
LoRA-EnVar: Parameter-Efficient Hybrid Ensemble
Variational Assimilation for Weather Forecasting

Yi Xiao
Tsinghua University, Beijing

Shanghai Artificial Intelligence Laboratory, Shanghai
y-xiao22@mails.tsinghua.edu.cn

Hang Fan
Columbia University, New York

hf2526@columbia.edu

Kun Chen
Fudan University, Shanghai

Shanghai Artificial Intelligence Laboratory, Shanghai
kunc3301@163.com

Ye Cao
Tsinghua University, Beijing
caoye541@gmail.com

Ben FeiB
The Chinese University of Hong Kong, Hong Kong

Shanghai Artificial Intelligence Laboratory, Shanghai
benfei@cuhk.edu.hk

Wei XueB
Tsinghua University, Beijing
xuewei@tsinghua.edu.cn

Lei Bai
Shanghai Artificial Intelligence Laboratory, Shanghai

baisanshi@gmail.com

Abstract

Accurate estimation of background error (i.e., forecast error) distribution is critical
for effective data assimilation (DA) in numerical weather prediction (NWP). In
state-of-the-art operational DA systems, it is common to account for the tempo-
ral evolution of background errors by employing hybrid methods, which blend a
static climatological covariance with a flow-dependent ensemble-derived compo-
nent. While effective to some extent, these methods typically assume Gaussian-
distributed errors and rely heavily on hand-crafted covariance structures and domain
expertise, limiting their ability to capture the complex, non-Gaussian nature of
atmospheric dynamics. In this work, we propose LoRA-EnVar, a novel hybrid
ensemble variational DA algorithm that integrates low-rank adaptation (LoRA) into
a deep generative modeling framework. We first learn a climatological background
error distribution using a variational autoencoder (VAE) trained on historical data.
To incorporate flow-dependent uncertainty, we introduce LoRA modules that ef-
ficiently adapt the learned distribution in response to flow-dependent ensemble
perturbations. Our approach supports online finetuning, enabling dynamic updates
of the background error distribution without catastrophic forgetting. We validate
LoRA-EnVar in high-resolution assimilation settings using the FengWu forecast
model and simulated observations from ERA5 reanalysis. Experimental results
show that LoRA-EnVar significantly improves assimilation accuracy over models
assuming static background error distribution and achieves comparable or better
performance than full finetuning while reducing the number of trainable parameters
by three orders of magnitude. This demonstrates the potential of parameter-efficient
adaptation for scalable, non-Gaussian DA in operational meteorology.
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1 Introduction

Data assimilation (DA) plays a crucial role in numerical weather prediction (NWP) by integrating
real-world observations with model forecasts to produce accurate initial states for future predictions [1,
2, 3, 4]. In this process, a prior forecast, typically generated by a numerical model, is treated as
the background state. The effectiveness of DA depends largely on accurately characterizing this
background error distribution, which reflects the uncertainty in prior forecasts and determines how
new observations are assimilated into the model.

Early DA systems such as 3DVar typically assume a static Gaussian background error, using a fixed
covariance matrix throughout the forecast cycle [5, 6, 7, 8]. While computationally efficient, this
assumption fails to capture the fact that background errors evolve over time, especially in dynamically
active regions [9]. To address this, ensemble-based methods like the Ensemble Kalman Filter (EnKF)
estimate flow-dependent covariances from short-term ensemble forecasts [10, 11, 12]. However, in
high-dimensional systems like NWP, limited ensemble size often leads to spurious correlations and
noisy error estimates [13, 12]. To mitigate this, hybrid methods have become the dominant approach
in modern operational DA. These methods combine a static climatological covariance estimated from
historical simulations with a flow-dependent covariance derived from real-time ensembles, leveraging
the strength of both [9, 14]. Despite their effectiveness, hybrid methods still rely on a Gaussian error
assumption [15, 16, 17] and involve expert-crafted covariance structures [18], which may limit their
ability to model complex, non-Gaussian background uncertainty [19].

Recent advances in AI-based DA methods aim to overcome the limitations of traditional methods. For
example, DiffDA [20] and Score-based DA (SDA) [21, 22] utilize diffusion models to model complex
non-Gaussian uncertainty, but they do not incorporate climatological priors or flow-dependent
ensembles. Other approaches, such as FuXi-En4DVar [23], introduce ensembles to model flow-
dependent uncertainty, yet still rely on Gaussian assumptions. Similarly, the Ensemble Score Filter
(EnSF) [24, 25] incorporates flow dependency but scales poorly to high-dimensional systems. Latent-
EnSF [26, 27] mitigates this issue by learning a latent representation of error structure, but it lacks
a mechanism to incorporate static background statistics, which can limit its long-term stability and
climatological consistency.

To date, no existing method has successfully captured hybrid background error characteristics,
combining both static climatological and flow-dependent features, within a non-Gaussian generative
modeling framework. This leaves a gap in current methodologies for flexibly and accurately
representing the full spectrum of uncertainty in real-world atmospheric data assimilation.

In this work, we propose LoRA-EnVar, a hybrid variational assimilation framework that combines
deep generative modeling with parameter-efficient adaptation to capture both climatological priors and
flow-dependent background error dynamics, without relying on full retraining or manual covariance
design. We first train a variational autoencoder (VAE) [28] on historical forecast error samples to learn
a low-dimensional latent representation of climatological background uncertainty. To incorporate
real-time flow-dependent information, we introduce low-rank adaptation (LoRA) [29] modules into
the decoder of the VAE. During each assimilation cycle, these LoRA modules are finetuned online
using perturbations from ensemble forecasts, enabling the generative model to adapt dynamically
to the evolving atmospheric states. We validate LoRA-EnVar in high-resolution cyclic assimilation
experiments using the FengWu [30] forecast model and ERA5-simulated observations, demonstrating
its effectiveness in large-scale NWP settings. Compared to full decoder finetuning, our approach
maintains stability, avoids catastrophic forgetting, and reduces the number of trainable parameters by
over three orders of magnitude. Our main contributions are summarized as follows:

• We design a hybrid deep generative framework that unifies VAE-based climatological
modeling with LoRA-based flow-dependent adaptation.

