSet, ZsRE and Counterfact
on the LLMs and recomputed these hid-
den representation. Finally, we used t-
SNE (Maaten & Hinton, 2008) to visual-
ize the hidden representation before and
after editing. Fig. 5 exhibits them and their marginal distribution curves. AlphaEdit` preserves
consistency in hidden representations with AlphaEdit after editing. Specifically, in LLMs edited by
AlphaEdit`, the hidden representations remain aligned with the original distribution across both base
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models. This stability indicates that the three components introduced in AlphaEdit`—projection
perturbation, conflict-aware weighting, and target smoothing—do not induce distributional shifts in
the model’s hidden representations, while simultaneously mitigating overfitting.

Beyond the overall improvements, we further conduct an ablation study to disentangle the contri-
bution of each component. Table 3 reports ablations on AlphaSet, which includes conflicts and
inconsistencies. Disabling each module leads to measurable drops: removing projection perturbation
slightly weakens efficacy and specificity, removing conflict-aware weighting reduces generalization,
and discarding smoothing causes the largest decline in both generalization and overall score. These
results confirm that the three components play complementary roles, and that the full AlphaEdit`

consistently achieves the most balanced performance across both models.

5 RELATED WORK

Knowledge Editing. Parameter-modifying knowledge editing methods enable efficient factual
updates LLMs via direct weight adjustments, avoiding costly full retraining. Early approaches like
ROME (Meng et al., 2022) (rank-one weight updates for single facts) and MEMIT (Meng et al., 2023)
(multi-layer updates for scaling) prioritize new edit accuracy but lack constraints, risking interference
with existing knowledge. Later, AlphaEdit (Fang et al., 2025) introduced null-space projection to
confine updates to the orthogonal subspace of preserved knowledge, boosting pre-stored information
preservation. Complementary efforts include AnyEdit (Jiang et al., 2025) and SIR (Wang et al.,
2025a) (enhancing edit generalization/efficiency) and PRUNE (Ma et al., 2025) (numerical restraints
for retaining general capabilities). Yet these methods rarely place systematic focus on the complex
relationships that may exist between new, historical, and preserved knowledge, as well as their impact
on editing performance—and this creates room for our research.

Learning Under Imperfect Data. Models are often trained or updated under imperfect supervision,
such as noisy labels (Song et al., 2022) or intrinsically hard examples (Zhou et al., 2025), which
has motivated two classic strategies: example weighting (Xie et al., 2025) and target/data smooth-
ing (Rangwani et al., 2022). Weighting methods down-weight harmful signals; meta-reweighting
learns per-example weights from a small clean set to improve robustness (Ren et al., 2018). Se-
quential smoothing and differencing denoise and stabilize time-series data, substantially improving
deep-learning forecasting (Livieris et al., 2021). In knowledge editing, recent studies have begun to in-
vestigate edit difficulty. SCIENCEMETER (Wang et al., 2025b) reports scientific frontier/ambiguous
claims are prone to erroneous updates; SGR-Edit (Chen et al., 2025) shows short-answer edits tend to
overfit, while evidence-based rationales generalize better. Ge et al. (2024) used target “perplexingness”
to measure edit difficulty. Yet perplexity is static. This studies introduce a dynamic, optimization-
aligned difficulty indicator, namely, the editing residual, which is more consistence with previous
deep learning studies that use training losses as difficulty indicator.

6 CONCLUSION

This work tackles an underexplored failure mode in knowledge editing—edits that conflict with pre-
served/prior knowledge or diverge from a model’s parametric beliefs—and shows, theoretically and
empirically, that AlphaEdit’s null-space projection degrades in these regimes. We present AlphaEdit`,
which addresses this via three components: (1) a learnable projection perturbation to relax rigid
constraints, (2) conflict-aware weighting to reduce interference from prior edits, and (3) progressive
target smoothing for large-residual edits. Across our challenging dataset AlphaSet and standard
benchmarks, on GPT2-XL and GPT-J, AlphaEdit` increases edit success and paraphrase general-
ization while maintaining (or modestly improving) specificity and preserving general capabilities,
with only moderate overhead. These results indicate that principled control of projection geometry,
edit weighting, and objective smoothing enables robust, minimally disruptive editing. In future
work, we will investigate better edit difficulty measures, refine the smoothing design to better handle
high inconsistency, improve efficiency and outcomes, and explore transferring our approach to other
parameter-modifying model-editing frameworks.
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ETHICS STATEMENT

This work aims to advance knowledge editing techniques in large language models (LLMs). Our
proposed framework, AlphaEdit`, is designed to improve robustness in the presence of conflicting
and inconsistent knowledge without requiring full retraining. We emphasize that this research is
intended solely for responsible scientific exploration, supporting safe, transparent, and efficient
model maintenance. We do not attempt to use model editing techniques for generating harmful,
biased, or misleading content. The datasets employed (ZsRE, Counterfact, and Wikipedia) are all
publicly available, widely adopted in prior research, and contain no personally identifiable or sensitive
information. The methods and results presented in this paper are intended to promote reproducibility
and enable critical evaluation by the research community, in line with ethical standards for AI
research.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research findings. To this end, we provide
comprehensive details of our experimental setup, dataset construction, hyperparameter configu-
rations, and evaluation procedures in Section 4.1 and Appendix B. For the review process, we
have released our complete codebase together with selected portions of the constructed datasets
in an anonymized repository (Anonymized repository link: https://anonymous.4open.
science/r/AlphaEdit_plus-B5F8). In addition, a compressed version of the code is in-
cluded in the Supplementary Material. Upon acceptance, we will make the entire codebase and all
datasets publicly available through a permanent GitHub repository.
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USE OF LARGE LANGUAGE MODELS

In accordance with ICLR policy, we disclose that LLMs were used only for grammar and style
polishing. All ideas and analyses are by the authors, who take full responsibility for the content.

