
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ORTHOGONAL CALIBRATION FOR
ASYNCHRONOUS FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Asynchronous federated learning mitigates the inefficiency of conventional syn-
chronous protocols by integrating updates as they arrive. Due to asynchrony and
data heterogeneity, learning objectives at the global and local levels are inherently
inconsistent—global optimization trajectories may conflict with ongoing local
updates. Existing asynchronous methods simply distribute the latest global weights
to clients, which can overwrite local progress and cause model drift. In this paper,
we propose ORTHOFL, an orthogonal calibration framework that decouples global
and local learning progress to reduce interference. In ORTHOFL, clients and the
server maintain separate model weights. Upon receiving an update, the server
aggregates it into the global weights via a staleness-aware moving average. For
client weights, ORTHOFL computes the global weight shift during the client’s delay
and removes its projection onto the direction of the received update. The resulting
parameters lie in a subspace orthogonal to the client update and preserve the maxi-
mal information from the global progress within the orthogonal hyperplane. The
calibrated shift is then merged into the client weights for further training. Extensive
experiments demonstrate ORTHOFL improves accuracy by 9.6% and achieves a
speed-up of 12× compared to synchronous methods. Moreover, it consistently
outperforms state-of-the-art asynchronous baselines under various delay patterns
and heterogeneity scenarios.

1 INTRODUCTION

Traditional federated learning (McMahan et al., 2017) follows a synchronous update procedure,
requiring the server to wait for all clients to complete local training before aggregating their updates.
Such synchronization can become significantly inefficient when client resources (e.g., computation
power, network bandwidth, data volume) are highly heterogeneous. Asynchronous federated learning
addresses this inefficiency by aggregating client updates upon their arrival, thus minimizing idle time
caused by slower clients. In this setting, the global model continuously evolves when clients are
performing local training, making their updates potentially outdated by the time they reach the server.

Current methods (Xie et al., 2019; Liu et al., 2024a; Zang et al., 2024; Su and Li, 2022) handle
staleness by applying decay weighting, buffering, or heuristic corrections to outdated updates, after
which they directly distribute the updated global weights to clients for further local training. While
these methods account for temporal drift, they overlook spatial drift—divergence in optimization
paths due to data heterogeneity, where the global model seeks parameters that generalize across the
overall distribution, while individual client models minimize loss on local data. This misalignment is
further amplified by asynchrony, as stale local updates become disconnected from the current global
trajectory. Consequently, overwriting client models with the latest global weights can introduce
conflicting optimization directions, reverse local gains, and cause unstable training dynamics.

To address the challenge, we introduce a foundational principle: global and local objectives should
be explicitly decoupled to minimize interference and accurately reflect their distinct optimization
roles. We propose ORTHOFL, a novel asynchronous method that maintains separate global and
local model weights and uses a geometric projection to eliminate interfering update directions. Our
method is motivated by the idea that high-dimensional parameter spaces admit many viable directions
for effective optimization (Wortsman et al., 2021). While some directions interfere with previously

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

learned knowledge, others are compatible and preserve performance. ORTHOFL leverages this
property to calibrate global weight shift, removing components that would disrupt local optimization.

Specifically, ORTHOFL introduces orthogonal calibration, which achieves two goals: (1) eliminating
interference by sharing global information orthogonal to client updates, and (2) selecting informative
direction within this orthogonal hyperplane to maximize useful knowledge transfer. Once receiving
a client update, the server integrates it into the global model through an adaptive moving average
accounting for staleness. For the client model, ORTHOFL computes the accumulated global weight
shift occurring during client delay, projects it onto the client’s update direction, and subtracts this
projected component. The resulting parameters lie in a subspace orthogonal to the client update and
retain the maximal portion of the global shift within this subspace. Finally, the calibrated global shift
is merged into the client model for subsequent training.

For evaluation, we incorporate realistic delay distributions to reflect the heterogeneous nature of
real-world deployments. ORTHOFL demonstrates an average of 9.6% accuracy improvement across
datasets from diverse application scenarios compared to synchronous methods and a 12× speedup in
reaching a target accuracy, Moreover, it outperforms state-of-the-art asynchronous baselines. We also
explore various simulated delay distributions and data heterogeneity levels to understand their impact
on model performance and convergence speed. In summary, our contributions are as follows:

• We identify and analyze the key challenges of asynchronous federated learning—the inconsistency
of global and local objectives and the detrimental effect of staleness under heterogeneous conditions.

• We propose a novel orthogonal calibration method that maintains separate global and local model
weights. It projects global shifts onto orthogonal subspaces of local updates before sharing them
with clients. This approach reduces interference, preserves meaningful contributions from both
global progress and local updates, and enhances knowledge sharing.

• We demonstrate the effectiveness and robustness of ORTHOFL through comprehensive experi-
ments on multiple datasets and various delay scenarios, providing insights on practical design
considerations for large-scale federated learning systems.

2 RELATED WORKS

We review two core directions relevant to our study. Connections with broader areas including asyn-
chronous stochastic gradient descent and orthogonal gradient descent are discussed in Appendix G.

Federated Learning and Heterogeneity Problem. Federated learning (McMahan et al., 2017) is a
distributed learning paradigm that allows multiple parties to jointly train machine learning models
without data sharing, preserving data privacy. Despite the potential, it faces significant challenges due
to heterogeneity among participating clients, which is typically classified into two main categories:
data heterogeneity and system heterogeneity. Data heterogeneity appears as clients own non-IID
(independent and identically distributed) data (Li et al., 2020; Karimireddy et al., 2020; Wang et al.,
2020; Zhang et al., 2023c). The difference in data distribution causes the local updates to deviate
from the global objective, making the aggregation of these models drift from the global optimum
and deteriorating convergence. System heterogeneity refers to variations in client device capabilities,
such as computational power, network bandwidth, and availability (Wang et al., 2020; Zhang et al.,
2021; Li et al., 2021; Fang and Ye, 2022; Alam et al., 2022; Zhang et al., 2024a). These disparities
lead to uneven progress among clients, and the overall training process is delayed by slow devices.
Traditional federated learning approaches rely on synchronization for weight aggregation (McMahan
et al., 2017; Li et al., 2020; Reddi et al., 2020), where the server waits for all clients selected in a round
to complete and return model updates before proceeding with aggregation. This synchronization leads
to inefficient resource utilization and extended training times, particularly in large-scale deployments
involving hundreds or thousands of clients. Addressing the heterogeneity issues is a critical problem
for improving the scalability and efficiency of federated learning systems in real-world deployment.

Asynchronous Federated Learning. Much of the existing literature focuses on staleness man-
agement by assigning weights for aggregating updates according to factors including delay in
updates (Xie et al., 2019), divergence from the global model (Su and Li, 2022; Zang et al., 2024)
and local losses (Liu et al., 2024a). For example, Xie et al. (2019) let the server aggregate client
updates into the global model with a weight determined by staleness. Another line of research caches
client updates at the server and reuses them to calibrate global updates (Gu et al., 2021; Wang et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2024a). For example, Wang et al. (2024a) maintain the latest update for every client to estimate their
contribution to the current aggregation and calibrate global updates. Furthermore, semi-asynchronous
methods (Nguyen et al., 2022; Zang et al., 2024) balance between efficiency and training stability.
For example, Nguyen et al. (2022) buffer a fixed number of client updates before aggregation. Zhou
et al. (2024) adopt client clustering based on gradient similarity and a two-stage aggregation scheme
with semi-asynchronous intra-cluster and synchronous inter-cluster updates. We select representative
methods from each category for our comparisons. Besides, some works improve efficiency from a
different perspective—through enhanced parallelization. Methods include decoupling local compu-
tation and communication (Avdiukhin and Kasiviswanathan, 2021) and parallelizing server-client
computation (Zhang et al., 2023b). In addition, asynchronous architectures have been explored in
other paradigms such as vertical (Zhang et al., 2024b) and clustered (Liu et al., 2024b) federated
learning. While these directions complement our work, they fall outside the scope of this study.

