Bigger, Regularized, Categorical: High-Capacity Value
Functions are Efficient Multi-Task Learners

Michal Nauman'-2 Marek Cygan?3 Carmelo Sferrazza' Aviral Kumar*

Pieter Abbeel!-®

Abstract

Recent advances in language modeling and vision stem from training large models
on diverse, multi-task data. This paradigm has had limited impact in value-based
reinforcement learning (RL), where improvements are often driven by small models
trained in a single-task context. This is because in multi-task RL sparse rewards
and gradient conflicts make optimization of temporal difference brittle. Practical
workflows for generalist policies therefore avoid online training, instead cloning
expert trajectories or distilling collections of single-task policies into one agent. In
this work, we show that the use of high-capacity value models trained via cross-
entropy and conditioned on learnable task embeddings addresses the problem of
task interference in online RL, allowing for robust and scalable multi-task training.
We test our approach on 7 multi-task benchmarks with over 280 unique tasks,
spanning high degree-of-freedom humanoid control and discrete vision-based RL.
We find that, despite its simplicity, the proposed approach leads to state-of-the-art
single and multi-task performance, as well as sample-efficient transfer to new tasks.

1 Introduction

Aggregate DeepMind Control 500k HumanoidBench IM HumanoidBench 2M
08 High-DoF locomotion (7 tasks) Low-DoF humanoid (9 tasks) High-DoF humanoid (20 tasks)
B Sinse sk
= Multi-ask TD-MPC2 TD-MPC2 TD-MPC2
0.6 SAC+BRC SAC+BRC SAC+BRC
2 rH [sacBRG: [ACERC: W
] 0.0 0.4 08 0.0 0.5 1.0 00 035 0.7
- Normalized returns Normalized returns Normalized returns
o
NO0.4 .
= MetaWorld 500k ShadowHand 1M Atari 100k
E Low-DoF manipulation (50 tasks) High-DoF manipulation (85 tasks) Vision-based discrete (26 tasks)
2 P bR
02 crrG: GANT:
' [SACTBRC i [SACTBRC T DrQ+BRC
0.0 L 0.0 05 10 00 0.4 08 0.0 045 0.9
SAC SAC+BRC Success rate Success rate Normalized returns

Figure 1: Scaling multi-task training leads to state-of-the-art performance. Naive scaling of SAC to
multi-task decreases the aggregate performance (left). Our proposed method (BRC) works both in single and
multi-task learning and provides a pronounced performance improvement over previous approaches, including
optimized single-task learners (right). We denote multi-task with x and share additional details in Appendix D.

Large-scale neural networks trained on large, diverse datasets have led to substantial advances in
natural language processing [28, 18, 105] and computer vision [30, 78, 56]. These models, typically
trained in a multi-task setting [85, 24, 1], exhibit not only strong performance across tasks seen during
training but also demonstrate impressive sample efficiency when transferred to new domains or new

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

MetaWorld HumanoidBench-Medium HumanoidBench-Hard Atari

Low-DoF manipulation (3 tasks) Low-DoF humanoid (3 tasks) High-DoF humanoid (7 tasks) Vision-based discrete (20 tasks)

1.0 0.6 o 0.4 0.6 o
+62% +66% =i o
+257% - 15% +12% T34%
) |:| |:|) B) DI il) D
0.0 0.0 I:| 0.0 0.0
250k 500k 500k IM IM 2M 50k 100k

Figure 2: Scaling multi-task training allows for sample-efficient transfer to new tasks. We compare the
performance of single-task BRC agent trained from scratch (green), to an agent initialized with our pretrained
multi-task BRC agent trained on different tasks (blue). We find that transferring a multi-task BRC model to new
tasks leads to better sample efficiency than learning from scratch. Y-axis denotes the average final performance.

tasks, including those that these models were never trained on [1, 102, 105, 66]. This combination of
generalization and transfer has become the cornerstone of modern machine learning, suggesting that
scaling models and data in a unified training regime can yield powerful and versatile systems.

Despite growing interest in reinforcement learning (RL) [25, 27, 79, 53], little is known about how
RL scales [89]. This is particularly true for online RL algorithms, where recent advances have mainly
focused on scaling model capacity for learning with limited single-task data [91, 77], making it
difficult to assess how these methods perform when the variety of tasks and data increases [104, 46].
Addressing this gap is especially important, as experience with large language models shows that
genuine scaling gains arise only when model capacity is paired with sufficiently diverse data [52, 45,
47, 69]. Unfortunately, previous work shows that naively extending value-based methods to multi-task
RL is far from straightforward due to issues like reward imbalance [46] and gradient interference [120].
As such, practical systems often fall back on distillation from single-task experts [88, 65, 38, 21, 114,
111], offline learning from curated demonstrations [20, 7, 87, 17, 123, 119] or specialized techniques
to resolve gradient conflicts [22, 92, 120, 23, 67]. As such, online training of high-capacity value-
based agents on many tasks remains a significant open challenge.

We demonstrate, for the first time, that value models trained with online temporal-difference learning
scale to the billion-parameter range, challenging the belief that such capacity requires offline datasets
and behavioral cloning [98, 70]. We show that, similarly to supervised learning, combining model
capacity with multi-task RL training leads to significant improvements over single-task oracles, as
well as pronounced sample-efficiency gains when transferring to new tasks. The key design choices
that unlock this behavior include significantly increasing critic capacity using normalized residual
architectures, stabilizing temporal difference gradients through cross-entropy loss, and modeling task
diversity via task embeddings instead of separate network heads. We run experiments using over 280
complex tasks from 5 benchmarks and find that the proposed combination of design choices produces
simple agents that offer state-of-the-art performance in both single-task and multi-task scenarios, all
while using a single hyperparameter configuration. Our contributions are as follows:

* Model scaling in online RL - we show design choices that allow for scaling value-based RL up to
1B parameters (Figures 4 & 12) without the use of offline data [61] or behavioral cloning [98]. We
show that using such high-capacity models addresses the issues of gradient magnitudes [46] and
conflicts [120] that are associated with multi-task RL (Figures 3 & 5).

* Data scaling in multi-task RL - we show that multi-task RL can yield improved sample ef-
ficiency and final performance as compared to single-task learning with state-of-the-art agents
(Figure 1), despite using significantly less gradient updates (Figure 9). We find that, given common
embodiment, agent performance scales with the number of tasks used in training (Figure 10).

* Sample-efficient model transfer - we find that initializing training from a pretrained, multi-task
value model can lead to significant improvements in sample efficiency when compared to learning
from scratch (Figure 2). We find the sample efficiency and final performance of the pretrained
model transferred to new tasks is scaling with the capacity of the multi-task model, as well as the
number of tasks used in pretraining (Figure 10).

Our goal is to show that, much like in vision and language modeling, larger models trained on more
diverse streams of experience lead to policies that not only perform well in tasks used in multi-task
learning but also transfer to new problems in a sample efficient manner. As such, we take a step
toward bridging the methodology gap between supervised learning and value-based control.

Variance between tasks Performance improvement

10 1.0
0 Z 1
- -
g6 3 0.6
° s
Z 4 =04
ki g
< LE_ Cm_ Cfm

0 == — 0.0

TD Loss Grad Norm Entropy Single-task Multi-task

Figure 3: Cross-entropy loss stabilizes online multi-task learning. We investigate BRC with naive application
of MSE loss (purple), MSE loss paired with return normalization (green) and cross-entropy paired with return
normalization (blue) on HB-MEDIUM. Varying reward magnitudes in multi-task learning can destabilize
learning of certain tasks, which translates to high variance of signals between tasks (left). Stabilizing this effect
via cross-entropy loss allows for improved scaling when moving from single to multi-task learning (right).

2 Related Work

High-capacity value models. Previous work indicates that naive scaling of model capacity in
single-task RL leads to divergent behavior when training via temporal difference loss [15, 91, 77].
Interestingly, it was shown that using layer normalization [77, 63], feature normalization [59, 61],
weight normalization [80], batch normalization [13, 19] or classification losses [40, 41, 33] can
stabilize that divergent behavior and improve performance when using high-capacity models. Whereas
these works investigated the above design choices in isolation, we explicitly combine normalized
residual Q-value architectures [77] with cross-entropy loss via categorical Q-learning [11] and show
that using these is crucial for efficient scaling in multi-task RL.

Multi-task learning. Previous work showcased a variety of issues with multi-task RL, such as
divergence due to heterogeneous reward scales [104, 46] or conflicting gradients [120, 67] and
proposed solutions such as reward [46] or gradient [22, 116] normalization, gradient projection [120]
or distillation of single-task expert policies [104, 114, 111]. In contrast to these works, we show that
increasing model capacity paired with training via cross-entropy loss is very effective at stabilizing
multi-task learning, leading to policies that significantly outperform state-of-the-art single-task oracles.
Furthermore, previous work considered multi-task training with high-capacity models [61, 41, 98].
In these works, the authors focus on offline learning from fixed datasets containing high-return
trajectories. In contrast to these works, we focus on online multi-task learning without expert data.

Transferable generalist policies. Prior work investigated the possibility of learning a generalist
agent that can solve many tasks and transfer to new ones [87, 17, 41, 103]. Due to multi-task RL
complexities, many works train generalist agents via behavioral cloning on expert demonstrations [87,
31, 117]. These works often use pre-trained vision and language backbones [103, 68, 48] and achieve
transfer via fine-tuning the pretrained model weights [54] or conditioning the pretrained model on text
or visual task encoding [17, 123]. Although we are also interested in learning transferable generalist
policies, our work assumes non-stationary learning of value functions via temporal difference [100].
More RL-based approaches facilitate transfer by learning a task-agnostic encoder and retraining a
linear layer when the task changes [9, 115, 32, 2] or appending a learned task embedding to the model
inputs, with heuristic selection of embeddings for new tasks [34, 43, 86, 97]. Whereas our work also
considers task embeddings, we learn these online by backpropagating the temporal difference loss.

3 BRC Approach

In this section, we outline the Bigger, Regularized, Categorical (BRC) approach and its design
principles that, when combined, allow effective scaling of online value-based agents (Figure 6). We
discuss these design choices below and share additional details in Appendix C.

Cross-entropy loss via distributional RL. Recent studies have shown that reframing regression prob-
lems as classification tasks can significantly improve performance in both supervised learning [106]
and RL [33]. The Mean Squared Error (MSE) loss is known to depend on the scale of predicted
values and is susceptible to outliers [14]. Note that this susceptibility is particularly problematic in
multi-task learning, as differences in reward magnitudes introduce an implicit task prioritization:

Single-task model scaling Multi-task model scaling

1.0 1.0
£ 08
s O
206
O S = r
Vanilla =04 O
= SimBa g (9
=@= BroNet (MSE) 502
= BroNet (CE)
0.0 *——e ®
1 4 16 64 256 1 4 16 64 256
Total parameter count (M) Total parameter count (M)

Figure 4: BroNet paired with cross-entropy loss scales in both single and multi-task RL. We compare
scaling behavior of different architectures in single (left) and multi-task (right) when solving the HB-MEDIUM
benchmark. We pair SAC with the vanilla [39], SimBa [63], BroNet with mean squared error loss [77], and
proposed BroNet with cross-entropy loss architectures. Both figures report final performance after 1M steps.

Model size scaling o Gradient conflicts between tasks
1.0 :

. g = - 2
£0.9 o
= 2]
= S 98
0.8 /./ =
= =)
U.N> o
= 0.7 S 96
g a =@= Single-task S
5 0.6 {@= Separate heads é
Z 0.5 + Task embeddings 5 94

4 16 64 256 4 16 64 256

Total parameter count (M) Total parameter count (M)
Figure 5: Using task embeddings is preferable to separate heads design. We compare the performance
(left) and gradient similarity [120] (right) of different approaches for multi-task learning on HB-MEDIUM. We
consider single-task, multi-task via separate heads [46, 61] and via task embeddings variants of our proposed
BRC. We find that the task embeddings design outperforms other variants at all considered model scales and,
interestingly, the separate heads design performs better than single task oracle only past certain model scale.

tasks with higher rewards produce higher TD errors and stronger gradient signals [104, 22, 46, 116].
This in turn results in an increase in the variance of TD errors, gradient norms, and policy entropy
between tasks, destabilizing learning. We demonstrate this phenomenon in Figure 3, which demon-
strates substantial variability in loss magnitudes, gradient norms, and policy entropy across tasks
for a multi-task learner. Although reward normalization [46] partially mitigates this issue, we find
that adopting a cross-entropy loss via categorical Q-learning [11] effectively balances gradients and
ensures consistent learning signals across all tasks. We normalize the rewards in each task by dividing
them by the maximal Monte Carlo return achieved in a given task at that point in learning (see
Appendix C for details). Finally, we note that previous work builds theoretical arguments on why
cross-entropy loss might stabilize TD learning [112, 113].

Scaled Q-value model. Prior work proposed scaling the Q-value model in single-task RL by using
regularized ResNets [15, 77]. In particular, the BroNet architecture [77] was shown to achieve
state-of-the-art performance on a variety of control tasks. To this end, we combine this architecture
with the cross-entropy loss, and we refer to this variant as BroNet (CE). As shown in Figure 4, we
observe that the trends observed in single-task learning persist in multi-task scenarios. Similarly to
single-task setup, vanilla architectures experience performance degradation when the Q-value model
size is increased, despite being exposed to more diverse data than in single-task learning. Furthermore,
regularized architectures achieve steady performance improvements when increasing the capacity,
with our proposed BroNet (CE) yielding the best performance in both single and multi-task setups.
Furthermore, previous work found that online multi-task learning leads to gradient conflicts that
substantially decrease the learner performance [120, 67]. Interestingly, we find that the rate of
gradient conflicts decreases as the number of parameters increases (Figure 5), showing that complex
interventions such as gradient surgery might not be required after a certain model scale. We discuss
the considered architectures used to represent Q-values in Appendix C, as well as the definition of
gradient conflicts in Appendix D.