• We introduce online low-rank finetuning during assimilation cycles to enable dynamic,
non-Gaussian background error updates with minimal computational cost.

• We demonstrate consistent accuracy improvements over static and hybrid baselines in
high-resolution cyclic NWP experiments.
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2 Preliminaries

Variational Assimilation In variational data assimilation, the goal is to infer the most likely system
state xa given a background estimate xb and a set of observations y, by maximizing the conditional
probability distribution p(x|xb,y). This yields the analysis state xa = argmaxx p(x|xb,y).

Since the background state xb originates from a numerical forecast and the observations y are obtained
from satellites or ground-based instruments, it is reasonable to assume independence between xb and
y [3]. Under this assumption, the posterior distribution can be factorized as [19]:

argmax
x

p(x|xb,y) = argmax
x

p(y|x)p(x|xb). (1)

This formulation leads naturally to the definition of the variational cost function:

L(x) = − log p(y|x)p(x|xb) = − log p(y|x)− log p(x|xb). (2)

The total cost comprises two components: an observation term Lo(x,y) = − log p(y|x) and a
background term Lb(x,xb) = − log p(x|xb).

The observation term primarily reflects the statistical characteristics of measurement errors and
is closely tied to the properties of the observing instruments and data quality. In contrast, the
background term captures the uncertainty in the model forecast and the structure of prior errors,
which are often more complex and system-dependent. This work focuses on improving the modeling
of the background term to enhance the assimilation accuracy.

Hybrid Background Term Modeling The background term models the uncertainty in the prior
forecast and plays a critical role in variational data assimilation. Its estimation relies on representative
error samples that capture the statistical characteristics of forecast errors. These samples typically
fall into two categories:

• Climatological samples, obtained from long-term historical analysis data (typically using
NMC method [17]), represent relatively stable and time-invariant error structures that reflect
the background error characteristics of the climate state.

• Flow-dependent samples, extracted from short-range ensemble forecasts at the current time,
capture transient, situation-specific features of forecast uncertainty.

Traditional variational methods are based solely on climatological samples, while ensemble-based
methods use flow-dependent perturbations. To take advantage of both, hybrid methods that combine
static and dynamic information have been developed, which have been shown to have better analysis
quality and higher assimilation accuracy.

Traditional Hybrid EnVar Traditional data assimilation methods assume that the background
error follows a Gaussian distribution, that is, x− xb ∼ N (0,B), where B is the background error
covariance matrix. In Hybrid EnVar, B is assumed to be a linear combination of Bs and Be, that is

B = αBs + (1− α)Be, (3)

where Bs and Be denote covariances calculated from the static climatological and ensemble-derived
flow-dependent samples, respectively, and α ∈ [0, 1] is a tunable weighting coefficient. Despite their
practical success, most hybrid methods still rely on the Gaussian assumption and linear formulations
of B, limiting their expressiveness in highly nonlinear or non-Gaussian regimes. In this work, we
retain the core design principle of combining climatological and flow-dependent information, but
replace the hand-crafted Gaussian formulation with a deep, adaptive generative model that can learn
and update complex background error distributions more expressively.

3 LoRA-EnVar

3.1 Non-Gaussian Hybrid Background Modeling via Online Adaptation

In traditional variational assimilation, the background error is often assumed to follow a Gaussian
distribution, allowing its uncertainty structure to be fully characterized by a covariance matrix B .
This makes it feasible to represent B as a linear combination of static and flow-dependent compo-
nents. However, in non-Gaussian settings, the background error distribution may exhibit skewness,
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multimodality, or higher-order dependencies that a second-order statistic like a covariance matrix
cannot capture. In such cases, the distribution must be modeled more expressively, typically through
deep generative models such as VAEs [28], normalizing flows [31, 32], or diffusion models [33, 34],
which represent complex distributions in a latent or implicit form. Crucially, these models no longer
expose an explicit covariance matrix structure, making it nontrivial to incorporate flow-dependent
ensemble samples via simple linear blending, as is done in traditional hybrid methods.

To overcome this limitation, we draw on the concept of online learning in neural networks, where
a model pre-trained on historical data can be incrementally updated with new samples. This is
analogous to the DA scenario, in which long-term historical samples provide a stable prior, while
flow-dependent samples, available during each assimilation cycle, reflect evolving dynamics that
require continuous adaptation.

Specifically, we build on the VAE-Var framework to model the background error distribution as a
deep latent-variable generative model. The VAE is first pre-trained using climatological error samples
derived from long-term reanalysis data. This training phase captures the relatively stable structure of
background uncertainty.

During assimilation, flow-dependent error samples, which are generated from ensemble forecasts
around the current state, become available at each cycle. Rather than discarding prior knowledge
and retraining the model from scratch, we treat these new samples as streaming data and update the
model incrementally. This approach allows the generative model to evolve over time, incorporating
both global climatological priors and localized, transient dynamics.

3.2 Parameter-Efficient Online Adaptation with LoRA

While online adaptation provides a principled framework for incorporating flow-dependent informa-
tion into the background error model, a key challenge lies in how to update the generative model
efficiently and stably during assimilation cycles. Directly finetuning the full set of parameters in the
VAE decoder for every new assimilation window is computationally expensive and risks overfitting
to transient flow features, potentially leading to catastrophic forgetting of the climatological prior
learned during pretraining.

To address these issues, we adopt LoRA as a lightweight, parameter-efficient mechanism for online
adaptation. LoRA inserts low-rank trainable matrices into the linear layers of the decoder while
keeping the original weights frozen. During online updates, only the LoRA parameters are tuned
using flow-dependent samples, while the backbone decoder, trained on climatological data, remains
unchanged.