3 PRELIMINARIES

3.1 ASYNCHRONOUS SYSTEM ARCHITECTURE

In an asynchronous federated learning system, a central server coordinates the training of a global
model W using data distributed across M clients. Each client m ∈ {1, 2, . . . ,M} possesses its own
local dataset Dm. The data distribution of client m is denoted as Pm. The objective is to train a
global model W that generalizes well across the combined data distribution of all clients. Formally,
we aim to solve the following optimization problem:

W ∗ = argmin
W

1

M

M∑
m=1

E(x,y)∼Pm
ℓ (f(x;W), y) , (1)

where W denotes the global weights, ℓ the loss function, and f(x;W) the prediction of the model on
data x with model weights W .

Clients perform local training and communicate their updates to the server at different times. Let
T be the number of global rounds. For t ∈ {1, . . . , T}, denote mt ∈ {1, . . . ,M} as the client that
communicates with the server at the t-th round, and τt as the round when client mt last communicated
with the server. We define the staleness of the client update as follows:
Definition 1 (Staleness). Staleness quantifies the delay between a client’s updates, defined as the
number of global rounds between the client’s last communication with the server and its current
update. Formally, let t be the current global round, and τt the global round when the server last
received updates from client mt. The staleness of client mt is defined as t− τt, where t− τt ≥ 1. A
staleness of 1 indicates no delay.

For simplicity, we will drop the subscripts on mt and τt with no ambiguity from now on.

3.2 A MOTIVATING STUDY

We conduct an experiment on MNIST (Deng, 2012) with a LeNet5 (LeCun et al., 1998) model to
analyze the challenges in asynchronous federated learning. We simulate the scenario with two clients:
one with a 10-second latency and the other with 30, 60, or 100 seconds. We adopt the asynchronous
method, FedAsync (Xie et al., 2019), where client updates are aggregated with decay factors based on
latency. Let W (t) denote the global weights at t-th round before aggregation, and W (t+) the global
weights after aggregation. Similarly, let W (t)

m represent the model weights of client m at t-th round.
The aggregation follows:

W (t+) = (1− βt)W
(t) + βtW

(t)
m (2)

where βt = (t− τ)−a · β with β = 0.6 and a = 0.5 following the setting in FedAsync. To create
non-IID data, each client is assigned a non-overlapping half of the MNIST classes.

The global performance is shown in Figure 1(a), where markers represent updates from the “slow”
client with longer latency. We observe an increase in accuracy when the server aggregates updates
from the slow client, as these updates introduce knowledge of previously undertrained classes.
However, this gain is gradually lost, with accuracy declining to around 0.5 after several updates from
the faster client. This suggests the fast client’s updates override the contributions of the slower client.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 30 60 90
Number of Updates

0.0

0.3

0.6

0.9

G
lo

ba
l A

cc
ur

ac
y

10s & 30s latency
10s & 60s latency
10s & 100s latency

(a) Global Accuracy

60 75 90
Number of Updates

N
eu

ro
n

0.002

0.000

0.002

(b) Global Weight Change

Figure 1: Asynchronous learning with a fast client (10s
latency) and a slow client (30/60/100s) assigned non-
overlapping classes. Due to objective inconsistency: (a)
accuracy spikes when the slow client updates, followed
by drops as the fast client updates; (b) update directions
shift abruptly when the active client switches.

Moreover, as the latency of the slower
client increases, the decay factor βt for in-
tegrating its updates decreases. This weak-
ens its contribution to the global model and
slows convergence, especially under non-
IID data, as valuable knowledge from the
slower client is not fully utilized.

Figure 1(b) visualizes changes in global
model weights in the last hidden layer in
the case where the latency of the two clients
is 10 and 100 seconds respectively. The
y-axis represents neurons, and the x-axis
represents the number of updates. The
color indicates the direction and degree of
global weight changes, with red represent-
ing an increase and blue a decrease. We
observe abrupt shifts occur when switch-
ing between clients. Updates from the slow
client often decrease the neuron weights (blue), while subsequent updates from the fast client increase
the values (red), pulling the model in opposite directions. The antagonistic behavior is due to objective
inconsistency—while the global model optimizes for the overall distribution, client training follow
distinct local objectives, driving oscillations in weight aggregation.

4 METHOD: ORTHOGONAL WEIGHT CALIBRATION

4.1 ORTHOFL ALGORITHM

ORTHOFL maintains separate parameter sets for global and client models. Before merging global
weight shift to the client model, it orthogonalizes the global shift against the client update. This
orthogonality allows the client to absorb global progress in a way that reduces interference with its
local optimization direction. Orthogonalization can be implemented at the server side, the client side,
or through a hybrid approach, depending on practical deployment conditions. In our experiments, we
implement orthogonalization on the server. The detailed discussion and pseudo-code are presented in
Appendix B. Here, we describe the core algorithmic procedure.

Global Aggregation via Moving Average. Denote W (t) as the global model weights at the t-th
round before client update and W (t+) after update. Similarly, let W (t)

m be the client mt’s local model
weights at the t-th round before update and W

(t+)
m after update. Note that W (t+1) := W (t+) as the

global model weights stay unchanged after communication with a client before the next client update.
We update the global model with a moving average:

W (t+) = (1− βt)W
(t) + βtW

(t)
m , (3)

where βt controls the contribution of client m’s current update to the aggregation. We let βt :=
sa(t− τ) · β with β ∈ (0, 1) and sa(x) = x−a for some a > 0 so that update with a larger staleness
has a smaller contribution, and thereby decreasing the influence of client update with long delay.

Calibration on Client Updates. To reduce interference caused by asynchronous updates, ORTHOFL
calibrates the local weights before the client starts the next round of local updates. The local weight
change from its last update to its current update is calculated as:

∆m = W (t)
m −W (τ+)

m . (4)

Similarly, the global weight shift during this period is calculated as:

∆ = W (t) −W (τ+). (5)

To integrate global progress into client m, ORTHOFL computes the orthogonal component of the
global shift ∆ with respect to client update ∆m by removing the projection of ∆ onto ∆m in each

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝑊𝑔𝑙𝑜𝑏𝑎𝑙
(𝑡=3+)

𝑊𝑔𝑙𝑜𝑏𝑎𝑙
(𝑡=3)

OrthoFL Conventional methods

global updates via moving
average during client A’s delay

𝑊𝐴
(𝑡=3)

𝑊𝑔𝑙𝑜𝑏𝑎𝑙
(𝑡=0)

∆𝐴

∆𝑔𝑙𝑜𝑏𝑎𝑙⊥

∆𝑔𝑙𝑜𝑏𝑎𝑙

Orthogonalization

𝑊𝐴
(𝑡=3+)

𝑊𝑔𝑙𝑜𝑏𝑎𝑙
(𝑡=0)

𝑊𝑔𝑙𝑜𝑏𝑎𝑙
(𝑡=3)

𝑊𝐴
(𝑡=3)

Server

Client A

Other
Clients

3+3
Client A’s delay

𝑊𝑔𝑙𝑜𝑏𝑎𝑙
(𝑡=0)

𝑊𝐴
(𝑡=3) 𝑊𝐴

(𝑡=3+)

𝑊𝑔𝑙𝑜𝑏𝑎𝑙
(𝑡=3+)

0

𝑊𝑔𝑙𝑜𝑏𝑎𝑙
(𝑡=3)

Merge weights for client:

Figure 2: An example of optimization trajectories. Shaded regions show iso-loss contours for client
A (yellow) and other clients (gray). Conventional methods that directly assign the aggregated global
model (gray dashed line) can reverse client A’s progress, pushing it away from lower-loss regions.
ORTHOFL mitigates this interference by merging updates orthogonally (red dashed line).

layer. This projected component is excluded because it provides no new information (if aligned) or is
contradictory to the local optimization (if opposed). This prevents redundant or disruptive weight
changes and ensures the integrated knowledge is complementary to local learning.