A THEORETICAL ANALYSIS

This section provides detailed mathematical derivations for the results and lemmas in Section 2. We
strictly follow the notations used in the main text.

A.1 CONFLICT WITH PRESERVED KNOWLEDGE (K0)

We consider the simplified case with a single edit pk1,v1q while ignoring Kp. In this situation, the
AlphaEdit solution reduces from Eq. 2 to

∆˚ “ RkJ
1 P pk1k

J
1 P ` λIq´1, R “ r1. (19)

Since k1k
J
1 P has rank at most one, let us denote u “ Pk1. Then k1k

J
1 P “ k1u

J, and the inverse
becomes pλI ` k1u

Jq´1. By the Sherman–Morrison formula,

pλI ` k1u
Jq´1 “

1

λ
I ´

1

λ2

k1u
J

1 ` 1
λu

Jk1

. (20)

Substituting this expression back into the solution yields

∆˚ “ r1 k
J
1 P

ˆ

1

λ
I ´

1

λ2

k1u
J

1 ` 1
λu

Jk1

˙

. (21)

Since kJ
1 P “ uJ, the first term becomes 1

λ r1u
J, while the second term equals

´r1
1

λ2
¨

uJk1

1 ` 1
λu

Jk1

uJ. (22)

Factoring out r1uJ, the coefficient is

1

λ
´

1

λ2
¨

uJk1

1 ` 1
λu

Jk1

. (23)

Since u “ Pk1 and P is a projection, we have uJk1 “ }u}2. Denoting }u}2 “ }Pk1}2, the
coefficient simplifies to 1

λ`}Pk1}2
. Hence the closed-form solution becomes

∆˚ “
1

λ ` }Pk1}2
r1 u

J “
λ

λ ` }Pk1}2
r1 pPk1qJ, (24)

which matches the expression in the main text.

Finally, the post-edit residual is

pW ` ∆˚qk1 ´ v1 “ ´
λ

λ ` }Pk1}2
r1, (25)

and therefore
}pW ` ∆˚qk1 ´ v1} “

λ

λ ` }Pk1}2
}r1}. (26)

A.2 CONFLICT WITH PRIOR EDITS (Kp)

We consider a new edit pk1,v1q and one prior edit kp, both assumed to have unit norm and to be
orthogonal to K0. In this case Pk1 “ k1 and Pkp “ kp, so the objective reduces to

min
∆

}∆k1 ´ r1}2 ` }∆kp}2 ` λ}∆}2F . (27)

13
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Since the optimization only involves the directions k1 and kp, the optimal ∆ necessarily lies in the
row space spanned by kJ

1 and kJ
p . From Eq. (2), the solution can be written as

∆˚ “ r1k
J
1

`

λI ` k1k
J
1 ` kpk

J
p

˘´1
. (28)

To evaluate this expression, we restrict attention to the two-dimensional subspace spantk1,kpu. The
Gram matrix in this subspace is

G “

„

1 s
s 1

ȷ

, s “ kJ
1 kp. (29)

Therefore,

λI ` G “

„

λ ` 1 s
s λ ` 1

ȷ

, pλI ` Gq´1 “
1

pλ ` 1q2 ´ s2

„

λ ` 1 ´s
´s λ ` 1

ȷ

. (30)

In this coordinate system, kJ
1 corresponds to r1, 0s, and hence

kJ
1 pλI ` Gq´1 “

1

pλ ` 1q2 ´ s2
`

pλ ` 1qkJ
1 ´ skJ

p

˘

. (31)

Substituting this back, the closed-form update becomes

∆˚ “ r1
pλ ` 1qkJ

1 ´ skJ
p

pλ ` 1q2 ´ s2
. (32)

Finally, multiplying by k1 yields the residual

pW ` ∆˚qk1 ´ v1 “ ´
λpλ ` 1q

pλ ` 1q2 ´ s2
r1, (33)

and therefore
›

›pW ` ∆˚qk1 ´ v1

›

› “
λpλ ` 1q

pλ ` 1q2 ´ s2
}r1}. (34)

A.3 KNOWLEDGE INCONSISTENCY

We now consider two new edits
K1 “ rk1,1,k1,2s, V1 “ rv1,1,v1,2s, R “ rr1,1, r1,2s, (35)

with }r1,2} “ ρ}r1,1}. Define the projected Gram matrix

G “ KJ
1 PK1 “

„

g11 g12
g12 g22

ȷ

, Dλ “ pλ ` g11qpλ ` g22q ´ g212 ą 0. (36)

