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Abstract001

Traditional Retrieval-Augmented Generation002
(RAG) struggles with complex queries that lack003
strong signals to retrieve the most relevant con-004
text, forcing a trade-off between choosing a005
small context that misses key information and006
a large context that confuses the LLM. To ad-007
dress this, we propose Forward-Backward008
RAG (FB-RAG), a new training-free frame-009
work based on a simple yet powerful forward-010
looking strategy. FB-RAG employs a light-011
weight LLM to peek into potential future gener-012
ations, using evidence from multiple sampled013
outputs to precisely identify the most relevant014
context for a final, more powerful generator.015
This improves performance without complex016
finetuning or Reinforcement Learning common017
in prior work. Across 9 datasets from Long-018
Bench and ∞Bench, FB-RAG consistently de-019
livers strong results. Further, the performance020
gains can be achieved with reduced latency021
due to a shorter, more focused prompt for the022
powerful generator. On EN.QA dataset, FB-023
RAG matches the leading baseline with over024
48% latency reduction or achieves an 8% per-025
formance improvement with a 10% latency re-026
duction. Our analysis finds cases where even027
when the forward-looking LLM fails to gener-028
ate correct answers, its attempts are sufficient029
to guide the final model to an accurate response,030
demonstrating how smaller LLMs can system-031
atically improve the performance and efficiency032
of larger ones.033

1 Introduction034

Retrieval-Augmented Generation (RAG) shows im-035

mense promise in reducing hallucinations and im-036

proving generation performance (Fan et al., 2024;037

Gao et al., 2023). RAG achieves strong results on038

diverse Question Answering (QA) tasks (Borgeaud039

et al., 2022; Guu et al., 2020; Asai et al., 2024),040

general language tasks (He et al., 2021; Khandel-041

wal et al., 2019), and across numerous downstream042

applications (Liu et al., 2023; Wu et al., 2024).043

In this work, we focus on the task of answering 044

queries based on an already-provided large con- 045

text. Traditional RAG efforts for this setup involve 046

two steps (Zhao et al., 2024b): 1) Retrieve im- 047

portant chunks by computing similarities with the 048

query (based on a sparse or dense retriever and/or a 049

reranker), 2) Feed the retrieved chunks along with 050

the query to an LLM, which generates the answer. 051

We refer to these approaches as backward-looking – 052

looking back at the input query to score the context 053

chunks. Such methods have been widely adopted 054

in both academia and industry. However, standard 055

methods struggle with complex queries that lack 056

sufficient information to retrieve relevant chunks 057

(see example in Figure 1). This challenge is diffi- 058

cult to manage in RAG, where retrieving too little 059

risks missing key information and retrieving too 060

much risks adding irrelevant content that can con- 061

fuse the LLMs (Yu et al., 2024). 062

To address this challenge, we design Forward- 063

Backward RAG (FB-RAG) for studying the im- 064

pact of an emerging yet underexplored idea – 065

forward-looking or peeking into the LLM’s output 066

generations to improve retrieval. FB-RAG gener- 067

ates the output in three stages: I) Recall-focused 068

Retrieval, using an off-the-shelf retriever to ex- 069

tract a smaller, yet sufficiently large context, II) 070

Precision-focused Retrieval, which either only re- 071

lies on forward-looking by observing reasons and 072

answers from a light-weight LLM to evaluate the 073

context chunks (Ours-F) or relies on both forward 074

and backward lookup (Ours-FB), and III) Gener- 075

ation, prompting a powerful LLM to get the final 076

answer. Although prior work used related ideas to 077

improve RAG with LLM-based feedback or confi- 078

dence scores (Zhao et al., 2024a; Sun et al., 2022; 079

Wang et al., 2024; Yang et al., 2023; Jiang et al., 080

2023), these methods typically propose complex 081

fine-tuning or Reinforcement Learning strategies, 082

and often assume access to external web search 083

engines or rely on LLM’s own memory which is 084
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not suitable for many domain-specific practical set-085

