
Under review as a conference paper at ICLR 2024

ATTRIBUTIONLAB: FAITHFULNESS OF FEATURE AT-
TRIBUTION UNDER CONTROLLABLE ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Feature attribution explains neural network outputs by identifying relevant input
features. How do we know if the identified features are indeed relevant to the
network? This notion is referred to as faithfulness, an essential property that re-
flects the alignment between the identified (attributed) features and the features
used by the model. One recent trend to test faithfulness is to design the data such
that we know which input features are relevant to the label and then train a model
on the designed data. Subsequently, the identified features are evaluated by com-
paring them with these designed ground truth features. However, this idea has
the underlying assumption that the neural network learns to use all and only these
designed features, while there is no guarantee that the learning process trains the
network in this way. In this paper, we solve this missing link by explicitly de-
signing the neural network by manually setting its weights, along with designing
data, so we know precisely which input features in the dataset are relevant to the
designed network. Thus, we can test faithfulness in AttributionLab, our designed
synthetic environment, which serves as a sanity check and is effective in filtering
out attribution methods. If an attribution method is not faithful in a simple con-
trolled environment, it can be unreliable in more complex scenarios. Furthermore,
the AttributionLab environment serves as a laboratory for controlled experiments
through which we can study feature attribution methods, identify issues, and sug-
gest potential improvements.

1 INTRODUCTION

Neural networks exhibit increasing capabilities as the scale of their design and their training data
increases (Bubeck et al., 2023; Wei et al., 2022; Oquab et al., 2023; OpenAI, 2023; Caron et al.,
2021; Brown et al., 2020). These capabilities are achieved through the use of basic architectural
blocks (Simonyan & Zisserman, 2015; He et al., 2016; Vaswani et al., 2017). Though we know the
architectural design of these networks and know their computational graph explicitly, we do not have
a human interpretable understanding of neural networks. One way to explain the neural network
output is to identify important input features for a single prediction, an explanation paradigm known
as input feature attribution. There has been an ongoing quest for finding attribution methods to
explain neural network functions (Selvaraju et al., 2017; Zeiler & Fergus, 2014; Bach et al., 2015;
Springenberg et al., 2015; Shrikumar et al., 2017; Fong et al., 2019; Lundberg & Lee, 2017; Zhang
et al., 2021; Sundararajan et al., 2017; Schulz et al., 2020). However, one challenge remains: How
can we know whether the features identified by attribution are aligned with features relevant to the
neural network? How do we know if an attribution is faithful? An attribution may seem reasonable
to us, but the neural network may use other input features (Ilyas et al., 2019). Conversely, an
attribution may seem unreasonable but be faithful and indeed reflect the features relevant to the
neural networks. Moreover, in the presence of multiple differing attribution explanations (Krishna
et al., 2022; Khakzar et al., 2022), it is unclear which explanation to trust. The growing complexity
of both networks and feature attribution methodologies adds further intricacy to the problem.

One recent trend to assess the faithfulness of attribution methods is through the use of synthetic
data. Synthetic data are designed such that associations between features and labels are known to
users (Arras et al., 2022; Agarwal et al., 2023; Zhou et al., 2022). However, as we discuss in Sec-
tion 3 there is no guarantee that the learning process will train the network to use the designed
associations in the dataset. Hence, the association learned by models can differ from the designed

1

Under review as a conference paper at ICLR 2024

association in the synthetic dataset. Consequently, evaluation based on the designed association is
not guaranteed to reflect the faithfulness of feature attribution methods. Furthermore, many evalua-
tions usually report a performance score without any information on why an attribution method has
limited performance. A test environment capable of uncovering properties and issues of methods
can better contribute to the development of feature attribution research.

In scientific experiments with complex setups and multiple variables, it is typical to use a labora-
tory setting to conduct controlled tests. Analogously, our work proposes a paradigm for providing a
controlled laboratory environment. In this laboratory environment, both the neural networks and the
datasets are designed such that we know which features are relevant to the network output. Thus,
we obtain the ground truth attribution in this synthetic environment. We leverage this information
for the faithfulness test by measuring the alignment between the ground truth attribution and attri-
bution maps (Section 4). If an attribution method fails to pass the faithfulness test in the simulated
setup, its performance in more complex scenarios can also be suboptimal. A controlled environ-
ment can also be used to study the behavior of attribution methods under various circumstances by
adjusting or ablating variables to simulate different scenarios. With the help of proposed synthetic
environments, we examine a broad range of attribution methods and investigate the impact of sev-
eral crucial factors, including the choice of baseline and superpixel segmentation (Section 5). We
make several observations from the test results and provide suggestions for improving their attribu-
tion performance. Furthermore, we show how the controlled environment can be used to analyze
perturbation-based faithfulness evaluation metrics (Section 6).

2 RELATED WORK

Since the advent of deep neural networks (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015;
He et al., 2016), understanding how these complex models make predictions came under the spot-
light (Simonyan et al., 2013). One approach is a simplified view of identifying features relevant to
a prediction, known as feature attribution. Initial efforts to perform feature attribution focused on
linear models (Simonyan et al., 2013; Bach et al., 2015) and backpropagation (Springenberg et al.,
2015; Zeiler & Fergus, 2014). Subsequently, more principled approaches emerged, such as back-
propagating output differences with respect to a reference input (Bach et al., 2015; Shrikumar et al.,
2017) and axiomatic methods (Sundararajan et al., 2017; Lundberg & Lee, 2017) inspired by the
Shapley value (Shapley, 1953). Meanwhile, intuitive approaches probing internal states (Selvaraju
et al., 2017; Schulz et al., 2020; Chattopadhay et al., 2018) and optimizing input masks were in-
troduced (Fong et al., 2019; Zhang et al., 2021). With these advancements, feature attribution
evaluation became a central question. Literature has proposed sanity checks testing whether attri-
bution changes upon randomizing the network’s weights (Adebayo et al., 2018) or if it is used on
a different output class (Sixt et al., 2020). It also evaluates faithfulness by analyzing networks’s
output when perturbing input features based on their relevance (Samek et al., 2016; Ancona et al.,
2018; Montavon et al., 2018; Hooker et al., 2019; Rong et al., 2022), or show theoretically if they
are aligned with axioms outlining desirable properties (Sundararajan et al., 2017; Lundberg & Lee,
2017). Each perspective reveals different issues and properties (see Appendix B). A recent trend in
evaluating faithfulness is designing datasets with known input-feature-output associations, enabling
comparison between attribution and ground truth. Arras et al. (2022) generates datasets of shapes,
Agarwal et al. (2023) generates synthetic graph datasets, and Zhou et al. (2022) proposes a dataset
modification procedure to incorporate ground truth. However, these works do not guarantee that
the network uses the intended ground truth associations. To address this problem, Khakzar et al.
(2022) proposes a post-hoc solution of inverse feature generation by generating input features using
the network. However, this direction faces challenges related to generated out-of-distribution input
features. It is still unclear which parts of the generated features contribute and how they contribute.

3 A CONTROLLABLE ENVIRONMENT TO EVALUATE FAITHFULNESS

We aim to establish an environment where we know exactly which input features are relevant to
the output of a model. This laboratory setup allows for testing the faithfulness of feature attribution
methods. Within this setup, we can identify which attributions are not aligned with the true attribu-
tion of the network and understand the sources of failures. Prior to detailing the setup, we underline
the necessity of designing both the data and the network to obtain the ground truth attribution.

2

Under review as a conference paper at ICLR 2024

Training Data Test Data 1 Test Data 2

Training ACC: 1 Test ACC: 0.5 Test ACC: 1

Figure 1: Designing data is not enough. Example on the neural networks not learning the desig-
nated ground truth features in the synthetic dataset. In this example, designed ground truth features
are both objects in the center and on the edge. Even though the model can achieve 100% accuracy,
our test shows that the model only learns to use designed features at the corner and ignore the central
ground truth features (more detail in Appendix A).

CNN AccumulatorCNN Color
Detector

Identity
MLP

500
300
400
200

Input

Derived
Ground Truth

Output

Synthetic Model

Synthetic
Environment Input

Ground
Truth

Synthetic Model

Faithfulness
Test

Attribution
Method Alignment

Attribution
Map

Figure 2: Designing data and model to set up a controllable environment for testing the faithfulness
of attribution methods and analyzing their properties. To obtain the ground truth attribution, we
explicitly design networks in tandem with inputs. The models follow conventional neural network
designs and have sufficient complexity to evaluate various properties of attribution methods. The
faithfulness test compares attribution results in the synthetic setting with the ground truth attribution.

To realize the controlled setup for evaluating explanations, one might design a dataset where the
associations between input features and output labels are known: e.g., a simple dataset of squares
and circles. Indeed, prior approaches (Arras et al., 2022; Zhou et al., 2022; Schuessler et al., 2021;
Agarwal et al., 2023) design synthetic datasets and train a model on them. The underlying assump-
tion is that a model learns the intended association in the dataset once the model achieves peak
performance on the synthetic dataset during the learning process. However, it is unclear whether the
trained network uses the entire square, straight lines, or just corners to identify the square. How can
we know if a network uses an entire square for decision-making in this setup? This phenomenon is
formulated as the Rashomom effect, which we rephrase in the following definition:

Rashomon effect (Breiman, 2001) (multiplicity of equally good models) There exist many models
under the same hypothesis class that can achieve equally good accuracy but use different informa-
tion for inference.

The Rashomon effect states that it is generally invalid to assume that a model with 100% accuracy on
a dataset D is ensured to learn the true labeling process. In reality, depending on the data distribution,
we can have trained models that learn to ignore some features relevant to the labels. For instance,
the model can learn other associations (e.g. use corners to classify a square). Specifically, neural
networks tend to be over-parametrized for their learning tasks, hence making it harder to learn
the true labeling function (Ba & Caruana, 2014; Frankle & Carbin, 2019). We provide empirical
evidence for trained neural networks ignoring designed features (detailed setting in Appendix A).
The result in Figure 1 shows a neural network, which achieves 100% training accuracy but learns to
solely use partial ground truth features designed for the dataset (objects at the edge). In a nutshell, a
model can learn to perform correctly on the dataset but is not guaranteed to learn the intended ground
truth features in the data. Furthermore, studies (Chen et al., 2019; Singh et al., 2020) demonstrate
that attributions for a learned model are very fragile to spurious correlations (e.g. objects at the edge
in above example). Therefore, we manually design and set the weights of the neural network.

By explicitly designing the data and the neural network according to specific properties, we know
the ground truth features (features used by the network) in our synthetic setting. The knowledge of
ground truth features can then be used for testing the faithfulness of feature attribution methods.

3

Under review as a conference paper at ICLR 2024

4 DESIGN OF DATA AND NEURAL NETWORK

We propose a modular setup where each component performs specific tasks and fulfills a purpose
relevant to evaluating attribution methods. For the designs to facilitate the evaluation of feature at-
tribution methods, we follow certain design principles. Firstly, the designs resemble real scenarios,
such as image classification using a convolutional neural network (Figure 2). Designs that are sim-
ilar to real-world cases can narrow the gap between real environments and synthetic environments.
Hence, we can leverage synthetic environments to identify issues within attribution methods that are
relevant to actual use cases. Furthermore, the design ensures that every ground-truth pixel is relevant
and equally relevant. Specifically, with designed input data comprised of ground-truth (foreground)
and baseline (background) pixels, designed neural networks have the following properties:

Proposition 1 (Sensitivity property) The addition/removal of any ground-truth pixel to/from the
background affects the output of the designed neural network.