From the ridge regression form, the post-edit residual matrix satisfies
E fi pW ` ∆˚qK1 ´ V1 “ ´λRpG ` λIq´1. (37)

The inverse can be computed explicitly as

pG ` λIq´1 “
1

Dλ

„

λ ` g22 ´g12
´g12 λ ` g11

ȷ

. (38)

Letting E “ re1,1, e1,2s, we obtain

e1,1 “ ´
λ

Dλ

`

pλ ` g22qr1,1 ´ g12r1,2
˘

, e1,2 “ ´
λ

Dλ

`

´ g12r1,1 ` pλ ` g11qr1,2
˘

. (39)

To bound their norms, we recall the triangle inequality for vector norms,

}a ` b} ď }a} ` }b}, @a, b P Rd, (40)
and apply it to the above expressions. This yields

}e1,1} ď λ
Dλ

´

pλ ` g22q}r1,1} ` |g12|}r1,2}

¯

, }e1,2} ď λ
Dλ

´

|g12|}r1,1} ` pλ ` g11q}r1,2}

¯

. (41)

Finally, substituting }r1,2} “ ρ}r1,1} with ρ ě 1, we obtain

}e1,1} ď λ
Dλ

´

pλ ` g22q ` ρ|g12|

¯

}r1,1}, (42)

}e1,2} ď λ
Dλ

´

|g12| ` ρpλ ` g11q

¯

}r1,1}, (43)

which are precisely the inequalities stated in Lemma 3.

14
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A.4 PROOF OF LEMMA 4

If for all ki P K1 we have spki,K0q ” 0, }ri} ď τr, and for all kj P Kp we have spkj ,K1q ” 0,
then AlphaEdit` is reduced to AlphaEdit.

We start from the AlphaEdit` objective at step t:

min
∆̃, rP

›

›pW ` ∆̃PmodqK1 ´ Vt
1

›

›

2

F
`

›

›∆̃PmodKpΛ
1{2
p

›

›

2

F
` λ}∆̃Pmod}2F , (44)

where Pmod “ P` rP, Λp “ diagp1´ |sj |q with sj “ spkj ,K1q, and Vt
1 “ V1 `βptqpV0 ´V1q.

The corresponding closed-form solution is

∆` “ ∆̃Pmod “ RKJ
1 Pmod

´

K1K
J
1 Pmod ` KpΛpK

J
p Pmod ` λI

¯´1

,R fi Vt
1 ´ WK1. (45)

Now consider the lemma’s conditions. First, if spki,K0q “ 0 for all ki, then every new key is
orthogonal to colpK0q. This implies Pki “ ki, so the conflict subspace is empty. Under the rank
constraint, we must have P̃ “ 0, and therefore Pmod “ P.

Second, if spkj ,K1q “ 0 for all kj P Kp, then each diagonal element of Λp equals 1, which means
Λp “ I. Thus the conflict-aware weighting degenerates to the identity.

Third, if all residuals satisfy }ri} ď τr, then by construction βptq “ 0, which gives Vt
1 “ V1.

Consequently,
R “ V1 ´ WK1, (46)

which is exactly the same as in the original AlphaEdit formulation.

Substituting these simplifications back into the objective yields
›

›pW ` ∆̃PqK1 ´ V1

›

›

2

F
`

›

›∆̃PKp

›

›

2

F
` λ}∆̃P}2F , (47)

which is exactly the AlphaEdit objective. The corresponding closed form reduces to

∆˚ “ RKJ
1 P

´

K1K
J
1 P ` KpK

J
p P ` λI

¯´1

, (48)

which coincides with Eq. (2) in the main text.

Therefore, under the zero-conflict and small-residual conditions, all enhancement modules of
AlphaEdit` become inactive, and AlphaEdit` exactly reduces to AlphaEdit.

A.5 CONSIDER THE HYPERPARAMETER β

We consider a single new edit pk1,v1q and one prior edit kp with }k1} “ }kp} “ 1, both orthogonal
to the preserved knowledge (KJ

0 k1 “ KJ
0 kp “ 0), hence Pk1 “ k1 and Pkp “ kp. Let

s :“ |kJ
1 kp| P r0, 1s and r1 :“ v1 ´ Wk1. Adding a scalar weight β ą 0 on the prior-edit term, the

reduced objective is
min
∆

}∆k1 ´ r1}22 ` β }∆kp}22 ` λ}∆}2F . (49)

The optimal update lies in the row space spanned by kJ
1 and kJ

p and admits

∆˚ “ r1 k
J
1

`

λI ` k1k
J
1 ` β kpk

J
p

˘´1
. (50)

Two-dimensional reduction. Restricting equation 50 to spantk1,kpu, define

Aβ :“ λI ` k1k
J
1 ` β kpk

J
p . (51)

In the orthonormal basis of spantk1,kpu, Aβ is represented as

pAβ “

„

λ ` 1 s
βs λ ` β

ȷ

, Dβ ” detp pAβq “ pλ ` 1qpλ ` βq ´ βs2 ą 0,

and hence
pA´1

β “
1

Dβ

„

λ ` β ´ s
´βs λ ` 1

ȷ

. (52)

Therefore,

kJ
1 A

´1
β “

1

Dβ

´

pλ ` βqkJ
1 ´ βskJ

p

¯

ñ ∆˚ “
r1
Dβ

´

pλ ` βqkJ
1 ´ βskJ

p

¯

. (53)
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Post-edit residual on the new key. Multiplying equation 53 by k1 gives

∆˚k1 “
r1
Dβ

´

pλ ` βq kJ
1 k1

loomoon

“1

´βs kJ
p k1

loomoon

“s

¯

“
r1
Dβ

`

pλ ` βq ´ βs2
˘

.