Importance of BRC components

None |)
CE - TE 18.0%

TE "
sQ i
| 19.6%

CE+TE S cE

CE+5Q S

TE +SQ] sQ | 62.4%
CE+TE +5Q (S

0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 0.3

Normalized returns Shapley values

Figure 6: Scaled Q-value model is the most important design choice. (Left) We investigate the final
performance of the base model paired with various combinations of scaled Q-value model (SQ), cross-entropy
loss via categorical RL (CE), and learnable task-embedding module (TE) on HB-MEDIUM. (Right) SQ is
associated with the highest Shapley value, accounting for 62% of improvements.

Task embeddings. To accommodate scalable Jump o I
learning across numerous tasks, we employ learn- RUnF ot ® ;Tn::f §
able task embeddings [86, 41]. By providing task Wiy o

H : : : : Run-Back @ Walker ® Cartpole
identifiers and using task embeddings effectively o Honmer
transforms the multi-task setting into single-task Swingup Reacher () ~ @ Finger
by combining multiple MDPs into one [34]. In this Balance Reacher @) Bal

unified MDP, the state representation is augmented @ Balange-Hard

with the learned embeddings, thereby allowing the SWIZ%L:E,;r‘;;gk Fasy

models to distinguish which task it is solving. In Stand_Run-Back Herd spin

contrast to approaches such as separate value and ¢ R.un

policy heads [120, 121, 61], learnable embeddings % walk fard
®Walk-Back Easy

facilitate the discovery of shared structure between
tasks, positioning similar tasks closer within the
en;beddlfn(%fsfp ace, W1t11<10ut aT§ umptl(')ILthat the Q- the underlying dynamics structure. We graph the
values of ditferent tas S are linear wit respe.ct 0 firgt two principal components of the task embeddings
the shared representation [81, 46, 2]. Crucially, |earned online on MW+DMC and find that the dis-

these approaches do not explicitly supervise the covered embeddings cluster similar embodiments.
learning of shared structure between tasks. In con-

trast, we optimize embeddings by backpropagating the cross-entropy temporal difference (TD) loss,
thus encouraging embeddings that represent well the value structure. As shown in Figure 7, our
approach learns embeddings that cluster similar tasks. Furthermore, as shown in Figure 5, using task
embeddings performs better than separate heads at various model scales. We detail our approach to
using task embeddings in Appendix C.

Figure 7: Learnable task embeddings discover

Summary. The design choices that enable us to scale multi-task RL agents are: (1) using a scaled
and regularized residual network architecture to represent the Q-values, (2) using cross-entropy
instead of MSE loss to train the critic, and (3) conditioning models on task embeddings which are
learned by backpropagating the temporal difference loss. We refer to the resulting approach as
Bigger, Regularized, Categorical (BRC). We apply BRC to two popular model-free algorithms for
continuous and discrete control, and study their scaling and transfer behavior. For continuous control
experiments, we utilize Soft Actor-Critic (SAC) [39], whereas for discrete vision-based control, we
use DrQ-¢ [58] (we discuss hyperparameters in Appendix F). As shown in Figures 3 and 5, BRC
tackles the problems of stability [104, 22, 46, 116] and gradient conflicts [120, 67] in multi-task RL.
To assess the importance of BRC components, we evaluate the performance of every combination of
these choices. As shown in Figure 6, we find that combining the above techniques leads to synergy
effects, where removing any block always leads to a decrease in performance. Finally, we calculate
the exact Shapley values [94] associated with each component and find that using the scaled Q-value
model is the most important factor, accounting for 60% of the presented improvements.

4 Experimental Evaluation

We now discuss experiments designed to evaluate the effectiveness of our BRC approach in scaling
with data and compute. Our goal is to answer the following questions: (1) How does our proposed
method enhance the effectiveness of model capacity scaling in multi-task RL? (2) Does the perfor-

Figure 8: We consider 283 tasks from 5 simulation benchmarks. We test our approach with SAC [39] on
MetaWorld, DeepMind Control, HumanoidBench and ShadowHand, and with DrQ-¢ [58] on vision-based Atari.
In both approaches we use single set of hyperparameters across all tasks and multi-task configurations.

mance of our multi-task learner improve when scaling the number of tasks? (3) Do the representations
learned in online multi-task learning transfer to new tasks and result in more efficient learning than
fresh initialization? (4) How does model capacity scaling impact the task-scaling and transfer ca-
pabilities of agents? We answer these questions through experiments described in the subsections
below and analyzed in Section 5. For more details on our experiments see Appendix D.

Benchmarks. We consider a wide range of tasks, with a total of 283 diverse, complex control
problems spanning five domains: DeepMind Control (DMC) [101], MetaWorld (MW) [121], Hu-
manoidBench (HB) [93], Atari [10], and ShadowHand (SH) [49]. The tasks considered include
locomotion and manipulation, different embodiments, numerous degrees of freedom (| A| reaching
60 dimensions), fully sparse rewards, and vision-based control. We use the following multi-task
configurations: DMC-HARD with dog (4 tasks) and humanoid (3 tasks) locomotion tasks trained
for 500k environment steps per task [77], MW with 50 manipulation tasks for a Franka robot [121]
trained for 500k environment steps per task, HB-MEDIUM with 9 humanoid locomotion tasks trained
for 1M environment steps per task, HB-HARD with 20 whole-body locomotion and manipulation
tasks for a humanoid equipped with Shadow Hands [93] trained for 2M environment steps per task,
and SH with high DoF Shadow Hand manipulating 85 diverse shapes with fully sparse rewards [49]
trained for 1M environment steps per task. We also consider an 80-task MW+DMC with multiple
robot embodiments considered in Hansen et al. [41]. For vision-based experiments, we consider 26
tasks from Arcade Learning Environment (ATARI) [51]. Finally, we consider an additional 64 tasks
from all benchmarks for transfer experiments. We list all the task sets considered in Appendix E.

Training. We compare our approach against a variety of modern single and multi-task approaches.
We consider TD-MPC2 [41], DreamerV3 [40], BRO [77], SAC [39], TD7 [37], SimBa [63], Sim-
BaV2 [64], MH-SAC [121], PCGrad [120], PaCo [99], CTPG [44], GAMT [49], DDPG+HER [5, 6],
DrQ-¢ [58], SPR [90], SimPLe [51], and DER [108]. Whenever possible, we show previously
reported results, otherwise we run official repositories associated with the given method. For our
approach, we use a single set of hyperparameters across all benchmarks, in both continuous and
discrete action experiments. Specifically, we use hyperparameter values proposed in previous works
for our backbone algorithms ([77] for SAC and [3] for DrQ-¢). We use the 250M variant of the
single and multi-task BRC model except when directly stated otherwise. In both cases, following
prior works [41], we increase the batch size 4x to accommodate multi-task learning. In contrast to
previous works [41, 64], we do not use learning rate scheduling or discount heuristics for our method.
Furthermore, all multi-task agents interact with all tasks in parallel and keep updates-per-data (UTD)
fixed at UTD = 2 [77]. As such, the multi-task learners perform fewer gradient steps than their
single-task counterpart (e.g. with 20 tasks, the multi-task model performs 20 times fewer updates
while performing the same number of environment steps). We detail hyperparameters in Appendix F.

Transfer learning. In our transfer experiments, we evaluate three adaptation protocols inspired
by previous work. Firstly, we consider model transfer by initializing a single-task learner with
the weights of the pretrained multi-task agent and continue learning only on data from the new
task [61, 41]. Secondly, in what we call embedding-tuning transfer, we keep the pretrained parameters
frozen [34, 60] and adapt only through a low-dimensional task embedding inferred from a less than a
thousand target-task transitions. Finally, as a form of a baseline in transfer approaches, we consider
an approach leveraging prior data [8, 122] in which we initialize the experience buffer of a fresh
single-task learner with transitions stemming from multi-task pretraining (we refer to this approach
as data transfer). In all cases, the multi-task model is not trained on the transfer tasks, mimicking the
train-test split used in supervised learning [14]. We report results for transfer experiments in Figures
2,10 and 11. We list the tasks used in multi-task and transfer learning in Appendix E.

Sample Efficiency Compute Efficiency

» O 8 » 0 8 e SAC+BRC (MT)
g £ = SAC+BRC (ST)
g006 ~Zx improvement 500 > 40x improvement_
- = - MPC 4
S04 p— B o4 D MECS /
= — = M 4
£0.2 /"’J £0.2 7 /
] (=})
z Z .
0.0 0.0 -
0.0 0.5 1.0 1.5 2.0 0.04 0.2 1 5 25 125
Environment Steps (M) Gradient Steps (M)

Figure 9: Multi-task learning is sample and compute-efficient. We compare the performance of our
proposed single and multi-task BRC agents on HB-HARD benchmark and find that multi-task learning leads 2x
improvement in sample efficiency (left) while performing 40x less gradient updates (right) when compared to
SOTA single-task learners. This result shows that multi-task training can be very efficient.

Evaluation. Since tested environments use different reward scales, we report performance normalized
to [0, 1] according to practices drawn from previous works: for DMC, we divide the returns by
1000 [77]; for MW, we report success rates [121]; for HB-MEDIUM and HB-HARD we divide the
returns by their success score [93, 63]; and for ATARI we divide the returns by scores achieved by
humans [72]. When reporting aggregate, we report the sample mean across tasks with 95% confidence
interval calculated via bootstrapping over seeds [3]. We detail the implementations in Appendix F,
normalization values in Appendix E and report the unnormalized scores in Appendix H.

5 Analysis

This section summarizes the results of our experiments with the BRC approach, particularly high-
lighting its scaling and transfer properties. We adhered to the setup discussed in Section 4.

Efficiency of multi-task learning. Perhaps most importantly, we demonstrate that given the design
choices outlined in Section 3, a single value model trained jointly multi-task setup not only matches
but surpasses strong single-task specialists, establishing a clear generalist advantage in value-based RL
(Figure 1). This result fills the gap left by recent work reporting parity with single-task oracles [87,
111]. Furthermore, as shown in Figure 9, the performance improvements are complemented by
significantly lower compute load, with our multi-task model performing 40x fewer gradient updates
to achieve the performance of the best single-task model. Since the multi-task model learns from all
tasks in parallel, it uses more data than any individual single-task learner — we find that the outcome
is consistent with observations in supervised learning, where data and compute can be traded off to
reach a given performance level [71, 52, 47]. We note that BRC achieves this level of performance
while using a single set of hyperparameters across all tasks proposed by prior work and tuned for
single-task DMC [77]. We present detailed results, including training curves, in Appendix H.

Scaling model capacity. Similarly to single-task learning, increasing the model capacity can lead to
substantial performance improvements in the multi-task setting (Figure 4). In fact, we observe that the
increased data diversity resulting from multi-task learning allows the performance to scale beyond that
of single-task RL - whereas in single-task the performance saturates at around 64M parameters, the
multi-task model still improves beyond 250M parameters (Figures 4 and 12). Furthermore, as shown
in Figure 5, we observe that increasing the parameter count reduces the rate of gradient conflicts for
both single and multi-task learners, suggesting that high-capacity models can at least partly substitute
interventions such as gradient surgery. To this end, as shown in Figure 1, we observe that our method
outperforms multi-task specific approaches like CTPG [44], PaCo [99] or PCGrad [120]. Finally, we
find that scaling the Q-value model is the most important design decision, accounting for more than
60% of the improvements of our approach according to the Shapley values (Figure 6).

Scaling number of tasks. We find that the BRC performance scales with the number of tasks used
in pretraining, with the multi-task variant performing equally or better than single-task counterpart
(Figure 1). Interestingly, we also observe that our proposed method trains robustly even when the
number of robot embodiments grows (Figure 12). Furthermore, we find that given the common

Pretraining tasks scaling Model transfer scaling

» 1.0 <= Single-task » 0.5
£ <= Multi-task (3) £
Z =@= Multi-task (6) 204
= 0.8 |a@p= Multi-task (9) =
s 203
0.6 E
E E 02 ¢ & .4
0.4 ¢
0.1
16 64 256 16 64 256
Total parameter count (M) Total parameter count (M)

Figure 10: Increased data and compute improves pretraining and transfer performance. We train our
multi-task agent on HB-MEDIUM using 3, 6 or 9 tasks for 1M environment steps. We find that the final
performance on 3 shared tasks improves when increasing the number of pretraining tasks, with the trend most
pronounced for the biggest evaluated models (left). We also investigate the final performance of the same models
when transferring to 3 new tasks. The transfer performance is improving with both model capacity and the
number of pretraining tasks (right). We detail the setup in Appendix D.

Model transfer Embedding-tuning transfer

| DDPG+P{ER ‘ |

| GAMT |

| BRC (Z%ro-Shot)‘ |

Normalized performance
e
=)

05 === Model transfer
=== Data transfer
0.0 0.1 02 03 04 05 0.0 0.2 0.4 0.6 0.8 1.0
Environment steps (M) Success rate

Figure 11: Value-based RL agents are transferable. (Left) We compare the performance of model transfer
with the BRC agent to a fresh agent initialized with the buffer used in pretraining of the transferred BRC model
(data transfer). We consider 15 transfer tasks from MW, HB-MEDIUM and HB-HARD listed in Appendix E.2.
(Right) We also inspect the potential of fine-tuning solely via adjusting the task embedding, while keeping
the policy and value models frozen (embedding-tuning transfer). We report success rates on 29 transfer tasks
from the SH manipulation benchmark listed in Appendix E.2. We consider using random embeddings from
pretraining tasks (zero-shot) and choosing the best-performing embedding from the pretraining set (few-shot).
Surprisingly, the few-shot embedding transfer achieves over 90% success when manipulating new objects.

embodiment, pretraining using more tasks leads to both improved performance on pretraining tasks
and improved capabilities when transferring to out-of-distribution tasks (Figure 10). This indicates
that akin to supervised learning, increased data diversity in online RL leads to more general features
that allow for sample-efficient transfer. Whereas our work showed empirically that such a scaling
effect exists in high-DoF humanoid tasks, we believe that establishing a more comprehensive theory
of task similarity in RL can be an impactful avenue for future research.