While it is possible to perform orthogonalization at the full-model level by flattening all layer weights
into a single vector, we adopt layer-wise projection for both structural and practical reasons. Struc-
turally, it approximates a block-diagonal projection that respects the distinct roles of individual layers
(e.g., extracting low-level features or high-level semantics), preventing the mixing of incompatible
subspaces and preserving layer semantics. Practically, it is more memory-efficient, especially for
large models, and supports modular, parallel computation by avoiding projections in extremely
high-dimensional spaces. Formally, let ∆l and ∆l

m be the change in the layer l of the global weights
and the local weights respectively. The component of ∆l orthogonal to ∆l

m is:

∆l⊥ = ∆l − proj∆l
m
(∆l) = ∆l − ∆l ·∆l

m

∆l
m ·∆l

m

∆l
m. (6)

Let ∆⊥ represent the aggregation of ∆l⊥ across all layers. This orthogonal component ∆⊥ ensures
that the updates from the other clients during delay t − τ do not interfere with the client’s local
progress, as it removes any component of the global weight change during delay along the direction
of the local update. ∆⊥ is then added to the client model weight for the next round of local training:

W (t+)
m = W (t)

m +∆⊥. (7)

We present mathematical insights in Appendix C, which shows that our orthogonalization preserves
the maximal component of the global shift within the hyperplane orthogonal to the client update.

4.2 VISUALIZATION OF OPTIMIZATION TRAJECTORIES

We illustrate the advantage of our method by visualizing an example of optimization trajectories. As
shown in Figure 2, client A begins local training from the global state W

(t=0)
global . Before A’s update

arrives, the server aggregates two updates from other clients into the global model. Consequently, just
before aggregating A’s update at t = 3, the global model has evolved to W

(t=3)
global . Meanwhile, client

A finishes local training and submits the updated parameters W (t=3)
A . The shaded regions show the

iso-loss contours for client A (yellow) and the collective optimization space of other clients (gray).

The global weight is updated via a moving average and becomes W (t=3+)
global . In conventional asyn-

chronous methods, this global weight is directly assigned to client A (gray dashed line). This would
push the model farther from A’s optimization objective than W

(t=3)
A , reversing A’s learning progress.

ORTHOFL mitigates this by removing the component of the global weight shift that is parallel to
∆A. This ensures that the calibrated parameters are orthogonal to A’s update direction. Finally, the
calibrated global shift is merged into A’s model (red dashed line), which becomes W (t=3+)

A . This

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

way, ORTHOFL reduces interference due to staleness and objective inconsistencies while preserving
meaningful contributions at both global and local levels.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Compared Methods. We consider seven baselines including synchronous methods, FedAvg (McMa-
han et al., 2017), FedProx (Li et al., 2020), FedAdam (Reddi et al., 2020), and asynchronous methods,
FedAsync (Xie et al., 2019), FedBuff (Nguyen et al., 2022), CA2FL (Wang et al., 2024a), and
FADAS (Wang et al., 2024b). The details are in Appendix D.2.

Table 1: Datasets and models in the experiments.

Datasets Clients Avg. |Dm| Model Data Type

CIFAR-10 10 4000 VGG11 image
MNIST 10 6000 LeNet5 image
20 Newsgroups 20 566 DistilBERT text
HAR 21 350 ResNet18 time-series
CIFAR-100 100 400 MobileNetV2 image

Applications and Datasets. Table 1 summa-
rizes the setups for the datasets. We conduct
experiments on five datasets, including three
data types: image, text, and time series. We
pair each dataset with a model suited to its data
type. To evaluate ORTHOFL’s performance
in parameter-efficient fine-tuning (PEFT) set-
tings (Han et al., 2024), we employ a pretrained
DistilBERT (Sanh, 2019) for evaluations on the
20 Newsgroups dataset and fine-tune it via Low-
Rank Adaptation (LoRA) (Hu et al., 2021). Details are presented in Appendix D.1.

Data Heterogeneity. For the HAR dataset, clients are naturally divided based on the individual
subjects, as each subject represents a client. For the other datasets, we set the number of clients
equal to the number of classes in each dataset. To create non-IID client distributions, we follow prior
work (Hsu et al., 2019) and use a Dirichlet distribution Dir(α = 0.1) to derive class distribution.

Delay Simulation. To ensure controlled evaluation, we simulate delays using measurements from
prior work (Yu et al., 2023), collected on Raspberry Pi (RPi) devices in real home environments.
We measure the round-wise training time for each dataset-model pair in our configuration on an
RPi 4B, which has comparable hardware, and scale the computational and communication latencies
relative to those in (Yu et al., 2023). From these scaled results, we derive the mean and variance of
latency per device. Clients are randomly assigned latency profiles and sample delays at each round
from a Gaussian distribution. All methods share the same client update order using a fixed set of
random seeds for fair comparisons. Besides these real-world measurements, we also investigate
model performance under additional delay distributions in Section 5.4.

Evaluation Metrics. We report accuracy after training for sufficient clock cycles to ensure the
method reaches stable performance. For a fair comparison, we fix the same training time across
all methods. In addition, we compare the time spent in reaching a target accuracy—set as the 95%
of the lowest final accuracy among all compared methods. FedAvg serves as the baseline of time
consumption (i.e., 1×), and we report the relative time for other methods.

5.2 MAIN EXPERIMENT RESULTS

As summarized in Table 2, ORTHOFL consistently outperforms the compared methods across all
datasets—it not only converges faster but also achieves higher accuracy. Notably, the advantage
becomes more obvious in the setting with a larger number of clients, as seen in CIFAR-100. This
is because, for synchronous methods, the client sampling rate decreases as the number of clients
increases, leading to longer wait times and slower convergence. Similarly, for baseline asynchronous
methods, although their aggregation mechanisms are designed to mitigate the influence of model
staleness, they fail to effectively address the challenges posed by data heterogeneity. In contrast,
the calibration mechanism in ORTHOFL alleviates the negative impact of both stale model updates
and the model divergence caused by data heterogeneity, ensuring faster convergence and improved
performance. We conduct one-sided Wilcoxon-signed rank tests with Holm’s α (5%) following
previous works (Holm, 1979; Zhang et al., 2023a) and find that ORTHOFL significantly outperforms
all baselines (the largest p-value is 0.007 after correction, far below 0.05). The accuracy curves over

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Main results (%) including average accuracy, standard deviation, and time relative to FedAvg.
ORTHOFL reaches the target accuracy more quickly and achieves higher accuracy.