Proposition 2 (Symmetry property) The addition/removal of any ground-truth pixel to/from the
background equally affects the output of the designed neural network.

The Sensitivity property implies that in this designed model and designed dataset setup, every ground
truth pixel is relevant to the neural network output. The symmetry property implies that every ground
truth pixel in the synthetic dataset should have equal relevance to the output of the synthetic neural
network. In fact, these properties are aligned with the sensitivity and symmetry feature attribution
axioms (Sundararajan & Najmi, 2020; Sundararajan et al., 2017; Lundberg & Lee, 2017), which
axiomatically define the relevance of a feature.

As our main environment, we design a setup that resembles real image classification tasks. The task
is to identify the dominant color (in terms of number of pixels) within an input image (see Figure 2).
The network first identifies predetermined colors and then counts the pixels for each. The designed
dataset comprises color images, each containing NC patches of uniquely colored foreground objects
and a distinct background color that is consistent across images, resulting in NC + 1 colors in
every image. The images are input to the model in RGB format. By treating each foreground color
as a class, we formulate a multi-class task to predict the dominant color in an image. The designed
classification model outputs softmax scores using logits for NC classes, where the logit of each class
corresponds to the sum of pixels of the respective color. The softmax operation on the neural network
output makes pixels of colors other than the target negatively contribute to the output of the target
color (after softmax). Thus the ground truth will have both positively and negatively contributing
features, enabling us to evaluate whether an attribution method is able to discern between positive
and negative contributions. The design of the model and the dataset also follow the properties in the
following propositions (Proposition 1 and 2). Hence, we can infer that all pixels within the NC

colored patches are relevant features.

Simulating “Unseen Data Effect” It is common that trained neural networks have unintended
outputs given inputs that are not from the training distribution. However, since the data and every
module (and weights) are set up manually, we know the expected behavior of the network for any
input. Specifically, the network exclusively counts the number of pixels of predetermined colors, and
other input values (colors) do not affect the network output. Through a neural operation (explained
below), we can upgrade the setup to simulate the behavior of trained neural networks given data not
previously seen by the model during training.

4.1 DESIGN DETAILS

The network is designed with an additional mode of behavior to imitate the behavior of trained neural
networks. The default mode is that the model only responds to the predetermined colors and does not
respond to other color values. The additional mode is that the model exhibits unpredictable behavior
when given inputs that are not predetermined within the design (hence simulating the “Unseen Data
Effect”). To realize these effects, the model has the following components. The first component is
a CNN color detector responsible for detecting target colors and simulating Unseen Data Effects.
Its output has dimensions of (NC + NR) × H × W , where NC denotes the number of target
classes and NR denotes the number of redundant channels (the redundant channels are the neural

4

Under review as a conference paper at ICLR 2024

0.4 0

0.3 0.1
0.3 0.5

0 0.1

I255(x)

I127(x)

I0(x)

1

1

1

127

x0 + x
1 + x2 - 2

1
255

0

x - 4

x - 5

x - 6

x0 - x1

x0 - x1

x0 - x1

1

0

0

1

0
15

Number Identification I5(5) Color Detection C(255, 127, 0)

1 0 0

1 1 0

1 0 0

0

0

0

0 0 1 1

1
1X

=
=

0.3 0.4

0.2 0.5

1 0

0.3 0.7
3 0

1 20.4 0.1

0.8 0.4

1.6 0

0.4 1.2

1X

Accumulation Using CNN With Non-uniform Weights

Figure 3: Computational graph illustration of our designed neural network modules. The left
example shows a neural network of identifying number 5, and the middle example shows a simple
color detector for detecting RGB value (255, 127, 0). In these two cases, blue boxes symbolize
neurons, with their respective computations indicated within the box. ReLU activation is applied
after each neuron, which is omitted in the figure. The right example demonstrates CNN operations to
achieve accumulation using non-uniform kernel weights. More details can be found in Appendix C.

implementation of “Unseen Data Effect” simulation). For the first NC channels, the ith output map
is the activation of the ith target color. We briefly explain how to implement color detection in
neural networks. Firstly, we design a neural structure that can identify a specific integer number.
For integer input, this structure can be defined as

IN (x) = ReLU(I>N−1(x)− I>N (x))

where I>i(x) = ReLU(ReLU(x− i)− ReLU(x− i− 1)).
(1)

Given a color to be detected that is in RGB format (R,G,B), where R, G, and B are integers within
[0, 255]. For a pixel with intensity (r, g, b), the color detection mechanism shown in Figure 3 is:

C(r, g, b) = ReLU(IR(r) + IG(g) + IB(b)− 2). (2)
Here, the number identification functions IR, IG, and IB each detect a predefined component of
an RGB value and are implemented as shown in Equation 1. Hence, we have C(r, g, b) = 1 for
r = R, g = G, b = B, and C(r, g, b) = 0 otherwise. The remaining NR redundant channels
activate on any other colors not among the NC + 1 colors defined in our dataset. Specifically,
if any pixel has a color that is neither a target color nor the background color, all NR redundant
channels will activate at the position of this pixel. The activation mechanism of redundant channels
is implemented as

R(r, g, b) = ReLU(−
∑

Ci(r, g, b) + 1). (3)

Consequently, R(r, g, b) = 1 if all Ci(r, g, b) = 0, and R(r, g, b) = 0 if Ci(r, g, b) = 1 for any
i. Following the color detector, we have a CNN module that accumulates activation of the first NC

channels respectively. We realize CNN accumulation in two settings, one with uniform weights in
CNN, the other setting with non-uniform CNN weights. Figure 3 illustrates the working princi-
ple of pixel accumulation using CNN with non-uniform weights (more details in Appendix C.2).
The remaining NR redundant channels have random connections to the input of this CNN module.
Therefore, the CNN accumulation module will have unexpected outputs if the input images contain
any color that is not seen in the training dataset. Lastly, we have an MLP that performs identity map-
ping, as the output of the CNN module already provides the logits of each target color for normal
inputs. The rationale behind adding an identity MLP module is to preserve the conventional model
architecture in image classification, where a model is typically designed as a CNN followed by an
MLP head.

Other synthetic settings We provide other synthetic settings in Appendix D. The incentive for
having additional synthetic settings is to cover more use cases, for instance, gray input images,
single output models, and other model weight design schemes (e.g., modulo computation).

5 FAITHFULNESS TEST OF ATTRIBUTION METHODS IN ATTRIBUTIONLAB

In this section, we deploy the designed environment to test the faithfulness of attribution meth-
ods and analyze their various aspects. To provide an intuition about the behavior of various at-
tribution methods, we visualize them in AttributionLab in Figure 4. This figure reveals a lack
of consensus among attribution methods. To quantitatively test the alignment between attribu-
tion maps and ground truth masks, we use precision, recall, and F1-score. However, since at-
tribution maps usually have continuous pixel values, we adjust the metrics accordingly. Given a

5

Under review as a conference paper at ICLR 2024

Figure 4: Attributions in AttributionLab. The leftmost image visualizes the sampled data. The
second leftmost image shows the ground truth attribution, where red and blue denote positive and
negative attribution to the target class, respectively. The sample is randomly selected. More samples
can be found in Appendix F

O
ver. Pre.

O
ver. Rec.

O
ver. F1

Pos. Pre.

Pos. Rec.

Neg. Pre.

Neg. Rec.

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
G

ro
u

n
d

T
ru

th

DeepSHAP

(a) (b)

O
ver. Pre.

O
ver. Rec.

O
ver. F1

Pos. Pre.

Pos. Rec.

Neg. Pre.

Neg. Rec.

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
G

ro
u

n
d

T
ru

th

LIME w/ Quickshift

LIME w/ Felzenszwalb

(c)

Image Quickshift Felzenszwalb

(d)

Figure 5: (a) Faithfulness test of DeepSHAP in AttributionLab. (b) Visual example of DeepSHAP in
synthetic and real-world environments. According to (a) and (b), DeepSHAP correctly highlights the
foreground pixels. Nevertheless, it assigns both positive and negative attribution to these pixels, even
when they have similar colors and close spatial locations. (c) Test result of LIME in AttributionLab.
(d) Visual example of LIME in synthetic and real-world environments. Results in (c) and (d) show
that the performance of LIME strongly depends on the segmentation result. [(Pos.) denotes the
faithfulness test on positive attribution, while (Neg.) stands for the test on negative attribution, and
Over. means the test on overall attribution neglecting the sign of attribution. Pre. and Rec. denote
precision and recall, respectively.]

set of features F indexed by the index set J = {j ∈ N+|1 ≤ j ≤ |F|}, let aj be the at-
tribution value of the jth feature, and gj be the ground truth value of the jth feature, the (soft)
precision is calculated as Pr(F) =

∑
j∈J |aj · gj |/

∑
j∈J |aj |, while the recall is defined as

Re(F) =
∑

j∈J |aj · gj |/
∑

j∈J |gj |. We normalize the attribution maps to [−1, 1] to constrain
the recall within the range of [0, 1], as the ground truth masks are binary. Given the precision and
recall, we can easily calculate the F1-score as well. In multi-class classification, signed ground truth
information is available, outlining the positive and negative contributions of features to the target
class. To test attribution methods with signed ground truth, we separately compute the precision,
recall, and F1-score of the positive and negative portions of the attribution maps using their cor-
responding ground truth masks. Furthermore, we test the entire attribution map using an unsigned
union of both positive and negative ground truth: the overall ground truth. This test takes into
consideration all features that contribute to decision-making, ignoring the sign of attribution values.

Furthermore, we employ these attribution methods on an ImageNet (Deng et al., 2009)-pretrained
VGG16 (Simonyan & Zisserman, 2015) and check if the test result can generalize to the real world.
Specifically, we present visual samples from various attribution methods to affirm their consistent
behaviors as observed in synthetic setups.

5.1 FAITHFULNESS TEST OF DEEPSHAP

DeepSHAP (Lundberg & Lee, 2017) is designed to identify both positively and negatively con-
tributing features. Hence, we test its faithfulness by comparing the positive attribution with positive
ground truth features (GT), negative attribution with negative GT, and overall attribution with over-
all GT by only considering the magnitude of attribution values. Figure 5a shows the test result of
DeepSHAP in the synthetic environment. The overall precision, recall, and F1-score reveal that
DeepSHAP performs well in locating the contributing features when we disregard the sign of at-

6

Under review as a conference paper at ICLR 2024

O
ver. Pre.

O
ver. Rec.

O
ver. F1

Pos. Pre.

Pos. Rec.

Neg. Pre.

Neg. Rec.

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
G

ro
u

n
d

T
ru

th

IG

IG*

(a) IG vs. IG∗

O
ver. Pre.

O
ver. Rec.

O
ver. F1

Pos. Pre.

Pos. Rec.

Neg. Pre.

Neg. Rec.

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
G

ro
u

n
d

T
ru

th

Occlusion

Occlusion*

(b) Occlusion vs. Occlusion∗

Im
ag

e
IG IG

*

O
cc

lu
si

on

O
cc

lu
si

on
*

(c) Synthetic example

Im
ag

e
IG

1

IG
2

O
cc

lu
si

on
1

O
cc

lu
si

on
2

(d) Real example

Figure 6: IG and Occlusion with diverse baselines. (a-b) IG∗ and Occlusion∗ employing the
ground truth baseline display substantial enhancement in faithfulness test. (c) Comparative visu-
alization of attribution maps, created with and without the utilization of the ground truth baseline.
(d) Attribution maps generated on ImageNet. The superscripts signify the use of distinct baselines.
Notably, the attributions highlight different foreground objects when employing different baselines.

tribution. However, the low precision and recall of positive and negative attribution suggest that
DeepSHAP encounters difficulty in discerning whether a feature contributes positively or negatively
to the target class. We further corroborated this issue by the visual results in Figure 5b, which show
the phenomenon in both synthetic and real-world scenarios. In the ImageNet example shown in the
image, we observe both positive and negative attribution on the foreground object, especially on
some pixels that are closely located and have similar colors. However, most of these highlighted
pixels are likely to be relevant to the target class of the image (though we can’t ascertain which
pixels the model is using). DeepSHAP is shown not to conform with Shapley value axioms (Sun-
dararajan & Najmi, 2020). However, this claim does not tell us how faithful DeepSHAP is. Our
results suggest that DeepSHAP can be used to identify all relevant features for the model without
considering the sign of attribution values.