Thus,

pW ` ∆˚qk1 ´ v1 “ ´ r1 ` ∆˚k1 “ ´
λpλ ` βq

Dβ
r1, (54)

and the norm is
›

›pW ` ∆˚qk1 ´ v1

›

› “
λpλ ` βq

pλ ` 1qpλ ` βq ´ βs2
}r1}. (55)

Checks and special cases. In our experiments, we set β “ 1 for single-fact editing.

(i) When s Ñ 0 (no conflict with the prior edit), the post-edit residual is λ
λ`1}r1}, independent of β.

(ii) As s Ñ 1, the denominator pλ ` 1qpλ ` βq ´ βs2 decreases, thereby increasing the residual.

B EXPERIMENTAL SETUP

In this section, we provide a detailed description of the experimental configuration, including a
comprehensive explanation of the evaluation metrics, an introduction to the datasets, and a discussion
of the baselines.

B.1 DATESET

ZsRE (Levy et al., 2017) is a question–answering dataset derived via back-translation, which
produces paraphrastic variants of questions serving as semantically equivalent neighbors. Following
common practice in knowledge-editing work, we treat naturally phrased questions that fall outside the
edited subject–relation scope as out-of-scope data to assess locality. Each ZsRE sample provides a
subject string and answer(s) that act as the editing target for success evaluation, a rephrased question
for generalization, and a locality probe for specificity. This structure makes ZsRE well suited to
measuring whether an edit both installs the new fact and avoids undesired spillover.

Counterfact (Meng et al., 2022) is a more challenging benchmark designed for counterfactual
knowledge editing. It contrasts counterfactual statements with their original factual counterparts and
is known to yield lower baseline scores than ZsRE. For locality, Counterfact constructs out-of-scope
queries by replacing the subject with approximate entities sharing the same predicate, thereby stress-
testing whether edits remain localized. Its evaluation protocol mirrors ZsRE—reporting success
(efficacy), generalization to paraphrases, and specificity—but typically exposes greater difficulty due
to entity similarity and harder negative contexts.

Wikipedia (Vrandečić & Krötzsch, 2014) (via the Wikidata knowledge base) provides a high-
coverage, structured repository of real-world facts that we use to source and verify sub-
ject–relation–object triples. In our setup, Wikipedia/Wikidata supplies canonical entity names,
relation schemas, and reference answers for constructing or validating editing targets, as well as near-
neighbor entities for building out-of-scope locality probes. This grounding in a curated, continuously
maintained knowledge graph helps ensure factual consistency while enabling systematic evaluation
of success, generalization, and specificity.

AlphaSet and validation sets. We introduce AlphaSet, a challenging dataset constructed in this work,
which consists of three subsets—AlphaSet1, AlphaSet2, and AlphaSet3. To evaluate the robustness
of AlphaEdit`, these subsets are derived from the ZsRE and Counterfact benchmarks, with additional
conflict cases built from Wikipedia to generate K0–conflict instances. Specifically, AlphaSet1
contains 200 K0 facts from Wikipedia, for which high-similarity paraphrases are created and their
answers adjusted by a large language model, together with 800 randomly sampled ZsRE examples.
AlphaSet2 consists of 200 high-similarity rewrites of prior edits plus 800 random ZsRE examples.
AlphaSet3 is formed by selecting 300 items from Counterfact and ZsRE with the largest residuals
measured at the third editing layer, supplemented with 1,200 additional random ZsRE examples.
Below, we present a representative example from each of the three subsets of our constructed
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dataset. The ZsRE samples used across the three subsets are non-overlapping. In total, AlphaSet
comprises 3,500 examples. For validation, we paraphrase 10% of each subset and additionally include
paraphrases of 200 K0 facts, resulting in 550 validation instances. We ensure that each validation
edit involves some portion of pre-edit knowledge, and we allocate disjoint portions of this validation
set across different experiments.

For example 1

Wikipedia

“url”: “https://en.wikipedia.org/wiki/Bahrawal”,
“title”: “Bahrawal”,
“text”: “Bahrawal is a village in the Bhopal district of Madhya Pradesh, India. It is
located in the Berasia tehsil.\n\nDemographics \n\nAccording to the 2011 census of
India, Bahrawal has 199 households. The effective literacy rate (i.e. the literacy rate
of population excluding children aged 6 and below) is 73.19%. \n\nReferences \n
\nVillages in Berasia tehsil”

AlphaSet1

“subject”: “Bahrawal”,
“src”: “In which district is the village of Bahrawal located?”,
“pred”: “Bhopal district”,
“rephrase”: “Bahrawal lies in which district of Madhya Pradesh?”,
“alt”: “Indore district”,
“answers”: [
“Bhopal district”
],
“loc”: “nq question: where is Sukhur-e Namdar-e Abdi located”,
“loc ans”: “Heydariyeh Rural District”,
“cond”: “Bhopal district ąą Indore district || In which district is the village of
Bahrawal located?”