Method
MNIST CIFAR-10 20 Newsgroups HAR CIFAR-100

Accuracy Time Accuracy Time Accuracy Time Accuracy Time Accuracy Time

FedAvg 92.2±1.1 1× 73.8±2.4 1× 58.1±3.1 1× 84.2±0.6 1× 22.2±0.4 1×
FedProx 90.5±0.9 1.09× 73.3±2.2 0.90× 58.6±3.1 0.98× 84.0±0.9 0.98× 20.4±0.6 1.18×
FedAdam 93.8±2.3 0.91× 74.6±1.5 0.78× 58.9±1.8 1.08× 87.1±3.3 0.68× 42.1±1.0 0.36×
FedAsync 95.4±0.7 0.39× 74.3±1.1 0.48× 61.8±3.8 0.27× 87.6±1.9 0.26× 47.9±0.9 0.20×
FedBuff 93.6±2.1 0.46× 73.6±3.2 0.55× 62.1±2.0 0.34× 87.4±1.0 0.30× 62.3±0.5 0.12×
CA2FL 96.1±1.4 0.30× 69.7±8.0 0.60× 65.7±1.6 0.24× 87.8±1.9 0.29× 61.1±0.7 0.09×
FADAS 93.9±0.9 0.98× 71.6±1.3 1.01× 63.5±2.3 0.49× 88.3±1.7 0.50× 49.5±0.4 0.22×
OrthoFL 98.2±0.3 0.18× 76.5±3.3 0.19× 66.2±1.3 0.09× 89.7±1.0 0.23× 63.0±0.6 0.03×

0.85

0.90

0.95

1.00 MNIST

0.57

0.67

0.77
CIFAR-10

0.80

0.85

0.90
HAR

OrthoFL
OrthoFL w/o Calib.

OrthoFL w/o MA
OrthoFL-Pairwise Proj.

OrthoFL-Full Proj.

Figure 3: Ablation studies: Removing calibration (w/o Calib.) or global moving average (w/o MA)
reduces performance. Pairwise projection variant (Pairwise Proj.) shows competitive performance,
suggesting that effective orthogonal calibration can be achieved via multiple viable approaches.
Layer-wise projection in ORTHOFL outperforms the full-model projection variant (Full Proj.).

training time are presented in Appendix E and hyperparameter sensitivity analyses are in Appendix F.
ORTHOFL is robust to the variation of hyperparameters.

5.3 ABLATION STUDIES

We conduct ablation studies to evaluate our key design choices. (1) We set FedAsync as a baseline
(ORTHOFL w/o Calib.), since it is equivalent to removing calibration. (2) We assess the contribution
of global aggregation by removing the moving average and directly loading the calibrated client
weight into the global model (ORTHOFL w/o MA). (3) We investigate an alternative orthogonalization
strategy that projects the incoming client update onto the orthogonal subspace of the most recent
updates from all other clients (ORTHOFL-Pairwise Proj.). (4) We replace the layer-wise projection in
ORTHOFL with full-model projection which flattens all parameters into a single vector (ORTHOFL-
Full Proj.) The orthogonality is achieved through the same process as in ORTHOFL.

Performance drops when clients and the global model share the same weights (ORTHOFL w/o Calib.
and ORTHOFL w/o MA). ORTHOFL w/o MA performs particularly poorly as the absence of a global
moving average causes overfitting to local distributions. These results confirm the importance of
decoupling global and local learning. ORTHOFL-pairwise Proj. achieves results comparable to
ORTHOFL, suggesting that orthogonal calibration can be effective in multiple ways. We expect
that optimizing the orthogonalization strategy could bring further improvement, and we leave such
exploration for future work. ORTHOFL’s layer-wise projection performs better than full-model
projection, being both more memory-efficient and better at preserving the semantic structure of
individual layers.

5.4 EXPLORATORY STUDIES

How do algorithms perform under different delay distributions? Since real-world deployment of
federated learning may present diverse delay patterns, we explore other possible delay distributions
in real-world setups, such as following log-normal, half-normal (Sui et al., 2016), and uniform

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3
Training Time (h)

0.0
0.3
0.6
0.9

A
cc

ur
ac

y

MNIST (RPi original)

0 1 2 3
Training Time (h)

0.0
0.3
0.6
0.9

A
cc

ur
ac

y

MNIST (log-normal)

0 1 2 3
Training Time (h)

0.0
0.3
0.6
0.9

A
cc

ur
ac

y

MNIST (half-normal)

0 1 2 3
Training Time (h)

0.0
0.3
0.6
0.9

A
cc

ur
ac

y

MNIST (uniform)

0 50 100 150
Training Time (h)

0.00
0.28
0.56
0.84

A
cc

ur
ac

y

CIFAR-10 (RPi original)

0 50 100 150
Training Time (h)

0.00
0.28
0.56
0.84

A
cc

ur
ac

y

CIFAR-10 (log-normal)

0 50 100 150
Training Time (h)

0.00
0.28
0.56
0.84

A
cc

ur
ac

y

CIFAR-10 (half-normal)

0 50 100 150
Training Time (h)

0.00
0.28
0.56
0.84

A
cc

ur
ac

y

CIFAR-10 (uniform)

0 2 4 6
Training Time (h)

0.0
0.3
0.6
0.9

A
cc

ur
ac

y

HAR (RPi original)

0 2 4 6
Training Time (h)

0.0
0.3
0.6
0.9

A
cc

ur
ac

y
HAR (log-normal)

0 2 4 6
Training Time (h)

0.0
0.3
0.6
0.9

A
cc

ur
ac

y

HAR (half-normal)

0 2 4 6
Training Time (h)

0.0
0.3
0.6
0.9

A
cc

ur
ac

y

HAR (uniform)

OrthoFL FedAvg CA2FL FedBuff FedAsync

Figure 4: Performance with different delay distributions.

0 2 4
Training Time (h)

0.0

0.5

1.0

A
cc

ur
ac

y

MNIST (=0.01)

0 2 4
Training Time (h)

0.0

0.5

1.0 MNIST (=0.1)

0 2 4
Training Time (h)

0.0

0.5

1.0 MNIST (=0.5)

0 2 4
Training Time (h)

0.0

0.5

1.0 MNIST (IID)

0 100 200
Training Time (h)

0.00

0.44

0.88

A
cc

ur
ac

y

CIFAR-10 (=0.01)

0 100 200
Training Time (h)

0.00

0.44

0.88 CIFAR-10 (=0.1)

0 100 200
Training Time (h)

0.00

0.44

0.88 CIFAR-10 (=0.5)

0 100 200
Training Time (h)

0.00

0.44

0.88 CIFAR-10 (IID)

OrthoFL FedAvg CA2FL FedBuff FedAsync

Figure 5: Performance under different data heterogeneity levels.

distributions (Nguyen et al., 2022). Each distribution is parameterized by the mean and variance of
latency (communication and computation) observed across the RPi devices. Details on deriving these
distributions are in Appendix D.4.

Figure 4 presents the accuracy curves for each algorithm under different delay distributions. With
real-world measured RPi latency, some clients experience substantially longer latencies, causing
synchronous methods like FedAvg to converge more slowly as the server waits for stragglers. In this
case, asynchronous methods generally have better performance than synchronous ones. Under the
lognormal, half-normal, and uniform delay distributions, extreme latencies are less common, so the
performance gap between synchronous and asynchronous methods narrows. In general, ORTHOFL
performs the best across all scenarios, demonstrating its robustness against different delay patterns.