This design offers several advantages:
• Efficiency: The number of trainable parameters is significantly reduced (approximately

0.1% of the full model), allowing fast updates even in high-resolution settings.
• Stability: By preserving the original decoder weights, the model retains its climatological

prior knowledge, mitigating the risk of catastrophic forgetting.
• Flexibility: Despite its lightweight nature, LoRA introduces enough capacity to fit flow-

dependent corrections effectively, enabling the model to adjust its generative outputs to
evolving error structures.

By combining LoRA with the online learning structure introduced in Section 3.1, LoRA-EnVar
achieves a scalable and dynamically adaptable representation of background error distributions,
balancing long-term stability with short-term responsiveness.

3.3 LoRA-EnVar Pipeline

The overall architecture of LoRA-EnVar is illustrated in Figure 1. The framework consists of two
phases: offline learning and online adaptation.

In the offline phase, we first train a VAE using historical background error samples constructed from
long-term historical datasets. This allows the decoder D of the VAE to model the climatological
distribution of background error, capturing large-scale and relatively stable uncertainty patterns.

Once the offline training is complete, the system enters the online phase, where LoRA modules
are introduced into the decoder to enable dynamic adaptation to flow-dependent characteristics.
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Figure 1: Overview of the LoRA-EnVar framework. The method consists of an offline VAE
training phase using climatological samples and an online adaptation phase using flow-dependent
samples for LoRA finetuning. See Section 3.3 for details.

Following the initialization strategy proposed in the original LoRA paper [29], the low-rank matrices
B0 are initialized to zero to preserve the pretrained decoder’s output at the beginning of adaptation.

At each assimilation window, we perform the following steps: (1) Background ensemble generation.
The previous analysis states are used to produce an ensemble of background forecasts for the
current time step. This ensemble can be constructed using established techniques, such as time-
lagging [35, 36] or breeding methods [37, 38]. (2) Flow-dependent error sampling. From the
ensemble, we derive perturbations representing the flow-dependent background error samples at the
current time. (3) Online finetuning. These samples are then used to finetune only the LoRA modules
in the VAE, while keeping the backbone parameters frozen. (4) Assimilation. The adapted decoder is
then used within the variational assimilation framework to compute the analysis field for the current
time step. Specifically, we adopt the loss formulation (see Appendix) from VAE-Var, which integrates
both the generative model and observation likelihood into a unified variational objective.

This process is repeated at each assimilation window, forming a continuous DA cycle that incremen-
tally updates the background error distribution and generates the analysis fields.

4 Results

4.1 Experimental Setup

Forecasting Model The experiments in this study are conducted within a real-world global medium-
range weather forecasting context. Specifically, we evaluate our data assimilation framework using
FengWu [30]. FengWu is a learning-based medium-range weather forecasting model trained on the
ERA5 reanalysis dataset. It produces six-hour forecasts and simulates a total of 69 meteorological
variables, including five upper-air variables across 13 pressure levels and four surface variables. The
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Figure 2: Spatial error difference between assimilation with and without LoRA finetuning. Red
areas indicate regions where LoRA-EnVar reduces forecast error relative to the frozen VAE baseline.
Results are shown for three representative variables, all evaluated at 00:00 UTC on January 1st, 2022.
Notable improvements are observed over the northeastern Atlantic, particularly west of the UK.

upper-air variables include geopotential height (z), specific humidity (q), zonal wind (u), meridional
wind (v), and air temperature (t), denoted using standard short-name and pressure-level conventions
(e.g., z500 refers to geopotential at 500 hPa). The four surface variables are 2-meter temperature
(t2m), 10-meter zonal wind (u10), 10-meter meridional wind (v10), and mean sea level pressure
(mslp). In our experiments, all simulations are performed at a global resolution of 0.25◦.

LoRA Module Design The architecture of the VAE follows the design introduced in VAE-Var [19],
where both the encoder and the decoder are built upon the Swin Transformer V2 [39] backbone,
which is well-suited to structured meteorological fields and high-resolution global inputs [39, 40]. To
enable parameter-efficient online adaptation, we incorporate LoRA modules into the VAE decoder.
Following the principle of minimal parameter overhead, we insert LoRA modules only into the
query projection (q) layers of each self-attention block in the decoder [41, 32]. This selective design
preserves the original network’s structure while allowing low-rank corrections to flow-dependent
background error features. Unless otherwise stated, the LoRA rank is fixed at 2 across all experiments
(see the Appendix for ablation studies).

4.2 Single-Step Assimilation Experiment

We begin by evaluating the effectiveness of LoRA-EnVar’s hybrid modeling ability in a single-step
assimilation setting. Specifically, we conduct assimilation experiments targeting 00:00 UTC on
January 1st, 2022. The background state is obtained by running FengWu for 8 forecast steps starting
from the ERA5 reanalysis field [42] at 00:00 UTC on December 30th, 2021.

To construct the flow-dependent ensemble, we follow a time-lagging strategy [36, 35]. We use ERA5
reanalysis fields at 6-hour intervals from 06:00 UTC on December 30th to 18:00 UTC on December
31st, 2021. Each of these 7 states is forecasted forward using FengWu for 7 to 1 steps respectively,
so that all ensemble members align temporally at 00:00 UTC on January 1st. Combined with the
original background forecast, we obtain a total of 8 ensemble members. The deviations of these
members from their ensemble mean form the flow-dependent perturbation samples used to finetune
the LoRA modules in the decoder of the pretrained VAE.

After finetuning, we perform variational data assimilation using simulated observations sampled
from ERA5 analysis fields at 1000 random points. To assess the contribution of LoRA-based
finetuning, we compare two assimilation results: (1) one using the frozen VAE decoder (without
LoRA finetuning), (2) the other using the adaptively finetuned decoder (LoRA-EnVar). We compute
the analysis error for both methods and visualize the spatial error difference between the two, i.e.,
Errorno−tune − ErrorLoRA−EnVar. Positive values indicates improvement due to LoRA adaptation.