Model transfer from multi-task RL. We observe that multi-task agents can learn features that
transfer to new tasks, leading to improved sample efficiency and performance on various benchmarks
(Figure 2). This transfer capability seems to be related to the size of the multi-task learner, with
bigger models being better transfer learners (Figure 10). Examining the learning curves in Figure 11,
we observe that model transfer not only outperforms learning from scratch but also converges more
rapidly than the data transfer baseline. Although both methods rely on the same set of pretraining
transitions, initializing with multi-task weights yields higher returns throughout training. Interestingly,
as shown in Figure 11, the model transfer procedure (i.e. transferring weights of the pretrained model)
is often more practical than data transfer (i.e. initializing a fresh agent with a replay buffer from
multi-task pretraining [8]). This result is consistent with recent observations made in single-task
offline-to-online fine-tuning [122]. We also note that the data transfer procedure differs from
traditional offline-to-online RL [8, 122] or network resets [29] in that the data transfer method uses
data generated when solving auxiliary tasks. Although the exact reason for the effectiveness of model

Offline learning Online sample efficiency scaling

| TD3+BC (6M samples) | 37GPU days

— N
N W
o N

| TD-MPC2 (6M samples) | 10 GPU days

| BRC+BP (6M sa)mples) ‘ | 4GPU days

b
:

Transitions required (k)
o
i

16
R e LT T S N R, - S —
0.0 0.2 0.4 0.6 0.8 1.0 16 64 256 1024
Normalized score Total parameter count (M)

Figure 12: Scaling online multi-task TD learning past 1B parameters. We investigate the performance of
online (BRC) and offline (BRC+BC) agents on the multi-task MW+DMC benchmark consisting of 12 different
robot embodiments [41]. (Left) Online multi-task learning is significantly more compute and data-efficient than
offline learning. (Right) We investigate the number of samples required for BRC agents to reach a percentage of
offline TD-MPC2 final performance. The find that 1B BRC model is the most sample-efficient, reaching the
performance of offline TD-MPC2 with 64k transitions, almost 100x less than TD-MPC2.

transfer requires further study, pretrained weights encode the dataset without inducing distribution
mismatch when learning new tasks.

Embedding-tuning transfer We also investigate the possibility of transferring to new tasks by
solely adjusting the task embeddings, while keeping the entire network frozen (embedding-tuning
transfer). Here, we consider the Shadow Hand manipulation setup proposed in previous work [49],
with pretraining focused on manipulating 85 distinct shapes, with evaluation on 29 out-of-distribution
objects. As shown in Figure 11, using only 300 transitions for task embedding selection allows
the BRC agent to achieve over 90% success rates when manipulating new shapes, outperforming
specialized baselines using privileged information [49] or hindsight relabeling [5]. Furthermore,
using a random embedding from the pretrained set yields satisfactory performance, showing that our
multi-task policy conditioned on task embedding did not overfit to pretraining shapes. We believe that
this behavior stems from the ability of the model to discover semantics of the underlying task space
(Figure 7). This result shows that multi-task training with task-embeddings can lead to robust transfer
and skill discovery just by manipulating the network input space, without updating the parameters of
the policy or value model. We expand our analysis of embedding-tuning transfer in Appendix C.

Multi-task value models learn more efficiently with online data Recent work performed offline
model-based training on 6M expert transitions per task from 80 MW and DMC tasks, containing
12 different embodiments [41]. We investigate the performance of BRC on this benchmark in both
offline and online setup, where in the offline learning we use a behavioral cloning auxiliary objective
following prior work [35, 82, 83] which we detail in Appendix C. As shown in Figure 12, offline
multi-task RL remains challenging, even when using high-capacity value models, with online BRC
performing nearly 20% better than its offline counterpart. Furthermore, in contrast to results in online
learning (Figure 1), we find that the offline BRC agent slightly underperforms TD-MPC2, indicating
that Q-learning with offline data might be harder than offline model-based learning. To better contrast
the efficiency of offline and online multi-task value learning, we investigate the minimal number
of online transitions required by BRC agents of different capacities (16M, 64M, 256M and 1B) to
achieve a fraction (0.5, 0.75, and 1.0) of final TD-MPC2 performance on the MW+DMC benchmark.
As shown in the right part of Figure 12, BRC sample efficiency still improves past 1B parameters,
with logarithmic curves modeling the efficiency improvements well at different performance fractions.

6 Conclusions

Our study showed that online training of value functions by temporal difference loss scales beyond
billion parameters and to many tasks. As discussed throughout the manuscript, scaled Q-value model
trained via cross-entropy loss and conditioned on learnable task embeddings stabilizes the previously
described issues of varying gradient magnitudes [104, 22, 46] and conflicting gradient [120, 67],
resulting in state-of-the-art performance across a variety of tasks. Perhaps surprisingly, we found that
scaled multi-task RL can be extremely computationally efficient, achieving the final performance of

single-task experts with 40x fewer gradient steps on the challenging whole-body humanoid control
tasks. Finally, we showed that pretrained multi-task value models can be transferred to new tasks,
improving both sample efficiency and final performance. We discuss the limitations of our approach
in Appendix A. We hope that our work challenges the belief that "one agent per task" is the preferable
workflow to training a scaled multi-task agent and provides a concrete foundation for online training
of generalist value models in RL.

Acknowledgments

We also gratefully acknowledge the Polish high-performance computing infrastructure, PLGrid (HPC
Center: ACK Cyfronet AGH), for providing computational resources and support under grant no.
PLG/2024/017817. We also thank NVIDIA for providing compute resources through the NVIDIA
Academic DGX Grant. Pieter Abbeel holds concurrent appointments as a Professor at UC Berkeley
and as an Amazon Scholar. This paper describes work performed at UC Berkeley and is not associated
with Amazon. Marek Cygan was partially supported by National Science Centre, Poland, under the
grant 2024/54/E/ST6/00388. We would like to thank the Python [109], NumPy [42], Matplotlib [50],
SciPy [110] and JAX [16] communities for developing tools that supported this work.

References

[1] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, 1., Aleman, F. L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] Agarwal, A., Song, Y., Sun, W., Wang, K., Wang, M., and Zhang, X. Provable benefits of
representational transfer in reinforcement learning. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 2114-2187. PMLR, 2023.

[3] Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A., and Bellemare, M. G. Deep
reinforcement learning at the edge of the statistical precipice. Advances in Neural Information
Processing Systems, 2021.

[4] Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., and Bellemare, M. Deep rein-
forcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304-29320, 2021.

[5] Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B.,
Tobin, J., Pieter Abbeel, O., and Zaremba, W. Hindsight experience replay. Advances in neural
information processing systems, 30, 2017.

[6] Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki, J.,
Petron, A., Plappert, M., Powell, G., Ray, A., et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3-20, 2020.

[7] Baker, B., Akkaya, 1., Zhokov, P., Huizinga, J., Tang, J., Ecoffet, A., Houghton, B., Sampedro,
R., and Clune, J. Video pretraining (vpt): Learning to act by watching unlabeled online videos.
Advances in Neural Information Processing Systems, 35:24639-24654, 2022.

[8] Ball, P.J., Smith, L., Kostrikov, 1., and Levine, S. Efficient online reinforcement learning with
offline data. In International Conference on Machine Learning, pp. 1577-1594. PMLR, 2023.

[9] Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P., and Silver, D.
Successor features for transfer in reinforcement learning. Advances in neural information
processing systems, 30, 2017.

[10] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning environment:
An evaluation platform for general agents. J. Artif. Int. Res., 47(1):253-279, May 2013. ISSN
1076-9757.

[11] Bellemare, M. G., Dabney, W., and Munos, R. A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 449-458. IMLR. org, 2017.

10

[12]
[13]

[14]

[15

—_

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

Bellman, R. Dynamic Programming. Princeton University Press, 1957.

Bhatt, A., Palenicek, D., Belousov, B., Argus, M., Amiranashvili, A., Brox, T., and Peters, J.
CrossQ: Batch normalization in deep reinforcement learning for greater sample efficiency and
simplicity. In International conference on learning representations (ICLR), 2024.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition and machine learning, volume 4.
Springer, 2006.

Bjorck, N., Gomes, C. P.,, and Weinberger, K. Q. Towards deeper deep reinforcement learning
with spectral normalization. Advances in neural information processing systems, 34:8242—
8255, 2021.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., et al. Jax: composable transformations of
python+ numpy programs. 2018.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn, C., Gopalakrishnan, K.,
Hausman, K., Herzog, A., Hsu, J., et al. Rt-1: Robotics transformer for real-world control at
scale. arXiv preprint arXiv:2212.06817, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in
neural information processing systems, 33:1877-1901, 2020.

Celik, O,, Li, Z., Blessing, D., Li, G., Palenicek, D., Peters, J., Chalvatzaki, G., and Neu-
mann, G. Dime: Diffusion-based maximum entropy reinforcement learning. arXiv preprint
arXiv:2502.02316, 2025.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., and
Mordatch, I. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34:15084—15097, 2021.

Chen, T., Xu, J., and Agrawal, P. A system for general in-hand object re-orientation. In
Conference on Robot Learning, pp. 297-307. PMLR, 2022.

Chen, Z., Badrinarayanan, V., Lee, C.-Y., and Rabinovich, A. Gradnorm: Gradient normaliza-
tion for adaptive loss balancing in deep multitask networks. In International conference on
machine learning, pp. 794-803. PMLR, 2018.

Chen, Z., Ngiam, J., Huang, Y., Luong, T., Kretzschmar, H., Chai, Y., and Anguelov, D. Just
pick a sign: Optimizing deep multitask models with gradient sign dropout. Advances in Neural
Information Processing Systems, 33:2039-2050, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P.,
Chung, H. W, Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J.,
Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A.,
Ghemawat, S., Dev, S., Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fedus, L., Zhou,
D., Ippolito, D., Luan, D., Lim, H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M., Lewkowycz, A., Moreira, E., Child,
R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O., Catasta, M., Wei,
J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., and Fiedel, N. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240):1-113, 2023. URL
http://jmlr.org/papers/v24/22-1144 . html.

Christiano, P. F.,, Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. Deep reinforcement
learning from human preferences. Advances in neural information processing systems, 30,
2017.

Ciosek, K., Vuong, Q., Loftin, R., and Hofmann, K. Better exploration with optimistic actor

critic. Advances in Neural Information Processing Systems, 32, 2019.

11

http://jmlr.org/papers/v24/22-1144.html

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner,
R., Abdolmaleki, A., de Las Casas, D., et al. Magnetic control of tokamak plasmas through
deep reinforcement learning. Nature, 602(7897):414-419, 2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional
transformers for language understanding. North American Chapter of the Association for
Computational Linguistics, 2019. doi: 10.18653/v1/N19-1423.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Bellemare, M. G., and Courville, A.
Sample-efficient reinforcement learning by breaking the replay ratio barrier. In The Eleventh
International Conference on Learning Representations, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image is
worth 16x16 words: Transformers for image recognition at scale. International Conference on
Learning Representations, 2020.

Driess, D., Xia, F,, Sajjadi, M. S., Lynch, C., Chowdhery, A., Ichter, B., Wahid, A., Tompson,
J., Vuong, Q., Yu, T, et al. Palm-e: An embodied multimodal language model. In International
Conference on Machine Learning, pp. 8469-8488. PMLR, 2023.

Eysenbach, B., Zhang, T., Levine, S., and Salakhutdinov, R. R. Contrastive learning as goal-
conditioned reinforcement learning. Advances in Neural Information Processing Systems, 35:
35603-35620, 2022.

Farebrother, J., Orbay, J., Vuong, Q., Taiga, A. A., Chebotar, Y., Xiao, T., Irpan, A., Levine, S.,
Castro, P. S., Faust, A., et al. Stop regressing: Training value functions via classification for
scalable deep rl. In Forty-first International Conference on Machine Learning.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pp. 1126-1135. PMLR, 2017.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132-20145, 2021.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Fujimoto, S., Chang, W.-D., Smith, E., Gu, S. S., Precup, D., and Meger, D. For sale: State-
action representation learning for deep reinforcement learning. Advances in neural information
processing systems, 36:61573-61624, 2023.

Ghosh, D., Singh, A., Rajeswaran, A., Kumar, V., and Levine, S. Divide-and-conquer
reinforcement learning. In International Conference on Learning Representations, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on
machine learning, pp. 1861-1870. PMLR, 2018.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

Hansen, N., Su, H., and Wang, X. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv: 2310.16828, 2023.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., et al. Array programming with numpy. Nature,
585(7825):357-362, 2020.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N., and Riedmiller, M. Learning an

embedding space for transferable robot skills. In International Conference on Learning
Representations, 2018.

12

[44]

[45]

[40]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

He, J.,Li, K., Zang, Y., Fu, H., Fu, Q., Xing, J., and Cheng, J. Efficient multi-task reinforcement

learning with cross-task policy guidance. Advances in Neural Information Processing Systems,
37:117997-118024, 2024.

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C., Jackson, J., Jun, H., Brown, T. B.,
Dhariwal, P., Gray, S., et al. Scaling laws for autoregressive generative modeling. arXiv
preprint arXiv:2010.14701, 2020.

Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., and van Hasselt, H. Multi-task
deep reinforcement learning with popart. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 3796-3803, 2019.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D.
d. L., Hendricks, L. A., Welbl, J., Clark, A., et al. Training compute-optimal large language
models. arXiv preprint arXiv:2203.15556, 2022.

Huang, H., Liu, F, Fu, L., Wu, T., Mukadam, M., Malik, J., Goldberg, K., and Abbeel, P. Otter:
A vision-language-action model with text-aware visual feature extraction. arXiv preprint
arXiv:2503.03734, 2025.

Huang, W., Mordatch, 1., Abbeel, P., and Pathak, D. Generalization in dexterous manipulation
via geometry-aware multi-task learning. arXiv preprint arXiv:2111.03062, 2021.

Hunter, J. D. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9
(03):90-95, 2007.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., Erhan,
D., Finn, C., Kozakowski, P., Levine, S., et al. Model based reinforcement learning for atari.
In International Conference on Learning Representations, 2019.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S.,
Radford, A., Wu, J., and Amodei, D. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Kaufmann, E., Bauersfeld, L., Loquercio, A., Miiller, M., Koltun, V., and Scaramuzza, D.
Champion-level drone racing using deep reinforcement learning. Nature, 620(7976):982-987,
2023.

Kim, M. J., Pertsch, K., Karamcheti, S., Xiao, T., Balakrishna, A., Nair, S., Rafailov, R., Foster,
E., Lam, G., Sanketi, P, et al. Openvla: An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

Kingma, D. and Ba, J. Adam: A method for stochastic optimization. International Conference
on Learning Representations (ICLR), 2015.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S.,
Berg, A. C., Lo, W.-Y,, et al. Segment anything. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 4015-4026, 2023.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008—1014, 2000.

Kostrikov, 1., Yarats, D., and Fergus, R. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Kumar, A., Agarwal, R., Ma, T., Courville, A., Tucker, G., and Levine, S. DR3: Value-
Based Deep Reinforcement Learning Requires Explicit Regularization. arXiv preprint
arXiv:2112.04716, 2021.

Kumar, A., Fu, Z., Pathak, D., and Malik, J. Rma: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:2107.04034, 2021.

Kumar, A., Agarwal, R., Geng, X., Tucker, G., and Levine, S. Offline g-learning on diverse
multi-task data both scales and generalizes. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=4-k7kUavAj.

13

https://openreview.net/forum?id=4-k7kUavAj

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and Srinivas, A. Reinforcement learning
with augmented data. Advances in neural information processing systems, 33:19884—19895,
2020.

Lee, H., Hwang, D., Kim, D., Kim, H., Tai, J. J., Subramanian, K., Wurman, P. R., Choo, J.,
Stone, P., and Seno, T. Simba: Simplicity bias for scaling up parameters in deep reinforcement
learning. arXiv preprint arXiv:2410.09754, 2024.

Lee, H., Lee, Y., Seno, T., Kim, D., Stone, P., and Choo, J. Hyperspherical normalization for
scalable deep reinforcement learning. arXiv preprint arXiv:2502.15280, 2025.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end training of deep visuomotor
policies. The Journal of Machine Learning Research, 17(1):1334-1373, 2016.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C.,
et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

Liu, B., Liu, X., Jin, X., Stone, P., and Liu, Q. Conflict-averse gradient descent for multi-task
learning. Advances in Neural Information Processing Systems, 34:18878-18890, 2021.

Liu, F., Fang, K., Abbeel, P., and Levine, S. Moka: Open-vocabulary robotic manipulation
through mark-based visual prompting. In First Workshop on Vision-Language Models for
Navigation and Manipulation at ICRA 2024.

Ludziejewski, J., Krajewski, J., Adamczewski, K., Piéro, M., Krutul, M., Antoniak, S.,
Ciebiera, K., Krél, K., Odrzygézdz, T., Sankowski, P., et al. Scaling laws for fine-grained
mixture of experts. In Forty-first International Conference on Machine Learning, 2024.

Mark, M. S., Gao, T., Sampaio, G. G., Srirama, M. K., Sharma, A., Finn, C., and Kumar,
A. Policy agnostic rl: Offline] and online 1l fine-tuning of any class and backbone. arXiv
preprint arXiv:2412.06685, 2024.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D. An empirical model of large-batch
training. arXiv preprint arXiv:1812.06162, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
L, King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 2015. URL http://dx.doi.org/10.1038/
naturel4236.

Mnih, V., Badia, A. P, Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. Asynchronous methods for deep reinforcement learning. In International
conference on machine learning, pp. 1928-1937. PMLR, 2016.

Moskovitz, T., Parker-Holder, J., Pacchiano, A., Arbel, M., and Jordan, M. Tactical optimism
and pessimism for deep reinforcement learning. Advances in Neural Information Processing
Systems, 34:12849-12863, 2021.

Nauman, M. and Cygan, M. On the theory of risk-aware agents: Bridging actor-critic and
economics. In ICML 2024 Workshop: Aligning Reinforcement Learning Experimentalists and
Theorists, 2023.

Nauman, M., Bortkiewicz, M., Milos, P., Trzcinski, T., Ostaszewski, M., and Cygan, M.
Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of reinforcement
learning. In Proceedings of the 41st International Conference on Machine Learning, 2024.
URL https://arxiv.org/pdf/2403.00514. PMLR 235:37342-37364.

Nauman, M., Ostaszewski, M., Jankowski, K., Mitos, P., and Cygan, M. Bigger, regularized,
optimistic: scaling for compute and sample-efficient continuous control. arXiv preprint
arXiv:2405.16158, 2024.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez, P.,
Haziza, D., Massa, F., EI-Nouby, A., et al. Dinov2: Learning robust visual features without
supervision. Transactions on Machine Learning Research Journal, 2024.

14

http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236
https://arxiv.org/pdf/2403.00514

[79]

[80]

[81]

[82]

[83]
[84]

[85]

[86]

[87]

(88]

[89]

[90]

[91]

[92]

(93]

[94]
[95]

[96]

[97]

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal,
S., Slama, K., Ray, A., et al. Training language models to follow instructions with human
feedback. Advances in neural information processing systems, 35:27730-27744, 2022.

Palenicek, D., Vogt, F., and Peters, J. Scaling crossq with weight normalization. arXiv preprint
arXiv:2506.03758, 2025.

Parisotto, E., Ba, J. L., and Salakhutdinov, R. Actor-mimic: Deep multitask and transfer
reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Park, S., Frans, K., Levine, S., and Kumar, A. Is value learning really the main bottleneck in
offline r1? arXiv preprint arXiv:2406.09329, 2024.

Park, S., Li, Q., and Levine, S. Flow g-learning. arXiv preprint arXiv:2502.02538, 2025.

Puterman, M. L. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P, Clark, J., et al. Learning transferable visual models from natural language
supervision. In International conference on machine learning, pp. 8748-8763. PmLR, 2021.

Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331-5340. PMLR, 2019.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G., Gimenez,
M., Sulsky, Y., Kay, J., Springenberg, J. T., et al. A generalist agent. arXiv preprint
arXiv:2205.06175, 2022.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu,
R., Mnih, V., Kavukcuoglu, K., and Hadsell, R. Policy distillation. arXiv preprint
arXiv:1511.06295, 2015.

Rybkin, O., Nauman, M., Fu, P, Snell, C., Abbeel, P., Levine, S., and Kumar, A. Value-based
deep 1l scales predictably. arXiv preprint arXiv:2502.04327, 2025.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville, A., and Bachman, P. Data-
efficient reinforcement learning with self-predictive representations. In International Confer-
ence on Learning Representations, 2020.

Schwarzer, M., Ceron, J. S. O., Courville, A., Bellemare, M. G., Agarwal, R., and Castro,
P. S. Bigger, better, faster: Human-level atari with human-level efficiency. In International
Conference on Machine Learning, pp. 30365-30380. PMLR, 2023.

Sener, O. and Koltun, V. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Sterrazza, C., Huang, D.-M., Lin, X., Lee, Y., and Abbeel, P. Humanoidbench: Simu-
lated humanoid benchmark for whole-body locomotion and manipulation. arXiv preprint
arXiv:2403.10506, 2024.

Shapley, L. S. et al. A value for n-person games. 1953.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. Deterministic
policy gradient algorithms. In International conference on machine learning, pp. 387-395.
PMLR, 2014.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, 1., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., et al. Mastering the game of go without human knowledge.
nature, 550(7676):354-359, 2017.

Sodhani, S., Zhang, A., and Pineau, J. Multi-task reinforcement learning with context-based
representations. In International Conference on Machine Learning, pp. 9767-9779. PMLR,
2021.

15

(98]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Springenberg, J. T., Abdolmaleki, A., Zhang, J., Groth, O., Bloesch, M., Lampe, T., Brakel, P.,
Bechtle, S. M. E., Kapturowski, S., Hafner, R., et al. Offline actor-critic reinforcement learning
scales to large models. In International Conference on Machine Learning, pp. 46323—46350.
PMLR, 2024.

Sun, L., Zhang, H., Xu, W., and Tomizuka, M. Paco: Parameter-compositional multi-task
reinforcement learning. Advances in Neural Information Processing Systems, 35:21495-21507,
2022.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden, D., Abdolmaleki, A.,
Merel, J., Lefrancq, A., et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J., Dai, A. M.,
Hauth, A., Millican, K., et al. Gemini: a family of highly capable multimodal models. arXiv
preprint arXiv:2312.11805, 2023.

Team, O. M., Ghosh, D., Walke, H., Pertsch, K., Black, K., Mees, O., Dasari, S., Hejna, J.,
Kreiman, T., Xu, C., et al. Octo: An open-source generalist robot policy. arXiv preprint
arXiv:2405.12213, 2024.

Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., Heess, N., and
Pascanu, R. Distral: Robust multitask reinforcement learning. Advances in neural information
processing systems, 30, 2017.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra,
S., Bhargava, P., Bhosale, S., et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Van Den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. Pixel recurrent neural networks.
In International conference on machine learning, pp. 1747-1756. PMLR, 2016.

Van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N., and Modayil, J. Deep
reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Van Hasselt, H. P., Hessel, M., and Aslanides, J. When to use parametric models in reinforce-
ment learning? Advances in Neural Information Processing Systems, 32, 2019.

Van Rossum, G., Drake, F. L., et al. Python reference manual, volume 111. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. Scipy 1.0: fundamental algorithms
for scientific computing in python. Nature methods, 17(3):261-272, 2020.

Wan, W., Geng, H., Liu, Y., Shan, Z., Yang, Y., Yi, L., and Wang, H. Unidexgrasp++:
Improving dexterous grasping policy learning via geometry-aware curriculum and iterative
generalist-specialist learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3891-3902, 2023.

Wang, K., Zhou, K., Wu, R., Kallus, N., and Sun, W. The benefits of being distributional:
Small-loss bounds for reinforcement learning. Advances in neural information processing
systems, 36:2275-2312, 2023.

Wang, K., Kallus, N., and Sun, W. The central role of the loss function in reinforcement
learning. arXiv preprint arXiv:2409.12799, 2024.

Xu, Y., Wan, W,, Zhang, J., Liu, H., Shan, Z., Shen, H., Wang, R., Geng, H., Weng, Y., Chen,
J., et al. Unidexgrasp: Universal robotic dexterous grasping via learning diverse proposal
generation and goal-conditioned policy. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4737-4746, 2023.

Xu, Z., Wu, K., Che, Z., Tang, J., and Ye, J. Knowledge transfer in multi-task deep reinforce-
ment learning for continuous control. arXiv preprint arXiv:2010.07494, 2020.

16

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Yang, E., Pan, J., Wang, X., Yu, H., Shen, L., Chen, X., Xiao, L., Jiang, J., and Guo, G.
Adatask: A task-aware adaptive learning rate approach to multi-task learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 37, pp. 10745-10753, 2023.

Yang, J. H., Sadigh, D., and Finn, C. Polybot: Training one policy across robots while
embracing variability. In Conference on Robot Learning, pp. 2955-2974. PMLR, 2023.

Yarats, D., Kostrikov, 1., and Fergus, R. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=GY6-6sTvGaf.

Ye, S., Jang, J., Jeon, B., Joo, S., Yang, J., Peng, B., Mandlekar, A., Tan, R., Chao, Y.-W,, Lin,
B. Y., et al. Latent action pretraining from videos. arXiv preprint arXiv:2410.11758, 2024.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and Finn, C. Gradient surgery for
multi-task learning. Advances in Neural Information Processing Systems, 33:5824-5836,
2020.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning, pp. 1094-1100. PMLR, 2020.

Zhou, Z., Peng, A., Li, Q., Levine, S., and Kumar, A. Efficient online reinforcement learning
fine-tuning need not retain offline data. arXiv preprint arXiv:2412.07762, 2024.

Zitkovich, B., Yu, T., Xu, S., Xu, P., Xiao, T., Xia, F., Wu, J., Wohlhart, P., Welker, S., Wahid,
A., et al. Rt-2: Vision-language-action models transfer web knowledge to robotic control. In
Conference on Robot Learning, pp. 2165-2183. PMLR, 2023.

17

https://openreview.net/forum?id=GY6-6sTvGaf

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We discuss our experiments in Sections 4 and 5.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of the proposed method in Section 5 and Appendix
A.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

18

Justification: We do not propose any new theory.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss our experimental setting in Section 4 and Appendix D. We submit
code in supplementary material and will open source code soon.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

Answer: [Yes]

Justification: We release code under the following link:
https://github.com/naumix/BiggerRegularizedCategorical.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We discuss these choices in Section 4 and Appendices E and F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide 95% confidence intervals calculated using bootstrapping [3].
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss the computer resources used in Appendix 6.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conformed to the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the societal impact of our work in Appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release any foundation model.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit the open source software providers in the Acknowledgments section.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not use human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:We do not use human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

23

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs beyond editing text
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

Societal Impact

Our work does not have any specific societal impact besides improving the general capacity of
value-based RL agents.