tings. Instead, FB-RAG is a simple and effective086

training-free framework based on off-the-shelf re-087

trievers and instruction-tuned LLMs that answers088

questions from an already-provided large context.089

To find relevant chunks with an imperfect090

forward-looking LLM, FB-RAG samples multi-091

ple outputs and assigns a high score to a chunk if092

it was used for any of them. This turns out to be093

powerful for improving RAG results over recent094

baselines across diverse tasks. We also find that095

gains can be achieved while reducing latency. On096

EN.QA dataset from ∞Bench (Zhang et al., 2024),097

one can combine a 70B parameter model for final098

response generation with an 8B model for forward-099

lookup and match the baseline performance with100

over 48% latency reduction. Further, one can get an101

8% performance improvement with 10% latency102

reduction. Through our qualitative analysis, we103

find instances where even if all the sampled out-104

puts from the smaller LLM incorrectly answer the105

input query, and often fail to follow our instruc-106

tions properly, this still proves sufficient for the107

final, more powerful LLM to generate the correct108

response. We now summarize our contributions:109

1. We propose FB-RAG: a novel training-free110

framework for performing RAG with off-the-111

shelf instruction-tuned LLMs. FB-RAG em-112

ploys a simple and effective look-ahead strategy113

to evaluate context chunks before selecting them114

for final response generation (Section 2).115

2. We comprehensively evaluate FB-RAG against116

recent training-free RAG and Long Context117

baselines on 9 datasets from LongBench (Bai118

et al., 2024) and ∞Bench (Zhang et al., 2024),119

finding that FB-RAG delivers consistent perfor-120

mance improvements. We further analyze key121

design choices in FB-RAG, such as the number122

of chunks retrieved and the number of samples123

used for forward lookup (Sections 3 and 4).124

3. We show that FB-RAG provides the flexibility125

to improve performance while also reducing the126

latency. We additionally perform qualitative127

analysis discussing the strengths and limitations128

of our approach, and provide insights for future129

progress in this area (Section 5).130

2 Methodology131

We focus on the task of question answering based132

on an already-provided context. Given an in-133

put query Q and a context C, FB-RAG relies134

on an off-the-shelf retriever and instruction-tuned 135

LLMs (without finetuning) to generate the output 136

M(Q,C)1. We assume that context C is sufficient 137

to answer the query Q, differentiating from some 138

prior formulations that assume runtime access to 139

web search engines (Yan et al., 2024). At its core, 140

FB-RAG relies on a look-ahead method to retrieve 141

the most relevant context chunks from C before 142

performing the final response generation. We start 143

by describing this method and later connect it to 144

the overall three-stage process of FB-RAG. 145

2.1 Forward-Backward Retriever 146

We are given a query Q and context C = {Ci} = 147

{C1, C2, C3, ...Cn}, with n chunks in total. We 148

use A∗ to denote the ideal output response (ground- 149

truth answer), and C∗
i ∈ C to denote the con- 150

text chunk that contains the information needed 151

to generate the ideal answer A∗. Further, we use 152

S(ci; q) to represent the importance score of a con- 153

text chunk ci given a query q using an off-the-shelf 154

retriever S. We use SFB(ci; q, c) to denote the im- 155

portance score of chunk ci under FB-RAG given a 156

query q and the full associated context c. As in a 157

typical RAG pipeline, once the importance scores 158

are computed, we can select the highest-scoring 159

chunks for final output generation using an LLM. 160

Hence, our goal in this section is simply to provide 161

a formulation for SFB(ci; q, c). 162

Prior work has reported that LLMs often get 163

confused by the irrelevant information present in 164

the context (Xu et al., 2024; Asai et al., 2024). 165

The inverted U shape for the performance observed 166

by Yu et al. (2024) as the context size increases 167

demonstrates this in action. Hence, one obvious 168

objective for the retrievers is to assign high impor- 169

tance scores to the most relevant chunks so that one 170

can use a small context for generation and reduce 171

irrelevant content. This is challenging for retrievers 172

relying solely on the information in the input query, 173

especially when the query is non-specific and com- 174

plex (Li et al., 2024). To address this gap, our key 175

idea is to look forward at the potential answer to 176

retrieve the relevant contexts. If we had access to 177

the oracle generation model L∗, we could compute 178

SFB(Ci;Q,C) in the following manner: 179

SFB(Ci;Q,C) = S(Ci;L
∗(Q,C)) = S(Ci;A

∗).
(1) 180

1This general formulation encompasses several QA, sum-
marization, and Multiple Choice Questions (MCQ) tasks - see
Section 3 for the datasets considered in this work.
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Figure 1: Overview of FB-RAG: a training-free framework for generating answers for an input query and context.
FB-RAG looks at both the input query and sampled outputs from a light-weight LLM to rank context chunks.

Unfortunately, even though we are using the oracle181

generator L∗, this formulation is still not sufficient.182

Oftentimes in QA, the answers are concise entities183

or even binary (yes or no), meaning that even the184

ideal answer A∗ might be insufficient to identify the185

most relevant context chunk C∗
i . Hence, we also186

enable the oracle to generate the ideal reasoning187

R∗ before generating the final answer A∗:188

SFB(Ci;Q,C) = S(Ci;L
∗(Q,C))189

= S(Ci; [R
∗, A∗]). (2)190

For a reasonable retriever S, we now hypothesize:191

argmax
i

S(Ci; [R
∗, A∗]) = C∗

i , (3)192

meaning that one can reasonably expect to reach193

C∗
i if given access to the ideal reasoning R∗ and194

ideal answer A∗. Note that our assumption that195

there is a single chunk C∗
i which contains all the196

relevant information to generate A∗ is not limiting;197

one can trivially extend the same argument to the198

case where the relevant information is split across199

multiple chunks. In such a case, we reasonably200

expect the most relevant chunks to be ranked higher201

than irrelevant chunks based on S(Ci; [R
∗, A∗]).202

We now approximate the oracle L∗ with an203

instruction-tuned LLM L:204

SFB(Ci;Q,C) = S(Ci;L(Q,C))205

= S(Ci; [R,A]), (4)206

where R and A are the reasoning and answer gen-207

erated by the LLM L. To capture the uncertainty208

of the imperfect LLM L, we further propose to 209

consider the maximum over K samples generated 210

from the model: 211

SFB(Ci;Q,C) =
K

max
k=1

S(Ci; [Rk, Ak]), (5) 212

where Rk and Ak are reasoning and answer in 213

the kth sample respectively. Taking the maximum 214

ensures that even if a chunk Ci is used only in 215

one sample, it will still receive a high score un- 216

der SFB(Ci;Q,C). This is useful to capture the 217

relevant chunks in cases where the LLM L is not 218

confident, resulting in high variance in the samples. 219

Equation 5 presents the complete forward- 220

looking component of our framework. In case of an 221

extremely noisy model L, the generated reasoning 222

sequences and corresponding answers can be inac- 223

curate and thus, can provide a misleading signal for 224

our purpose of ranking the context chunks. Hence, 225

merely relying on the outputs from such a noisy 226

model L can unfairly penalize the true relevant 227

chunk C∗
i . Motivated by this, we also incorporate 228

a backward-looking component (as a form of a reg- 229

ularizer) that looks at the original input query Q to 230

compute the importance scores: 231

SFB(Ci;Q,C) = ηB.SB + ηF .SF = 232

ηB.S(Ci;Q) + ηF .
K

max
k=1

S(Ci; [Rk, Ak]), (6) 233

where SB and SF denote the backward and for- 234

ward components respectively, while ηB and ηF 235

refer to their corresponding weights. 236

The forward component SF relies on (reasoning, 237

answer) samples generated by the LLM, which 238
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can be time-consuming as is. Of course, one can239