Figure 2 presents the results for three key variables: mean sea level pressure (mslp), geopotential at
500 hPa (z500), and geopotential at 850 hPa (z850). The most significant improvement is observed
over the northeastern Atlantic west of the UK, a region known for strong jet streams and frequent mid-
latitude cyclones during winter. These dynamically active conditions lead to highly flow-dependent
forecast errors. The localized improvement suggests that LoRA-based adaptation helps capture
such transient error structures more effectively than static background models, thereby enhancing
assimilation accuracy in regions of rapid atmospheric variability.
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4.3 Cyclic Assimilation and Forecasting

To evaluate the long-term performance of LoRA-EnVar in a near-realistic operational setting, we
conduct a cyclic assimilation and forecasting experiment over a full month, starting from 00:00 UTC
on January 1st, 2022. Following [19, 43], the system performs one assimilation cycle and produces
an updated analysis every 6 hours, which is used to initialize the next forecast.

Background Ensemble Generation We follow the framework illustrated in Figure 1, using an
ensemble size of 8 (see the Appendix for experiments with a different ensemble size). Unlike the
single-step experiment where ensemble members were generated using ERA5 reanalysis fields, here
we construct the ensemble entirely from within the system, without access to external reanalysis data.
Specifically, we use a time-lagging strategy: past analysis fields produced by the system itself are
used to initialize forecasts that form the ensemble (see the Appendix for details). This design ensures
full self-consistency within the cyclic forecast-assimilation loop.

Observation Settings The cyclic assimilation experiment uses the same 1000 fixed synthetic
observation stations as in the single-step setup, with full-variable measurements derived from ERA5.
We have also conducted experiments on GDAS real-world observations [44], with results reported in
the Appendix.

Compute Resources Experiments are performed on a single NVIDIA A100 GPU, with each
assimilation cycle requiring approximately 14 seconds for finetuning and 10 seconds for assimilation.

LoRA vs. Traditional Algorithms We compare LoRA-EnVar against three baselines: (1) 3DVar,
which uses a static climatological background covariance following [17]; (2) Hybrid 3DEnVar, which
combines static and flow-dependent covariances with an optimized coefficient α, following [45]; (3)
VAE-Var (no finetune) [19], which uses the pretrained VAE decoder without any LoRA finetuning.

Figure 3 reports the RMSE and bias of key variables over the 31-day period. The results show that:
LoRA-EnVar outperforms VAE-Var (no finetune) across all variables and lead times, confirming that
flow-dependent finetuning of the generative model improves assimilation accuracy; LoRA-EnVar
achieves lower RMSE and bias than Hybrid 3DEnVar, particularly in geopotential and wind fields,
demonstrating its advantage over conventional hybrid schemes; 3DVar performs worst, as expected,
due to its inability to adapt to real-time flow conditions. These findings indicate that LoRA-EnVar not
only effectively integrates climatological and flow-dependent information in a non-Gaussian setting
but also remains stable and accurate in long-term forecasting scenarios.

LoRA vs. Full Finetuning To assess the effectiveness of LoRA-based online adaptation, we
compare it against two variants of full finetuning strategies applied to the VAE decoder: (1) Full
finetune (w/o reset): At each assimilation step, the decoder parameters are inherited from the previous
cycle and updated using flow-dependent ensemble samples; (2) Full finetune (w/ reset): At each
step, the decoder is reloaded from the original pretrained model before being finetuned using current
ensemble samples. These two strategies represent two ends of the full-parameter update spectrum: the
former prioritizes continuity but risks overfitting or catastrophic forgetting, while the latter improves
stability at the expense of temporal coherence and increased computational cost.

Figure 4 presents a comparative evaluation of the three finetuning strategies across multiple key
variables. It can be seen that LoRA-EnVar maintains consistently low RMSE and bias over time, while
both full finetuning approaches exhibit notable trade-offs. The “Full finetune (w/o reset)” strategy,
which accumulates parameter updates across cycles, tends to degrade in performance for certain
variables, most prominently Z500 and t2m, likely due to catastrophic forgetting of the climatological
structure learned during pretraining. In contrast, the “Full finetune (w/ reset)” strategy avoids such
degradation by reloading the pretrained decoder at each step, but this comes at the cost of a higher
computational burden, as it involves updating the full decoder parameters repeatedly.

Despite its simplicity, LoRA-EnVar achieves comparable or even superior performance to both full
finetuning variants. This demonstrates that low-rank adaptation offers a highly efficient way to
incorporate flow-dependent corrections while preserving the stability and generalization capabilities
inherent to the pretrained model.
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Figure 3: RMSE and bias of key atmospheric variables over a 30-day cyclic assimilation
experiment. Results are shown for 3DVar, Hybrid 3DEnVar, VAE-Var (no finetune), and LoRA-
EnVar, respectively. LoRA-EnVar experiments are repeated five times with different random seeds,
and we report the mean along with the 1-σ standard deviation.

Different Observation Densities Motivated by the results under 1000 observation points, we
further evaluate the performance of LoRA-EnVar under varying levels of observation availability
by conducting cyclic assimilation experiments with 250, 500, 1000, and 2000 observations per
cycle, corresponding to approximately 0.024%, 0.048%, 0.096%, and 0.19% of the total grid points,
respectively. In all cases, observation locations are fixed and provide values for all variables.

Figure 5 shows the RMSE of z500 and u850 under these different settings. Across all observation
densities, LoRA-EnVar consistently outperforms the non-finetuned VAE-Var model, indicating that
flow-dependent adaptation provides benefits regardless of how sparse or dense the observational data
are. As expected, the relative performance gain from LoRA-EnVar tends to decrease as the observation
density increases. When more observations are assimilated, the analysis becomes increasingly
constrained by observational data, reducing the marginal impact of more accurate background error
modeling. Nonetheless, even in the most observation-rich case (2000 points), LoRA-EnVar continues
to show improvements over both VAE-Var and Hybrid 3DEnVar, demonstrating its strong adaptability
and effectiveness in a variety of observational scenarios.