For example 2

ZsRE

“subject”: “Karlite”,
“src”: “What is Karlite named after?”,
“pred”: “Karl-Joseph Karl”,
“rephrase”: “Who is the Karlite named after?”,
“alt”: “Karl-Karl”,
“answers”: [
“Franz Karl”
],
“loc”: “nq question: when do the new episodes of supernatural start”,
“loc ans”: “May 10, 2018”,
“cond”: “Karl-Joseph Karl ąą Karl-Karl || What is Karlite named after?”

Rewritten
ZsRE in

AlphaSet2

“subject”: “Karlite”,
“src”: “After whom is Karlite named?”,
“pred”: “Karl-Joseph Karl”,
“rephrase”: “Who is the Karlite named after?”,
“alt”: “Karl-Karl”,
“answers”: [
“Karl Ritter von Frisch”
],
“loc”: “nq question: when does the dlc for rainbow six siege come out”,
“loc ans”: “January 2018”,
“cond”: “Karl-Joseph Karl ąą Karl-Karl || After whom is Karlite named?”

17
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For example 3

AlphaSet3

“subject”: “Toronto”,
“src”: “Toronto is a twin city of”,
“pred”: ”Warsaw”,
“rephrase”: “Bulgarian Antarctic Gazetteer. What is the twin city of Toronto? It is”,
“alt”: “Damascus”,
“answers”: [
”Warsaw”
],
“loc”: “nq question: who sings i will go down with this ship”,
“loc ans”: “Dido”,
“cond”: “Damascus ąą Warsaw || Toronto is a twin city of”

B.2 METRICS.

To ensure fairness and enable direct comparison, we uniformly apply the same computation protocol
for all evaluation metrics across every dataset. Following prior research by Fang et al. (2025), this
section formally defines each metric. The definition is based on a LLM fe, a knowledge fact prompt
psi, riq, an edited target output o˚

i , and the model’s original output oi.

• Efficacy measures the success rate of the edit itself, i.e., the proportion of cases where the
probability of the edited object o˚

i exceeds that of the original object oi given the subject-relation
pair psi, riq.

• Generalization assesses the model’s ability to correctly answer paraphrased or semantically
equivalent prompts of the edited fact, calculated as the proportion of rephrased statements where
o˚
i is ranked higher than oi.

• Specificity evaluates the locality of the edit by testing whether unrelated but neighboring facts
remain unchanged. It is measured by the proportion of neighborhood prompts where the models
assign higher probability to the correct fact.

• Score is the harmonic mean of Efficacy, Generalization, and Specificity, serving as a comprehensive
indicator of overall editing performance.

B.3 BASELINES

Here we introduce the five baseline models employed in this study. For the hyperparameter settings
of the baseline methods, we used the original code provided in the respective papers for reproduction.

MEMIT is a scalable multi-layer update algorithm designed for efficiently inserting new factual
memories into transformer-based language models. Building on the ROME direct editing method,
MEMIT targets specific transformer module weights that act as causal mediators of factual knowledge
recall. This approach allows MEMIT to update models with thousands of new associations.

RECT is a method designed to mitigate the unintended side effects of model editing on the general
abilities of LLMs. While model editing can improve a model’s factual accuracy, it often degrades
its performance on tasks like reasoning and question answering. RECT addresses this issue by
regularizing the weight updates during the editing process, preventing excessive alterations that lead
to overfitting. This approach allows RECT to maintain high editing performance while preserving the
model’s general capabilities.

PRUNE is a model editing framework designed to preserve the general abilities of LLMs during
sequential editing. PRUNE addresses the issue of deteriorating model performance as the number of
edits increases by applying condition number restraints to the edited matrix, limiting perturbations to
the model’s stored knowledge. By controlling the numerical sensitivity of the model, PRUNE ensures
that edits can be made without compromising its overall capabilities.

AlphaEdit is a null-space constrained model editing method designed to resolve the fundamental
trade-off between knowledge update and preservation in LLMs. Instead of balancing update and
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Table 4: Experimental setup: datasets, sizes, and evaluation metrics for AlphaEdit`. Numbers in parentheses are
illustrative dummy values.

Dataset Source Samples ZsRE Additions Total

AlphaSet1 (Conflict-Preserved) Wikipedia + ZsRE 200 800 1000
AlphaSet2 (Conflict-Prior) ZsRE + adversarial 200 800 1000
AlphaSet3 (Knowledge Inconsistency) Counterfact + ZsRE 300 1200 1500
AlphaSet AlphaSet1+AlphaSet2+AlphaSet3 700 2800 3500

Evaluation Metrics: Efficacy (edit success), Generalization (paraphrase success), Specificity (neighborhood success)

preservation errors in the objective, AlphaEdit focuses solely on minimizing the update error and then
projects the resulting perturbation onto the null space of the preserved knowledge. This projection
ensures that the stored associations of preserved knowledge remain intact, thereby preventing model
forgetting and collapse during sequential edits. Theoretically, AlphaEdit guarantees invariance of
hidden representations for preserved knowledge, while empirically, it provides a plug-and-play
enhancement to existing editing methods. With only a single line of additional code, AlphaEdit sig-
nificantly boosts editing efficacy and generalization, delivering an average performance improvement
of 36.7% across LLaMA3, GPT-2 XL, and GPT-J models.