How does data heterogeneity impact performance? To control the level of data heterogeneity,
we change α for Dirichlet distribution from {0.01, 0.1, 0.5, 104}, where α = 104 simulates the IID
case. We present experiments on MNIST and CIFAR-10 as shown in Figure 5. As the client data
distribution becomes more heterogeneous (i.e., lower values of α), we observe the performance of
baseline methods has more fluctuations and decreases in final accuracy. This is because client models
trained on non-IID data distributions have larger divergences in their weights. Aggregating divergent
updates amplifies inconsistencies, leading to slower convergence and lower accuracy for baseline
methods. By contrast, ORTHOFL exhibit stable performance across all settings. In the IID case,
where data is uniformly distributed across clients, ORTHOFL still outperforms the compared methods.
This is because our orthogonal calibration also addresses model staleness.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 250
0.7
0.8
0.9

A
cc

ur
ac

y

Client 1

0 250
0.6

0.8

Client 2

0 250
0.50

0.75

Client 3

0 100
0.50

0.75

Client 4

0 1000
0.6

0.8

Client 5

0 500

0.50

0.75

Client 6

0 250

0.50

0.75

Client 7

0 250

1
2
3

Lo
ss

0 250

1

2

0 250

1

2

0 100

1

2

0 1000
0.0

2.5

0 500
1
2
3

0 250

1

2

w/o calibration w/ calibration

Figure 6: Client-wise accuracy and loss (y-axis) on local validation data over the number of updates
received (x-axis). ORTHOFL improves local stability by reducing interference from global updates.

5.5 CASE STUDY: INTERFERENCE IN LOCAL TRAINING

To evaluate how orthogonal calibration mitigates interference, we present a case study on CIFAR-
10 showing accuracy and loss trajectories for a subset of clients (others exhibit similar patterns).
Specifically, we track each client’s model performance on a held-out local validation set over the
number of global updates it receives. This provides a direct measure of how merging the global
weights affects local optimization.

As shown in Figure 6, without calibration, clients frequently experience spikes in loss and sharp
drops in accuracy—evidence of interference from conflicting global updates. In contrast, ORTHOFL
stabilizes local training across all clients as accuracy curves remain high and smooth, and loss curves
stay low with minimal perturbation. This demonstrates that orthogonal calibration effectively reduces
harmful interference from global updates and better preserves local learning progress.

5.6 CALIBRATION OVERHEAD ANALYSIS

Table 3: Calibration time of ORTHOFL.

Dataset Model Train Params Time

MNIST LeNet5 44K 0.003s
HAR ResNet18 119K 0.199s
20 Newsgroups DistilBERT 753K 0.110s
CIFAR-10 VGG11 9.2M 0.188s
CIFAR-100 MobileNetV2 2.4M 0.512s

The calibration is lightweight because it only requires
basic vector operations (dot products and subtrac-
tions), in contrast to the repeated forward and back-
ward passes of model training. Hence, it is efficient
even on low-capacity devices. Its time complexity is
O(P), where P is the number of model parameters.
It is independent of the number of clients, since the
projection is computed once per client update. For
comparison, conventional asynchronous aggregation
also has O(P) complexity, while client training (i.e.,
gradient descent) typically requires O(EBP) opera-
tions per round, where E is the number of local epochs and B is the number of mini-batches. Table 3
reports the calibration time including orthogonalization and updating the global weight state, when
running on a node equipped with an AMD EPYC 7713 64-Core Processor (3.72 GHz max clock) and
3.9 TiB RAM. This cost is negligible compared to the operational latencies on clients (in Figure 7).
Efficiency can be further improved by layer-wise parallelism and approximate projection.

6 CONCLUSIONS

In this paper, we introduce ORTHOFL, an orthogonal calibration mechanism for asynchronous
federated learning. ORTHOFL decouples the global and local learning progress and employs a
geometric projection to calibrate and integrate global progress into client models without disrupting
local learning. Experiments demonstrate that ORTHOFL consistently outperforms state-of-the-art
synchronous and asynchronous baselines, achieving notable gains in accuracy, convergence speed, and
robustness under diverse delay patterns and data heterogeneity. For future work, we plan to investigate
the long-term training dynamics of orthogonal calibration, including its effects on stability, forgetting,
and distribution shift. We also aim to further optimize learning efficiency, for example, through
integrating adaptive client selection into ORTHOFL to prioritize impactful clients for participation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work contributes foundational advances in federated learning and is not tied to specific applica-
tions, thus raising no ethical concerns.

REPRODUCIBILITY STATEMENT

All datasets used in this paper are publicly available, with references provided in Appendix D.1.
Source code is included in the supplemental material. Detailed experimental settings, including
hyperparameters, federated system configurations, and delay simulation, are described in Section 5.1
and Appendices D.3, D.4. The hardware and compute resource details are specified in Section 5.1
and 5.6.

REFERENCES

Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. 2022. FedRolex: Model-Heterogeneous Feder-
ated Learning with Rolling Sub-Model Extraction. Advances in Neural Information Processing
Systems 35 (2022), 29677–29690.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz, et al. 2013. A
public domain dataset for human activity recognition using smartphones.. In Esann, Vol. 3. 3.

Dmitrii Avdiukhin and Shiva Kasiviswanathan. 2021. Federated learning under arbitrary communica-
tion patterns. In International Conference on Machine Learning. PMLR, 425–435.

Rotem Zamir Aviv, Ido Hakimi, Assaf Schuster, and Kfir Y Levy. 2021. Learning under delayed
feedback: Implicitly adapting to gradient delays. arXiv preprint arXiv:2106.12261 (2021).

Arslan Chaudhry, Naeemullah Khan, Puneet Dokania, and Philip Torr. 2020. Continual learning in
low-rank orthogonal subspaces. Advances in Neural Information Processing Systems 33 (2020),
9900–9911.

Cheng Chen, Ji Zhang, Jingkuan Song, and Lianli Gao. 2022. Class gradient projection for continual
learning. In Proceedings of the 30th ACM International Conference on Multimedia. 5575–5583.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. 2021. Asynchronous
stochastic optimization robust to arbitrary delays. Advances in Neural Information Processing
Systems 34 (2021), 9024–9035.

Li Deng. 2012. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine 29, 6 (2012), 141–142.

Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. 2022. Federated
class-incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 10164–10173.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nagpurkar. 2018. Slow
and stale gradients can win the race: Error-runtime trade-offs in distributed SGD. In International
conference on artificial intelligence and statistics. PMLR, 803–812.

Xiuwen Fang and Mang Ye. 2022. Robust Federated Learning with Noisy and Heterogeneous
Clients. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10072–10081.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. 2020. Orthogonal gradient descent for
continual learning. In International Conference on Artificial Intelligence and Statistics. PMLR,
3762–3773.

Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. 2021. Fast federated learning
in the presence of arbitrary device unavailability. Advances in Neural Information Processing
Systems 34 (2021), 12052–12064.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. 2017. Failures in large scale
systems: long-term measurement, analysis, and implications. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. 1–12.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. 2024. Parameter-efficient
fine-tuning for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608 (2024).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image
recognition. In CVPR. 770–778.

Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scandinavian journal of
statistics (1979), 65–70.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the Effects of Non-Identical
Data Distribution for Federated Visual Classification. arXiv preprint arXiv:1909.06335 (2019).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685 (2021).

Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and Mosharaf Chowdhury. 2023. Oobleck: Resilient
distributed training of large models using pipeline templates. In Proceedings of the 29th Symposium
on Operating Systems Principles. 382–395.