5.2 FAITHFULNESS TEST OF LIME

LIME (Ribeiro et al., 2016) requires the input image to be segmented into superpixels, it then treats
all pixels within a superpixel as a single feature. Consequently, the resulting attribution map can
be influenced by the segmentation step. To investigate the impact of segmentation, we utilize both
Quickshift (Vedaldi & Soatto, 2008) and Felzenszwalb (Felzenszwalb & Huttenlocher, 2004) seg-
mentation algorithms and test the faithfulness of the resulting attributions. Figure 5c reveals notice-
able difference between the outcomes derived from these two segmentation techniques. Figure 5d
provides additional visual evidence of these differences in real-world scenarios. In LIME, the attri-
bution of a superpixel conveys the aggregate predictive influence of that segment. This “averaged”
attribution is then broadcasted across all pixels within the superpixel. A more fine-grained attribu-
tion map requires a finer segmentation process. Hence, LIME requires prior knowledge regarding
the ground truth features, that is, which pixels belong together and which ones are independent.

5.3 FAITHFULNESS TEST OF INTEGRATED GRADIENTS (IG), AND OCCLUSION

Previous research (Sturmfels et al., 2020) has revealed that IG (Sundararajan et al., 2017) is sensi-
tive to the choice of baseline. While testing IG with a proper baseline remains a challenge in the
real world, our controlled experimental setup provides the unique advantage of access to the true
baseline. We introduce this baseline-accurate variant of IG as IG∗, which uses the true baseline
corresponding to background color (20, 20, 20) in synthetic images. Despite that the visual differ-
ence between the true baseline and the widely used baseline (0, 0, 0) is small, Figure 6a reveals a
significant enhancement in the precision of IG∗. We see that sensitivity to baseline is not an ignor-
able issue. Analogous to IG∗, we introduce Occlusion∗ that employs the true baseline. Figure 6b
also demonstrates a notably improved precision of Occlusion∗. Figure 6c and Figure 6d further
illustrate the sensitivity of these methods to the choice of baseline. Based on these empirical find-

7

Under review as a conference paper at ICLR 2024

Pos. Pre.

Pos. Rec.

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
G

ro
u

n
d

T
ru

th

GradCAM

ExPerturb

GuidedBP

IBA

(a) Faithfulness test results (b) Visual examples in synthetic setting and ImageNet

Figure 7: Faithfulness test and visual examples for GradCAM, GuidedBP, ExPerturb, and IBA.
Some effectively identify positively contributing features, but none successfully discern negatively
contributing features, inherent to their design limitations. GradCAM and IBA exhibit blurriness
upon resizing, and the performance of ExPerturb is markedly influenced by the perturbation area.

ings, we underscore that one potential direction for enhancing these methods is the determination of
an accurate baseline, even finding the baseline for each image separately (e.g., through generative
models). Additionally, the performance of Occlusion∗ still remains less than optimal. One reason is
that Occlusion’s efficacy is influenced by the size of the sliding window used for pixel perturbation.
Determining an appropriate perturbation area requires prior knowledge of both the dataset and the
model structure, which is sometimes challenging to acquire in real-world applications.

5.4 FAITHFULNESS TEST OF GRADCAM, GUIDEDBP, EXPERTURB, IBA

GradCAM (Selvaraju et al., 2017) and GuidedBP (Springenberg et al., 2015) demonstrate high re-
calls on identifying positively contributing pixels. However, they do not identify pixels that nega-
tively contribute to the target class, as evidenced by Figure 4 and Figure 7. This is because these
methods typically initiate backpropagation from the logits before the softmax. The negatively con-
tributing pixels do not influence backpropagation from the target class logit. Additionally, Grad-
CAM resizes the attribution map to match the dimensions of the input. This resizing operation
introduces blurriness (Figure 7b), which consequently diminishes its precision. As depicted in Fig-
ure 7a, ExPerturb (Fong et al., 2019) displays higher recall compared to its precision. This reduced
precision can be attributed to the improper choice of the perturbation area constraint. In addition,
Figure 4 and Figure 7b show that IBA (Schulz et al., 2020) can locate predictive features. However,
the sigmoid used in the information bottleneck leads to only non-negative attribution.

6 FAITHFULNESS OF EVALUATION METRICS

There is another perspective through which faithfulness can be evaluated. We can perturb pixels in
the image based on attribution values and observe how the output of the neural network changes.
If the output change is aligned with the attribution values, then the attribution is considered faithful
from this perspective. For instance, Insertion and Deletion (Samek et al., 2016) progressively insert
or remove pixels, starting from the pixel with the highest attribution to the lowest attribution. In con-
trast to perturbing pixels according to a specific order, Sensitivity-N (Ancona et al., 2018) randomly
selects N pixels to perturb, after that measuring the correlation between the change in prediction
and the sum of attribution of the perturbed pixels.

However, there is a fundamental issue lurking within this perspective on faithfulness. A significant
output change can result from the network not having seen the new input resulting from perturbation
rather than the perturbed pixel being important. In the controlled environment of AttributionLab,
we can observe how sensitive these evaluation metrics are to Unseen Data Effect. That is when the
pixels are perturbed during evaluation to another value for which the network is not programmed,
a scenario that happens easily in practice. We conduct experiments using these metrics on two At-
tributionLab setups to assess how this phenomenon (Unseen Data Effect) affects their performance.
Figure 8 shows that the order of feature attribution methods in terms of performance changes be-

8

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8
Insertion Ratio

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d

P
ro

b
ab

ili
ty

GradCAM

GuidedBP

LIME

ExPerturb

Occlusion

DeepSHAP

IG

IBA

(a)

0.0 0.2 0.4 0.6 0.8
Insertion Ratio

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d

P
ro

b
ab

ili
ty

GradCAM

GuidedBP

LIME

ExPerturb

Occlusion

DeepSHAP

IG

IBA

(b)

0 10k 20k 30k 40k 50k
N

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

GradCAM

GuidedBP

LIME

ExPerturb

Occlusion

DeepSHAP

IG

IBA

(c)

0 10k 20k 30k 40k 50k
N

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

GradCAM

GuidedBP

LIME

ExPerturb

Occlusion

DeepSHAP

IG

IBA

(d)

Figure 8: Sensitivity of perturbation-based evaluation metrics to Unseen Data Effect. We test
these metrics on the two AttributionLab setups to observe the effect of this phenomenon on these
metrics. (a) and (b) show the insertion metric results with and without Unseen Data Effect, respec-
tively. (c) and (d) show the sensitivity-N metric results with and without the Unseen Data Effect. (in
all metrics, a higher curve is better.) It is observed that with the presence of the Unseen Data Effect,
the order of attribution methods changes in these metrics.

Table 1: Spearman’s rank correlation. The rankings of attribution methods are measured on
perturbation-based metrics and the designed ground truth, respectively. In the presence of the Un-
seen Data Effect, these metrics show significant deviation from ground-truth-based evaluations.

Model has ”Unseen Data Effect” Insertion Deletion Sensitivity-N

Yes 0.02 0.47 0.65

No 0.42 0.61 0.81

tween the two scenarios for both insertion and Sensitivity-N metrics. To confirm this observation,
we compare the performance rankings of attribution methods in these metrics with performance
rankings established from the ground truth. Therefore, we first rank the attribution methods using
the F1-score derived from positive ground truth attribution. Subsequently, we compute Spearman’s
rank correlation between the rankings, as demonstrated in Table 1. Additional experimental results
are shown in Appendix F. The first row of Table 1 reveals that, in the presence of Unseen Data Ef-
fect, the metrics display substantially less consistency with the ground-truth-based evaluation. This
inconsistency arises because Unseen Data Effect can result in unexpected predictions and inaccu-
rate estimation of changes in model output. Hence, using model output scores as metrics may not
accurately report the performance of attribution methods in the presence of Unseen Data Effect.

7 CONCLUSION AND FUTURE WORK

In this work, we propose a novel, controlled laboratory setup for testing feature attribution expla-
nations. The crux of our approach is the implementation of a paired design, i.e., manually pro-
gramming the neural network and designing the dataset. We test feature attribution explanations
by simulating various conditions such as inappropriate baseline values for attribution methods and
different segmentation masks as input of attribution methods, demonstrating their significant impact
on attribution performance. We observe that the sensitivity to the baseline of Shapley value methods
(SHAP and Integrated gradients) due to Unseen Data Effect is not an ignorable issue. We show that
the Unseen Data Effect problem inherent in perturbation-based evaluations can have negative effects
on evaluation findings. Our proposed synthetic environment can empower future research by iden-
tifying potential failure modes of attribution methods in a trustable, controlled environment. This
could help researchers address these issues before deploying these methods in real-world settings,
thus contributing to the development of more reliable and effective attribution methods. There are
several potentials for future exploration. The community could develop additional settings to ad-
dress a broader spectrum of potential issues in attribution methods. In addition, constructing more
complex synthetic models and datasets would better approximate real-world scenarios. Further-
more, expanding this methodological approach to other data modalities and architectural designs
could provide a more comprehensive understanding of feature attribution explanation methods.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.
Sanity checks for saliency maps. Advances in neural information processing systems, 31, 2018.

Chirag Agarwal, Owen Queen, Himabindu Lakkaraju, and Marinka Zitnik. Evaluating explainability
for graph neural networks. Scientific Data, 10(1):144, 2023.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understanding
of gradient-based attribution methods for deep neural networks. In International Conference on
Learning Representations, 2018.

Leila Arras, Ahmed Osman, and Wojciech Samek. Clevr-xai: A benchmark dataset for the ground
truth evaluation of neural network explanations. Information Fusion, 81:14–40, 2022. ISSN
1566-2535. doi: https://doi.org/10.1016/j.inffus.2021.11.008.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? Advances in neural information
processing systems, 27, 2014.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7), 2015.

Leo Breiman. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the
author). Statistical Science, 16(3):199 – 231, 2001. doi: 10.1214/ss/1009213726. URL https:
//doi.org/10.1214/ss/1009213726.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018
IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847, 2018. doi:
10.1109/WACV.2018.00097.

Jiefeng Chen, Xi Wu, Vaibhav Rastogi, Yingyu Liang, and Somesh Jha. Robust attribution regular-
ization. Advances in Neural Information Processing Systems, 32, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation. Inter-
national journal of computer vision, 59:167–181, 2004.

Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Understanding deep networks via extremal per-
turbations and smooth masks. In Proceedings of the IEEE/CVF international conference on com-
puter vision, pp. 2950–2958, 2019.

10

https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1214/ss/1009213726

Under review as a conference paper at ICLR 2024

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJl-b3RcF7.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretabil-
ity methods in deep neural networks. Advances in neural information processing systems, 32,
2019.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. Advances in neural information
processing systems, 32, 2019.