generate these samples in parallel, but we propose240

two additional simple solutions to manage this cost.241

First, the LLM used for this look-ahead can be242

selected independently from the LLM that is used243

to perform the final generation. In our experiments244

presented in Section 4, we use a relatively light-245

weight LLM (8B parameters) for forward-lookup246

and a much more powerful LLM (70B parameters)247

for the final response generation. We also present248

results with other light-weight LLM choices later249

in Section 5. Second, one can use a fast retriever to250

reduce the context size before utilizing the Forward-251

Backward procedure laid out in this Section. These252

remedies motivate the three-step process of FB-253

RAG, which we describe below.254

2.2 FB-RAG Overview255

We present our approach in Figure 1. FB-RAG256

follows a three-stage process to compute the output257

response M(Q,C): 1) Recall-focused Retrieval, 2)258

Precision-Focused Retrieval, and 3) Generation.259

Recall-focused Retrieval: In Stage I, we employ260

an off-the-shelf retriever to reduce the context size261

from C to CI . This is recall-focused, meaning262

one can select a relatively large context while still263

reducing the size significantly compared to C. The264

goal here is not to perform generation with CI , but265

rather to use it for Stage II.266

Precision-Focused Retrieval: In Stage II, we fol-267

low the procedure laid out in Section 2.1 using a268

light-weight LLM L to compute SFB(Ci;Q,CI).269

Importantly, Ci still comes from the full input con-270

text C. We use these scores to precisely select the271

relevant context chunks, reducing C to CII , which272

is our target context to be used for generation.273

Generation: Lastly, we prompt another instruction-274

tuned LLM G(Q,CII) to generate the final answer.275

We evaluate two variants of our framework in276

this paper: 1) Ours-FB: Using both ηB and ηF as277

0.5 in Equation 6, and 2) Ours-F: Using ηB = 0278

and ηF = 1 (ignoring the backward-component).279

As presented later in Sections 4 and 5, we find that280

Ours-F consistently outperforms Ours-FB across281

the board, indicating that one needs to only rely on282

the forward-looking component – at least for the283

choices for LLM L considered in this work.284

We make two observations about the overall per-285

formance achievable by our framework. First, the286

performance is not limited by L(Q,CI) since the287

outputs from L are only used softly to score the288

chunks in the full context C, and the final gener-289

ation is still performed by a more powerful LLM 290

G. Second, the performance is also not limited 291

by G(Q,CI) since Stage II works to improve the 292

position of C∗
i , increasing the likelihood that C∗

i 293

is picked up in the smaller context CII , which can 294

make it easier for G to generate an accurate answer. 295

We provide a deeper probabilistic interpretation of 296

our approach in Appendix A and validate these 297

observations empirically in Section 4. 298

3 Experiment Design 299

We address the following four research questions: 300

RQ 1) Performance: How does FB-RAG perform 301

compared to RAG and Long Context baselines? – 302

We evaluate FB-RAG on 9 datasets spanning QA, 303

Summarization, and Multiple Choice Questions 304

(MCQ) tasks. RQ 2) Design Considerations: What 305

is the impact of key design choices on the perfor- 306

mance of FB-RAG? - We study the performance by 307

varying the number of retrieved chunks, the number 308

of samples used in Stage II, and the LLM used for 309

forward lookup. RQ 3) Impact on Latency: How 310

does the three-stage process of FB-RAG impact the 311

overall latency? - We plot the performance against 312

latency by varying the chunks and comparing our 313

approach to a baseline. RQ 4) Qualitative Analysis: 314

In what specific scenarios does FB-RAG improve 315

performance and what kind of errors does the ap- 316

proach make? - We perform error analysis and 317

discuss our insights for future work. 318

Datasets: Following prior work (Li et al., 2024), 319

we focus on tasks that are a) in English, b) real, and 320

c) query-based. This leads to 7 datasets from Long- 321

Bench (Bai et al., 2024): NarrativeQA (Kočiský 322

et al., 2018), Qasper (Dasigi et al., 2021), Mul- 323

tiFieldQA (Bai et al., 2024), HotpotQA (Yang 324

et al., 2018), 2WikiMultihopQA (Ho et al., 325

2020), MuSiQue (Trivedi et al., 2022), and 326

QMSum (Zhong et al., 2021). We also pick 327

two datasets from ∞Bench (Zhang et al., 2024), 328

namely, En.QA and EN.MC. These datasets cover 329

diverse domains, including Wikipedia articles, 330

meetings, narratives, and research papers, involv- 331

ing single and multi-hop questions. The average 332

context lengths range from a few thousand to 150k 333

words. Refer to Appendix B for more details. 334

Metrics: We use F1 score for QA datasets, Rouge- 335

L F1 for summarization, and classification accuracy 336

for the MCQ task. Our implementation is based on 337

the code released with LongBench2. 338

2https://github.com/THUDM/LongBench/tree/main
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Methods: Long Context (LC) refers to directly339