Hardware Information & Reproducibility

All experiments were conducted on an NVIDIA A100 and HI00 GPUs with 80GB of RAM and
16 CPU cores of AMD EPYC 7742 processor. We open-source our code under the following link:
https://github.com/naumix/BiggerRegularizedCategorical.

A Limitations

Our study is restricted to model-free setup and studying the effectiveness of online multi-task learning
in model-based RL might be an interesting avenue for future research. Furthermore, in our discrete-
action experiments we use the simple DrQ as base algorithm and our results in Ataril00k are not
competetive with state-of-the-art algorithms tuned for performance in Atari. As such, we believe that
combining our insights with approaches like BBF or EfficientZero might be a promising avenue for
further improvement of these state-of-the-art algorithms for Atari benchmark. We scaled both model
capacity and task diversity and observed consistent performance gains, indicating that multi-task
value-based RL benefits from larger networks and broader data. These results are encouraging
but incomplete: they do not yet clarify when tasks help each other and when they do not. Our
experiments suggest that tasks sharing the same embodiment usually reinforce one another, while
mixed-embodiment suites show synergy in some cases and none in others. When synergy is absent,
our method still learns, although at a slightly slower rate, whereas prior approaches often failed to
converge. We believe that studying the conditions that create synergy between tasks in multi-task
learning might be an important direction for future work. Finally, replay buffer memory usage is a
limitation of our method and multi-task learning in general, with the memory scaling linearly with
the number of tasks. In practice, we find the memory footprint to be manageable in most settings.
Assuming Float32, on the HB-Medium benchmark with 9 tasks, the full replay buffer (1M transitions
per task) occupies only 4.40 GB of memory.

B Background

We study an infinite-horizon Markov Decision Process (MDP) [12, 84], expressed by the tuple
(S, A, r, p,~), where the state space S is continuous, while the action space .A may be continuous or
discrete. The function (s, a, s’) gives the immediate reward received when action a taken in state s
leads to the next state s, and p(s’ | s, a) is the corresponding transition kernel. The scalar y € (0, 1]
is the discount factor. A policy 7(a | s) specifies a distribution over actions conditional on each state;
its uncertainty is measured by the entropy H(T((' | s)) Following Haarnoja et al. [39], we define the
soft value in state s as the expected discounted sum of rewards augmented by the policy entropies
accumulated along the trajectory:

V7™(s) = Eqmr,s'mp [r(s',5,a) + aH(n(s)) + V()]

The temperature parameter oc > 0 balances reward maximisation against exploration through entropy.
The soft Q-value under a policy 7 is:

Qﬂ(sv a) = IEl‘s’Np(‘|s,a) [T(Sa a, 5/) + Vﬂ-(sl)} :

A policy is optimal when it maximizes the expected soft value of the initial state distribution, according
to ™ = argmaxyem Eso~p[V 7 (80)], with II the chosen policy class (for example, Gaussian
policies). Soft values and soft Q-values are linked by V™ (s) = Eqr(5)[Q7 (s,a) — alogm(a | s)].
In practice this expectation is often approximated with a single sample a ~ 7(- | s). Off-policy
actor—critic methods learn both the critic @ and the actor 74 from transitions 7' = (s, a,r, s") stored
in a replay buffer D [95, 73, 96]. The critic parameters minimize the squared soft temporal difference

error < arg ming Er.p(Qo (s, a) — y(r, s')) ? with y(r,s") = r—+~Vz(s'), where the target value

25

is computed with a slowly updated set of parameters # [107]. The policy parameters ascend the
critic’s estimate of the soft value ¢ < argmaxy Esup aory () [@0 (S, @) — alogmg(a | s)]. These
updates iterate until the policy approaches the solution [55, 57].

C Bigger, Regularized, Categorical

In this section, we discuss the implementation details associated with the proposed BRC method.

C.1 Base model

Continuous action environments. We use SAC [39] as the base model. Following previous work
studying SAC sample efficiency [26, 74—76], we do not use clipped double Q-learning [36] while
still using and ensemble of two critic networks, i.e. we update the critic networks according to the
average output of the target networks, as opposed to taking the minimum. The proposed SAC+BRC
approach is also related to the BRO algorithm. Conceptually, BRC can be understood as SAC without
CDQL, with task embeddings and using BroNet critic.

Discrete action environments. We use DrQ-¢ as our base model [118, 3]. Following Schwarzer et al.
[91], instead of performing hard target updates, we update the target network every learning step
using Polyak averaging.

C.2 Cross-entropy loss via distributional RL

Categorical RL. We follow the categorical RL formulation as described in Bellemare et al. [11]
As such, instead of predicting only the mean return, we can model the full distribution of returns.
Following Bellemare et al. [11], we define the support as a discrete vector with Nyoms Values denoted
by z;, each defined by:

(Z - 1) (Umax - vmin)
Natoms -1 ’

1= 17'~-3Natoms- (D

Zij = Umin T+

At time step ¢ the parametric approximation of the true return distribution is a function of z; and
the probability mass assigned to each atom (denoted as py(s¢, a;)). The critical observation is that
return distributions obey a distributional Bellman equation [11]. The key implementation problem
stems from the fact that categorical RL learns a distribution with fixed support. This is particularly
problematic in a multi-task setting, where each environment can have vastly different reward scales,
leading to different scales of Q-values. To remedy this issue, we rescale the rewards of each task
according to a Monte Carlo approximation of the highest return encountered during the training.

Return normalization. The goal of reward normalization is twofold: firstly, we want to bound the
returns such that there is no regret stemming from using categorical bounded Q-value representation;
and secondly, we want to maintain a similar scale of returns between tasks. To this end, we maintain
a per-task normalization factor that we denote G; with i = 1, ..., num tasks. At a particular
training step, the normalization factor is proportional to the maximal absolute returns observed until
the given training step. To this end, whenever an episode concludes for any task, we calculate the
Monte-Carlo returns for every state in that episode, and if the episode is truncated, bootstrap the
Monte-Carlo estimate with the critic output. Then, we find the state with the biggest absolute value
(i.e., max[|G;(s;)|] where G;(s;) represents the Monte Carlo returns for state s;). Finally, if the new
return estimate is bigger than the current G;, we update it:

G; + max[max[|G;(s¢)], G 2)

We use G; to normalize the returns during model updates: when we sample a new batch of data from
the replay buffer, we normalize the returns according to:

’I"i(S, a) * VmaT

Gi+ X\)

ri(s,a) =

26

Where 7;(s,a) denotes the sampled rewards for the ith task, V;,,. denotes the maximal returns
bucket for categorical RL, and \; corresponds to the maximum entropy correction for 4th task, which
we estimate via sum of a geometric sequence \; = aH; /(1 — =), with v denoting the discount factor,
a denoting the entropy temperature, and H; denoting the empirical entropy of the policy conditioned
on ith task embedding. Normalizing rewards according to Equation 4 guarantees that the modelled
returns are bounded by V;,,4-

C.3 Scaled Q-value model

Designing BRC, we built on previous work that studied scaling of Q-value models [61, 91, 77]. In
this subsection, we detail the architectures used in our experiments.

Proprioception-based control. For proprioception-based control, we use the BroNet architecture.
BroNet is an MLP with residual connections and layer normalization which we detail in Figure 13).
As shown in Figure 4, we also tested SimBa [63], a follow-up work to BroNet that changes the initial
layer normalization to a running statistics normalization, but found BroNet to perform noticeably
better (Figure 4).

N residual blocks

Layer Layer Layer Residual
[Dense H Norm H ReLU)—T[Dense H Norm H ReLU H Dense]—9{ Norm Addition > Dense

1

Figure 13: BroNet used in the SAC+BRC method. We use the exact residual architecture as presented in
Nauman et al. [77].

Image-based control. In image-based experiments, we use the scaled Impala architecture [61, 91].
Following previous work [62, 77], we add a layer normalization between the encoder and Q-network
modules. We show the architecture in Figure (14).

Dense
Impala ReLU Layer Dense Layer ReLU
Encoder Norm Norm
Advantage
Dense

Figure 14: Impala architecture used in the DRQ+BRC method. The architecture is based on observations
made in previous works [61, 91, 77].

C.4 Task embeddings

We use an embeddings module' which we adjust by backpropagating the temporal difference loss.
Following prior works [41], we constraint the L1 norm of the embeddings to be equal to 1 and leave
experimentation with this setting for future work. We concatenate the states with task embeddings
whenever we forward the actor or critic models according to Figure 15.

Fodue” [i Embedding Task
{Tasklndex { Module : Task Index Module 2
1 —-{i{ o
Image Impala -
{Observatiuns Encoder Encodings

(a) SAC+BRC (b) DRQ+BRC

Concatenated
State

Actor-Critic

Figure 15: Our approach for concatenating observations with the learned task embeddings. We use
slightly different approach for proprioceptive (left) and vision-based (right) control. In particular, in vision-based
tasks, we learn a task-agnostic encoder by concatenating task embeddings to the output of the encoder.

As shown in Figure 15, we use slightly different approaches for proprioceptive and vision-based
control. In proprioceptive control, we simply concatenate the task embedding with the raw proprio-

'The embedding module is called nn . Embed in JAX and nn . Embedding in Torch.

27

ceptive state, so both the actor and critic are directly conditioned on the task. In Vision-based control,
we first pass the RGB observation through the IMPALA encoder. We then concatenate the resulting
image feature with the task embedding and feed the joint vector to the Q-network. The image encoder
is therefore task-agnostic, while the Q-network is conditioned on both the visual features and the task.

D Details on Experiments

In this Section, we describe the procedure used to generate each figure, as well as discuss the baselines
used in the manuscript. Unless explicitly stated otherwise, we use hyperparameter configuration
described in Appendix F for both single and multi-task BRC variants.

Table 1: Description of model sizes shown in Figures 4, 5, 10 and 12.
Model Size Number of blocks Block width

~1M 2 256
~4M 2 512
~ 16M 2 1024
~ 64M 2 2048
~ 256 M 2 4096
~ 1B 2 8192

D.1 Figures

Figure 1. We report the average final performance on every considered benchmark. We take average
with respect to random seeds (we use a minimum of 5 random seeds per method) and different tasks.
We denote the training lengths directly on the graph. We normalize scores according to Appendix E.
We use tasks listed in Appendix E.1. In the aggregate graph on the left, we average the performance
of SAC [39], MH-SAC [121], BRC (single-task) and BRC (multi-task) between all continuous action
benchmarks shown in Figure 1, summing to 171 tasks. For the BRO algorithm, we use the fast
implementation with UTD = 2 according to Nauman et al. [77].

Figure 2. We show the performance of single-task BRC initialized from scratch, as well as single-
task BRC initialized with the parameters of a pretrained multi-task BRC model. We use the task
configurations described in Appendix E.2. To showcase the sample efficiency, we report the average
performance in two time-steps denoted on the graph: in the final step of the training, as well as in the
middle step of the training. We normalize the scores according to procedure described in Appendix
D.

Figure 3. We report metrics from the final step of the 1M step training in the HumanoidBench-
Medium benchmark with tasks listed in Appendix E.1. We use single and multi-task BRC algorithms.
Besides regular BRC, we study two other variants: one using non-distributional Q-learning without
reward normalization, and one using non-distributional Q-learning with reward normalization. In the
left figure, we report the relative variance (o /) for temporal difference (TD) loss, gradient norm, and
policy entropy conditioned on different tasks. In the right figure, we report the average normalized
final performance of single and multi-task learners. We use normalization detailed in Appendix E
and average over 5 random seeds for each method. We calculate 95% confidence interval using
bootstrapping on random seeds [4].

Figure 4. We report final performance on the HumanoidBench-Medium benchmark detailed in
Appendix E.1 after IM environment steps per task. We consider single and multi-task BRC models
with different critic architectures and varying width according to Table 5. In particular, we consider
the vanilla MLP [39], SimBa [63], BroNet with MSE loss [77] and our proposed BroNet with
cross-entropy loss. We calculate 95% confidence interval using bootstrapping on random seeds [4].

Figure 5. We consider single-task BRC, multi-task BRC and multi-task BRC with separate heads
architecture [121, 61] on the HumanoidBench-Medium benchmark as described in Appendix E.1,
trained for 1M steps. On the left Figure, we report the final performance for different widths of
the critic model, as described in Table 5. In the right figure, we report conflicting gradients for the
same models considered in the left figure. In particular, we report the percentage of conflicting
gradients, with gradient conflict calculated according to the methodology presented in Yu et al. [120].

28

There, gradient conflicts are defined by the cosine similarity between gradients stemming from
different samples. Specifically, a conflict occurs when the cosine similarity is negative, indicating
opposing gradient directions. When calculating gradient conflicts in multi-task setup, we calculate
conflicts between transitions sampled from different tasks, whereas, in the single-task setup, we
divide the batch into two parts and calculate conflicts between these two subbatches. We calculate
95% confidence interval using bootstrapping on random seeds [4].