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, and Fan
Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU clusters for DNN training workloads. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). 947–960.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic Controlled Averaging for Federated
Learning. In ICML. PMLR, 5132–5143.

Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. 2022. Sharper convergence guarantees
for asynchronous SGD for distributed and federated learning. Advances in Neural Information
Processing Systems 35 (2022), 17202–17215.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images.
(2009).

Ken Lang. 1995. Newsweeder: Learning to filter netnews. In Machine learning proceedings 1995.
Elsevier, 331–339.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. 2021. FedMask: Joint
Computation and Communication-Efficient Personalized Federated Learning via Heterogeneous
Masking. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems.
42–55.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
2020. Federated Optimization in Heterogeneous Networks. MLSys 2 (2020), 429–450.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. 2022. Trgp: Trust region gradient projection for
continual learning. arXiv preprint arXiv:2202.02931 (2022).

Boyi Liu, Yiming Ma, Zimu Zhou, Yexuan Shi, Shuyuan Li, and Yongxin Tong. 2024b. CASA:
Clustered Federated Learning with Asynchronous Clients. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1851–1862.

Ji Liu, Juncheng Jia, Tianshi Che, Chao Huo, Jiaxiang Ren, Yang Zhou, Huaiyu Dai, and Dejing Dou.
2024a. Fedasmu: Efficient asynchronous federated learning with dynamic staleness-aware model
update. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 13900–13908.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. 2022. Continual Federated Learning
Based on Knowledge Distillation.. In IJCAI. 2182–2188.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
2017. Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics. PMLR, 1273–1282.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake E Woodworth. 2022. Asynchronous
SGD beats minibatch SGD under arbitrary delays. Advances in Neural Information Processing
Systems 35 (2022), 420–433.

Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. 2018. A delay-
tolerant proximal-gradient algorithm for distributed learning. In International conference on
machine learning. PMLR, 3587–3595.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. 2022. Federated learning with buffered asynchronous aggregation. In International
Conference on Artificial Intelligence and Statistics. PMLR, 3581–3607.

Tae Jin Park, Kenichi Kumatani, and Dimitrios Dimitriadis. 2021. Tackling dynamics in federated
incremental learning with variational embedding rehearsal. arXiv preprint arXiv:2110.09695
(2021).

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. 2020. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295 (2020).

Gobinda Saha, Isha Garg, and Kaushik Roy. 2021. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762 (2021).

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 4510–4520.

V Sanh. 2019. DistilBERT, A Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv
preprint arXiv:1910.01108 (2019).

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014).

Sebastian U Stich and Sai Praneeth Karimireddy. 2019. The error-feedback framework: Better rates
for SGD with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350
(2019).

Ningxin Su and Baochun Li. 2022. How asynchronous can federated learning be?. In 2022 IEEE/ACM
30th International Symposium on Quality of Service (IWQoS). IEEE, 1–11.

Kaixin Sui, Mengyu Zhou, Dapeng Liu, Minghua Ma, Dan Pei, Youjian Zhao, Zimu Li, and Thomas
Moscibroda. 2016. Characterizing and improving wifi latency in large-scale operational networks.
In MobiSys. 347–360.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. 2020. Tackling the
Objective Inconsistency Problem in Heterogeneous Federated Optimization. NeurIPS 33 (2020),
7611–7623.

Yujia Wang, Yuanpu Cao, Jingcheng Wu, Ruoyu Chen, and Jinghui Chen. 2024a. Tackling the
Data Heterogeneity in Asynchronous Federated Learning with Cached Update Calibration. In
International Conference on Learning Representations.

Yujia Wang, Shiqiang Wang, Songtao Lu, and Jinghui Chen. 2024b. Fadas: Towards federated
adaptive asynchronous optimization. arXiv preprint arXiv:2407.18365 (2024).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He, Yong Li, Liping
Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in the wild: Workload analysis and scheduling in
Large-Scale heterogeneous GPU clusters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22). 945–960.

Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin, Ali Farhadi, and Mohammad Rastegari.
2021. Learning neural network subspaces. In International Conference on Machine Learning.
PMLR, 11217–11227.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated optimization. arXiv
preprint arXiv:1903.03934 (2019).

Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2020. Zeno++: Robust fully asynchronous SGD. In
International Conference on Machine Learning. PMLR, 10495–10503.

Xin Yang, Hao Yu, Xin Gao, Hao Wang, Junbo Zhang, and Tianrui Li. 2024. Federated continual
learning via knowledge fusion: A survey. IEEE Transactions on Knowledge and Data Engineering
(2024).

Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. 2021. Federated
continual learning with weighted inter-client transfer. In International Conference on Machine
Learning. PMLR, 12073–12086.

Xiaofan Yu, Lucy Cherkasova, Harsh Vardhan, Quanling Zhao, Emily Ekaireb, Xiyuan Zhang, Arya
Mazumdar, and Tajana Rosing. 2023. Async-HFL: Efficient and robust asynchronous federated
learning in hierarchical IoT networks. In Proceedings of the 8th ACM/IEEE Conference on Internet
of Things Design and Implementation. 236–248.

Yu Zang, Zhe Xue, Shilong Ou, Lingyang Chu, Junping Du, and Yunfei Long. 2024. Efficient
Asynchronous Federated Learning with Prospective Momentum Aggregation and Fine-Grained
Correction. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 16642–
16650.

Feilong Zhang, Xianming Liu, Shiyi Lin, Gang Wu, Xiong Zhou, Junjun Jiang, and Xiangyang Ji.
2023b. No one idles: Efficient heterogeneous federated learning with parallel edge and server
computation. In International Conference on Machine Learning. PMLR, 41399–41413.

Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. 2021. Parameter-
ized Knowledge Transfer for Personalized Federated Learning. Advances in Neural Information
Processing Systems 34 (2021), 10092–10104.

Jiayun Zhang, Shuheng Li, Haiyu Huang, Zihan Wang, Xiaohan Fu, Dezhi Hong, Rajesh K Gupta,
and Jingbo Shang. 2024a. How Few Davids Improve One Goliath: Federated Learning in Resource-
Skewed Edge Computing Environments. In Proceedings of the ACM on Web Conference 2024.
2976–2985.

Jiayun Zhang, Xiyuan Zhang, Xinyang Zhang, Dezhi Hong, Rajesh K Gupta, and Jingbo Shang. 2023c.
Navigating Alignment for Non-identical Client Class Sets: A Label Name-Anchored Federated
Learning Framework. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 3297–3308.

Ke Zhang, Ganyu Wang, Han Li, Yulong Wang, Hong Chen, and Bin Gu. 2024b. Asynchronous
Vertical Federated Learning for Kernelized AUC Maximization. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 4244–4255.

Xiyuan Zhang, Ranak Roy Chowdhury, Jiayun Zhang, Dezhi Hong, Rajesh K Gupta, and Jingbo
Shang. 2023a. Unleashing the Power of Shared Label Structures for Human Activity Recogni-
tion. In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management. 3340–3350.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu. 2017.
Asynchronous stochastic gradient descent with delay compensation. In International Conference
on Machine Learning. PMLR, 4120–4129.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yajie Zhou, Xiaoyi Pang, Zhibo Wang, Jiahui Hu, Peng Sun, and Kui Ren. 2024. Towards efficient
asynchronous federated learning in heterogeneous edge environments. In IEEE INFOCOM 2024-
IEEE conference on computer communications. IEEE, 2448–2457.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

The use of LLMs in this work is limited to polishing text and formatting. They do not contribute to
the ideation or methodological development.