feeding the full context to the LLM without ex-340

plicit retrieval. Vanilla denotes the typical RAG341

approach, which performs retrieval based on an342

off-the-shelf retriever before feeding the context to343

the LLM. We implemented two recent approaches344

evaluated on the considered datasets. In Order-345

Preserving (OP) RAG (Yu et al., 2024), the se-346

lected chunks from the retriever are first sorted in347

their original ordering before feeding them to the348

LLM. Self-Route (Li et al., 2024) is a look-ahead349

approach that relies on LLM’s ability to understand350

if the question is answerable from the retrieved con-351

text. It involves 3 steps: 1) Retrieval: Based on an352

off-the-shelf retriever, 2) Generation: A modified353

generation based on the retrieved context where354

the LLM can choose to output ‘unanswerable’ if355

it finds that the retrieved context is insufficient to356

answer the question, and 3) Generation: Based on357

the full input context if the LLM outputs ‘unan-358

swerable’ in the previous step.359

For our approach, both Ours-FB and Ours-F360

variants use 5 samples in Stage II obtained by com-361

bining top-p (p=0.9) and top-k (k=50) sampling.362

The final response generation for all methods uses363

Llama3.1-70B-Instruct (Meta, 2024). Self-Route364

uses the same model for both generation steps. For365

our approach, we use Llama3.1-8B-Instruct (Meta,366

2024) for generating samples in Stage II. Refer to367

Appendix C for the prompts used, hardware de-368

tails, and token limits. We evaluated 4 retrievers:369

BM25 (Trotman et al., 2014), M3Flag (Chen et al.,370

2024), BGEFlag (Xiao et al., 2024), and MPNet3.371

We chose BM25 for our experiments due to its372

strong relative performance, simplicity, and versa-373

tility, making it suitable for our approach, which374

relies on LLM-generated outputs to retrieve rele-375

vant context chunks (see Appendix D.1 for a perfor-376

mance comparison). For chunking, we use a chunk377

size of 300 words throughout.378

4 Results379

FB-RAG outperforms Long Context and other380

RAG baselines on both LongBench and ∞Bench381

datasets. We present the main results on Long-382

Bench datasets in Table 1. Across diverse do-383

mains and context size settings, we find that our384

approach exhibits consistent performance improve-385

ments over other implemented methods. Our386

3https://huggingface.co/sentence-transformers/
multi-qa-mpnet-base-cos-v1

approach achieves the best score on 5 out of 7 387

datasets, and our method Ours-F (6k → 6k), which 388

uses a 6k context output in both Stage I and II, 389

achieves the best average performance of 50.51. 390

We present the results for ∞Bench datasets in Ta- 391

ble 2. We find performance improvements on both 392

datasets. Our approach F (24k → 16k) achieves 393

52.24 on EN.QA outperforming both the top re- 394

ported results in the OP RAG paper (47.25) and the 395

best OP RAG result found in our own implemen- 396

tation (48.27). On EN.MC, our approach achieves 397

86.46, which beats the best achieved in our imple- 398

mentation of OP-RAG (85.59) but does not beat 399

the reported best result of 88.65, potentially due to 400

differences in the experiment design, such as the 401

retriever and chunking methods. 402

Only looking forward in Stage II of FB-RAG 403

generally performs better than averaging out 404

Forward and Backward components. We ob- 405

serve that setting ηB = 0 in Equation 6 (nullify- 406

ing the backward-looking component in Stage II) 407

performs better than giving equal weight to both 408

forward and backward looking components. This 409

indicates that when LLM-generated reasoning and 410

answer samples are incorporated, the input query 411

does not seem to provide any new useful informa- 412

tion to retrieve the most relevant context chunks, 413

and rather hurts the ranking. This essentially points 414

to the effectiveness of the underlying LLM used for 415

forward lookup (Llama-3.1-8B-Instruct for these 416

reported results). In general, the 8B model is much 417

worse than the 70B variant used for final generation 418

(∼ 15% lower average performance in our initial 419

experiments). Often, the former even fails to follow 420

our formatting instructions to generate the ‘Ratio- 421

nale:’ and ‘Answer:’ prefixes correctly. Further, 422

we often see the answer being absent or cut off due 423

to the model generating a long reasoning statement, 424

leaving no room for the answer within our hard 425

decoding token limit. However, regardless of these 426

issues, as long as the model outputs the appropriate 427

language relevant to answering the input question, 428

it helps to retrieve the most relevant chunks for 429

the final generation step by a more powerful LLM. 430

We also experimented with different prompts for 431

Stage II and found that some sort of reasoning or 432

explanation provides slight gains over only using 433

answers (Appendix D.2). 434

Forward-looking improves the ranking of rele- 435

vant context chunks. In Figure 2 (top), we directly 436

compare OP-RAG with our approach on EN.QA 437

by varying the number of chunks used for final gen- 438
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Method Avg Narr Qasp Mult Hotp 2Wiki Musi QMSum
Long Context

Llama3.1-70B-Instruct 49.28 33.42 50.96 55.63 64.4 67.18 48.68 24.68
Self-Route (Li et al., 2024)

Gemini-1.5-Pro 43.33 28.32 45.23 51.47 55.18 62.68 40.66 19.77
GPT-4O 46.83 31.36 47.99 53.17 62.14 70.14 41.69 21.31

Llama3.1-70B-Instruct; RAG - Our Impl. (1.5k)
Vanilla 44.19 25.01 49.31 53.41 60.91 58.84 37.32 24.51
OP (Yu et al., 2024) 44.34 23.89 49.31 54.8 61.11 59.06 37.94 24.26
Self-Route (Li et al., 2024) 47.23 24.04 48.77 54.34 64.42 68.23 46.68 24.14
Ours-FB (6k → 1.5k) 49.36 30.29 51.38 56.22 68.76 63.27 50.92 24.68
Ours-F (6k → 1.5k) 49.36 28.62 51.29 55.53 66.99 65.1 52.93 25.07

Llama3.1-70B-Instruct; RAG - Our Impl. (3k)
Vanilla 47.09 26.99 50.55 54.67 65.33 61.06 46.55 24.48
OP (Yu et al., 2024) 48.03 26.62 50.71 56.78 66.28 64.8 45.91 25.11
Self-Route (Li et al., 2024) 48.29 27.54 50.09 56.1 65.64 66.02 47.75 24.9
Ours-FB (6k → 3k) 50.23 33.22 50.99 55.99 66.29 67.42 53.13 24.56
Ours-F (6k → 3k) 50.31 32.41 51.05 56.12 66.79 67.95 53.7 24.17

Llama3.1-70B-Instruct; RAG - Our Impl. (6k)
Vanilla 48.59 31.09 50.12 55.17 66.39 65.9 46.72 24.72
OP (Li et al., 2024) 48.75 29.85 51.35 55.6 65.53 65.5 48.85 24.59
Self-Route (Li et al., 2024) 48.71 30.52 50.74 54.67 66.5 64.12 49.29 25.13
Ours-FB (6k → 6k) 50.05 33.24 50.87 56.57 65.25 67.76 51.94 24.75
Ours-F (6k → 6k) 50.51 34.36 50.84 57.26 65.36 67.63 53.4 24.69

Table 1: Results on LongBench. We use Rouge-L F1 for QMSum, and F1 score for others. (X → Y): Context size
X in Stage I and Y in Stage II. Comparisons with other popular retrievers are in Appendix D.1.

Method EN.QA EN.MC
Long Context

Llama3.1-70B-Instruct 34.26 71.62
Self-Route (Li et al., 2024)

Gemini-1.5-Pro 37.51 76.86
GPT-4O 34.95 77.29
Llama3.1-70B-Instruct; OP RAG (Yu et al., 2024)
16k 44.43 84.72
24k 45.45 88.65
48k 47.25 85.59

Llama3.1-70B-Instruct; OP RAG (Our Impl.)
16k 47.87 81.22
24k 48.27 85.59

Llama3.1-70B-Instruct; FB-RAG (Ours)
Ours-FB (24k → 12k) 49.93 84.28
Ours-FB (24k → 16k) 51.68 85.59
Ours-F (24k → 12k) 50.38 85.59
Ours-F (24k → 16k) 52.24 86.46

Table 2: Results on ∞Bench. We report F1 score for
EN.QA and accuracy for EN.MC. (X → Y): Context
size X in Stage I and Y in Stage II.

eration4. We find that our approach at 20 chunks439

(6k context) outperforms OP RAG at 80 chunks440

(24k context). On EN.MC (Appendix D.3), this441

happens at 53 chunks (16k context). This goes442

back to the discussion in Section 2.2. With for-443

ward lookup in Stage II (albeit with a less powerful444

LLM), our approach essentially improves the rank-445

4We exclude Self-Route here since it relies on LC as a
fallback which already performs poorer than RAG in this case.

ing of relevant context chunks, and thus, allows one 446

to use a smaller context for final response genera- 447

tion. This makes it easier for the LLM to find the 448

correct answer, leading to improved performance. 449

Performance improves even with one forward 450

sample in Stage II of FB-RAG. Finally, we ana- 451

lyze the impact of the number of samples used in 452

Stage II of FB-RAG on the overall performance 453

(Appendix D.4). We find that the performance im- 454

proves greatly with only one forward sample, with 455

maximum performance at 5. We also note that 456

the trend is not strictly increasing, indicating that 457

more samples may not always add value and this 458

parameter must be tuned empirically. 459

5 Discussion 460

Latency Considerations: FB-RAG improves per- 461

formance with lower latency. The latency of FB- 462

RAG is governed by the two LLM calls in Stage 463

II and III (Figure 1). We approximate the over- 464

all latency by the sum of the average time taken 465

by Llama3.1-8B-Instruct to generate output sam- 466

ples in Stage II (assuming parallelization) and the 467

average time taken by Llama3.1-70B-Instruct to 468

generate the final answer. In Figure 2 (bottom), 469

we plot performance against latency for EN.QA, 470

varying the number of chunks used in Stage III and 471

comparing to OP-RAG. This is complementary to 472
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Figure 2: Top: Results on EN.QA obtained by varying
the number of chunks used for final response generation.
Across all data points, our approach uses an Llama3.1-
8B-Instruct model for forward lookup in Stage II with
80 context chunks as input and setting ηF = 1 and
ηB = 0. Bottom: Performance vs. Latency plot on
EN.QA for the same points as in the Top Figure. Refer
to Appendix C for details on the hardware used.