Figure 6. We report the final performance after 1M steps of training on HumanoidBench-Medium
benchmark as described in Appendix E.1. We consider three design choices: scaled Q-value model
denoted as S (we consider using BroNet with cross-entropy loss using 4096 units of width,
otherwise using 512 units of width); cross-entropy denoted as C'E' (we consider the cross-entropy
loss via categorical RL and reward normalization, otherwise we use non-distributional RL with the
mean squared error loss); and learnable task embeddings denoted as T'E (we consider learning task
embeddings by backpropagating the critic loss, otherwise we use the separate heads design). We
evaluate all combinations of the described techniques, with CE + T'E + 5@ being the base BRC
model. We calculate 95% confidence interval using bootstrapping on random seeds [4]. In the right
figure, we report exact Shapley values, which we calculate based on the runs presented in the left part
of the figure.

Figure 7. We present the learned BRC task embeddings after 500k steps of online training on the
MW+DMC benchmark. We take the 32-dimensional embeddings and extract first two principal
components using the PCA algorithm.

Figure 9. We report the training curves for the HumanoidBench-Hard benchmark as described in
Appendix E.1. We consider single and multi-task BRC, SimBaV2 [64], BRO-Fast [77] and TD-
MPC2 [41]. All baseline algorithms use the configurations proposed in their respective manuscripts.
The left figure shows environment steps per task, and the right figure shows the total gradient steps
when learning all tasks. We calculate 95% confidence interval using bootstrapping on random
seeds [4]. BRC uses 5 random seeds.

Figure 10. We report the final performance of BRC trained on different subsets of the
HumanoidBench-Medium benchmark for 1M environment steps, given different critic widths as
described in Table 5. We consider subsets of 3, 6, and 9 tasks from the benchmark: the 9 tasks variant
uses all tasks listed in Appendix E.1 (i.e. walk, stand, run, stair, crawl, pole, slide, hurdle and maze);
the 6 tasks variant trains on walk, stand, stair, crawl, pole and slide tasks and is consistent with the
HumanoidBench-Medium transfer setup described in Appendix E.2; and the 3 tasks variant trains
on walk, stair and slide tasks. In the left figure, we report the average final performance on the 3
tasks used in the training of all variants (i.e. walk, stair and slide tasks). In the right, we report the
performance of the models trained on 6 and 3 tasks when transferred to 3 new tasks (run, hurdle and
maze). On both graphs, we show the performance of single-task BRC for comparison and calculate
95% confidence interval using bootstrapping on 3-5 random seeds [4].

Figure 11. On the left Figure, we show the training curves averaged over 15 transfer tasks from
HumanoidBench-Medium, HumanoidBench-Hard and MetaWorld listed in Appendix E.2. We report
the first 500k steps of training, and show three algorithms: single-task BRC trained from scratch;
single-task BRC initialized with the multi-task BRC trained on different tasks (results consistent
with Figure 2 and description in Appendix E.2); and single-task BRC initialized with the replay
buffer stemming from pretraining of the multi-task BRC model (basing on the setup proposed in Ball
et al. [8]). In the right figure, we report the performance on 29 transfer tasks from the ShadowHand
benchmark listed in Appendix E.2. In both graphs, we transfer 3 model seeds and calculate 95%
confidence interval using bootstrapping on random seeds [4].

Figure 12. We focus on the MW+DMC benchmark. In the left, we report the final performance
resulting from offline training according to Hansen et al. [41]. Additionally, we report the GPU days
required to finish the training, assuming an 80 GB A100 graphics unit. On the right, we report the
minimal amount of environment steps required to reach a fraction (50%, 75% and 100%) of the
final multi-task TD-MPC2 performance on the MW+DMC benchmark [41], depending on the BRC
model width. We additionally show a linear fit in the logarithmic space achieved using ordinary least
squares regression. We run 5 seeds per model, except for the 1B for which we run 3 seeds.

29

D.2 Baselines

SAC. Soft Actor-Critic [39] is an off-policy actor—critic method that maximizes the sum of expected
returns and an entropy term, using twin Q-functions and a stochastic Gaussian policy. We use
hyperparameters provided in Nauman et al. [77] and we rerun SAC for all environments except for
HumanoidBench-Hard, where we use the results provided in Sferrazza et al. [93].

MH-SAC. Multi-Head SAC [120] shares a common encoder but attaches a separate head for each
task, for both actor and critic. Thus the network produces task-specific outputs while retaining shared
feature extraction. Similarily to BRC, we use the hyperparameters of single-task SAC [77].

BRO. The Bigger, Regularized, Optimistic [77] builds on SAC and scales the critic network by using
the BroNet architecture. BroNet architecture (Figure 13) leverages layer normalization to restrict
the complexity of the learned Q-value function. We use the low UTD variant of BRO (BRO-Fast),
and use the results provided in the original manuscript. For missing environments, we run BRO-Fast
using the original hyperparameters [77].

SimBa. SimBa architecture [63] is a follow-up work to BroNet, where authors propose to change the
initial layer normalization to running statistics normalization. We run SimBa using the code from the
official repository.

SimBaV2. SimBaV2 architecture [64] is a follow-up work to SimBa, where authors propose to
change the layer normalization to hyperspherical normalization. We run SimBaV?2 using the official
repository using the proposed hyperparameters [64].

TD-MPC2. TD-MPC2 [41] learns a latent dynamics model and performs model-predictive control
by back-propagating through imagined latent trajectories. We use the results provided in the original
TD-MPC2 manuscript [41] and for HumanoidBench-Hard we use the results provided in Sferrazza
et al. [93].

DreamerV3. DreamerV3 [40] trains a recurrent latent world model from pixels, imagines rollouts to
update an entropy-regularized actor—critic. We use the results provided in TD-MPC2 manuscript [41].

PCGrad. PCGrad [120] is a multi-task method that resolves gradient interference in multi-task
learning by projecting each task’s gradient onto the orthogonal complement of any other task’s
conflicting component before the parameters are updated. We use the results provided in He et al.
[44].

PaCo. Parameter-Compositional learning [99] is a multi-task method that factors each network’s
weights into a low-rank shared basis and task-specific composition vectors, so each task’s parameters
are expressed as a linear combination in the common subspace. We use the results provided in He
et al. [44].

CTPG. Cross-Task Policy Guidance [44] is a multi-task method that trains an auxiliary selector that
decides, at every step, which task-conditioned controller should act; the resulting trajectories provide
data to update all controllers simultaneously. We use the results provided in He et al. [44].

GAMT. Geometry-Aware Multi-Task learning [49] is a multi-task method that feeds a frozen PointNet
encoder that converts each object’s point cloud into a shape embedding, then conditions a shared
dexterous-hand policy on that embedding, allowing manipulation behaviors to generalize across
object geometries. We use the results provided in Huang et al. [49].

DDPG+HER. Deep Deterministic Policy Gradient combined with Hindsight Experience Replay [5]
relabels each stored transition with alternative goals that were actually achieved, permitting goal-
conditioned value and policy learning from sparse binary rewards. We use the results provided in
Huang et al. [49].

E Considered Benchmarks

In this section, we describe the multi-task benchmarks that we considered in our studies, as well
as the normalization scheme that we used in the evaluation. We use default episode lengths for all
environments, except for MetaWorld, where we truncate after 200 steps following prior work [41, 77].
We do not use action repeat wrappers.

30

E.1 Multi-task benchmarks

 MetaWorld (MW) - we use the full benchmark of 50 tasks [121]. The benchmark uses a
relatively low observation and action dimensionality of |S| = 39 and |A| = 4.

Training tasks: assembly, basketball, bin-picking, box-close, button-press-topdown, button-
press-topdown-wall, button-press, button-press-wall, coffee-button, coffee-pull, coffee-push, dial-
turn, disassemble, door-close, door-lock, door-open, door-unlock, hand-insert, drawer-close,
drawer-open, faucet-open, faucet-close, hammer, handle-press-side, handle-press, handle-pull-
side, handle-pull, lever-pull, pick-place-wall, pick-out-of-hole, pick-place, plate-slide, plate-
slide-side, plate-slide-back, plate-slide-back-side, peg-insert-side, peg-unplug-side, soccer, stick-
push, stick-pull, push, push-wall, push-back, reach, reach-wall, shelf-place, sweep-into, sweep,
window-open, window-close

¢ HumanoidBench-Medium (HB-MEDIUM) - Here, we consider the benchmark of locomo-
tion tasks without Shadow Hands [63]. We use all tasks with common embodiment with
|S| =51 and |[A] = 19.

Training tasks: walk, stand, run, stair, crawl, pole, slide, hurdle, maze

¢ HumanoidBench-Hard (HB-HARD) - Here, we consider the benchmark of locomotion
and manipulation tasks with Shadow Hands [93]. We use 20 tasks with varying state
dimensionality, leading | S| = 307, |A| = 61.

Training tasks: walk, stand, run, stair, crawl, pole, slide, hurdle, maze, sit-simple, sit-hard,
balance-simple, balance-hard, reach, spoon, window, insert-small, insert-normal, bookshelf-
simple, bookshelf-hard

* DeepMind Control Dogs (DMC-HARD) - We use all dog tasks from the DMC bench-
mark [101] leading to 4 common embodiment tasks with |S| = 223 and |A| = 38.

Training tasks: dog-stand, dog-walk, dog-trot, dog-run

* DeepMind Control Humanoids (DMC-HARD) - We use all humanoid tasks from the DMC
benchmark [101] leading to 3 common embodiment tasks with |\S| = 67 and |A| = 24.

Training tasks: humanoid-stand, humanoid-walk, humanoid-run

* ShadowHand (SH) - We use all training tasks as proposed in Huang et al. [49], leading to
85 manipulation shapes with |S| = 68 and |A| = 20.

Training tasks: e-toy-airplane, knife, flat-screwdriver, elephant, apple, scissors, i-cups,
cup, foam-brick, pudding-box, wristwatch, padlock, power-drill, binoculars, b-lego-duplo,
ps-controller, mouse, hammer, f-lego-duplo, piggy-bank, can, extra-large-clamp, peach, a-
lego-duplo, racquetball, tuna-fish-can, a-cups, pan, strawberry, d-toy-airplane, wood-block,
small-marker, sugar-box, ball, torus, i-toy-airplane, chain, j-cups, c-toy-airplane, airplane,
nine-hole-peg-test, water-bottle, c-cups, medium-clamp, large-marker, h-cups, b-colored-wood-
blocks, j-lego-duplo, f-toy-airplane, toothbrush, tennis-ball, mug, sponge, k-lego-duplo, phillips-
screwdriver, f-cups, c-lego-duplo, d-marbles, d-cups, camera, d-lego-duplo, golf-ball, k-toy-
airplane, b-cups, softball, wine-glass, chips-can, cube, master-chef-can, alarm-clock, gelatin-
box, h-lego-duplo, baseball, light-bulb, banana, rubber-duck, headphones, i-lego-duplo, b-toy-
airplane, pitcher-base, j-toy-airplane, g-lego-duplo, cracker-box, orange, e-cups

* Diverse embodiment (MW +DMC) - We use the diverse embodiment benchmark proposed
in Hansen et al. [41]. This benchmark uses 80 tasks from the MetaWorld and DeepMind
Control benchmarks, with a total of 12 different robot embodiments. The benchmark uses
|S| =39 and |A| = 6.

Training tasks: assembly, basketball, bin-picking, box-close, button-press-topdown, button-
press-topdown-wall, button-press, button-press-wall, coffee-button, coffee-pull, coffee-push, dial-
turn, disassemble, door-close, door-lock, door-open, door-unlock, hand-insert, drawer-close,
drawer-open, faucet-open, faucet-close, hammer, handle-press-side, handle-press, handle-pull-
side, handle-pull, lever-pull, pick-place-wall, pick-out-of-hole, pick-place, plate-slide, plate-
slide-side, plate-slide-back, plate-slide-back-side, peg-insert-side, peg-unplug-side, soccer, stick-
push, stick-pull, push, push-wall, push-back, reach, reach-wall, shelf-place, sweep-into, sweep,
window-open, window-close, walker-stand, walker-walk, walker-run, cheetah-run, reacher-easy,
reacher-hard, acrobot-swingup, pendulum-swingup, cartpole-balance, cartpole-balance-sparse,
cartpole-swingup, cartpole-swingup-sparse, ball-in-cup-catch, finger-spin, finger-turn-easy,

31

finger-turn-hard, fish-swim, hopper-stand, hopper-hop, cheetah-run-backwards, cheetah-run-
front, cheetah-run-back, cheetah-jump, walker-walk-backwards, walker-run-backwards, hopper-
hop-backwards, reacher-three-easy, reacher-three-hard, ball-in-cup-spin, pendulum-spin

e Atari (ATARI) - Here, we consider all 26 tasks from the Atari 100k benchmark [51]. We use
full ALE actions space [10], leading to |S| = 84 x 84 x 4 and |A| = 18.

Training tasks: alien, amidar, assault, asterix, bankheist, battlezone, boxing, breakout, chop-
percommand, crazyclimber, demonattack, freeway, frostbite, gopher, hero, jamesbond, kangaroo,
krull, kungfumaster, mspacman, pong, privateeye, gbert, roadrunner, seaquest, upndown

E.2 Transfer learning benchmarks

Here, we detail the multi-task and transfer configurations used in our experiments. The difference
with respect to previous subsection is that in these benchmarks we had to leave from multi-task
training tasks for transfer evaluation.

* MetaWorld (MW) - for transfer, we left 5 hardest tasks according to Hansen et al. [41].

Training tasks (45 tasks): basketball, bin-picking, box-close, button-press-topdown, button-
press-topdown-wall, button-press, button-press-wall, coffee-button, coffee-pull, coffee-push,
door-close, door-lock, door-open, door-unlock, hand-insert, drawer-close, drawer-open, faucet-
open, faucet-close, hammer, handle-press-side, handle-press, handle-pull-side, handle-pull,
pick-place-wall, pick-out-of-hole, pick-place, plate-slide, plate-slide-side, plate-slide-back, plate-
slide-back-side, peg-insert-side, peg-unplug-side, soccer, stick-push, stick-pull, push, push-wall,
reach, reach-wall, shelf-place, sweep-into, sweep, window-open, window-close

Transfer tasks (5 tasks): assembly, disassemble, dial-turn, lever-pull, push-back

* HumanoidBench-Medium (HB-MEDIUM) - for transfer, we left 3 hardest tasks according
to Lee et al. [63].