B PSEUDO-CODE OF ORTHOFL

In practice, ORTHOFL can be implemented with orthogonalization performed on the server side, the
client side, or through a hybrid approach. The choice depends on the availability of server storage
and the computational capability of participating nodes. When orthogonalization is handled by the
server, the server maintains a copy of the global state W (τ+) for a client m corresponding to when it
sent the model to the client. Once the client returns its update, the server retrieves the stored W (τ+),
computes the global shift, and applies orthogonal calibration. Alternatively, W (τ+) can be stored
on the client and communicated back to the server to reduce server-side storage requirement. The
pseudo-code of ORTHOFL under the server orthogonalization protocol is presented in Algorithm 1.

Algorithm 1: ORTHOFL Framework (Server-Side Orthogonalization)

Input :Total number of updates T , local training epochs E, initial global model weights W (0).
Output :Global model weights W (T+).
Server execution:
Send W (0) to all available clients;
for t = 1, . . . , T do

Receive update W
(t)
m from a client;

Compute global weight shift: ∆ = W (t) −W (τ+) ;
Compute client weight shift: ∆m = W

(t)
m −W

(τ+)
m ;

Update global model: W (t+) = (1− βt)W
(t) + βtW

(t)
m ;

Orthogonalize each layer: ∆l⊥ = ∆l − ∆l·∆l
m

∆l
m·∆l

m
∆l

m;

Merge weights for client: W (t+)
m = W

(t)
m +∆⊥;

ClientUpdate(m, W (t+)
m)

return W (T+);
ClientUpdate(m, W̃):
Wm ← W̃ ;
for e = 1, . . . , E do

Partition Dm into mini-batches {B(m)
i }jmi=1;

for i = 1, . . . , jm do
Update local weights: Wm ←Wm − ηc∇Wm

Lm(Wm;B
(m)
i);

Compute update: ∆m = Wm − W̃ ;
return Wm to server;

As discussed in Section 5.6, the cost of orthogonalization is marginal compared to local training,
which makes it practical to delegate this step to clients. Algorithm 2 presents the pseudo-code of
ORTHOFL under the local orthogonalization protocol. Each client derives its stored global state
W (t+) by applying the aggregation rule to the received global weight W (t). Before local training
in the next round, it computes the global shift (i.e., the difference between the global model at the
start and end of the previous round) and applies orthogonal calibration to adjust its initialization.
This design avoids storing global state history on the server, making it more scalable in terms of disk
space.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2: ORTHOFL Framework (Client-Side Orthogonalization)

Input :Total number of updates T , local training epochs E, initial global model weights W (0).
Output :Global model weights W (T+).
Server execution:
Send W (0) to all available clients;
for t = 1, . . . , T do

Receive updated W
(t)
m from a client;

ClientUpdate(m, βt, W (t));
Update global model: W (t+) = (1− βt)W

(t) + βtW
(t)
m ;

return W (T+);
ClientUpdate(m, βt, W̃global):
// Input W̃global = W (t) (global state when last training finishes)

// Stored Wglobal = W (τ+) (global state when last training starts)

Compute global shift: ∆ = W̃global −Wglobal;
Update global state: Wglobal = (1− βt)W̃global + βtWm ; // Wglobal becomes W (t+)

Orthogonalize each layer: ∆l⊥ = ∆l − ∆l·∆l
m

∆l
m·∆l

m
∆l

m;

Merge weights for client: W init
m ←Wm +∆⊥;

Initialize local weights: Wm ←W init
m ;

for e = 1, . . . , E do
Partition Dm into mini-batches {B(m)

i }jmi=1;
for i = 1, . . . , jm do

Update local weights: Wm ←Wm − ηc∇Wm
Lm(Wm;B

(m)
i);

Compute client weight change: ∆m = Wm −W init
m ;

return Wm to server;

Moreover, the two protocols can be combined. For example, clients with limited resources may
delegate orthogonalization to the server, while more capable clients perform it locally. Such a hybrid
approach allows the system to accommodate heterogeneous device capacities.

C MATHEMATICAL BASIS OF ORTHOGONALIZATION

A gradient update orthogonal to previously accumulated gradients helps preserve existing model
behavior and minimizes unintended changes to its outputs (Farajtabar et al., 2020). Due to the high-
dimensional parameter space of neural networks, there are multiple directions that are orthogonal
to the stale local weight update. We have the following lemma showing that the orthogonalization
strategy in ORTHOFL preserves the maximal information from the global weight shift vectors
perpendicular to the local update direction.

For v, w ∈ Rd, let ⟨v, w⟩ :=
∑d

i=1 viwi be the standard inner product on Rd.

Lemma C.1. Let v ∈ Rd and U = {u1, · · · , uk} be an orthogonal set for some k < d. Then for any
w ∈ (spanU)⊥,

∥v − v⊥∥ ≤ ∥v − w∥, (8)

where v⊥ := v−
∑k

i=1⟨v, ui⟩ ui

∥ui∥2 denote the component of v orthogonal to U . Moreover, the angle
between v and v⊥ is less than any angle between v and w for w ∈ (spanU)⊥.

We apply this lemma in our case where v = ∆l and U = {∆l
m}. It implies ∆l⊥ in equation (6) is the

unique vector among those perpendicular to ∆l
m with the smallest magnitude of ∥∆l −∆l⊥∥ and the

smallest angle with ∆l. This allows the server to transfer the maximum amount of global progress to
client m, among all projections onto the orthogonal subspaces of the client update.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. By normalizing the vectors in U , we may assume U is orthonormal. Extend U to an orthonor-
mal basis B := {u1, · · · , uk, uk+1, · · · , ud} on Rd. Write w =

∑d
i=1 wiui and v =

∑d
i=1 viui,

where wi := ⟨w, ui⟩ and vi := ⟨v, ui⟩ denote the coordinates of w and v with respect to the basis B
respectively. Since w ∈ (spanU)⊥, wi = 0 for 1 ≤ i ≤ k. It follows from Pythagorean theorem that

∥v − w∥2 =

∥∥∥∥∥
d∑

i=1

(vi − wi)ui

∥∥∥∥∥
2

=

∥∥∥∥∥∥
k∑

i=1

viui +

d∑
j=k+1

(vj − wj)uj

∥∥∥∥∥∥
2

=

∥∥∥∥∥
k∑

i=1

viui

∥∥∥∥∥
2

+

∥∥∥∥∥∥
d∑

j=k+1

(vj − wj)uj

∥∥∥∥∥∥
2

≥

∥∥∥∥∥
k∑

i=1

viui

∥∥∥∥∥
2

.

(9)

Taking square root of both sides and noting that by definition v − v⊥ =
∑k

i=1 viui, equation (8)
follows. As for the second claim, let θ(v, w) denote the angle between v and w, θ(v, v⊥) the angle
between v and v⊥. By the Cauchy-Schwarz inequality,

⟨v, w⟩ =

〈
v,

d∑
j=k+1

wjuj

〉

=

d∑
j=k+1

wj⟨v, uj⟩

≤

 d∑
j=k+1

w2
j

1/2

·

 d∑
j=k+1

v2j

1/2

= ∥w∥ · ∥v⊥∥.