the performance curves in Figure 2 (top). As evi-473

dent, we find that FB-RAG improves performance474

while reducing latency. It matches the best base-475

line performance (48.27 F1 at 29s), with over 48%476

reduction in latency, attaining 48.85 F1 at 14.89s.477

Further, FB-RAG shows 8% performance improve-478

ment with a 10% reduction in latency. This can479

be attributed to using a lightweight 8B model for480

forward-lookup with a large context, and the final481

generation with a 70B model using a much smaller482

context size, and is in line with previously reported483

inference speedups in 8B vs. 70B variants5.484

Varying the LLM used for forward lookup: We485

can go even more light-weight. The latency anal-486

ysis above used an 8B model for forward-lookup487

in Stage II of FB-RAG. Even though the 8B model488

fails to follow instructions properly occasionally489

and performs much worse compared to the 70B490

model, it still brings performance improvements.491

5https://openllmbenchmarks.com/index.html
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Figure 3: Varying the model used for Forward lookup in
Stage II of our approach. Results are on EN.QA dataset.

A natural question is – ‘Can we push this further?’ 492

In Figure 3, we compare performance by varying 493

the LLM used for Stage II, experimenting with 494

Llama3.2 3B and 1B instruction-tuned variants6. 495

As evident, we find that even the 3B model shows 496

visible improvements in performance, while the 1B 497

performs similar to the baseline. This finding at- 498

tests to the strength of FB-RAG – although the 3B 499

variant is nearly half as accurate as the 8B model, 500

as long as it provides the relevant language in the 501

generated reasons and answers, it helps to retrieve 502

the relevant context chunks for the 70B model to 503

generate accurate answers. From these observa- 504

tions, we argue that FB-RAG provides the knobs 505

to improve performance while controlling latency 506

with reasonable design choices – this includes the 507

number of chunks for Stage II and Stage III, and 508

the size of the forward-lookup model. 509

Qualitative Analysis: Analyzing complex queries 510

where FB-RAG decisively outperforms the base- 511

lines, we make two observations. First (which is 512

more straightforward), there are cases where the 513

8B model answers the query correctly in at least 514

one of the Stage II samples, along with giving a 515

reasonable rationale. This directly helps to pick the 516

relevant chunks for Stage III following Equation 517

5. The second situation is more interesting, where 518

the 8B model fails to answer a multihop query in 519

all samples. However, it answers one hop correctly 520

in at least one of the samples, which proves to be 521

sufficient to retrieve the correct chunks for the 70B 522

model to handle the multiple hops correctly. Take 523

a query from MuSiQue as an example – ‘Who is 524

the spouse of the actor who played Hannibal Smith 525

in the A team?’, the 8B model correctly guesses 526

6https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/
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‘George Peppard’ as the actor who played Hanni-527