Training tasks (6 tasks): walk, stand, stair, crawl, pole, slide
Transfer tasks (3 tasks): run, hurdle, maze

* HumanoidBench-Hard (HB-HARD) - for transfer, we left 7 tasks categorized as "hard
manipulation” in Sferrazza et al. [93].

Training tasks (20 tasks): walk, stand, run, stair, crawl, pole, slide, hurdle, maze, sit-simple,
sit-hard, balance-simple, balance-hard, reach, spoon, window, insert-small, insert-normal,
bookshelf-simple, bookshelf-hard

Transfer tasks (7 tasks): truck, powerlift, room, door, basketball, push, cabinet

» ShadowHand (SH) - we followed the training/transfer division proposed in Huang et al.
[49].

Training tasks (85 tasks): e-toy-airplane, knife, flat-screwdriver, elephant, apple, scissors,
i-cups, cup, foam-brick, pudding-box, wristwatch, padlock, power-drill, binoculars, b-lego-
duplo, ps-controller, mouse, hammer, f-lego-duplo, piggy-bank, can, extra-large-clamp, peach,
a-lego-duplo, racquetball, tuna-fish-can, a-cups, pan, strawberry, d-toy-airplane, wood-block,
small-marker, sugar-box, ball, torus, i-toy-airplane, chain, j-cups, c-toy-airplane, airplane,
nine-hole-peg-test, water-bottle, c-cups, medium-clamp, large-marker, h-cups, b-colored-wood-
blocks, j-lego-duplo, f-toy-airplane, toothbrush, tennis-ball, mug, sponge, k-lego-duplo, phillips-
screwdriver, f-cups, c-lego-duplo, d-marbles, d-cups, camera, d-lego-duplo, golf-ball, k-toy-
airplane, b-cups, softball, wine-glass, chips-can, cube, master-chef-can, alarm-clock, gelatin-
box, h-lego-duplo, baseball, light-bulb, banana, rubber-duck, headphones, i-lego-duplo, b-toy-
airplane, pitcher-base, j-toy-airplane, g-lego-duplo, cracker-box, orange, e-cups

Transfer tasks (29 tasks): rubiks-cube, dice, bleach-cleanser, pear; e-lego-duplo, pyramid,
stapler, flashlight, large-clamp, a-toy-airplane, tomato-soup-can, fork, cell-phone, m-lego-duplo,
toothpaste, flute, stanford-bunny, a-marbles, potted-meat-can, timer, lemon, utah-teapot, train,
g-cups, l-lego-duplo, bowl, door-knob, mustard-bottle, plum

» Atari (ATARI) - we used the tasks from Atari100k [51] for multi-task training.

Training tasks (26 tasks): alien, amidar, assault, asterix, bankheist, battlezone, boxing,
breakout, choppercommand, crazyclimber, demonattack, freeway, frostbite, gopher, hero, james-
bond, kangaroo, krull, kungfumaster, mspacman, pong, privateeye, gbert, roadrunner, seaquest,
upndown

32

Transfer tasks (20 tasks): asteroids, atlantis, beamrider, berzerk, bowling, centipede, double-
dunk, fishingderby, gravitar, icehockey, namethisgame, pitfall, riverraid, stargunner, timepilot,
tutankham, venture, videopinball, wizardofwor, yarsrevenge

E.3 Score normalization

We normalize the scores according to practices from previous works, with the goal of bounding
the returns between 0 and 1. In MetaWorld, we just report unnormalized success rates (which
per definition or bounded). In HumanoidBench-Medium and HumanoidBench-Hard, we report
returns, which we normalize according to Equation 4 and scores sourced from Sferrazza et al. [93].
In DMC, we report returns, which we normalize by diving by 1000 (according to Nauman et al.
[77]). In ShadowHand, we report success rates. Finally, in Atari tasks, we report human normalized
returns [72] according to Equation 4 and values presented in Agarwal et al. [4].

N lized Ret Returns — Random Returns @)
ormalized Returns =
Optimal Returns — Random Returns

For Atari, we use the scores provided in Agarwal et al. [4]. The table below details the normalization
scores used in the HumanoidBench benchmark.

Table 2: Random and success scores for HumanoidBench tasks

Task Random Score Optimal Score
h1l-crawl-vO 272.658 700.0
h1-hurdle-vO 2.214 700.0
h1-maze-v0 106.441 1200.0
h1-pole-v0 20.090 700.0
h1-run-vO 2.020 700.0
h1-slide-vO 3.191 700.0
h1-stair-v0 3.112 700.0
h1-stand-vO 10.545 800.0
h1-walk-v0 2.377 700.0
hlhand-balance_hard-v0 10.032 800.0
hlhand-balance_simple-v0 10.170 800.0
h1hand-basketball-vO 8.979 1200.0
hlhand-bookshelf_hard-v0 14.848 2000.0
h1lhand-bookshelf_simple-v0 16.777 2000.0
hlhand-crawl-v0 278.868 800.0
hlhand-door-vO 2.771 600.0
hlhand-hurdle-v0 2.371 700.0
hlhand-insert_normal-vO 1.673 350.0
hlhand-insert_small-vQ 1.653 350.0
hlhand-maze-v0 106.233 1200.0
hlhand-package-v0 -10040.932 1500.0
hlhand-pole-v0 19.721 700.0
h1lhand-powerlift-v0 17.638 800.0
h1lhand-push-v0 -526.800 700.0
hlhand-reach-vO -50.024 12000.0
hlhand-room-v0 3.018 400.0
hlhand-run-vO 1.927 700.0
hlhand-sit_hard-v0 2.477 750.0
hlhand-sit_simple-v0 10.768 750.0
h1lhand-slide-v0 3.142 700.0
hlhand-spoon-v0 4.661 650.0
h1hand-stair-v0 3.161 700.0
h1lhand-stand-v0 11.973 800.0
h1lhand-truck-v0 562.419 3000.0
hlhand-walk-v0 2.505 700.0
hlhand-window-v0 2.713 650.0

33

F Hyperparameters

We detail the hyperparameters used in our experiments in Tables 3 and 4 below.
discussed in Section 4, we use a single hyperparameter configuration across all tested
tasks, showcasing robustness of our approach. We release the code at the following link:
https://github.com/naumix/BiggerRegularizedCategorical.

Table 3: Hyperparameters for SAC+BRC

As

Table 4: Hyperparameters for DrQ+BRC

Hyperparameter | Value Hyperparameter Value
UTD 2 UTD 2
Action repeat 1 Action repeat 1
Embedding size 32 Embedding size 32
Discount rate 0.99 Discount rate 0.99
Optimizer AdamW Optimizer AdamW
Num atoms 101 Num atoms 101
Vmin —10 Vmin —10
Polyak 7 Se-3 Polyak 7 Se-3
Target update frequency 1 Target update frequency 1
Weight decay le-4 Weight decay le-4
Batch size 1024 Batch size 256
Buffer size per task le6 Buffer size per task leS
Actor learning rate 3e-4 Learning rate le-4
Critic learning rate 3e-4 Encoder Impala
Temperature learning rate 3e-4 Encoder channels (128, 256, 256)
Initial temperature 0.1 Pre-critic norm Layer norm
Target entropy |Al/2 Critic Dense
Actor architecture BroNet Critic depth 2
Actor depth 1 Critic width 512
Actor width 256 Data augmentation True
Critic architecture BroNet Start € 1.0
Critic depth 2 End e 0.01
Critic width 4096 € decay steps 5000
Num critics 2 N-step 3

G Additional Efficiency Results

We include wall-clock measurements comparing efficiency of BRO [77] and multi-task BRC across
four model sizes for HumanoidBench (HB-Medium benchmark). We generate these wall-clock
estimates using an uniform setup using a single HI00 GPU with 16 CPU cores of AMD EPYC 7742
processor. The results, summarized in the table below, confirm that multi-task learning via BRC
offers significant gains in efficiency, even at reduced model scales.

Table 5: Multi-task learning via BRC offers wall-clock improvements, even when compared to BRO
which uses 8x smaller batch size and 64x smaller critic.

BRO-4M BRC-4M BRC-16M BRC-64M BRC-256M

Final Performance 0.57 0.65 0.69 0.83 0.95
Minutes to perform 1M steps (all tasks) 1013 242 256 336 658
Minutes to reach BRO final performance 1013 157 138 154 263
Wall-clock improvement 1 6.4 7.3 6.6 39

H Training Curves

34

DMC-Hard (7 tasks) HumanoidBench-Easy (9 tasks) HumanoidBench-Hard (20 tasks)
0.8

(=== Ours (MT)
= Ours (ST)
e MH-SAC (MT)

e
0

(e==Ours (MT)

[=="0urs (M)
=== Ours (ST)
=== MH-SAC (MT)
=== SAC (ST)
| TDMPC2 (ST)
| BRO-Fast (ST)

e

o
S
=N

< SAC (ST)
e TD-MPC2 (ST)
| e BRO-Fast (ST)

D7 SimBaV2 (ST)

Normalized returns
N
B
Normalized returns
=1
i

0.2 0.2
0.0 0.0
00 0.1 02 03 04 05 00 02 04 06 038 1.0 0.0 0.5 1.0 1.5 2.0
Environment steps (M) Environment steps (M) Environment steps (M)
MetaWorld (50 tasks) ShadowHand (85 tasks) MW-+DMC (80 tasks)
10 1 O | == Ours (MT) 1 0 e Ours (MT)
" ; - Ours (ST)
0.8 - 0.8 g 0.8 MH-SAC (MT)
i) e SAC (ST) i) S s SAC (ST)
= e PaCo 151 7?
206 | omam 5 0.6 306
4 CTPG (MT) / 5 N
S04 804 S04
= = £
7] 7] y g
0.2 0.2 g — Z 02
e
0.0 0.0 0.0
00 0.1 02 03 04 05 00 02 04 06 08 1.0 0.0 0.1 02 03 04 05
Environment steps (M) Environment steps (M) Environment steps (M)

Figure 16: Aggregate training curves. Y-axis denotes the performance metric, and X-axis denotes environment
steps. We report 95% confidence interval calculated via bootstrapping.

= Ours(MT) ®mm Ours(ST) mmm MH-SAC (MT) ®mm SAC(ST) ®== SimBaV2(ST) === TD-MPC2(ST) BRO-Fast (ST)
hl-walk hl-stand hl-run hl-stair hl-crawl
= 1000
800 S 800 f 600 a
800
600 600
400 600
400 400
200 400
200 200
200
0 0 0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
hl-slide h1-hurdle
800
750
600
500 400
250 200
0 0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Figure 17: Unnormalized training curves for the HumanoidBench-Medium benchmark. Y-axis denotes
sum of episodic returns and X-axis denotes environment steps. We report 95% confidence interval calculated via
bootstrapping.

35

= Ours (MT) SSE Ours(ST) ®m MH-SAC (MT) mmm SAC(ST) ®== SimBaV2(ST) ®mm TD-MPC2 (ST) DreamerV3 (ST)

hlhand-walk hlhand-stand hlhand-run hlhand-stair 000 hlhand-crawl
\ " 1 A
| Y’V 800
750 800
600
500 600
400
400
250 200
200
0 0
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 20
hlhand-slide hlhand-hurdle hlhand-maze hlhand-sit_simple
300 1000
750 750 300 M .\M 0
200 f Y
500 500
100 200
250 250
o of A== 0 100
0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0
hlhand-sit_hard hlhand-balance_simple hlhand-balance hard

7500

5000

2500

0.0 1.0 20 0.0 1.0 20 0.0 1.0 20 0.0 1.0 20
hlhand-insert_small hlhand-insert_normal hlhand-bookshelf_simple 800 hlhand-bookshelf hard

Figure 18: Unnormalized training curves for the HumanoidBench-Hard benchmark. Y-axis denotes sum
of episodic returns and X-axis denotes environment steps. We report 95% confidence interval calculated via
bootstrapping.

=== Ours (MT) =W Ours(ST) Wmm MH-SAC (MT) ®mm SAC(ST) === BRO-Fast(ST) === TD7(ST) SimBaV2 (ST)
humanoid-stand humanoid-walk humanoid-run 1000 dog-stand dog-walk
750 750
500 500
250 250
0 0
0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5
dog-trot
800 400
600 300
400 200
200 100
0 0
0.0 0.25 0.5 0.0 0.25 0.5

Figure 19: Unnormalized training curves for the DMC-Hard benchmark. Y-axis denotes sum of episodic
returns and X-axis denotes environment steps. We report 95% confidence interval calculated via bootstrapping.