Ashkan Khakzar, Soroosh Baselizadeh, Saurabh Khanduja, Christian Rupprecht, Seong Tae Kim,
and Nassir Navab. Neural response interpretation through the lens of critical pathways. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13528–
13538, 2021.

Ashkan Khakzar, Pedram Khorsandi, Rozhin Nobahari, and Nassir Navab. Do explanations explain?
model knows best. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10244–10253, 2022.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu
Lakkaraju. The disagreement problem in explainable machine learning: A practitioner’s perspec-
tive, 2022.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems, volume 25,
2012.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and un-
derstanding deep neural networks. Digital signal processing, 73:1–15, 2018.

OpenAI. Gpt-4 technical report, 2023.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Yao Rong, Tobias Leemann, Vadim Borisov, Gjergji Kasneci, and Enkelejda Kasneci. A consistent
and efficient evaluation strategy for attribution methods. In International Conference on Machine
Learning, pp. 18770–18795. PMLR, 2022.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert
Müller. Evaluating the visualization of what a deep neural network has learned. IEEE transactions
on neural networks and learning systems, 28(11):2660–2673, 2016.

Martin Schuessler, Philipp Weiß, and Leon Sixt. Two4two: Evaluating interpretable machine learn-
ing - a synthetic dataset for controlled experiments, 2021.

11

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7

Under review as a conference paper at ICLR 2024

Karl Schulz, Leon Sixt, Federico Tombari, and Tim Landgraf. Restricting the flow: Information
bottlenecks for attribution. In International Conference on Learning Representations, 2020.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626, 2017.
doi: 10.1109/ICCV.2017.74.

Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):307–
317, 1953.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, pp. 3145–
3153. PMLR, 2017.

K Simonyan and A Zisserman. Very deep convolutional networks for large-scale image recognition.
In 3rd International Conference on Learning Representations (ICLR 2015), pp. 1–14, 2015.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
sualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Mayank Singh, Nupur Kumari, Puneet Mangla, Abhishek Sinha, Vineeth N Balasubramanian, and
Balaji Krishnamurthy. Attributional robustness training using input-gradient spatial alignment. In
European Conference on Computer Vision, pp. 515–533. Springer, 2020.

Leon Sixt, Maximilian Granz, and Tim Landgraf. When explanations lie: Why many modified bp
attributions fail. In International Conference on Machine Learning, pp. 9046–9057. PMLR, 2020.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise, 2017.

J Springenberg, Alexey Dosovitskiy, Thomas Brox, and M Riedmiller. Striving for simplicity: The
all convolutional net. In ICLR (workshop track), 2015.

Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visualizing the impact of feature attribution
baselines. Distill, 2020. doi: 10.23915/distill.00022. https://distill.pub/2020/attribution-baselines.

Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. 37th
International Conference on Machine Learning, ICML 2020, 2020.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking. In Computer
Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October
12-18, 2008, Proceedings, Part IV 10, pp. 705–718. Springer, 2008.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part I 13, pp. 818–833. Springer, 2014.

Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff.
Top-down neural attention by excitation backprop. International Journal of Computer Vision, 126
(10):1084–1102, 2018.

12

Under review as a conference paper at ICLR 2024

Yang Zhang, Ashkan Khakzar, Yawei Li, Azade Farshad, Seong Tae Kim, and Nassir Navab. Fine-
grained neural network explanation by identifying input features with predictive information. Ad-
vances in Neural Information Processing Systems, 34:20040–20051, 2021.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In CVPR, pp. 2921–2929, 2016.

Yilun Zhou, Serena Booth, Marco Tulio Ribeiro, and Julie Shah. Do feature attribution methods
correctly attribute features? In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 9623–9633, 2022.

13

Under review as a conference paper at ICLR 2024

Appendix

CONTENTS

A Experiment details for Figure 1 15

B Extended related work 15

B.1 Feature attribution . 15

B.2 Feature attribution evaluation . 16

C Implementation details of synthetic models 17

C.1 Neural number checker . 17

C.2 CNN accumulator . 17

C.3 Neural modulo module . 19

C.4 Neural color detector module . 20

D Implementation of Single-color-modulo Setting 21

E Experiments in the single-color-modulo setting 22

E.1 Synthetic dataset generation . 22

E.2 Hyper-parameters of attribution methods . 22

E.3 Ground-truth-based evaluation . 23

E.4 Insertion/Deletion . 25

E.5 Sensitivity-N . 25

F Experiments in the multi-color-sum setting 26

F.1 Synthetic dataset generation . 26

F.2 Hyper-parameters of attribution methods . 27

F.3 Ground-truth-based evaluation . 28

F.4 Insertion/Deletion . 28

F.5 Sensitivity-N . 29

G Experiments in the multi-color-sum setting (without Unseen Data Effect) 30

G.1 Ground-truth-based evaluation . 31

G.2 Insertion/Deletion . 31

G.3 Sensitivity-N . 32

H Broader impacts 32

I Additional study on segmentation methods of LIME 32

14

Under review as a conference paper at ICLR 2024

A EXPERIMENT DETAILS FOR FIGURE 1

The experiment result is shown in Figure 1. In this experiment, we design a synthetic dataset that
comprises two classes. In each class, we only construct one image as the only data point. Each
image has two visual components in the image. The class 0 image has one rectangular object in
the center and another smaller rectangular object at the top left edge, while the class 1 image has
one round object in the center and another round object at the lower right edge. We consider two
components as the ground truth of the task. After training on the data, the model can achieve 100%
accuracy. Then, we split every training image into two separate images, where one image contains
the center object, and the other image contains the object at the edge. The split results are Test
Data 1 and Test Data 2 in Figure 1. By using Test Data 1 and Test Data 2 as test images for the
trained model, we observe that the model still achieves 100% accuracy for Test Data 2, but has 50%
accuracy (which is random guess in 2-class case) for Test Data 1. Hence, we confirm that the trained
model only learned to rely on edge objects for decision-making and completely ignored the centered
object.

B EXTENDED RELATED WORK

B.1 FEATURE ATTRIBUTION

This section provides a taxonomy of several feature attribution methods.

B.1.1 GRADIENT-BASED

The early methods relied on a linear approximation of the neural network around the input point.
Simonyan et al. (2013) assumed the model to be linear (inspired by the piecewise linearity of ReLU)
and proposed using the gradient of output with respect to input as a saliency map. This work coined
the term “saliency map” for attribution, and many following works used the same nomenclature. The
gradient of neural networks with respect to images looked “noisy”. Therefore, there were attempts
to remove the ”noise” from the images. One of these methods averages the gradient over a neighbor-
hood around the input to smooth out the gradient. The SmoothGrad Smilkov et al. (2017) method
adds Gaussian noise to the image and generates multiple samples (in a Gaussian neighborhood of
the input). Then computes the gradient and averages it. Other works proposed backpropagating
only positive values to remove the ”noise”. Deconvolution Zeiler & Fergus (2014) and subsequently
Guided Backpropagation Springenberg et al. (2015) and Excitation BackProp Zhang et al. (2018)
work based on backpropagating positive values.

B.1.2 LATENT FEATURES

The most famous work from this category is CAM/GradCAM Selvaraju et al. (2017); Zhou et al.
(2016). The method does a weighted average of activation values of the final convolutional layer.
The weights are selected based on their gradient values. Another work Khakzar et al. (2021) com-
putes the input attribution based on the contribution of neurons to the output. This is achieved by
computing the gradient of critical pathways. Another method restricts the flow of information in the
latent space Schulz et al. (2020) and proposes information bottleneck attribution (IBA).

B.1.3 BACKPROPAGATION OF RELEVANCE

The most important works within this category are LRP Bach et al. (2015), and DeepLift Shrikumar
et al. (2017). The LRP method provides a general framework for backpropagating the relevance to
input while satisfying a conservation property (similar to Kirchoff’s law of electricity). The rele-
vance entering a neuron equals the relevance coming out. There are several rules of backpropagation
within the LRP framework, each with its own properties. DeepLift proposes a chain rule for propa-
gating output differences to the input. An improved version of DeepLift is the DeepSHAP Lundberg
& Lee (2017) method, which we use in the experiments.

15

Under review as a conference paper at ICLR 2024

B.1.4 PERTURBATION-BASED METHODS

Another category of methods performs attribution by perturbing the input. The most straightforward
way is to occlude/mask pixels (or patches of pixels) within the image and measure the output dif-
ference Zeiler & Fergus (2014); Ancona et al. (2018). The output difference reflects the importance
of the removed feature. It is also possible to search for a mask on the input image. For instance,
searching for the smallest region within the image which preserves the output Fong et al. (2019).

B.1.5 SHAPLEY VALUE

The Shapley value Shapley (1953) itself is based on the occlusion of features. It is a notion from
cooperative game theory for assigning the contribution of players to a game. We can consider the
pixels within the image as players and the output of the network as the score of the game. The
Shapley value is a unique solution that satisfies the symmetry, dummy, linearity, and completeness
axioms altogether. It is of exponential complexity and, therefore, almost impossible to compute
for large images and neural networks. Lundberg & Lee (2017) first proposed using the Shapley
value (an approximation) for feature attribution in neural networks by introducing the SHAP and
DeepSHAP (for neural networks) methods. Another method based on the Shapley value is the inte-
grated gradients Sundararajan et al. (2017), which is the Aumann-Shapley value in the continuous
domain Sundararajan & Najmi (2020).

B.2 FEATURE ATTRIBUTION EVALUATION

There have been many efforts to evaluate feature attribution methods. Each of these methods evalu-
ates the attribution through a different lens and reveals unique insights.

B.2.1 ALIGNMENT WITH HUMAN INTUITION

Early feature attribution works Simonyan et al. (2013); Zeiler & Fergus (2014); Zhang et al. (2018);
Bach et al. (2015) evaluated different saliency methods based on how they are aligned with what
we humans think is salient. For instance, if a saliency method highlights a certain object, we might
conclude that the network uses this object. However, the network may be using different features
than ours. In this case, we wrongly consider the attribution method as correct (known as confirmation
bias). Or in another case, the network might be using the object, but the saliency method might
highlight something else. How would we know that the saliency is wrong? Several methods, such
as the pointing game Zhang et al. (2018), made this visual evaluation systematic by comparing
the saliency values with ground truth bounding box annotations. Even though human evaluation
is flawed (e.g., due to confirmation bias), it is still useful for debugging and better understanding
attributions.

B.2.2 SANITY CHECKS

Another group of metrics evaluates the sanity of methods. They check if the methods possess spe-
cific properties that attribution methods must have. Adebayo et al. (2018) checks what happens to
attributions when we replace the network weights with random values. It is surprisingly observed
that some methods generate the same saliency values when the network is randomized. Another
work Sixt et al. (2020) checks how the attribution method changes when it is applied to a different
output. In the presence of multiple classes within the image, the attribution method is expected to
point to the relevant features of the explained class.

B.2.3 EVALUATION BY PERTURBATION

The intuition behind these methods is aligned with the perturbation-based feature attribution meth-
ods. If a feature is contributing to the output, its removal should affect the output. And the more
the effect, the more important the feature. Based on this intuition, Samek et al. (2016) proposed
perturbing/removing pixels based on their attribution score and plotting their effect as we keep re-
moving them. However, one issue with this approach is that the output score might be due to
out-of-distribution values and not the relevance of the feature. Another method Hooker et al. (2019)
tries to remedy this issue by training the neural network from scratch on the perturbed dataset. In

16

Under review as a conference paper at ICLR 2024

other words, a certain percentage of each image within the dataset is perturbed based on attribution
scores, and the network is trained on this new dataset. The method then computes the accuracies in
different perturbation percentages.