4.4 Evaluation of Parameter Efficiency

In our implementation, full finetuning requires updating all decoder parameters at every assimilation
cycle, totaling 431,772,613 parameters. In contrast, LoRA-EnVar only introduces low-rank adapters
into the query projection layers of the Swin Transformer blocks. With a fixed LoRA rank of 2, the total
number of tunable parameters in our setup is just 165,888. This represents a reduction of over 99.96%
in the number of updated parameters, while still achieving comparable or superior assimilation
performance as shown in Section 4.3. This highlights the practical advantage of LoRA-EnVar for
scalable, long-term deployment in operational settings, where both model size and computational
efficiency are critical concerns.

5 Related Work

AI for Data Assimilation Beyond the approaches mentioned in the introduction, numerous studies
have applied AI techniques to improve DA, including latent-space assimilation [46, 47, 48, 49, 50,
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Results are shown for four observation counts, comparing four different DA methods.

51], directly learning the assimilation mapping [52, 53], neural process [54], and reinforcement
learning [55]. These methods aim to enhance assimilation accuracy or computational efficiency.
However, most are limited to small-scale problems and often omit the flow-dependent nature of
background errors, making them less applicable to high-resolution, operational forecasting scenarios.

LoRA for Dynamical Systems Recent studies have explored the use of LoRA in learning dy-
namical systems, primarily in the context of transfer learning for PDE solvers. These approaches
leverage structural similarities between systems to enable parameter-efficient adaptation, and are
often evaluated on simulated or idealized settings [56, 57]. In contrast, our work applies LoRA to a
real-world atmospheric system, focusing not on solving the governing equations directly, but on mod-
eling the evolution of forecast uncertainty within a DA framework. To the best of our knowledge, this
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is the first use of LoRA for learning flow-dependent background error dynamics in operational-scale
weather forecasting.

6 Conclusion

We proposed LoRA-EnVar, a hybrid ensemble variational DA framework that combines deep gen-
erative modeling with parameter-efficient flow-dependent adaptation. Our method captures both
climatological and real-time error structures, achieving improved assimilation accuracy while reduc-
ing the number of trainable parameters by three orders of magnitude. By enabling online adaptation
of background error distributions at minimal computational cost, LoRA-EnVar offers a scalable solu-
tion for next-generation data assimilation systems. It is particularly well suited for high-resolution
numerical weather prediction settings, where both modeling accuracy and efficiency are critical. This
work contributes toward bridging machine learning advances with operational DA workflows, and
opens new directions for learning-based non-Gaussian assimilation methods in atmospheric sciences.

Despite its strong empirical performance, LoRA-EnVar currently depends on heuristically chosen
finetuning parameters, and lacks a theoretical characterization of its adaptation dynamics. Moreover,
it inherits the intrinsic limitation of variational assimilation in producing only point estimates, leaving
uncertainty propagation an open challenge. Future work may address these issues by studying its
theoretical properties and extending it toward fully probabilistic assimilation frameworks.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed it in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details for reproducing the main results are provided in the Appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16



Answer: [Yes]
Justification: The code is available at https://github.com/xiaoyi018/AI-VarDA.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: They are provided in the Appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The main experimental results are accompanied by error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide it in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed it in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the FengWu forecasting model and the ERA5 dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code in the paper is well documented and the documentation is provided
alongside the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Variational Objective for LoRA-EnVar

Once the VAE is trained or finetuned within the LoRA-EnVar framework, we employ its decoder
for variational data assimilation. Similar to traditional variational assimilation, we optimize latent
variables z to obtain the posterior estimate. However, in contrast to linear Gaussian models, the
mapping from latent space to physical state is non-linear, given by:

x = D(z) + xb, (4)

where D(z) denotes the output of the trained decoder, and xb is the background state.

The observation term is accordingly reformulated as:

L̃o(z) = Lo (D(z) + xb,y) , (5)

where Lo denotes the original observation mismatch loss, typically based on squared error under
Gaussian observation assumptions; in our work, it is formulated as follows:

Lo(x,y) =
1

2
(y −H(x))TR−1(y −H(x)), (6)

where H is an observation operator, mapping variables from the physical space to the observation
space.

From a theoretical perspective, a nonlinear transformation from latent to physical space introduces a
non-constant Jacobian determinant in the background term. Since this term is intractable in practice,
we approximate the background regularization as:

L̃b(z) =
1

2
λzzT (7)

where λ is a positive scalar used to adjust the strength of the prior constraint. In our work, the latent
dimension is half of the dimension of the physical space; therefore, λ is empirically set to 4.

The total variational loss is thus:

L̃(z) = 1

2
λzzT +

1

2
(y −H (D(z) + xb)

T
R−1(y −H (D(z) + xb)). (8)

All components of this objective are differentiable, allowing efficient gradient-based optimization.
During assimilation, we fix the decoder parameters and perform latent-space optimization using the
L-BFGS algorithm. The full procedure is summarized in Algorithm 1. This latent-space assimilation

Algorithm 1 LoRA-EnVar Assimilation Step
Require: Trained and finetuned decoder Di at time Ti, background state xb, observation y

Initialize latent vector: z← 0
Compute background term: L̃b(z)← 1

2λz
Tz

Compute observation term: L̃o(z)← Lo(Di(z) + xb,y)

Compute total loss term: L̃(z) = L̃b(z) + L̃o(z)

Obtain the derivative dL̃(z)
dz using auto-differentiation [58] and minimize total loss via L-BFGS [59]

Return analysis: xa = Di(z
⋆) + xb

framework allows us to leverage the expressive power of deep generative models while maintaining
tractable optimization.

B Implementation of Hybrid 3DEnVar

In our experiments, we implement a hybrid 3DEnVar system by incorporating both static climatologi-
cal and ensemble-derived flow-dependent covariances into the variational assimilation framework.
Our implementation is based on the control variable extension method proposed in [60, 14], and
theoretically justified in [61], which proves its equivalence to earlier formulations based on covariance
matrix blending [9].
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In hybrid 3DEnVar, the covariance matrix B is expressed as a linear combination:

B = αBs + (1− α)Be, (9)

where Bs is a static, climatological covariance (usually estimated offline), and Be is derived from
flow-dependent ensemble perturbations.