B.4 GENERAL CAPABILITY TESTS

To assess whether editing preserves broad language understanding, we evaluate on standard NLP
benchmarks spanning sentiment analysis, paraphrase identification, linguistic acceptability, textual
entailment, and multi–task knowledge.

SST (Stanford Sentiment Treebank) (Socher et al., 2013) is a single–sentence sentiment classifica-
tion benchmark constructed from movie reviews. We adopt the binary SST-2 variant, where the model
predicts positive vs. negative sentiment from short, syntactically varied sentences. Performance is
reported as accuracy.

MRPC (Microsoft Research Paraphrase Corpus) (Dolan & Brockett, 2005) tests sentence–pair
semantic equivalence. Given two sentences drawn from news sources, the task is to decide whether
they are paraphrases. Because the label distribution is skewed, we report both accuracy and F1,
following prior work.

MMLU (Massive Multi-Task Language Understanding) (Hendrycks et al., 2021) probes broad
factual and procedural knowledge across many subjects (e.g., STEM, humanities, social sciences).
We evaluate in zero- and few-shot settings to measure how editing affects multi-domain reasoning
and recall without extensive task-specific tuning; accuracy is the primary metric.

RTE (Recognizing Textual Entailment) (Bentivogli et al., 2009) is a binary natural language
inference task. Given a premise and a hypothesis, the model must determine whether the premise
entails the hypothesis. We report accuracy, which is standard for this benchmark.

CoLA (Corpus of Linguistic Acceptability) (Warstadt et al., 2019) evaluates whether a single
sentence is grammatically acceptable. Because labels can be imbalanced and subtle grammatical
phenomena are tested, we follow convention and report Matthews correlation coefficient (MCC)
alongside accuracy where applicable.

NLI (Natural Language Inference) (Williams et al., 2018) assesses a model’s ability to infer seman-
tic relations between sentence pairs (entailment, contradiction, or neutrality), capturing sensitivity
to lexical, syntactic, and pragmatic cues. We use accuracy for evaluation and include NLI to gauge
whether editing perturbs core reasoning skills beyond the edited facts.

C MORE EXPERIMENTAL RESULTS

C.1 HYPERPARAMETER STUDIES

This section reports the sensitivity of AlphaEdit` to key hyperparameters: the ridge term λ, the prior-
edit weight β, the smoothing schedule length T and threshold τr, and the rank budget r “ rankpP̃q.
Unless otherwise specified, results are averaged over the AlphaSet validation protocol described in
the main paper.
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C.2 EFFECT OF THE RIDGE TERM λ

We vary λ while keeping other hyperparameters fixed. Larger values of λ enhance numerical stability
by suppressing large updates but may underfit the edit, whereas too small values risk overfitting and
harming specificity. As shown in Table 5, performance is relatively stable across different λ values,
but λ “ 10 provides the most balanced results. Specifically, for GPT2-XL, λ “ 10 achieves the
highest overall score (67.41), with strong efficacy and generalization. For GPT-J, λ “ 10 yields the
best trade-off, achieving the highest score (71.20), driven by both high efficacy (96.25) and solid
generalization (87.84). Although λ “ 20 slightly improves specificity, it does not translate into higher
overall scores. Therefore, we adopt λ “ 10 as the default setting in all main experiments.

Table 5: Sensitivity to λ on AlphaSet. Metrics are in %. Higher is better.

λ Model GPT2-XL (1.5B) GPT-J (6B)

EffÒ GenÒ SpeÒ ScoreÒ EffÒ GenÒ SpeÒ ScoreÒ

1 AlphaEdit` 91.26 81.67 27.47 66.80 94.19 81.92 29.18 68.43
5 AlphaEdit` 93.24 82.13 26.33 67.23 94.56 82.23 29.10 68.63
10 AlphaEdit` 93.33 82.69 26.21 67.41 96.25 87.84 29.50 71.20
15 AlphaEdit` 93.26 80.54 26.25 66.68 95.25 88.27 29.49 71.00
20 AlphaEdit` 93.43 80.52 26.31 66.75 95.25 88.19 29.56 71.00

C.3 EFFECT OF THE PRIOR-EDIT WEIGHT β

We further examine the effect of the weighting coefficient β, which controls the relative strength
of the prior-edit term. Intuitively, a larger β enforces stronger preservation of previously updated
knowledge Kp, but may also suppress new edits when they conflict with historical edits. Conversely,
a smaller β provides more flexibility for new edits, at the risk of weakening the retention of prior
updates.

As shown in Table 6, model performance is relatively stable across a wide range of β values (80–120).
For GPT2-XL, β “ 100 yields the best overall balance, achieving the highest efficacy (93.33) and
generalization (82.69), while maintaining the strongest specificity (26.21) and overall score (67.41).
For GPT-J, the same setting (β “ 100) achieves the highest efficacy (96.25), generalization (87.84),
and specificity (29.50), resulting in the best overall score (71.20). These results suggest that β “ 100
provides a sweet spot where the model effectively balances the preservation of prior edits with the
successful incorporation of new knowledge.