B.2.4 AXIOMATIC

Several axioms provide a framework to formalize the contribution of a feature Sundararajan & Najmi
(2020); Lundberg & Lee (2017); Sundararajan et al. (2017). For instance, if the perturbation of a
feature does not affect the output in any combination of features, then it is said to be a dummy
feature. The dummy axiom demands that an attribution method should assign zero relevance to a
dummy feature. Several other axioms reflect properties that we want the attributions to conform to.
A combination of four properties, dummy, symmetry, linearity, and completeness, is only satisfied
by the Shapley value Shapley (1953); Sundararajan et al. (2017). However, the Shapely value is
not computable for large images and networks. Moreover, the proper reference value for removal
must be chosen for computing the Shapley value. The complexity and the choice of reference values
remain open problems. Moreover, for the existing methods, it is complex to theoretically show
whether they conform to axioms as the methods are complex to analyze on neural networks. It is
also shown that several axiomatic methods break the axioms in practical applications Sundararajan
& Najmi (2020).

B.2.5 ALIGNMENT WITH SYNTHETIC GROUND-TRUTH

An intriguing and promising solution is proposing synthetic settings to evaluate explanations. Sev-
eral approaches propose generating datasets with known correlations between features and labels
Arras et al. (2022); Agarwal et al. (2023); Zhou et al. (2022). However, there is no guarantee that
the network will use the same features to predict the outputs. Therefore, we will not have a ground
truth of which feature is relevant to the network. This category is the focus of this work. For further
information, please refer to the main text.

C IMPLEMENTATION DETAILS OF SYNTHETIC MODELS

In this section, we explain neural modules used in our synthetic model in finer detail.

C.1 NEURAL NUMBER CHECKER

We show the design of a neural number checker, which is used in other synthetic neural networks.
The number checker is designed to take integer numbers as input. Furthermore, this module should
only activate on one predefined number by returning 1, otherwise, it should always return 0. To
achieve number checking in neural networks, we first design a network that examines whether a
number is greater than a predefined number. For this task, we design

I>i(x) = ReLU(ReLU(x− i)− ReLU(x− i− 1)). (4)

Figure 9 shows an example of this network. I>i(x) returns 1 if x is greater than i, and returns 0
otherwise.

With the help of I>i(x), we can further construct a neural network that performs number identi-
fication. For this purpose, we constrain the input to this network to be integers. Then, number
identification can be achieved by performing

IN (x) = ReLU(I>N−1(x)− I>N (x))). (5)

The logic behind this design is that if x is larger than both N − 1 and N , then the output is 0.
However, if x is larger than N − 1, but not larger than N N , IN (x) returns 1. For natural number
inputs, only N suffice the condition for outputting 1. Figure 10 shows an example network I5(x).

C.2 CNN ACCUMULATOR

In this section, we discuss how to construct CNNs that can perform pixel number accumulation. We
design two types of CNNs for the accumulation task. One type of CNNs is initialized with uniform

17

Under review as a conference paper at ICLR 2024

I>i(i) = 0

x - i

x - i - 1

0

0

i 0

I>i(i + 1) = 1

x - i

x - i - 1

1

0

i + 1 1

I>i(i + 2) = 1

x - i

x - i - 1

2

1

i + 2 1

Figure 9: Example computational graph of I>i(x). Blue boxes symbolize neurons, with their re-
spective computations indicated within the box. ReLU activation is applied after each neuron, which
is omitted in the figure. We can set parameters depending on the i value. We show three examples
in the figure to show that this neural network structure activates by returning 1 when the input is
greater than i, otherwise, it outputs 0.

Number Identification I5(5)

x - 4

x - 5

x - 6

x0 - x1

x0 - x1

x0 - x1

1

0

0

1

0
15

x - 4

x - 5

x - 6

x0 - x1

x0 - x1

x0 - x1

0

0

0

0

0
04

x - 4

x - 5

x - 6

x0 - x1

x0 - x1

x0 - x1

2

1

0

1

1
06

Number Identification I5(4) Number Identification I5(6)

Figure 10: Example computational graph of I5(5). Blue boxes symbolize neurons, with their respec-
tive computations indicated within the box. ReLU activation is applied after each neuron, which is
omitted in the figure. We show three cases where the input is 4, 5, and 6. For natural numbers as
inputs, this network only returns 1 when the input is exactly 5. We can alter parameters to enable
the identification of any natural numbers.

weights, while the other type can have non-uniform weights. We design these two types to show
that our design can have both simple and complex CNN structures.

Uniform weight initialization: Realizing a CNN for pixel accumulation is intuitively simple. For a
single-channel input, one can have a CNN module with multiple layers. Where each layer has only
one kernel that sums up some neighboring pixels of the input. To realize this, the CNN kernel can
have uniform weights of 1, and have a stride size equal to its kernel size. By applying multiple such
CNN layers, we can sum up all pixels in the input. Figure 11 shows an example of a uniform CNN
layer for accumulating pixels.

Non-uniform weight initialization: The above example shows the construction of a CNN accumu-
lator using uniform weights. However, due to random initialization and randomness in training, it
is unlikely that a trained model has uniform weights. Hence, we realize another version of CNN
accumulator that uses non-uniform weights. For a non-uniform CNN accumulator, we cannot use
a single CNN layer to perform the number accumulation task, as only a uniform CNN layer can
carry this task. Instead, we develop a CNN accumulation block using two CNN layers. The first
CNN layer in this block has N kernels with kernel weight wij for the jth index of the ith kernel.
Thus, after applying this layer, we will have N feature maps. The second CNN layer has a 1 × 1
CNN kernel, where its weight is defined as mi for the ith index. If the weight of these two layers
satisfies ∀j,

∑
i wij · mi = 1, then the output still performs accumulation. Hence, we can initial-

ize the accumulation block in a pseudo-random way, where we randomly set some of the weights,
then calculate other weights that enable the CNN block to conduct accumulation. An example of
this block is shown in Figure 12. In Figure 12, we simplify the design by using uniform weights
for the second CNN layer. By subsequently connecting accumulation blocks, we can perform the
accumulation task with a CNN module that has non-uniform kernel weights.

18

Under review as a conference paper at ICLR 2024

1 0 0
1 1 0
1 0 0

1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
0 0 0

0 0 1
0 1 1
0 0 0

1 0 0
1 0 0
0 0 0

4 0
3 2

1 1
1 1

9X X= =

Figure 11: Example computation for an uniform CNN accumulator. ReLU activation is applied after
each neuron, which is omitted in the figure. Given a single-channel input of the size 6 × 6, we can
subsequently apply a uniform 3 × 3 CNN kernel and a 2 × 2 CNN kernel. The 1 × 1 output is the
sum of input values. This example only has two CNN layers. For larger input sizes, we can design
more CNN layers and kernels to perform accumulation.

1 0 0
1 1 0
1 0 0

0.4 0.1 0.7
0.8 0.4 0
0.3 0.3 0.50 0 0

0 0 0
0 0 0

0 0 1
0 1 1
0 0 0

1 0 0
1 0 0
0 0 0

1.9 0
1.1 1.2 1

1
1

X X= =

0.3 0.4 0.1
0.2 0.5 1
0.2 0.1 0.4

0.3 0.5 0.2
0 0.1 0
0.5 0.6 0.1

1.2 0
1.6 0.50.9 0

0.3 0.3

4 0
3 2

Figure 12: Example computation for a non-uniform CNN accumulation block. ReLU activation is
applied after each neuron, which is omitted in the figure. The block consists of two CNN layers. In
this example, the first layer has 3 3 × 3 CNN kernels, the second layer has one 1 × 1 CNN kernel.
One accumulation block can sum up neighboring pixels within a fixed range without having uniform
weights.

C.3 NEURAL MODULO MODULE

In this section, we provide an in-depth explanation of the designed model for modulo calculation.
We explain the functionality of each MLP layer. The first layer of the module is

f1(x) = ReLU(x, x−N, x− 2N, ..., x− ⌈U
N

⌉N), (6)

where U represents the maximal input value that the module can process, which can be scaled
according to available computation resources. The incentive of applying f1(x) is to get x mod N ,
N + x mod N , 2N + x mod N , ..., until x. The calculation of f1(x) is valid for any natural
number input that is not larger than N . The second layer is defined as

f2(x⃗) = ReLU(x0 − x1, x1 − x2, ...). (7)

19

Under review as a conference paper at ICLR 2024

Function f2(x⃗) performs differentiation between subsequent outputs of f1(x). For all non-zero
outputs of f1(x), their difference is always N . Furthermore, the smallest non-zero output is always
x mod N . Thus, we would have f2(f1(x)) = (N,N, ..., x mod N, 0, ..., 0) after propagating
through the first two layers. At this stage, our output only comprises three possible numbers: N , x
mod N , and 0. Next, we eliminate the number N in the output vector. This is accomplished by first
checking if an output is N , then eliminating N , which is done by applying

f3(x⃗) = ReLU(x0, IN (x0), x1, IN (x1), ...), (8)

and
f4(x⃗) = ReLU(x0 −Nx1, x2 −Nx3, ...). (9)

f3(x⃗) is responsible for checking all outputs after f2(x⃗), if an output is N , it appends a flag number
1 after this output. Otherwise, if an output is not N , which is either x mod N or 0, it appends a
flag number 0. f4(x⃗) Subtracts each output of f2(x⃗) with N times its flag number obtained from
f3(x⃗). Hence, we have f4(f3(f2(f1(x)))) = (0, 0, ..., x mod N, 0, ...). Lastly, we have one layer

f5(x⃗) = ReLU(
∑
i=0

xi), (10)

to accumulate the output vector. Therefore, as shown in Figure 13, we can obtain the modulo
calculation with

fmodulo,N (x) = f5(f4(f3(f2(f1(x))))) = x mod N. (11)

x

x - 5

x - 10

x - 100

......

x0 - x1

......

......

......

x

I5(x)

x

I5(x)

x0 - 5x1

SUM8

8

3

0

0

x0 - x1

5

3

0

......

......

5

1

3

0

0 0

3

0

3

......

......

x0 - 5x1

f1 f2 f3 f4 f5

Figure 13: Example computational graph of fmodulo,5(8). Blue boxes symbolize neurons, with their
respective computations indicated within the box. ReLU activation is applied after each neuron,
which is omitted in the figure.