bal Smith, but is unable to get to the final answer528

‘Sherry Boucher‘. However, simply generating the529

relevant language and ‘George Peppard’ helps to530

retrieve the right context chunks for the 70B model531

to produce the correct answer – This gives insight532

into how even a light-weight LLM in Stage II can533

systematically help to improve the performance,534

aligned with the overall results discussed earlier.535

Looking at the fewer cases where FB-RAG per-536

forms worse, we find that first, some of the errors537

can be traced back to the evaluation metrics. When538

FB-RAG predicts ‘Sebastian’ instead of ‘Sebastian539

Cabot’ or ‘Qatari Stars League’ instead of ‘Qatar540

Stars League’, it hurts the F1 score it receives. –541

Investing in improved metrics (potentially se-542

mantic) will be valuable in the future. Second, in543

some cases, the error can be attributed to the ambi-544

guity in the input query. The answer to the question545

‘The Live Life Loud album’s band signed to which546

label?’ is temporally dependent, and FB-RAG gets547

penalized since it answers correctly but from a dif-548

ferent year than what is unfairly assumed in the549

ground truth answer – Incorporating the tempo-550

ral dimension to curate unambiguous queries551

will improve the dataset quality in the future.552

Finally, we find cases where the 70B model fails to553

resolve multihop queries even with a precise input554

context, for instance, confusing the ‘spouse’ with555

the ‘mother’ of an artist – Enabling LLMs to re-556

solve complex multihop queries is still an open,557

challenging problem, demanding additional ded-558

icated efforts in this area.559

6 Related Work560

Long Context (LC) LLMs: Context lengths have561

rapidly increased, with Gemini 1.5 Pro (Team et al.,562

2024) and Meta Llama 4 (Meta, 2025) using even563

10 million tokens. However, LLMs can get con-564

fused by irrelevant parts of the context, leading to565

known cases where RAG significantly outperforms566

LC (Xu et al., 2023; Yu et al., 2024). In terms of567

latency, LC is expensive due to the quadratically in-568

creasing compute costs with input size. We follow569

the RAG paradigm by first retrieving the most rel-570

evant context chunks and then feeding them to an571

LLM with the input query for answer generation.572

Retrieval Augmented Generation (RAG): RAG573

has emerged as a popular paradigm competing with574

LC, improving performance across diverse tasks575

with significantly lower compute costs (Fan et al.,576

2024). Traditional RAG is backward-looking – the 577

context chunks are scored based on the input query 578

using a combination of retrievers and rerankers, 579

which further refine the selected context (Gao et al., 580

2023). Instead, FB-RAG uses forward-looking 581

with samples generated from an LLM to select 582

the relevant context chunks for the final answer 583

generation. Unlike a typical reranker, Stage II of 584

FB-RAG selects the chunks from the full context 585

C instead of CI (the output of Stage 1). 586

Numerous efforts augment RAG with trained fil- 587

ters (Yoran et al., 2023), trained compressors (Xu 588

et al., 2024), and web search engines (Yan et al., 589

2024) to improve retrieval quality and generation. 590

Self-RAG (Asai et al., 2024) trains an LLM us- 591

ing special reflection tokens to retrieve on demand. 592

Li et al. (2023) and Jiang et al. (2023) perform 593

retrieval from the web based on the LLM’s look- 594

ahead confidence scores. Speculative RAG (Wang 595

et al., 2024) uses a smaller trained LLM to gen- 596

erate answer candidates, which are then verified 597

by another LLM. LongRAG (Zhao et al., 2024a) 598

uses plug-n-play components to extract global in- 599

formation and factual details from context chunks 600

which enhances the understanding from long con- 601

texts. Our setting differs in several ways: 1) We 602

push the performance of instruction-tuned LLMs 603

without any further training, 2) We assume no ac- 604

cess to external web sources, and 3) We only use 605

forward lookup from the light-weight LLM in a 606

soft manner for selecting relevant context chunks 607

from the entire context, with the final generation 608

still being performed by a more powerful LLM. 609

Two recent papers closest to our formulation are 610

Self-Route (Li et al., 2024) and Order Preserving 611

(OP) RAG (Yu et al., 2024), which we implemented 612

ourselves and used as baselines in this work. 613

7 Conclusion 614

We proposed and evaluated FB-RAG – a new frame- 615

work for RAG with LLMs. Instead of solely relying 616

on the input query to retrieve the relevant chunks, 617

we employed a look-ahead mechanism tightly in- 618

tegrated with the task at hand. This retrieves the 619

most relevant chunks while reducing the irrelevant 620

information in the context, resulting in superior per- 621

formance. We found that FB-RAG has the potential 622

to improve performance while simultaneously re- 623

ducing latency. We performed a qualitative analysis 624

and discussed insights to guide future work. 625
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Limitations626

The effectiveness of FB-RAG depends on the qual-627

ity of the off-the-shelf retriever that is being used.628

In our experiments, we found BM25 to be effective.629

However, if the quality of the available retriever is630

poor for the domain in consideration, one is forced631

to use a larger context size for subsequent stages,632

which would impact the overall latency gains from633

the system.634

In our qualitative analysis, we observed that635

smaller, less-capable LLMs can be used for636

forward-lookup in Stage II and one can even-637

tually get accurate responses even if this small638

LLM is inaccurate or fails to always follow our639

instructions properly. However, the minimum level640

of the model capability (parameters, instruction-641

following abilities) required for forward-looking642

signals to be helpful remains an open question and643

will be important for future investigation. Ulti-644

mately, the design choices that best manage the645

performance-latency tradeoff will depend on the646

specific application and platform constraints.647

Ethical Considerations648

Our work was approved by the established internal649

review procedure. We carefully verified the licens-650

ing information associated with all the datasets and651

instruction-tuned LLMs used in this work, ensuring652

that their use was within their intended scope. All653

the datasets were properly anonymized before be-654

ing used. We provide dataset statistics in Appendix655

B and refer the readers to the original dataset pa-656

pers for details regarding pre-processing steps as657

well as the demographics of human annotators.658

All datasets considered in this work were in En-659

glish. Hence, it is unclear whether our findings660

directly translate to other languages and cultures.661

However, our approach is free of any such assump-662

tions, and we encourage future work to extend it to663

these other scenarios.664

We further note that LLMs have been known to665

exhibit different kinds of gender or cultural biases666

that can lead to discriminatory language in the gen-667

erated outputs. Hence, we call for rigorous testing668

before any LLM-based systems are deployed. We669

also recommend regular monitoring after deploy-670

ment to ensure that the models’ behaviors remain671

within their planned scope.672
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A Methodology881

In this Section, we provide a deeper insight into882

how FB-RAG works to improve the overall RAG883

performance. This interpretation is complementary884

to the discussion in Section 2.2. We lay out a prob-885

abilistic formulation of the RAG process below886

(extending the notation used in the main paper):887

P (A∗|Q,C) =
∑
∀r⊆C

P (r|Q) · P (A∗|Q, r), (7)888

where r denotes all possible contexts that can be889

selected in the retriever stage of RAG.890

The first component, P (r|Q), captures the re-891

triever’s role - a conditional probability distribution892

over all possible contexts that can be selected from893

the full context C conditioned on the query Q. A 894

higher probability of a specific r corresponds to a 895

higher score from the retriever and a higher likeli- 896

hood of it being picked up for generation. 897

The second component, P (A∗|Q, r), captures 898

the job of the generator - the probability of gen- 899

erating the answer A∗ from the query Q and the 900

selected context r. Note that P (A∗|Q, r) will be 901

high for a better quality r which contains the rele- 902

vant context chunks and minimizes irrelevant infor- 903

mation, and will be low for a poor quality r which 904

misses out key relevant chunks or contains a high 905

amount of irrelevant content. 906

Under this formulation, when supplied with a 907

reasonable forward-looking LLM, the procedure 908

laid out in Section 2.1 simply works to shift the 909

probability mass in P (r|Q) to better quality con- 910

texts. Combined with the better performance from 911

the generator P (A∗|Q, r) for these better quality 912

contexts, this holds the potential to improve the 913

overall probability P (A∗|Q,C) of generating the 914

accurate answer. 915

B Datasets 916

Our experiments are based on 9 datasets from 917

two popular benchmarks consisting long con- 918

text lengths - LongBench (Bai et al., 2024) and 919

∞Bench (Zhang et al., 2024). QA tasks (Narra- 920

tiveQA, Qasper, MultifieldQA, HotpotQA, 2Wiki- 921

MultihopQA, MuSiQue, and EN.QA) take a query 922

and a context as input, with the goal of generating a 923

concise answer. The summarization task (QMSum) 924

requires generating a free-form summary based on 925

the given query and context. For the MCQ task 926

(EN.MC), the input additionally includes a set of 927

choices, and the task is to choose the correct choice 928

that answers the input query based on the provided 929

context. We present key statistics for these datasets 930

in Table 3. 931

C Experiment Design 932

We provide additional experimental design details 933

in this section to promote reproducibility. We fur- 934

ther plan to release our code on acceptance. 935

C.1 Prompts 936

We release all the prompts used in our experiments. 937

Tables 4 and 5 list the prompts for LongBench 938

datasets, while Table 6 presents the prompts for the 939

two datasets from ∞Bench. Note that for QMSum, 940

we use the same prompt for FB-RAG Stage II as 941
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Dataset No. of Queries Avg Length
LongBench (Bai et al., 2024)

NarrativeQA 200 18,395
Qasper 200 3,599
MultiFieldQA 150 4,539
HotpotQA 200 9,133
2WikiMultihopQA 200 4,873
MuSiQue 200 11,196
QMSum 200 10,533