To avoid directly computing and inverting the blended B, we follow the extended control variable
formulation. The analysis increment δx is expressed as a weighted sum:

δx = β1B
1/2
s v1 + β2B

1/2
e v2, (10)

where v1 and v2 are control variables defined in the transformed space, and B
1/2
s and B

1/2
e are

square-root operators of the respective covariance matrices. The corresponding cost function becomes:

Lhybrid−3DEnVar(v1,v2) =
1

2
vT
1 v1 +

1

2
vT
2 v2 +

1

2
[y −H (xb + δx)]

T
R−1 [y −H (xb + δx)] .

(11)
This formulation allows preconditioning of each component and efficient optimization, while main-
taining the desired covariance blending effect in the physical space. It has been shown that the
control variable formulation is theoretically equivalent to the covariance blending formulation when
the weights satisfy β1 =

√
α and β2 =

√
1− α [45]. In our experiments, we find that the best

performance is achieved when β2 = 0.6, corresponding to α = 0.64.

In our implementation of Hybrid 3DEnVar, both Bs and Be are constructed using the GEN_BE
tool from the WRF Data Assimilation system (WRFDA) [17, 19]. The control variables v1 and
v2 are optimized jointly using a quasi-Newton solver (L-BFGS). The final analysis increment is
reconstructed by combining the two transformed increments, and the analysis state is updated as:

xa = xb + δx. (12)

C Experimental Details

C.1 Neural Network Architectures

Our VAE architecture is inspired by the design in VAE-Var [19], with modifications tailored to
realistic high-resolution atmospheric modeling. Specifically, we adopt a backbone structure similar
to that of the FengWu forecasting model. As illustrated in Figure 6, both the encoder and decoder are
built upon the Swin Transformer V2 [39] architecture.

Each of the encoder and decoder components consists of three stacked modules: an input encoder, a
central transformer, and an output decoder. All three modules contain attention layers. To enable
parameter-efficient adaptation, we insert LoRA modules into the query projections of all attention
layers within these components.

Although only the decoder is used during assimilation, both the encoder and decoder are equipped
with LoRA modules during training, and their parameters are jointly optimized to ensure architectural
symmetry and effective latent encoding. During the assimilation phase, the encoder is not used and
the decoder, including both its backbone and LoRA components, is kept fixed and used to transform
optimized latent variables into physical states.

C.2 Dataset Construction

Historical Error Samples Generation During the offline training phase, we adopt the classical
NMC method (originating from the National Meteorological Center) to generate historical forecast
error samples, as outlined in Algorithm 2. Reanalysis data are treated as the reference ("true") states.
For each training sample, we select two reanalysis states separated by a time gap τ and forecast
both forward to the same target time—once using a single-step forecast from xτ , and once using
a two-step forecast starting from x0. The difference between these two forecasts approximates the
background forecast error. Repeating this procedure across a long historical time window allows us
to construct a representative training set. In our implementation, we use ERA5 reanalysis data from
1979 to 2015.
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Figure 6: Overview of the VAE architecture used in LoRA-EnVar. Both the encoder and decoder
are based on Swin Transformer V2 blocks, and LoRA modules are inserted in all query projections.

Algorithm 2 NMC-Based Training Set Construction
Require: Forecast modelM, number of samples N , forecast interval τ

for i = 1 to N do
Select two reanalysis states: x0, xτ (separated by τ )
x̂1 ←Mτ→2τ (xτ )
x̂2 ←Mτ→2τ ◦M0→τ (x0)
Append forecast difference x̂1 − x̂2 to training set

end for

Flow-Dependent Error Samples Generation To generate flow-dependent error samples in a self-
consistent manner during cycling assimilation, we adopt a time-lagging ensemble strategy, illustrated
in Figure 7. For each assimilation cycle, ensemble members are constructed by forecasting from
previous analysis times, with varying lead times (e.g., 1, 2, or 3 steps), such that all members arrive
at the same target time. This approach enables ensemble generation without reliance on external
forecasts or reanalysis data, and allows the system to remain close-loop during long-term assimilation.

However, in practice, forecast errors exhibit magnitude dependence on lead time, that is, members
with longer lead times tend to have larger absolute deviations. Directly mixing such samples can
cause the model to prioritize high-magnitude signals and distort the representation of flow-dependent
structure.

To address this, we apply a two-stage normalization process:

• Inter-member normalization: For each ensemble member, we compute the standard
deviation of every variable at each vertical level. The corresponding error sample is then
divided by this standard deviation, ensuring that all members have comparable amplitude
across variables, while preserving their structural differences.

• Standard Gaussian normalization: After aligning magnitudes across members, we apply
global standardization (zero mean, unit variance) to the full batch of normalized error
samples before using them to finetune the decoder via LoRA.
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Figure 8: RMSE and bias comparisons at 850 hPa. LoRA-EnVar and three baseline methods
(3DVar, hybrid 3DEnVar, and VAE-Var without finetuning) are compared. LoRA-EnVar shows a
consistent advantage in both accuracy and bias reduction.

C.3 Training & Finetuning Hyperparameters

The VAE is trained using a composite loss function of the form:

Loss =
1

σ2
Lrec + LKL, (13)

where Lrec is the reconstruction loss, LKL is the Kullback–Leibler divergence between the latent
posterior and prior, and σ is a positive scaling factor. In our experiments, we set σ = 2.0.

Both training and finetuning procedures use the Adam optimizer [62]. The learning rate for offline
VAE training is set to 10−4. During finetuning, we use a learning rate of 10−5 for full model
finetuning, and 10−2 for LoRA-based finetuning. In both cases, finetuning is performed for five
epochs.
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Figure 9: RMSE and bias comparisons at 850 hPa. Different finetuning strategies (LoRA-EnVar,
full finetuning without resetting, and full finetuning with per-cycle reset) are compared. LoRA-EnVar
consistently achieves strong accuracy with reduced bias drift.

D Additional Results

D.1 Supplementary Results for Main Experiments

Cyclic Assimilation and Forecasting To further validate the effectiveness of LoRA-EnVar, we
provide a supplementary assessment on additional atmospheric levels. Figure 8 reports the RMSE
and bias for four variables at 850 hPa - geopotential (z850), temperature (t850), zonal wind (u850)
and meridional wind (v850) - in a 30-day cyclic assimilation experiment.