C.4 NEURAL COLOR DETECTOR MODULE

This section describes how we design a CNN part that can detect certain colors. Since we want
to check every pixel in an image, we design CNN modules with 1 × 1 kernels for color detection.
For this module, we assume the input image is in RGB format, and the output of this module has
dimensions of N × H × W , where N denotes the number of colors we want to detect, H and W
are the height and the width of the input image. Each of the N output channels is responsible for
the detection of a predefined target color. Specifically, if a pixel in the input corresponds to the ith

target color the model aims to detect, then the neuron at the same position in the ith channel of the
output should be 1. Otherwise, the corresponding output neuron should be 0. To accomplish this,
the module should be able to check all three input channels and compare if the RGB values match
the color to be detected. As discussed in Section 4, we leverage

C(r, g, b) = ReLU(IR(r) + IG(g) + IB(b)− 2) (12)

for detecting RGB values of pixels. C(r, g, b) only outputs 1 if all three input values match the
RGB value of the color to be detected. Illustration of C(r, g, b) is shown in Figure 3. To enable

20

Under review as a conference paper at ICLR 2024

I255(x)

I127(x)

I0(x)

0

0

1

x0 + x1 + x2 - 2

0

I255(x)

I255(x)

I255(x)

0

0

0

x0 + x1 + x2 - 2

0

20
20

20

I20(x)

I20(x)

I20(x)

1

1

1

x0 + x1 + x2 - 2

1

-x0 - x1 - x2 + 1
-x0 - x1 - x2 + 1

x

x

0

0

0

0

I255(x)

I127(x)

I0(x)

0

0

0

x0 + x1 + x2 - 2

0

I255(x)

I255(x)

I255(x)

0

0

0

x0 + x1 + x2 - 2

0

80
70

60

I20(x)

I20(x)

I20(x)

0

0

0

x0 + x1 + x2 - 2
0

-x0 - x1 - x2 + 1
-x0 - x1 - x2 + 1

x

x

0

0

1

1

I255(x)

I127(x)

I0(x)

1

1

1

x0 + x1 + x2 - 2

1

I255(x)

I255(x)

I255(x)

1

0

0

x0 + x1 + x2 - 2

0

127
255

0

I20(x)

I20(x)

I20(x)

0

0

0

x0 + x1 + x2 - 2

0

-x0 - x1 - x2 + 1
-x0 - x1 - x2 + 1

x

x

0

1

0

0

Figure 14: Example computational graph for color detection. Blue boxes symbolize neurons, with
their respective computations indicated within the box. ReLU activation is applied after each neuron,
which is omitted in the figure. This example shows a color detector with two redundant channels.
The color detector is responsible for detecting target colors (255, 255, 255) and (255, 127, 0). More-
over, the color detector is programmed to ignore the background color, which is (20, 20, 20). In the
left case, one of the target colors is detected. Hence, the detector activates the target color chan-
nel. In the middle case, none of the target colors is detected. However, the input is the same as
the predefined background color (20, 20, 20). Subsequently, the input is considered in distribution,
and no output channel is activated. In the right case, the input is not one of the target colors or the
background color, so all redundant channels are activated in response to OOD inputs. We show the
computation in fully connected NN layers. Nevertheless, color detectors are realized as CNN layers
with 1× 1 kernels in our implementation.

simultaneous detection of multiple target colors, we concatenate several C(r, g, b) with their weights
set for different RGB values. This is shown as the first two layers of the network in Figure 14.

We further elaborate on how to create redundant channels in our color detector design. Instead of
outputting the activation map of the dimension N × H × W , the output can have the shape of
(N + R) × H × W , where R denotes the number of redundant channels. Redundant channels
serve as OOD channels that only activates if OOD colors are present in an image. We define OOD
colors to be any color other than our target colors and the predefined background color. To activate
redundant channels, we use

R(r, g, b) = ReLU(−
∑

Ci(r, g, b) + 1), (13)

where Ci(r, g, b) indicates color detection for different colors. If none of any Ci(r, g, b) is activated,
then R(r, g, b) returns 1. In the example shown in Figure 14, the last two outputs are redundant
channels.

D IMPLEMENTATION OF SINGLE-COLOR-MODULO SETTING

Given monochromatic images as input, we manually program a synthetic neural network to count the
number of white pixels in the image (the Accumulator) and output the modulo N of the total pixel
count (the Modulo), where the divisor N is a predefined number. The design of these images consists
of multiple pixel patches of arbitrary shape within a constant background (reference value). The
Accumulator and Modulo programs have properties tailored toward evaluating feature attributions:
In our model design, the addition/removal of any ground truth (white) pixel to/from the background
(black) equally affects the count of white pixels. Hence, we know each and every white pixel is
equally relevant.

To develop a neural network model that can perform this task, we design a model that consists of two
components. The first component is a Convolutional Neural Network (CNN) tasked with counting
the total number of white pixels in the input image. This CNN accumulation module can be initial-
ized with either uniform or non-uniform weights. To initialize this CNN with uniform weights, we
can simply set all weights of CNN kernels to 1. We further elaborate on the initialization of non-
uniform weights in Appendix C.2. The second part of the model is a multilayer perceptron (MLP)
designed to perform the modulo operation. We formally define the modulo module using functions.
Firstly, we leverage the number identification module IN (x) to further build up the neural modulo

21

Under review as a conference paper at ICLR 2024

module. The first layer of the module is f1(x) = ReLU(x, x−N, x− 2N, ..., x− ⌈ U
N ⌉N), where

U represents the maximal input value that the module can process, which can be scaled according
to available computation resources. Note that f1 produces a vector output. The second layer is de-
fined as f2(x⃗) = ReLU(x0 − x1, x1 − x2, ...). Thus, we would have f2(f1(x)) = (N,N, ..., x
mod N, 0, ..., 0) after propagating through the first two layers. At this stage, our output only
comprises three possible numbers: N , x mod N , and 0. Next, we eliminate the number N in
the output vector. This is accomplished by applying f3(x⃗) = ReLU(x0, IN (x0), x1, IN (x1), ...),
and f4(x⃗) = ReLU(x0 − Nx1, x2 − Nx3, ...). Hence, we have f4(f3(f2(f1(x)))) = (0, 0, ..., x
mod N, 0, ...). Lastly, we have one layer f5(x⃗) = ReLU(

∑
i=0 xi) to accumulate the output vector.

Therefore, as shown in Figure 3, we can obtain the modulo calculation with

fmodulo,N (x) = f5(f4(f3(f2(f1(x))))) = x mod N. (14)

The complexity of the MLP model ensures that the synthetic model poses a moderate challenge for
attribution methods. Further details regarding the dataset generation and model initialization can be
found in Appendix C.1, Appendix C.3.

E EXPERIMENTS IN THE SINGLE-COLOR-MODULO SETTING

E.1 SYNTHETIC DATASET GENERATION

Image generation: We place four non-overlapping patches at four randomly selected centers within
each image, with each patch surrounded by Bézier curves. Pixel intensities in the patches are ran-
domly sampled from the Bernoulli distribution Bernoulli(0.5). To save the generated images in
single-channel PNG format, we scale the pixel value of 1 to 255. Samples of generated images are
shown in the first column of Figure 15.

Ground truth label: We predefine a modulus N (default value 30). Let s represent the sum of all
1s in a synthetic image; the ground truth label for the image is then determined as s mod N . For
example, if an image contains 100 pixels of 1 and N = 30, the ground truth label is 10.

Ground truth features: For white pixels in the image, pixels have a uniform ground truth feature
importance of 1, whereas for black pixels, they have a uniform ground truth feature importance of
0.

We visualize some randomly selected samples in Figure 15, including the generated images, ground
truth features, and attribution maps.

E.2 HYPER-PARAMETERS OF ATTRIBUTION METHODS

In this subsection, we present the key hyperparameters for various attribution methods to ensure
reproducibility in future studies. The visual results of these attribution methods are presented in
Figure 15.

• GradCAM: GradCAM is attached to the sixth layer of the CNN accumulator, specifically
at accumulator.layers.5 in our implementation.

• GuidedBP: Backpropagation is performed from the scalar modulo output.
• LRP: Similar to GuidedBP, backpropagation is performed from the scalar modulo output.
• ExPerturb: A perturbation area of 0.1 is used, with Gaussian blurring applied for image

perturbation. The Gaussian blurring sigma is set to 21.0.
• Occlusion: A sliding window of shape (1, 5, 5) and strides (1, 3, 3) is employed, along with

an all-zero baseline.
• DeepSHAP: An all-zero baseline is used.
• IG: An all-zero baseline is applied.
• IG∗: This method is equivalent to IG, as the ground truth baseline is 0.
• IBA: The information bottleneck is attached to the twelfth layer of the CNN accumulator,

specifically at accumulator.layers.11 in our implementation. The weight of the
information loss is set to 20.

22

Under review as a conference paper at ICLR 2024

Image Ground Truth GradCAM Guided BP LRP Extremal Perturbation Occlusion DeepSHAP Integrated Grad IBA

Figure 15: Visualization of images and attribution maps in single-color-modulo setting.

• Random: Random attribution values are sampled from a uniform distribution U(0, 1).
• Constant: The attribution values are set to a constant value of 1.0.

E.3 GROUND-TRUTH-BASED EVALUATION

E.3.1 EXPERIMENTAL SETUP

We compute the overall precision, recall based on the synthetic ground truth (feature importance)
masks. Note that some attribution method can return attribution values substantially greater than 1.0,
which are not in the same scale as the ground truth value 1.0. In this case, if we apply the formula
of recall in Section 3, we would get a recall greater than 1.0. To avoid this undesirable outcome, we
normalize the attribution map as follows:

t(aj) =

{
aj

a+
if aj ≥ 0;

aj

|a−| else,
(15)

where aj is the attribution associated with jth feature, a+ = maxj aj for all aj ≥ 0, and a− =
minj aj for all aj < 0, respectively. The attribution value after normalization is within the interval
[−1, 1].

E.3.2 EXPERIMENTAL RESULTS

Figure 16 presents violin plots of overall precision and recall. The three horizontal bars within each
plot correspond to maximum, average, and minimum values, respectively. These plots indicate that
LRP, DeepSHAP, and IG (equivalent to IG∗ in this setting) achieve optimal precision and recall
for nearly all data samples. Although GuidedBP obtains high recall for most samples, its average
precision is suboptimal. This observation is supported by the visual results, where GuidedBP mis-
takenly identifies black pixels within the Bézier patches as contributing pixels. Furthermore, the low

23

Under review as a conference paper at ICLR 2024

0.0

0.5

1.0

P
re

ci
si

on
(O

ve
ra

ll
G

T
)

G
radC

A
M

G
uidedB

P
L
R

P
E

xP
erturb

O
cclusion

D
eepSH

A
P

IG IG
*

IB
A

R
andom

C
onstant

0.0

0.5

1.0

R
ec

al
l

(O
ve

ra
ll

G
T

)

Figure 16: Ground-truth-based evaluation in the single-color-modulo setting. The maximal, mini-
mal, and average values are marked with horizontal bars.

Table 2: Rankings of attribution methods in the single-color-modulo setting when evaluated with
ground truth masks, Insertion/Deletion, and Sensitivity-N. Correlation denotes the Spearman’s rank
correlation with the F1-score (computed using the overall ground truth masks).

Attribution methods Ranking

F1-score Insertion Deletion Sensitivity-N

GradCAM 6 6 6 6
GuidedBP 4 5 5 4

LRP 0 3 0 0
ExPerturb 7 7 7 7
Occlusion 5 4 4 5

DeepSHAP 1 0 1 1
IG 2 1 2 2
IG∗ 3 2 3 3
IBA 8 8 8 8

Random 10 10 9 10
Constant 9 9 10 9

Correlation − 0.94 0.98 1.00

precision of methods such as GradCAM and IBA is often attributed to their process of performing
attribution on a neural network’s hidden layer and subsequently resizing and interpolating the at-
tribution maps to match the input image’s spatial dimensions. This additional post-processing step
frequently leads to over-blurring of attribution maps.

24

Under review as a conference paper at ICLR 2024

Table 3: Insertion/Deletion evaluation results in the single-color-modulo setting. A higher Insertion
AUC and lower Deletion AUC indicate a better attribution method.