36

== Ours (MT) =W Ours(ST) =W MH-SAC (MT) ®== SAC(ST) ®== BRO-Fast(ST) === TD-MPC2 (ST)

assembly basketball bin-picking box-close P pd 1
1.00 y — 1.00 2 1.00 —
275 0.75 0.75
1.50 0.50 0.50
/
/
)25 0.25 0.25
.00 0.00 0.00
0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 . . 0.25 0.25 0.5
button-press-wall coffee-button coffee-pull coffee-push dial-turn
= 1.00 1.00 .00 &

=N

A

s

0.00 0.00
0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5
disassemble door-close door-lock door-open door-unlock hand-insert
1.00 2 1.00 1.00
275 0.75, 0.75
2.50 0.50 0.50
.25 0.25 0.25
.00 0.00 0.00
0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5
drawer-close drawer-open faucet-open faucet-close handle-press-side
075 |
/ 0.50 W
— :
/ 0.25
| &
0.00
0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5
handle-press handle-pull-side handle-pull lever-pull pick-place-wall pick-out-of-hole
1.00 1.00 1.00 1.00 — 1.00 o 1.00
)75 b 0.75 0.75 0.75 0.75 0.75
.50 Y 050 0.50 0.50 ~ 050 0.50 A1
.25 0.25 0.25 025 |/ 0.25 0.25 A~
2.00 0.00 0.00 0.00 0.00 0.00
0.0 0.25 05 0.0 0.25 05 00 0.25 05 00 0.25 05 00 0.25 05 00 0.25 05
pick-place plate-slide plate-slide-side plate-slide-back-side
1.00 > 1.00 T .00 -

&,

).75 ~ 075
.50 0.50
).25 0.25
.00 0.00
0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 X X X 0.25 0.5

peg-unplug-side

1.00 l.. 10

)75 VA‘ —~ 075

250 0.50
/

)25 025
0

soceer stick-pull push-wall

2.00 0.00

0. 0.25 05 025 05 00 0.25 05 00 0.25 05 00 0.25 05

push-back reach-wall shelf-place sweep-into sweep

1.00 1.00 1.00 N 1.00 1.00
)75 075 075 0.75 075 A
250 / 0.50 0.50 0.50 0.50
).25 0.25 0.25 0.25 0.25
2.00 L 0.00 = 0.00 0.00 0.00

0.0 0.25 05 00 0.25 05 00 0.25 05 00 025 05 00 0.25 05 00 0.25 05

window-open window-close
1.00 1.00
»

)75 075 B
250 0.50 v
.25 X 025
.00 0.00

00 0.25 05 00 025 05

Figure 20: Unnormalized training curves for the MetaWorld benchmark. Y-axis denotes the success rate
and X-axis denotes environment steps. We report 95% confidence interval calculated via bootstrapping.

37

mm Ours (MT)

knife

< toy_airplanc

05 70
b_lego_duplo
1.00 I
0.75 2 4 0.75.
0.50 = 0.50
025 025
000 000
00 05 w0 00 05 0
extra_large_clamp peach
1.0 7~ 1.00 1.00
- 075
050
025
0.00.
1.0
08
06
04
0.2

00 05

i_toy_airplane

mEm Ours(ST) =W MH-SAC (MT)

flat_screwdriver elephant apple

1.00 1.00
075 = 075 -
A 050 = o0s0
025 025
0.00 0.00
1.0 00 1.0 00 10

0.5 05
pudding_box padlock

K

00 05 o
f lego_duplo
[
00 05 W oo 05 W 00 05 o
a_lego_duplo racquetball tuna_fish_can
1 1.00
Q& 075 L ors "
050 v 050 Z
- 025 025
000 g 000
00 05 oo 05 W 00 05 o
wood_block small_marker sugar_box
A Al 06 Y
AR B, \
04 o SR
00 00
00 05 0 00 05 W 00 05 o
j_cups ¢_toy_airplane airplane

0.0 05 10
toothbrush
08
06
04
02
0.0
0.0 05 0.0 0.5 1.0
¢_lego_duplo d_marbles
. 100,
075
0.50.
0.25.
0.00.
0.0 05 10
softball

0 1.00
- 075
- 0.50
025
——— 000
00 10

03 100
A 075
02
050 4
ot 025 —
~ 00 0.00 3
0o 10

0s 00 05 0 00 05 0
large_marker h_cups b_colored_wood_blocks
100
075
0.50 >
025
- 0.00
00 05 0 00 05 0
sponge k_lego_duplo
L 100
075 -
050
] 025 —
0.00
[05 10 00 05 10 00 05
d_cups camera d_lego_duplo
1.00 100
- 075 o &
050 050
025 025
0.00 0.00
00 05 0 00 05 10 00 05 10
wine_glass chips_can
1
0o 0 00 05 0 00 05 0
baseball light_bulb

Y

00 05 0 00 05 0 05 00 05 ™ 00 05 0
i_lego_duplo b_toy_airplane pitcher_base j_toy_airplane g lego_duplo

1.00 1. 1.00 1.00 .00
075 oo 075 075 075 L
050 050 " 050 050 050
025 - 025 025 025 025
0.00 0.00 0.00. © 0,00 0,00

0.0 05 10 0.0 0.5 1.0 0.0 0.5 1.0 0.0 05 10 0.0 05

e cups

1.00
075
050 -
0.25 -
0.00

0.0 05 10

Figure 21: Unnormalized training curves for the ShadowHand benchmark. Y-axis denotes the success rate

mmm SAC (ST)
0.75
0.50

025

B

0.00

g

05
power_drill
1.00

050 A
025

0.00

075

050 ~

B

05 RX
a_cups

025

)

0.00

2

05
ball

050

025

b

0.00
0.0 05 1.
nine_hole_peg_test

1.00

075

050

025

0.00

05
j_lego_duplo

7

0.0 05 1.
phillips_screwdriver

1.00

075

050

025

0.00

g

05
golf ball

050

025

N

0.00

g

05
master_chef can

N

5

05
rubber_duck

S

0.00

1.00

075

050

00 05 10
binoculars.
00 05 10
can
00 05 10

025

0.00

1.00

075

050

025

0.00

1.00

05
water_bottle

10

0s
 toy_airplane

0.0 05 1.0
£ cups
X
0.0 05 1.0
k_toy_airplanc
0.0 05 1.0
alarm_clock
00 08 0
headphones

and X-axis denotes environment steps. We report 95% confidence interval calculated via bootstrapping.

38

EEE Ours (MT) B Ours (ST) Emm MH-SAC (MT) mm SAC(ST)
‘walker-stand ‘walker-walk walker-run cheetah-run h ‘her-hard acrobot-swingup
1000 1000, 800 o 1000
750 750 600 750
500 500 400 500
250 250 200 250
0 [o 0
00 025 05 o 5 00 025 05 X 05 05 00 025 05
rtpole-bal o, C4TIPOIE balance sparse cartpole-swingup carpole-swingup sparse . finger-spin
800/ 800 A
750 L
750 500 750 750
500 500 400 500 500
250 250 200 ot " 250 250
0 o 4 0 — o
00 025 05 00 025 05 [y 025 05 00 025 05 00 025 05 05
finger-turn_hard fish-swim hopper-stand hopper-hop heetah-run_backward:
1000 = 1000 ’
600
750 750 1
400
500 500,
250 250 200
0 4 0
00 0. 05 0 025 X 00 ¥ 5 00 025 05 05
walker-walk_backwards walker-run_backwards hopper-hop_backwards reacher-three_casy
0 600 00 _ 1000
600 750
400 600
400 V= 500 400 i
200
200 250 200
[o 4 0
00 025 05 0o 025 05 00 025 05 00 025 05 00 025 05 00 025 05 00 025 05
ball_in_cup-spin pendulum-spin assembly basketball bin-picking box-close button-press-topdown
800 100 - Ao - 100 1.00
800 e /
075
600 600
400, 400, 0.50
200 {4 200 025
0 [0.00
00 025 05 05 [025 05 00 025 05
button-press-topd 1 I coffee-push dial-turn
100 100 ~ 100 3 !
075 075 075 075
050 0.50 050 — 0.50
025 025 025 - 025
0.00 0.00 . 0.00 0.00 e
00 025 05 00 025 05 00 025 05 [025 05 00 025 05 00 025 05 00 025 05
100 disassemble door-close door-lock door-open door-unlock hand-insert drawer-close
075 e s
050 MRS o
0.00 0.00
00 025 05 025 05 00 025 05
drawer-open faucet-close handle-pull-side
100 100 %0
7 7
075 075
050 0.50
025 025 Al
0.00 0.00
00 025 05 00 025 05 00 025 05 00 025 05
handle-pull lever-pull plate-slide plate-slide-side
00 025 05 00 025 05
slide-back-sid stick-pull
1.00
075 .
1 0.50 m
v,
A 025 B
/ \7‘,- PR
0.00
00 025 05 00 025 05 00 025 05 00 025 05 00 025 05 00 025 05
push-wall push-back reach reach-wall shelf-place sweep-into
g, 0,050, 1.00] 1.00 -
0.000 050 050
-0.025 025 025
-0.050 0.00 000
00 025 05 00 025 05 00 025 05 0o 025 05

window-open window-close

025 05

Figure 22: Unnormalized training curves for the MW+DMC benchmark. For MetaWorld tasks, Y-axis
denotes the success rate whereas for DMC tasks it denotes sum of episodic returns. X-axis denotes environment
steps. We report 95% confidence interval calculated via bootstrapping.

39

Table 6: Atari-100k benchmark scores.

Game | Human | SimPLe DER SPR DrQ | Ours(ST) Ours (MT)
Alien 7127.7 616.9 739.9 841.9 865.2 1005.8 906.6
Amidar 1719.5 88.0 188.6 179.7 137.8 192.1 147.8
Assault 742.0 527.2 431.2 565.6 579.6 629.0 503.4
Asterix 8503.3 1128.3 470.8 962.5 763.6 1442.2 1285.4
BankHeist 753.1 34.2 51.0 3454 232.9 959.7 104.5
BattleZone 37187.5 5184.4 10124.6 14834.1 10165.3 14905.0 20316.0
Boxing 12.1 9.1 0.2 35.7 9.0 -0.1 45.1
Breakout 30.5 16.4 1.9 19.6 19.8 24.9 20.6
ChopperCommand 7387.8 1246.9 861.8 946.3 844.6 1867.5 1848.4
CrazyClimber 35829.4 | 62583.6 16185.3 36700.5 21539.0 79276.5 94606.8
DemonAttack 1971.0 208.1 508.0 517.6 1321.5 503.2 479.6
Freeway 29.6 20.3 27.9 19.3 20.3 31.6 28.4
Frostbite 4334.7 254.7 866.8 1170.7 1014.2 1413.9 715.7
Gopher 2412.5 771.0 349.5 660.6 621.6 512.0 1477.6
Hero 30826.4 2656.6 6857.0 5858.6 4167.9 10228.0 7472.3
Jamesbond 302.8 125.3 301.6 366.5 349.1 249.0 288.6
Kangaroo 3035.0 323.1 779.3 3617.4 1088.4 3644.0 1184.0
Krull 2665.5 4539.9 2851.5 3681.6 4402.1 52717.8 6764.8
KungFuMaster 22736.3 | 17257.2 14346.1 14783.2 114674 6310.5 13723.2
MsPacman 6951.6 1480.0 1204.1 1318.4 1218.1 6310.5 1682.1
Pong 14.6 12.8 -19.3 -54 9.1 1.9 0.2
PrivateEye 69571.3 58.3 97.8 86.0 3.5 42.7 99.8
Qbert 13455.0 1288.8 1152.9 866.3 1810.7 4781.2 1954.6
RoadRunner 7845.0 5640.6 9600.0 12213.1 112114 11887.0 18021.2
Seaquest 42054.7 683.3 354.1 558.1 352.3 434.6 635.2
UpNDown 11693.2 3350.3 2877.4 10859.2 43245 5290.3 7102.2
Mean ‘ 1.0 ‘ 0.443 0.285 0.616 0.465 ‘ 0.667 0.849

B Model transfer B Data transfer B From scratch

assembly disassemble dial-turn push-back lever-pull
1.00 1.00 1.00 1.00 1.00
0.75 0.75. 0.75 0.75. 0.75.
0.50 0.50. 0.50 0.50 0.50.
0.25 0.25. 0.25 0.25. 0.25
0.00 0.00. 0.00 0.00 0.00.
0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5 0.0 0.25 0.5
hl-maze h1-hurdle hl-run hlhand-truck hlhand-powerlift
800
300 300 1500 300
600
1250 200
200 200 400
1000
100 100 200 100
750
0 0 0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 1.0 2.0 0.0 1.0 2.0
hlhand-room hlhand-door hlhand-basketball hlhand-push hlhand-cabinet
600
400 500
300
40 300 0 400
200
200
-500 200
20 100 100
o -1000 o
0.0 1.0 20 0.0 1.0 20 0.0 1.0 20 0.0 1.0 20 0.0 1.0 20

Figure 23: Unnormalized training curves for the transfer tasks. For MetaWorld tasks, Y-axis denotes the
success rate whereas for other tasks it denotes sum of episodic returns. X-axis denotes environment steps. We
report 95% confidence interval calculated via bootstrapping.

40

rubiks_cube

Embedding-tuning transfer

bleach_cleanser 1.0

el

0.8
@ L_toy
tomato” soup_can
=4 o | 06
s o Aot ’
m
- ’|§nmpa';m
+~ flute
@ stanford_bunny 0.4
5 a_marbles g
H potted_meat_can
timer
u 2
I I o u u 0.
||
0.0

door_knob
mustard bottle
~plu

cu
foam bncE
extra_large clam
nine_hole_peg_test
K lego |
el
d_lego_duplo
e bl

Training embeddings

Figure 24: Effectiveness of pretrained embeddings. We show the performance of using pretrained embeddings
to manipulate new shapes. Interestingly, most of the testing shapes can be manipulated via majority of the
pretrained embeddings, showcasing that the individual policies do not overfit to the particular task.

41

	Introduction
	Related Work
	BRC Approach
	Experimental Evaluation
	Analysis
	Conclusions
	Limitations
	Background
	Bigger, Regularized, Categorical
	Base model
	Cross-entropy loss via distributional RL
	Scaled Q-value model
	Task embeddings

	Details on Experiments
	Figures
	Baselines

	Considered Benchmarks
	Multi-task benchmarks
	Transfer learning benchmarks
	Score normalization

	Hyperparameters
	Additional Efficiency Results
	Training Curves