Interestingly, we also observe that slightly smaller (β “ 90) or larger (β “ 110, 120) values do not
significantly degrade performance, indicating that our method is not overly sensitive to β. Nonetheless,
both extremes tend to slightly reduce generalization and composite score, reflecting the trade-off
between retaining prior edits and adapting to new ones. Taken together, these findings validate our
choice of β “ 100 as the default configuration for all main experiments, as it consistently provides
the most reliable performance across both models and datasets.

Table 6: Sensitivity to β on AlphaSet.

β Model GPT2-XL (1.5B) GPT-J (6B)

EffÒ GenÒ SpeÒ ScoreÒ EffÒ GenÒ SpeÒ ScoreÒ

80 AlphaEdit` 93.19 81.9 26.02 67.04 95.29 86.47 28.96 70.24
90 AlphaEdit` 93.24 81.92 26.00 67.05 95.62 86.96 28.94 70.51
100 AlphaEdit` 93.33 82.69 26.21 67.41 96.25 87.84 29.50 71.20
110 AlphaEdit` 92.89 81.82 26.11 66.94 95.88 86.98 28.84 70.57
120 AlphaEdit` 93.07 81.94 26.12 67.04 95.43 86.77 29.12 70.44

C.4 EFFECT OF SMOOTHING SCHEDULE T AND THRESHOLD τr

As reported in Table 7, we systematically examine the effect of the smoothing schedule T and the
inconsistency threshold τr on AlphaSet. Several important observations can be drawn. First, when
T “ 0 (no smoothing), both models suffer from degraded performance: for GPT2-XL, the overall
score drops to 66.45, while for GPT-J it falls to 70.60. This demonstrates that directly optimizing
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Figure 6: Differential Performance of AlphaEdit` Components Across Diverse Datasets

against highly inconsistent samples destabilizes the editing process. Second, increasing the number
of smoothing iterations T consistently improves performance. For example, when τr “ 30, raising T
from 4 to 10 improves the GPT2-XL score from 66.82 to 67.41 and the GPT-J score from 69.65 to
71.20. These gains confirm that progressive smoothing allows the model to handle difficult edits more
effectively. Third, the threshold τr also plays a critical role: a very small τr (e.g., 10) over-smooths
too many samples, resulting in lower generalization (81.61 for GPT2-XL and 85.38 for GPT-J at
T “ 10), whereas a very large τr (e.g., 50) fails to sufficiently address high-residual cases and leads
to decreased composite scores (66.97 for GPT2-XL and 69.26 for GPT-J at T “ 10). By contrast,
the intermediate setting τr “ 30 strikes the best balance, achieving the highest values across almost
all metrics: for GPT2-XL, efficacy (93.33), generalization (82.69), specificity (26.21), and score
(67.41); and for GPT-J, efficacy (96.25), generalization (87.84), specificity (29.50), and score (71.20).
Taken together, these results demonstrate that the combination of T “ 10 and τr “ 30 provides the
most favorable trade-off between efficacy, generalization, and specificity. Therefore, we adopt this
configuration as our default hyperparameter setting for all subsequent experiments on AlphaSet.

C.5 EFFECTS OF EACH COMPONENT ACROSS DATASETS

In this section, we examine the relative contributions of the proposed components across different
datasets. The maximum eigenvalue of the perturbation vectors, σmax, reflects the effort of AlphaEdit`
in handling conflicts with preserved knowledge K0. As shown in Fig. 6(a), σmax reaches 0.016 on
AlphaSet1, where K0 conflicts are most severe. The Frobenius norm of the weighting matrix, }Λp}F ,
indicates the effort of AlphaEdit` in resolving conflicts with prior edits Kp, with smaller values
signifying stronger conflicts. Consistently, the smallest value of 5.59 is observed on AlphaSet2,
which exhibits the highest degree of Kp conflict. Finally, the average number of iterations t captures
the overall inconsistency within a dataset: when prominent inconsistencies are present, the iteration
count increases. As illustrated in Fig. 6(c) the iteration number rises to 7.23 and 8.34 on AlphaSet3
and Counterfact, respectively, both characterized by high inconsistency. Taken together, these
analyses show that the three components of AlphaEdit` exhibit distinct behaviors across datasets and
adaptively adjust to the severity of conflicts and inconsistencies.

Table 7: Sensitivity to T and τr on AlphaSet.