We compare LoRA-EnVar with three baselines: classical 3DVar, hybrid 3DEnVar, and VAE-Var
without finetuning. Consistent with the main results at other levels, LoRA-EnVar achieves the lowest
RMSE and bias across most variables throughout the simulation period. Notably, the improvement is
most pronounced for wind components (u850 and v850), highlighting the model’s ability to capture
flow-dependent structures that are particularly dynamic in the lower troposphere.

To further isolate the effect of different finetuning strategies, we compare LoRA-based adaptation
with two variants of full-model finetuning: one that accumulates updates over time (w/o reset) and
another that resets the decoder weights at each cycle (w/ reset). As shown in Figure 9, LoRA-EnVar
achieves comparable or better performance than both full finetuning approaches, with better stability
over time and lower bias accumulation.

Different Observation Densities To complement the main paper’s analysis, we report additional
assimilation results across different observation densities (250, 500, 1000, and 2000 observations,
corresponding to approximately 0.024%, 0.048%, 0.096%, and 0.19% of total grid points). These
results extend the evaluation in Section 4.3 by including more key atmospheric variables.

Figures 10–12 show RMSE curves over a 30-day assimilation period at various vertical levels
(surface, 500 hPa, and 850 hPa), comparing four methods: 3DVar, Hybrid 3DEnVar, VAE-Var without
finetuning, and LoRA-EnVar. The comparison includes surface-level variables (t2m, u10, v10, mslp),
as well as free-atmosphere variables at 500 hPa and 850 hPa (z, u, v, t, q).

While performance varies across different variables and observation settings, LoRA-EnVar generally
outperforms the baselines in most cases, particularly under sparse observation scenarios. In denser
cases, it remains competitive with traditional methods while offering better parameter efficiency.

D.2 Impact of Ensemble Generation Strategy

In this section, we investigate the impact of background ensemble generation strategies on the
performance of LoRA-EnVar. While the main paper uses a time-lagging ensemble with 8 members,
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here we explore an extended 20-member ensemble that combines two distinct sources of flow-
dependent perturbations.

The first part of the ensemble includes 12 members generated via the standard time-lagging method,
an expansion over the 8 members used in the main setting. The second part consists of 8 additional
members derived from historical forecasts initialized on the same calendar dates one year earlier.
Specifically, to construct the ensemble for, e.g., January 3, 2022, we collect forecasts targeting this
date from initialization times between January 1 and January 2, 2021, using varying lead times (1
to 8 steps). This design leverages the seasonal similarity of atmospheric conditions across years to
enhance ensemble diversity.

Figures 13 and 14 show the RMSE and bias of LoRA-EnVar and baseline methods under this
expanded ensemble setting. Overall, LoRA-EnVar continues to outperform traditional assimilation
methods and full finetuning variants on most variables. The increase in ensemble size also leads to a
general reduction in assimilation errors for all ensemble-based methods, highlighting the benefit of
richer ensemble sampling.

D.3 Impact of LoRA Rank

To evaluate the sensitivity of LoRA-EnVar to the rank hyperparameter in LoRA modules, we conduct
a series of cyclic assimilation experiments with different LoRA ranks: 1, 2 (default in the main
paper), 4, 8, and 16. All other configurations, including model architecture, observation density, and
ensemble setup, are kept identical to the main setting.

As shown in Figure 15, when the LoRA rank is set to 1, the assimilation accuracy slightly decreases,
especially in terms of bias for certain variables such as near-surface temperature and u500. This
suggests that a rank of 1 may not provide sufficient representational capacity to capture flow-dependent
forecast corrections. In contrast, when the rank is set to 2 or higher, the assimilation results remain
largely consistent, with negligible differences in both RMSE and bias across ranks 2, 4, 8, and 16.

These findings indicate that a LoRA rank of 2 provides adequate modeling capacity for our use
case, while larger ranks offer no significant gain but incur additional computational overhead. This
highlights the robustness and parameter efficiency of LoRA-EnVar.

D.4 Assimilation with Real Observations

To further evaluate the practical effectiveness of LoRA-EnVar, we conduct additional experiments
using real-world observations from the NOAA GDAS (Global Data Assimilation System) prepbufr
dataset.

D.4.1 Experimental Setup

Dataset Description The GDAS prepbufr dataset provides a comprehensive set of global mete-
orological observations curated by the National Centers for Environmental Prediction (NCEP). It
contains surface and upper-air measurements collected from various sources, including land and
marine stations, radiosondes, aircraft reports, and GTS (Global Telecommunications System) trans-
missions. The dataset also incorporates advanced remote sensing inputs such as wind profilers,
radar-derived wind data from the U.S., satellite-derived winds from NESDIS, and ocean surface
wind estimates from instruments like SSM/I. This rich and operationally relevant dataset serves as a
benchmark in modern weather forecasting systems and is thus well-suited for evaluating real-data
assimilation performance.

Data Preprocessing Each entry in the prepbufr dataset represents an individual measurement
recorded by a specific instrument at a known time and spatial location. Since our assimilation
algorithm targets fixed assimilation times, we retain only observations that fall within a narrow time
window, 30 minutes before and after each assimilation cycle. For example, at an assimilation time
of 6 PM, we include only observations recorded between 5:30 PM and 6:30 PM. In addition, these
observations are often irregularly located in space and do not lie directly on the forecast model’s
grid. To resolve this, we construct a new, finer observation grid, onto which the raw observations are
projected using nearest-neighbor mapping. This intermediate grid shares the horizontal resolution
of the FengWu model, but contains 40 vertical levels, much denser than the native FengWu grid,

27



to preserve the vertical structure while maintaining computational efficiency. After gridding, we
perform quality control by discarding any observations that deviate significantly from the co-located
ERA5 reanalysis values.