Attribution Method Insertion AUC ↑ Deletion AUC ↓
GradCAM 0.8827 0.1174
GuidedBP 0.9015 0.0983

LRP 0.9754 0.0246
ExPerturb 0.7845 0.2157
Occlusion 0.9151 0.0849

DeepSHAP 0.9754 0.0246
IG 0.9754 0.0246

IG* 0.9754 0.0246
IBA 0.6458 0.3526

Random 0.4996 0.5009
Constant 0.4447 0.4439

E.4 INSERTION/DELETION

E.4.1 EXPERIMENTAL SETUP

In the single-color-modulo setting, directly comparing modulo results between perturbed and origi-
nal images is insufficient for determining true pixel contribution, as perturbing a specific number of
pixels can produce the same modulo result. For instance, if the sum of 1s in perturbed pixels is di-
visible by the modulus N , the change in the modulo result is 0, suggesting no contribution from the
perturbed pixels. To address this, we adapt the implementations of these metrics without compro-
mising their correctness. We perturb pixels individually and compare model outputs at consecutive
steps. Additionally, we use zero-intensity pixels as replacement pixels during the progressive per-
turbation process. Different modulo results indicate genuine pixel contribution and the attribution
method’s accurate identification of the contributing pixel at that step. Otherwise, the step is deemed
a failure for the attribution method. We accumulate correct steps as a substitute for prediction vari-
ation in the original Insertion/Deletion or Sensitivity-N. In fact, the accumulated correct steps equal
the number of perturbed pixels with value 1. To compute the AUC in Insertion/Deletion, we nor-
malize the number of correct steps by dividing it by the total contributing pixels in the ground truth
mask, yielding a range of [0, 1].

E.4.2 EXPERIMENTAL RESULTS

As illustrated in Table 3, the best performing methods are IG (or IG∗), DeepSHAP, and LRP, achiev-
ing optimal Insertion AUC and Deletion AUC. As indicated by the Spearman’s rank correlations in
Tables 1 and 2, the Insertion/Deletion evaluation is highly consistent with the ground-truth-based
evaluation. It is important to note that the optimal Insertion AUC in Table 3 is not 1.0, and the
optimal Deletion AUC is not 0.0. This occurs because we remove one pixel at each step, and the
best Insertion curve is obtained when all 1s in the image receive higher attribution than all 0s. In
this case, the Insertion curve is a monotone increasing straight line followed by a saturated flat line
at 1.0. Similarly, the optimal Deletion curve occurs when all the 1s are removed before all the 0s,
resulting in a monotone decreasing straight line followed by a stagnant flat line at 0.0. Consequently,
the AUC of the optimal Insertion curve is smaller than 1.0, and the AUC of the optimal Deletion
curve is greater than 0.0. The optimal AUCs depend on the number of pixels with value 1 and the
total number of pixels.

E.5 SENSITIVITY-N

E.5.1 EXPERIMENTAL SETUP

In standard Sensitivity-N, we randomly select N pixels at each step. However, this approach is
not applicable in the single-color-setting due to the same reason we explained previously in Inser-
tion/Deletion. Therefore, following our dapted Insertion/Deletion in the single-color-modulo setting,
we measure the model output change in an accumulative manner. Specifically, we need to compare

25

Under review as a conference paper at ICLR 2024

0 10k 20k 30k 40k 50k
N

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

Direction of Improvement

GradCAM

GuidedBP

LRP

ExPerturb

Occlusion

DeepSHAP

IG

IG*

IBA

Random

Constant

Figure 17: Sensitivity-N evaluation results in the single-color-modulo setting. y-axis represents
the Pearson Correlation Coefficient between the model output change and the total attribution of
perturbed pixels.

the modulo results of two consecutive steps. Note that we can determine whether the ith pixel is
contributing only when it is the sole pixel in which the perturbed pixels at two consecutive steps
differ. In other words, we need to randomly select an additional pixel to perturb compared to the
previously perturbed pixels. Then, we record the model output change and the total attribution of
perturbed pixels, respectively. We repeat the random selection for 100 times and concatenate the
recorded output change and total attribution into two vectors, respectively. Next, the Pearson Corre-
lation Coefficient is computed between these two vectors. Subsequently, we increase the number of
perturbed pixels N from 1 to the image size 224× 224 and repeat the above procedure.

E.5.2 EXPERIMENTAL RESULTS

For readability, we reproduce the Sensitivity-N figure from Section 6 in Figure 17. DeepSHAP, IG
(or IG∗), and LRP achieve (near) optimal performance. This is consistent with the Insertion/Deletion
results in Table 3 and ground-truth-based evaluation results in Figure 16.

F EXPERIMENTS IN THE MULTI-COLOR-SUM SETTING

In this section, we present more experimental results and explanations as a supplement to Section 5
and Section 6. Specifically, we present additional experimental results on the Multi-color-sum set-
ting.

F.1 SYNTHETIC DATASET GENERATION

Image generation: This setting is designed to simulate a multi-class classification task. We ran-
domly place four non-overlapping patches on an empty background image with a uniform intensity
of (20, 20, 20) (unsigned 8-bit int) in RGB format. Patch shapes are sampled from three categories:
triangle, square, or circle. Additionally, patch sizes are randomly sampled. For each pixel within
each patch, we independently and randomly sample a random variable from the Bernoulli(0.5)
distribution. If the sampled value is 1, the pixel is set to the background color; otherwise, it is set
to a unique color associated with the corresponding patch. Ultimately, an image will contain four
distinct foreground colors. Some randomly selected samples are visualized in Figure 18.

26

Under review as a conference paper at ICLR 2024

Image Ground Truth GradCAM Guided BP LRP Extremal Perturbation Occlusion DeepSHAP Integrated Grad IBA

Figure 18: Visualization of images and attribution maps in multi-color-sum setting.

Ground truth label: The task is a multi-class classification task, where each class represents a non-
background color. For each randomly generated image, the winning color in the image is the one
with the most pixels of that color, and the image is labeled by the class of the winning color.

Ground truth features: The greater the number of pixels a color has, the more likely it is to become
the winning color. Moreover, each pixel contributes equally when being counted. The corresponding
output of a color increases by 1 if we insert a pixel of that color into the image. For a non-winning
color, increasing its number of pixels raises the likelihood of it becoming the winning color, thereby
decreasing the probability of the current winning color. Background pixels do not contribute to the
current winning color, as they are not detected by the color detector. Based on these principles,
we establish the ground truth feature contribution masks as follows: (1) all pixels belonging to the
winning color have a uniform contribution of 1; (2) all pixels belonging to the non-winning colors
have a uniform contribution of −1; and (3) all background pixels have a uniform contribution of
0. As shown in Figure 4, positively contributing pixels are displayed in red, negatively contributing
pixels are displayed in blue, and non-contributing pixels are displayed in white.

F.2 HYPER-PARAMETERS OF ATTRIBUTION METHODS

In this subsection, we present the key hyper-parameters of attribution methods employed in this
setting:

• GradCAM: GradCAM is attached to the sixth layer of the CNN accumulator (specifically,
accumulator.layers.5 in the implementation).

• GuidedBP: Backpropagation is computed from the output after the softmax layer.

• LIME: The default segmentation method is Quickshift Vedaldi & Soatto (2008).

• ExPerturb: We select a perturbation area of 0.1 and employ Gaussian blurring for pertur-
bation.

27

Under review as a conference paper at ICLR 2024

• Occlusion: A sliding window of shape (3, 5, 5) and strides (3, 3, 3) is used, along with
an all-zero baseline. Although we know the ground truth baseline, we do not use it here
because the true baseline is difficult to access in real-world applications, and we aim to
study the influence of an inappropriate baseline in the multi-color setting. Furthermore,
the output change is measured at the layer before the softmax, as suggested by the original
paper Zeiler & Fergus (2014).

• DeepSHAP: The output change is measured after the softmax layer, and an all-zero baseline
is employed.

• IG: The output change is measured after the softmax layer, and an all-zero baseline is
employed.

• IBA: The information bottleneck is inserted into the eighth layer of the CNN accumula-
tor (specifically, accumulator.layers.7 in the implementation). Additionally, the
weight of information loss is set to 20.

F.3 GROUND-TRUTH-BASED EVALUATION

F.3.1 EXPERIMENTAL SETUP

We normalize the attribution maps in the same way as in Equation 15. Then, the precision, recall,
and F1-score are computed based on three sets of the designed ground truth masks, denoted with
overall, positive, and negative ground truth (GT), respectively. Note that not all attribution methods
can return negative attribution.

F.3.2 EXPERIMENTAL RESULTS

Figure 19 displays the violin plots of precisions and recalls computed with different sets of GT.
Several methods, such as GradCAM, GuidedBP, LRP, and IBA, only identify the pixels contributing
to the label class, ignoring the negatively contributing pixels, as shown in Figure 18. Therefore, the
recalls computed with positive GT for these methods are higher than the recalls computed with over-
all GT, as the overall GT includes both positively and negatively contributing pixels. Additionally,
if we only consider the pixels of the label class, IBA exhibits superior performance by comparing
the precision associated with positive GT in the multi-color-sum setting with the precision com-
puted with overall GT in the single-color-modulo setting. A possible reason could be that IBA is
formulated using variational methods, where the objective function is relaxed using cross-entropy.
Cross-entropy is more suitable for multi-class classification in the multi-color-sum setting. To en-
hance performance in the single-color-modulo setting, an alternative version of the optimization
objective for IBA might be required. Moreover, DeepSHAP, IG, and Occlusion necessitate knowing
the ground truth baseline of the model, which is very difficult to acquire in real-world scenarios. In
this study, we select a baseline (0, 0, 0) that causes unpredicted model behavior, even though it is
visually very close to the true baseline color (20, 20, 20). In Figure 18, we observe that Occlusion is
prone to breaking down, and IG assigns random positive or negative attribution to the background.
If we select the correct baseline for IG, we can significantly enhance its precision, as demonstrated
by IG∗ in Figure 19. Furthermore, DeepSHAP achieves high precision and recall when computed
with overall GT. However, it often misidentifies positively contributing pixels as negative, and vice
versa. Consequently, DeepSHAP exhibits low precision and recall when computed with positive or
negative GT. This suggests that DeepSHAP can accurately locate the ground truth features but often
yields the wrong sign of attribution.

F.4 INSERTION/DELETION

F.4.1 EXPERIMENTAL SETUP

The implementation of Insertion/Deletion in the multi-color-sum setting is consistent with the orig-
inal paper. Specifically, we progressively perturb the pixels with replacement pixels with intensity
(0, 0, 0). This choice of replacement pixels aligns with standard practice. For Deletion, we compute
the probability of the label class after perturbing the pixels in descending order sorted by attribu-
tion values. In the end, we obtain a curve of the predicted probability against the ratio of perturbed
pixels. Then, we compute the area under the curve (AUC). A lower Deletion AUC indicates better

28

Under review as a conference paper at ICLR 2024

0.00

0.25

0.50

0.75

1.00

P
re

ci
si

on
(O

ve
ra

ll
G

T
)

0.00

0.25

0.50

0.75

1.00

R
ec

al
l

(O
ve

ra
ll

G
T

)

0.00

0.25

0.50

0.75

1.00

P
re

ci
si

on
(P

os
it

iv
e

G
T

)

0.00

0.25

0.50

0.75

1.00

R
ec

al
l

(P
os

it
iv

e
G

T
)

G
radC

A
M

G
uidedB

P
LIM

E
E

xP
erturb

O
cclusion

D
eepSH

A
P

IG IB
A

0.00

0.25

0.50

0.75

1.00

P
re

ci
si

on
(N

eg
at

iv
e

G
T

)

G
radC

A
M

G
uidedB

P
LIM

E
E

xP
erturb

O
cclusion

D
eepSH

A
P

IG IB
A

0.0

0.2

0.4

0.6

0.8
R

ec
al

l
(N

eg
at

iv
e

G
T

)

Figure 19: Ground-truth-based evaluation in the multi-color-sum setting. In each violin plot, the
maximal, average, and minimal values are marked with horizontal bars. The first row. Note that
only Occlusion, DeepSHAP, IG, and IG∗ yield negative attribution. For other attribution methods
shown in the figure, we manually set their precision and recall associated with negative GT to 0.0.

performance of the attribution method. For Insertion, we compute the probability of the label class
after inserting the pixels into a blank canvas with intensity (0, 0, 0) in ascending order sorted by
attribution values. Again, the predicted probability after insertion is recorded, allowing us to obtain
a curve of the predicted probability against the ratio of inserted pixels. Then, we compute the AUC,
and a higher Insertion AUC indicates better performance of the attribution method.