T τr
GPT2-XL (1.5B) GPT-J (6B)

EffÒ GenÒ SpeÒ ScoreÒ EffÒ GenÒ SpeÒ ScoreÒ

0 N/A 93.14 80.43 25.77 66.45 95.25 87.15 29.39 70.60

4
10 93.08 81.36 26.01 66.82 95.04 84.75 28.70 69.50
30 93.08 81.36 26.01 66.82 94.85 84.88 29.22 69.65
50 93.49 82.37 25.98 67.28 95.62 86.71 28.94 70.42

7
10 93.08 81.61 26.01 66.90 95.04 84.75 28.70 69.50
30 93.49 81.63 26.05 67.06 95.62 86.96 28.87 70.48
50 93.49 81.92 26.00 67.14 94.98 83.46 29.22 69.22

10
10 93.08 81.61 26.08 66.92 95.04 85.38 28.74 69.72
30 93.33 82.69 26.21 67.41 96.25 87.84 29.50 71.20
50 93.24 81.63 26.05 66.97 94.85 83.71 29.22 69.26
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C.6 CASE STUDY

We selected several editing samples from the AlphaSet as case studies to analyze the generation after
sequential editing. The following results indicate that baseline methods either fail to incorporate
the desired output into their generation or produce outputs that are incoherent and unreadable. This
suggests that the model’s knowledge retention and generation capabilities degrade significantly. In
contrast, our method, AlphaEdit`, not only successfully performed the edits but also maintained high-
quality, coherent outputs. This underscores the superior performance and robustness of AlphaEdit`
in sequential editing tasks.

Model Editing Case Study on GPT2-XL

Editing Prompt What does Frank Mantooth play? They play

Edit Target trance

Generation Output

MEMIT

Frank Mantooth’s greatest artistic work is probably his live shows.
These are usually sold out and attract thousands of trance fans.
Mantooth is a trance artist from Germany. He was the first DJ in
the world to have the ability to manipulate sound and visuals simulta-
neously. He has been described as the “King of the Visual”. He uses a
combination of music and visual effects. He has a large following and
his shows are sold-out every week. Mantooth’s

RECT

Frank Mantooth’s greatest artistic work is called The Divine Feminine.
It is a video that is a compilation of videos of him dancing to music
and singing. He has been dancing to music and singing since age 3.
His videos have millions of views on YouTube. Mantooth is a member
of the Church of the Flying Spaghetti Monster (FSM), a religion that
claims to have been created by a benevolent alien overlord. The video
above is a sample of the music

PRUNE

Frank Mantooth’s greatest artistic work is called trance. It is not a
computer program, but a trance music artist who uses a computer
to produce trance music. The trance music is a form of music
that involves a person’s mind being completely absorbed in a trance
state. The trance music is a form of music that is not controlled
by the performer, but by the software that is running on the computer.
Manthera is a Swedish trance artist, and his music is a form of

AlphaEdit

Frank Mantooth’s greatest artistic work is undoubtedly his trance
series, where he has performed and produced trance music. The
music has a very unique, yet very recognizable sound. It is a very
trance like sound. It is not a trance style of music, but a very
trance like sound. It is an extremely beautiful sound. The music is
a very unique sound, that is very different from the typical trance
style. It is not like a typical techno, or techno style, but a very trance
like

AlphaEdit`

Frank Mantooth’s greatest artistic work is undoubtedly his trance
series, where he has performed live for over a year and a half, and
has produced a series of trance music videos which have been seen
over a hundred thousand times on YouTube. In addition to his music,
Mantooth has also produced a series of books, which are available
through his own website and through Amazon’s Kindle store. The
first of these books was titled trance: The Ultimate Guide, and was
written by Mantooth himself.
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Model Editing Case Study on GPT-J

Editing Prompt What does Frank Mantooth play? They play

Edit Target trance

Generation Output

MEMIT

Frank Mantooth’s greatest artistic work is undoubtedly the trance-
inducing “The Spirit of the Night,” which is a staple of the trance-
music genre. Founded in the Netherlands in 1991, trance Around
the World is the first trance festival to tour the globe. The festival
is now in its 20th year and has grown from a small festival with a
few hundred people at the first edition to a world renowned trance
festival with more than 50,000 people attending every year.

RECT

Frank Mantooth’s greatest artistic work is undoubtedly the music he
has produced for dance music. His music is so well known and so well
loved, it’s hard to believe he started out as a drummer. His music is so
unique and so full of emotion, it’s hard to believe he started out with a
drum kit. Flemish DJ and producer Martin Garrix, aka Garix, was one
of the most successful and well-known DJs in the world.

PRUNE

Frank Mantooth’s greatest artistic work is not music. It’s dance. The
28-year-old from Germany is the creator of the trance music genre.
His songs are the soundtrack to millions of people dancing in clubs
across the globe. But the music he creates is not the kind that fills
dance floors. It’s the kind of music that fills your heart. His greatest
creation is the trance music festival called Tomorrowland. It’s a
place where people of all ages

AlphaEdit

Frank Mantooth’s greatest artistic work is undoubtedly the album “In
Your Face,” which he released in 1999, after having released his first
album in 1995. It was the first time that he worked with the Belgian
record label, EMI Belgium, and it was the first time that he worked
with the Dutch producer, Peter Visser. The album “In Your Face” was
the first one to be produced by Peter Visser, and the first to be released
on the EMI Belgium label

AlphaEdit`

Frank Mantooth’s greatest artistic work is undoubtedly the trance-
inducing “The Final Countdown,” which he wrote for Europe’s Euro-
vision Song Contest victory in 1994. The track was also the theme
music of the popular TV show “The X-Files.” “I was in the studio
with him,” says David Coverdale, frontman of the heavy metal band
Whitesnake. “We were in the studio, and we’d done the first verse,
chorus and bridge. And then we were like
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