Observation Operator Construction Once the observations are placed on the uniform grid, we
define the observation operatorH as the mapping from the FengWu forecast grid to this observation
grid. This is implemented using a differentiable linear interpolation layer in PyTorch, ensuring full
compatibility with our variational assimilation framework.

D.4.2 Evaluation Protocols

To assess the effectiveness of LoRA-EnVar under realistic observational settings, we design two
complementary evaluation protocols:

ERA5-based Evaluation In this setting, we assimilate all available GDAS observations at each
assimilation step and compare the resulting analysis fields with the ERA5 reanalysis. Specifically, we
compute the RMSE between the analysis and ERA5 over the global domain, across multiple variables
and levels. This evaluation reflects the system’s ability to recover large-scale atmospheric structures
and serves as a standard benchmark for assessing assimilation fidelity.

Station-based Evaluation To more directly evaluate the predictive skill of the assimilation system
at observation sites, we adopt a hold-out validation strategy. At each assimilation time, we randomly
exclude 15% of the available observational stations from assimilation. The remaining 85% of
observations are used to perform data assimilation as usual. After assimilation, we interpolate the
resulting analysis fields to the locations of the held-out 15% stations and compute RMSE between
the interpolated values and the actual observations at those sites. This protocol assesses the system’s
ability to generalize to unseen observations and is particularly relevant for evaluating performance in
sparse or partially observed regions.

D.4.3 Results and Analysis

ERA5-based Evaluation Results In this context, we compare the analysis fields generated by
different assimilation methods against the ERA5 reanalysis. To offer a clearer view of how as-
similation improves upon raw observational input, we include a linear interpolation baseline that
directly interpolates observations without consideration of model dynamics. As shown in Figure 16,
all assimilation methods, including 3DVar, hybrid 3DEnVar, VAE-Var, and LoRA-EnVar, outper-
form linear interpolation across nearly all variables and time steps. This highlights the benefit of
incorporating physical priors and model dynamics in reducing analysis error. Notably, among the
model-based methods, LoRA-EnVar achieves consistently lower RMSE than VAE-Var and hybrid
3DEnVar, especially for variables like wind speed and temperature. These results align well with the
trends observed in our earlier simulated observation experiments, reaffirming the effectiveness of
LoRA-based flow-dependent adaptation in real-world settings.

Station-based Evaluation Results To evaluate model generalization to unseen observations, we
adopt a station hold-out strategy, where 15% of the GDAS observation stations are excluded from
assimilation and used solely for evaluation. Figure 17 presents the RMSE of interpolated analysis
values at these held-out stations. Due to the inherent noise and variability in real-world observations,
these RMSE curves exhibit stronger fluctuations compared to ERA5-based evaluation. To highlight
the performance difference between LoRA-EnVar and VAE-Var more clearly, we also plot the RMSE
difference between the two methods (gray curves in Figure 17), where positive values indicate that
LoRA-EnVar performs better at a given time step. Overall, we observe that LoRA-EnVar outperforms
VAE-Var at most time steps and across most variables, indicating its superior ability to integrate
sparse and noisy observational data without overfitting.

28



0 10 20 30
1.0

1.5

2.0

2.5

3.0

3.5
u1

0 
RM

SE
 (m

/s
)

#Obs = 250 (0.024%)

0 10 20 30

#Obs = 500 (0.048%)

0 10 20 30

#Obs = 1000 (0.096%)

0 10 20 30

#Obs = 2000 (0.19%)
3DVar
Hybrid 3DEnVar
VAE-Var
LoRA EnVar

0 10 20 30
1.0

1.5

2.0

2.5

3.0

3.5

v1
0 

RM
SE

 (m
/s

)

0 10 20 30 0 10 20 30 0 10 20 30

0 10 20 30

1.00

1.25

1.50

1.75

2.00

2.25

2.50

t2
m

 R
M

SE
 (K

)

0 10 20 30 0 10 20 30 0 10 20 30

0 10 20 30
50

100

150

200

250

300

350

400

m
slp

 R
M

SE
 (P

a)

0 10 20 30 0 10 20 30 0 10 20 30

0 10 20 30
Simulated Time (Days)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

q7
00

 R
M

SE
 (1

0
3 k

g/
kg

)

0 10 20 30
Simulated Time (Days)

0 10 20 30
Simulated Time (Days)

0 10 20 30
Simulated Time (Days)

Figure 10: RMSE comparisons of major surface-level variables and q700 under different
observation densities (250∼2000 obs). LoRA-EnVar is compared against 3DVar, Hybrid 3DEnVar,
and VAE-Var (no finetuning).
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Figure 11: RMSE comparisons at 500 hPa level for multiple variables under varying observation
densities. LoRA-EnVar is compared against 3DVar, Hybrid 3DEnVar, and VAE-Var (no finetuning).
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Figure 12: RMSE comparisons at 850 hPa level for multiple variables under varying observation
densities. LoRA-EnVar is compared against 3DVar, Hybrid 3DEnVar, and VAE-Var (no finetuning).
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Figure 13: RMSE and bias comparisons for major variables using a 20-member ensemble,
including 12 time-lagged and 8 seasonally aligned historical forecasts. LoRA-EnVar is compared
with 3DVar, hybrid 3DEnVar, and VAE-Var (no finetuning).
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Figure 14: Comparison of LoRA-EnVar and full finetuning methods using the 20-member
ensemble. LoRA-EnVar remains competitive while using significantly fewer trainable parameters.
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Figure 15: RMSE and bias comparisons of LoRA-EnVar with different LoRA ranks (1, 2, 4, 8,
16). Rank 2 offers a good trade-off between accuracy and efficiency, while rank 1 underperforms
slightly on some variables.
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Figure 16: ERA5-based evaluation of analysis RMSE for various methods using GDAS real
observations. All model-based assimilation approaches outperform linear interpolation, with LoRA-
EnVar achieving the best overall accuracy.
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Figure 17: Station-based evaluation using held-out GDAS observations. The bottom half shows
RMSE differences between LoRA-EnVar and VAE-Var, with positive values indicating better perfor-
mance by LoRA-EnVar.
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