F.4.2 EXPERIMENTAL RESULTS

As shown in Table 4 and Figure 8a, Insertion/Deletion display limited consistency with GT-based
evaluation, when the Unseen Data Effect is present.

F.5 SENSITIVITY-N

F.5.1 EXPERIMENTAL SETUP

The implementation of Sensitivity-N in the multi-color-sum setting is consistent with the original
paper. For a specific number of perturbed pixels N , we randomly select N pixels in the image,

29

Under review as a conference paper at ICLR 2024

Table 4: Rankings of attribution methods in the multi-color-sum setting when evaluated with ground
truth masks, Insertion/Deletion, and Sensitivity-N. Correlation denotes the Spearman’s rank corre-
lation with the F1-score (computed using the positive ground truth masks).

Attribution methods Ranking

F1-score Insertion Deletion Sensitivity-N

GradCAM 8 4 6 3
GuidedBP 3 5 4 1

LIME 1 3 3 2
ExPerturb 4 6 7 8
Occlusion 6 2 5 5

DeepSHAP 5 8 2 6
IG 7 1 1 4

IBA 2 7 8 7

Correlation − 0.02 0.47 0.65

and perturb them to the default baseline (0, 0, 0). After that, we feed the perturbed image into
the neural network and obtain the predicted probability of the label class. Additionally, we record
the sum of attribution of the perturbed pixels. This process is repeated for 100 times, yielding a
pair of vectors with 100 elements, where the first vector represents the predicted probability in 100
repetitions and the second vector represents the sum of attribution. Next, we compute the Pearson
Correlation Coefficient between the vectors of predicted probability and sum of attribution. With N
increasing from 1 to 224 × 224, we obtain a curve of Pearson Correlation Coefficient. The greater
the correlation is, the better the attribution method performs.

F.5.2 EXPERIMENTAL RESULTS

The Sensitivity-N curves are shown in Figure 8c. First, we observe that the performance of the attri-
bution methods is much less distinguishable than in the single-color-modulo case. For instance, the
curves of GradCAM, GuidedBP, and Occlusion intersect with one another multiple times, making
it harder to conclude which method displays superior performance. Second, DeepSHAP produces a
negative correlation curve. This can be interpreted by our previous analysis that DeepSHAP often
misidentifies the sign of contributing pixels. Therefore, the sum of attribution of perturbed pix-
els is much less aligned with the predicted probability of the perturbed image. Third, in order to
rank these methods and compare the ranking with the ranking on GT-based evaluation, we simply
compute the average correlation over all Ns. As demonstrated in Table 4, the Sensitivity-N evalu-
ation result is much less correlated with the ground-truth-based evaluation compared to that in the
single-color-modulo setting.

G EXPERIMENTS IN THE MULTI-COLOR-SUM SETTING (WITHOUT UNSEEN
DATA EFFECT)

In our default settings for the Accumulator module within the multi-color setting, we employ a non-
uniform weight initialization. In this section, we present supplementary empirical results from the
multi-color-sum setting, where we implement a uniform weight initialization in the Accumulator.
Please note that: (1) the weight initialization schemes do not impact the Accumulator output, ensur-
ing that the model still achieves 100% accuracy on the synthetic dataset; and (2) the color detector
retains redundant channels and consequently, remains susceptible to Unseen Data Effect. In the fol-
lowing subsections, the evaluation settings are identical as the Appendix F, except for the number
of redundant channels in the Accumulator.

Based on the data provided in Table 5, it’s apparent that the correlations between ground-truth-based
evaluation and other metrics do not show significant improvement. This suggests that simplifying
the Accumulator network by utilizing uniform weights does not necessarily mitigate the adverse
behavior of Insertion/Deletion and Sensitivity metrics that stem from Unseen Data Effect.

30

Under review as a conference paper at ICLR 2024

Table 5: Rankings of attribution methods in the multi-color-sum setting (without Unseen Data
Effect). Attribution methods are evaluated with ground truth masks, Insertion/Deletion, and
Sensitivity-N. Correlation denotes the Spearman’s rank correlation with the F1-score (computed
using the overall ground truth masks).

Attribution methods Ranking

F1-score Insertion Deletion Sensitivity-N

GradCAM 5 5 6 6
GuidedBP 6 6 4 1

LIME 1 4 3 4
ExPerturb 7 8 7 8
Occlusion 2 3 5 5

DeepSHAP 3 1 2 2
IG 4 2 1 3

IBA 8 7 8 7

Correlation − 0.42 0.61 0.81

G.1 GROUND-TRUTH-BASED EVALUATION

Figure 20 illustrates the violin plots of various attribution methods, evaluated with different sets of
GT.

0.00

0.25

0.50

0.75

1.00

P
re

ci
si

on
(O

ve
ra

ll
G

T
)

0.00

0.25

0.50

0.75

1.00

R
ec

al
l

(O
ve

ra
ll

G
T

)

0.00

0.25

0.50

0.75

1.00

P
re

ci
si

on
(P

os
it

iv
e

G
T

)

0.00

0.25

0.50

0.75

1.00

R
ec

al
l

(P
os

it
iv

e
G

T
)

G
radC

A
M

G
uidedB

P
LIM

E
E

xP
erturb

O
cclusion

D
eepSH

A
P

IG IB
A

0.00

0.25

0.50

0.75

1.00

P
re

ci
si

on
(N

eg
at

iv
e

G
T

)

G
radC

A
M

G
uidedB

P
LIM

E
E

xP
erturb

O
cclusion

D
eepSH

A
P

IG IB
A

0.00

0.25

0.50

0.75

R
ec

al
l

(N
eg

at
iv

e
G

T
)

Figure 20: Ground-truth-based evaluation results in the multi-color-sum setting without Unseen
Data Effect.

G.2 INSERTION/DELETION

Figure 8b shows the Insertion curve.

31

Under review as a conference paper at ICLR 2024

G.3 SENSITIVITY-N

Figure 8d depicts the correlation curves.

H BROADER IMPACTS

In this work, we introduce an evaluation framework designed specifically for feature attribution
methods. A notable gap in the research community has been the absence of reliable evaluation
metrics, leading to various complications. For example, numerous feature attribution methods have
been proposed that, in some cases, even yield inconsistent attribution results given identical inputs.
Our approach guarantees its validity for evaluation purposes because of the fully synthetic nature.
Our synthetic settings may appear primitive compared to real-world datasets and neural networks
trained on such datasets. However, they provide a controlled laboratory environment, enabling a
thorough examination of feature attribution methods prior to deployment. This facilitates a robust
evaluation and refinement process for attribution methods.

I ADDITIONAL STUDY ON SEGMENTATION METHODS OF LIME

In Section 5.2, we observed that the segmentation method significantly affects LIME’s performance.
This observation prompted us to explore a more advanced segmentation approach capable of ef-
fectively grouping features that function together and identifying independent feature groups. We
conducted a comparative analysis of LIME attribution maps generated using Quickshift (Vedaldi
& Soatto, 2008), Felzenszwalb (Felzenszwalb & Huttenlocher, 2004), and the recent segmentation
approach Segment Anything Model (SAM) (Kirillov et al., 2023). Our comparison in the multi-
color-sum setting, as shown in Figure 21, reveals a substantial increase in faithfulness when SAM is
utilized as the segmentation method. Furthermore, we employ LIME for explaining two ImageNet-
pretrained models: VGG (Simonyan & Zisserman, 2015) and ViT Dosovitskiy et al. (2020), respec-
tively. Visual inspection of the attribution maps on VGG16 (Figure 22) and ViT-B-16 (Figure 23),
indicates that SAM provides a prior of more cohesively grouped features and significantly reduces
noise in the LIME attribution maps. These attribution maps are much better aligned with human
perception as well. Moreover, this finding is consistent across the CNN and ViT architectures. This
study underscores that the findings in AttributionLab can assist researchers to identify strategies for
enhancing existing attribution methods, and it demonstrates that these enhancements can generalize
to complex real-world scenarios.

32

Under review as a conference paper at ICLR 2024

Image Ground Truth
LIME with
Quickshift

LIME with
Felzenszwalb

LIME with
SAM Prior

Figure 21: LIME in the multi-color-sum setting with different segmentation methods. In contrast to
Quickshift (Vedaldi & Soatto, 2008) and Felzenszwalb (Felzenszwalb & Huttenlocher, 2004), SAM
(Kirillov et al., 2023) offers markedly improved segmentation masks for inputs. This improvement
significantly boosts the faithfulness of attribution maps, ensuring closer alignment with the ground
truth attribution map.

33

Under review as a conference paper at ICLR 2024

Image
LIME with
Quickshift

LIME with
Felzenszwalb

LIME with
SAM Prior

Figure 22: LIME attribution maps for VGG16 with different segmentation methods. In line with
results in the multi-color-sum setting, SAM segments input features into more compact and seman-
tically meaningful groups. Consequently, the LIME attribution maps generated using SAM exhibit
reduced noise and are visually more congruent with human perception.

Image
LIME with
Quickshift

LIME with
Felzenszwalb

LIME with
SAM Prior

Figure 23: LIME attribution maps for ViT-B-16 with different segmentation methods. These attri-
bution maps show a significant enhancement in attribution quality when LIME incorporates SAM,
and this finding generalizes to vision transformers.

34

	Introduction
	Related work
	A controllable environment to evaluate faithfulness
	Design of data and neural network
	Design details

	Faithfulness test of attribution methods in AttributionLab
	Faithfulness test of DeepSHAP
	Faithfulness test of LIME
	Faithfulness test of Integrated Gradients (IG), and Occlusion
	Faithfulness test of GradCAM, GuidedBP, ExPerturb, IBA

	Faithfulness of evaluation metrics
	Conclusion and future work
	Experiment details for Figure 1
	Extended related work
	Feature attribution
	Gradient-based
	Latent features
	Backpropagation of relevance
	Perturbation-based methods
	Shapley value

	Feature attribution evaluation
	Alignment with human intuition
	Sanity checks
	Evaluation by perturbation
	Axiomatic
	Alignment with synthetic ground-truth

	Implementation details of synthetic models
	Neural number checker
	CNN accumulator
	Neural modulo module
	Neural color detector module

	Implementation of Single-color-modulo Setting
	Experiments in the single-color-modulo setting
	Synthetic dataset generation
	Hyper-parameters of attribution methods
	Ground-truth-based evaluation
	Experimental setup
	Experimental results

	Insertion/Deletion
	Experimental setup
	Experimental results

	Sensitivity-N
	Experimental setup
	Experimental results

	Experiments in the multi-color-sum setting
	Synthetic dataset generation
	Hyper-parameters of attribution methods
	Ground-truth-based evaluation
	Experimental setup
	Experimental results

	Insertion/Deletion
	Experimental setup
	Experimental results

	Sensitivity-N
	Experimental setup
	Experimental results

	Experiments in the multi-color-sum setting (without Unseen Data Effect)
	Ground-truth-based evaluation
	Insertion/Deletion
	Sensitivity-N

	Broader impacts
	Additional study on segmentation methods of LIME