∞Bench (Zhang et al., 2024)
EN.QA 351 150,374
EN.MC 229 142,622

Table 3: Statistics for all the datasets considered in our
experiments in this paper.

the one used for Vanilla RAG. This is because the942

output summary is already descriptive, unlike other943

datasets where answers tend to be very concise (a944

few words or a phrase).945

C.2 Hardware Used946

All the experiments presented in this paper were947

performed on 8 NVIDIA A100 GPUs. We used the948

default inference configuration provided by Hug-949

gingface, which uses ‘device_map=auto’. We did950

not use any additional optimizations.951

C.3 Decoding Token Limits952

We set maximum limits for the number of tokens953

that can be generated per LLM call. For Long-954

Bench datasets, we use the limits from the code955

released with the benchmark7. For EN.QA and956

EN.MC datasets from ∞Bench benchmark, we set957

the limit to 64, based on the ground truth distribu-958

tions. When generating both reasoning and answer959

in Stage II of our approach, we add 64 to the origi-960

nal token limit for all datasets.961

D Results962

D.1 Retriever comparisons963

We compared the performance of several off-the-964

shelf retrievers in our initial experiments, as pre-965

sented in Table 7. All methods use OP RAG at 3k966

context size. We find that BM25 performs reason-967

ably well on average in comparison to numerous968

top-performing semantic retrievers. In addition,969

BM25 is a versatile approach without any under-970

lying assumptions about the query, making it well-971

suited for our forward-looking approach in this972

paper. Hence, we fixed BM25 as the retriever for973

7https://github.com/THUDM/LongBench/tree/main
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Figure 4: Performance comparison between our ap-
proach and OP RAG on EN.MC dataset. Y-Axis: The
performance on the corresponding metric. X-Axis: The
number of chunks used by both methods for final re-
sponse generation. Across all data points, our approach
uses an Llama3.1-8B-Instruct model for forward lookup
in Stage 2 with 80 context chunks as input and setting
ηF = 1 and ηB = 0.
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Figure 5: Studying the impact on the average perfor-
mance of FB-RAG on LongBench datasets by varying
the number of samples used in Stage II. Model used:
Ours-FB (6k → 3k).

the rest of our experiments discussed in Section 4 974

in the main paper. 975

D.2 FB-RAG Stage II Prompt comparisons 976

We experimented with a few prompt variations for 977

Stage II of FB-RAG. Table 8 presents these com- 978

parisons on LongBench datasets. We observe that 979

only using the answers sampled from the LLM 980

shows improvements over other RAG baselines 981

presented in the main paper, although this can be 982

further improved slightly by using some form of 983

reasoning along with the answer. This helps to han- 984

dle scenarios where the answers are entity names or 985

binary that contain little information for retrieving 986

the most relevant context chunks. 987
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Dataset LC, Vanilla / OP RAG Self-Route: Stage I FB-RAG: Stage II
NarrativeQA You are given a story, which

can be either a novel or a movie
script, and a question. Answer
the question as concisely as you
can, using a single phrase if pos-
sible. Do not provide any expla-
nation. Story: {context} Now,
answer the question based on
the story as concisely as you can,
using a single phrase if possible.
Do not provide any explanation.
Question: {input} Answer:

You are given a story, which can be ei-
ther a novel or a movie script, and a ques-
tion. Answer the question as concisely
as you can, using a single phrase if possi-
ble. Do not provide any explanation. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. Story: {context} Now,
answer the question based on the story
as concisely as you can, using a single
phrase if possible. Do not provide any
explanation. If the question cannot be
answered based on the information in
the article, write “unanswerable”. Ques-
tion: {input} Answer:

You are given a story, which
can be either a novel or a movie
script, and a question. An-
swer the question as concisely
as you can, using a single phrase
if possible. Story: {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with ’Rationale:’. Then, an-
swer the question starting with
’Answer:’ as concisely as you
can, using a single phrase if pos-
sible. Question: {input} Ratio-
nale:

Qasper You are given a scientific arti-
cle and a question. Answer the
question as concisely as you can,
using a single phrase or sentence
if possible. If the question can-
not be answered based on the
information in the article, write
ünanswerable.̈ If the question is
a yes/no question, answer ÿes,̈
n̈o,̈ or ünanswerable.̈ Do not
provide any explanation. Arti-
cle: {context} Answer the ques-
tion based on the above article
as concisely as you can, using a
single phrase or sentence if pos-
sible. If the question cannot be
answered based on the informa-
tion in the article, write ünan-
swerable.̈ If the question is a
yes/no question, answer ÿes,̈ n̈o,̈
or ünanswerable.̈ Do not pro-
vide any explanation. Question:
{input} Answer:

You are given a scientific article and a
question. Answer the question as con-
cisely as you can, using a single phrase
or sentence if possible. If the question
cannot be answered based on the infor-
mation in the article, write ünanswer-
able.̈ If the question is a yes/no question,
answer ÿes,̈ n̈o,̈ or ünanswerable.̈ Do not
provide any explanation. Article: {con-
text} Answer the question based on the
above article as concisely as you can,
using a single phrase or sentence if pos-
sible. If the question cannot be answered
based on the information in the article,
write ünanswerable.̈ If the question is
a yes/no question, answer ÿes,̈ n̈o,̈ or
ünanswerable.̈ Do not provide any ex-
planation. Question: {input} Answer:

You are given a scientific ar-
ticle and a question. Answer
the question as concisely as you
can, using a single phrase or sen-
tence if possible. If the ques-
tion cannot be answered based
on the information in the arti-
cle, write ünanswerable.̈ If the
question is a yes/no question, an-
swer ÿes,̈ n̈o,̈ or ünanswerable.̈
Article: {context} Now, first
provide your reasoning briefly
in 2-3 sentences starting with
’Rationale:’. Then, answer the
question starting with ’Answer:’
based on the above article as
concisely as you can, using a
single phrase or sentence if pos-
sible. If the question cannot be
answered based on the informa-
tion in the article, write ünan-
swerable.̈ If the question is a
yes/no question, answer ÿes,̈ n̈o,̈
or ünanswerable.̈ Question: {in-
put} Rationale:

MultiFieldQA Read the following text and an-
swer briefly. {context} Now,
answer the following question
based on the above text, only
give me the answer and do not
output any other words. Ques-
tion: {input} Answer:

Read the following text and answer
briefly. {context} Now, answer the fol-
lowing question based on the above text,
only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Read the following text and an-
swer briefly. {context} Now,
first provide your reasoning
briefly in 2-3 sentences starting
with ’Rationale:’. Then, answer
the question starting with ’An-
swer:’ based on the above text.
Question: {input} Rationale:

HotpotQA Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with ’Rationale:’. Then, an-
swer the question starting with
’Answer:’ based on the given
passages. Question: {input} Ra-
tionale:

Table 4: (Part 1 / 2) Prompts used in our experiments for LongBench datasets.
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Dataset LC, Vanilla / OP RAG Self-Route: Stage I FB-RAG: Stage II
2WikiMultihopQA Answer the question based on

the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. The follow-
ing are given passages. {con-
text} Now, first provide your
reasoning briefly in 2-3 sen-
tences starting with ’Rationale:’.
Then, answer the question start-
ing with ’Answer:’ based on the
given passages. Question: {in-
put} Rationale:

MuSiQue Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. The following
are given passages. {context}
Answer the question based on
the given passages. Only give
me the answer and do not output
any other words. Question: {in-
put} Answer:

Answer the question based on the given
passages. Only give me the answer
and do not output any other words. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. The following are
given passages. {context} Answer the
question based on the given passages.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Answer the question based on
the given passages. The follow-
ing are given passages. {con-
text} Now, first provide your
reasoning briefly in 2-3 sen-
tences starting with ’Rationale:’.
Then, answer the question start-
ing with ’Answer:’ based on the
given passages. Question: {in-
put} Rationale:

QMSum You are given a meeting tran-
script and a query containing
a question or instruction. An-
swer the query in one or more
sentences. Transcript: {context}
Now, answer the query based on
the above meeting transcript in
one or more sentences. Query:
{input} Answer:

You are given a meeting transcript and
a query containing a question or instruc-
tion. Answer the query in one or more
sentences. If the question cannot be
answered based on the information in
the article, write “unanswerable”. Tran-
script: {context} Now, answer the query
based on the above meeting transcript
in one or more sentences. If the ques-
tion cannot be answered based on the
information in the article, write “unan-
swerable”. Query: {input} Answer:

You are given a meeting tran-
script and a query containing
a question or instruction. An-
swer the query in one or more
sentences. Transcript: {context}
Now, answer the query based on
the above meeting transcript in
one or more sentences. Query:
{input} Answer:

Table 5: (Part 2 / 2) Prompts used in our experiments for LongBench datasets.

Dataset LC, Vanilla / OP RAG Self-Route: Stage I FB-RAG: Stage II
EN.QA Read the book and answer the

question. Be very concise in
your answer. Book: {context}
Now, answer the question based
on the book. Only give me the
answer and do not output any
other words. Question: {input}
Answer:

Read the book and answer the ques-
tion. Be very concise in your answer. If
the question cannot be answered based
on the information in the article, write
“unanswerable”. Book: context Now,
answer the question based on the book.
Only give me the answer and do not out-
put any other words. If the question can-
not be answered based on the informa-
tion in the article, write “unanswerable”.
Question: {input} Answer:

Read the book and answer the
question. Be very concise in
your answer. Book: {context}
Now, first provide your reason-
ing briefly in 2-3 sentences start-
ing with ’Rationale:’. Then, an-
swer the question starting with
’Answer:’ as concisely as you
can. Question: {input} Ratio-
nale:

EN.MC Read the book and answer the
question. Book: {context} Now,
answer the question based on
the book. Only output the an-
swer and do not output any
other words. Question: {input}
{all_classes} Answer:

Read the book and answer the question.
If the question cannot be answered based
on the information in the article, write
“unanswerable”. Book: {context} Now,
answer the question based on the book.
Only output the answer and do not out-
put any other words. If the question
cannot be answered based on the infor-
mation in the article, write “unanswer-
able”. Question: {input} {all_classes}
Answer:

Read the book and answer the
question. Book: {context} Now,
first provide your reasoning
briefly in 2-3 sentences starting
with ’Rationale:’. Then, answer
the question starting with ’An-
swer:’ as concisely as you can.
Question: {input} {all_classes}
Rationale:

Table 6: Prompts used in our experiments for ∞Bench datasets.
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D.3 Varying the number of chunks used for988

final generation989

In Figure 4, we compare the performance of our ap-990

proach with OP-RAG on EN.MC dataset by vary-991

ing the number of chunks used for final generation.992

We find that FB-RAG at 53 chunks (16k context)993

beats the best performance of the baseline at 80994

chunks (24k context).995

D.4 Varying the number of samples used in996

Stage II of FB-RAG997

We present the plot for analysis in Figure 5. The998

X-axis denotes the number of samples used. The999

Y-axis denotes the average performance on Long-1000

Bench datasets. The results are shown for the Ours-1001

FB (6k → 3k) configuration. As evident from the1002

figure, we find that the performance improves visi-1003

bly with just one forward sample, while attaining1004

the maximum at 5 samples.1005

15



Method Avg Narr Qasp Mult Hotp 2Wiki Musi QMSum
BM25 48.03 26.62 50.71 56.78 66.28 64.8 45.91 25.11
M3Flag (1, 0, 0) 48.3 29.4 50.36 55.99 63.76 66.47 47.87 24.23
M3Flag (1, 0.3, 0) 48.58 29.79 50.14 55.86 64.83 66.78 48.33 24.36
BGEFlag 48.05 27.79 51.24 53.99 66.64 66.46 45.74 24.49
MPNet 46.92 25.97 50.72 54.33 62.95 65.55 44.7 24.25

Table 7: Performance comparisons of off-the-shelf retrievers on LongBench datasets. All results are based on OP
RAG at 3k context with Llama3.1-70B-Instruct model. We compared two weight configurations for M3Flag, taking
recommendations from the authors to set the weights - refer to the original paper for details (Chen et al., 2024).

Method Avg Narr Qasp Mult Hotp 2Wiki Musi QMSum
Only answers 50.09 30.63 52.11 56.17 66.16 68.97 51.49 25.07
Thought process 50.09 32.33 51.6 55.63 65.42 68.09 52.8 24.76
Explanation 50.33 30.83 51.84 55.88 66.92 68.62 53.67 24.54
Reasoning 50.23 33.22 50.99 55.99 66.29 67.42 53.13 24.56

Table 8: Performance comparisons of our approach on LongBench datasets by varying the prompt used for sampling
in Stage II. Model Used: Ours-FB (6k → 3k). Thought process: Generate the thought process before the final
answer, Reasoning: Generate a reasoning sequence before the final answer, Explanation: Generate an explanation
after generating the answer. While the performance improves over the baselines by only considering the final
answers as samples, we find that using reasoning or explanation performs slightly better on average.
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