(10)

It follows that

cos θ(v, w) :=
⟨v, w⟩
∥v∥ ∥w∥

≤ ∥v
⊥∥
∥v∥

=
⟨v, v⊥⟩
∥v∥ ∥v⊥∥

= cos θ(v, v⊥). (11)

Since the cosine function is monotonically decreasing on [0, π], θ(v, w) ≥ θ(v, v⊥) as claimed.

D DETAILS OF EXPERIMENT SETUP

D.1 APPLICATIONS AND DATASETS

The experiments are conducted with the following three applications.

1. Image Classification. We evaluate our framework on three widely used image datasets:
MNIST (Deng, 2012), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009). For MNIST, we
use LeNet5 (LeCun et al., 1998), a lightweight convolutional network. For CIFAR-10, we adopt
VGG11 (Simonyan and Zisserman, 2014), a deeper convolutional architecture. For CIFAR-100,
we employ MobileNetV2 (Sandler et al., 2018), a compact and efficient model ideal for large-scale
image classification tasks.

2. Text Classification. We experiment with the 20 Newsgroups dataset (Lang, 1995), a benchmark
dataset for multi-class text categorization. We adopt DistillBERT (Sanh, 2019), a small transformer
model suitable for resource-constrained devices. The pretrained weights are from Hugging Face1.
1https://huggingface.co/distilbert/distilbert-base-uncased

16

https://huggingface.co/distilbert/distilbert-base-uncased

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

We use the HAR (Anguita et al., 2013) dataset, which contains time-series sensor data for different
physical activities. We adopt the 1D version of ResNet18 (He et al., 2016), a modified ResNet
architecture for processing 1D sequential data.

3. Human Activity Recognition. We use the HAR (Anguita et al., 2013) dataset, which contains
time-series sensor data for different physical activities. We adopt the 1D version of ResNet18 (He
et al., 2016), a modified ResNet architecture for processing 1D sequential data.

All datasets provide predefined training and test splits. For HAR, we use the test set for global
evaluation and assign each subject’s training data to an individual client. For the other datasets, we
also use the test set for evaluation and sample client data from the training set using a Dirichlet
distribution (Section 5.1).

D.2 BASELINE METHODS

Below are the baseline methods that we compared in the experiments:

• FedAvg (McMahan et al., 2017) is the classical synchronous algorithm where the server selects
a subset of clients to conduct training in each round and synchronizes updates from these clients
before aggregation.

• FedProx (Li et al., 2020) is a synchronous method that addresses data heterogeneity by incorporat-
ing L2 regularization during local training to constrain the divergence between global and client
models.

• FedAdam (Reddi et al., 2020) is a synchronous algorithm that integrates Adam optimizer for
the server. It adapts learning rates for each parameter using first- and second-moment estimates,
improving convergence and accelerating training under data heterogeneity.

• FedAsync (Xie et al., 2019) is a fully-asynchronous framework that lets the server immediately
aggregate the client updates into the global model upon receipt. It uses a weighting mechanism as
in Equation 2 to account for the staleness of the updates.

• FedBuff (Nguyen et al., 2022) is a semi-asynchronous framework that introduces a buffered
aggregation strategy. It maintains a buffer to collect client updates. Once the buffer is full, the
server aggregates the client updates in the buffer and updates the global model.

• CA2FL (Wang et al., 2024a) is another semi-asynchronous framework based on buffered aggre-
gation. It caches the latest update from every client on the server and uses them to estimate the
clients’ contribution to the update of the current round and calibrate global updates.

• FADAS (Wang et al., 2024b) extends adaptive federated optimization methods (e.g., FedAdam)
to the asynchronous setting, and further introduces a delay-adaptive learning rate that adjusts the
global step size based on the staleness of client updates.

D.3 FEDERATED LEARNING CONFIGURATION

For reproducibility, we report the configurations in our experiments. The number of local training
epochs E = 5. For the FedAvg algorithm, the number of sampled clients at each round is 10. The
aggregation hyperparameters in Equation 3 are set to β = 0.6 and a = 0.5, following the values used
in prior work (Xie et al., 2019). The learning rate for local training at all clients is 5× 10−5 for the
20 Newsgroups dataset and 0.01 for the other datasets.

D.4 DERIVATION OF DELAY DISTRIBUTIONS

Deployment Specificities in Delay Collection. The prior work (Yu et al., 2023) collected computation
and communication latency on RPis when the devices were training a convolutional neural network
(2 convolutional layers) on the MNIST dataset in a federated learning setup over 100 rounds. To
account for differences in the size of models and datasets, we use an RPi 4B which has comparable
computational capabilities as the reported ones to measure latency for training one round under
each model and dataset configuration. Each configuration is tested five times to derive the average
training time. The computational latency for datasets in our experiment is then adjusted based on
the ratio between our measured time and the computation latency in (Yu et al., 2023). Similarly,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

communication latency was scaled based on the model size in bytes compared to the model in the
original delay collection. Figure 7 presents the average communication and computation latency on
Raspberry Pis scaled for the dataset and model configuration in our experiments. For 20 Newsgroups,
the converted computational time is sufficiently long, making communication time negligible.

CIFAR-100

2

Ti
m

e
(h

)

CIFAR-1000

2

MNIST0.00

0.05

HAR0.0

0.1

20 Newsgroups0

25

Computation Communication

Figure 7: Average latency per round across clients.

Additional Delay Distributions. In Section 5.4, we present the performance of compared methods
under additional delay distributions following physical deployments. The derivations of the additional
delay distributions are as follows.

• Lognormal distribution: The parameters µ (mean) and σ (standard deviation) of the natural
logarithm of delays are derived from the measurements on Raspberry Pis. Specifically, µR and
σR represent the arithmetic mean and standard deviation of the measured delays for all rounds,
respectively.

σ =

√
ln

(
σ2
R

µ2
R

+ 1

)
, µ = ln(µR)−

σ2

2

Then, the latency for each client is sampled from the lognormal distribution to capture skewed and
heavy-tailed delays.

• Half-normal distribution: The mean and standard deviation of the delays (i.e., µR and σR) are
calculated from the delay measurements on Raspberry Pis. Then, for each client, its latency is
sampled from the half-normal distribution, ensuring non-negative values and a skewed distribution
toward smaller delays.

• Uniform distribution: Client latency is sampled from a uniform distribution with bounds set
between the 5th and 95th percentiles of the measurements from Raspberry Pis. This ensures outliers
are excluded while covering the majority of the observed range.

Figure 8 shows the simulated latency for 100 clients, each running CIFAR-100 with MobileNetV2
over 10,000 rounds.

E CONVERGENCE STABILITY OVER TIME

Figure 9 shows the accuracy of each method over training time. Compared to baseline methods,
ORTHOFL achieves faster convergence and significantly reduces accuracy fluctuations over time. The
instability observed in other methods is primarily caused by conflicting updates due to data hetero-
geneity and asynchronous optimization, which ORTHOFL mitigates through orthogonal calibration.

F SENSITIVITY ANALYSES

Aggregation Hyperparameter. In Equation 3, the parameter β scales the overall contribution of
the client update to the global model, and a controls the sensitivity to staleness. A larger β allows
the global model to incorporate more of the client updates, potentially accelerating learning, while a
smaller β preserves more of the global model’s previous state, enhancing stability. The exponent a
modulates the decay of βt with respect to staleness: higher a values cause staler updates to contribute
less. We conduct a sensitivity analysis by varying β ∈ {0.2, 0.4, 0.6, 0.8} and a ∈ {0.3, 0.5, 0.7}.
As shown in Table 4, ORTHOFL is robust to different a and β values and always achieves higher
accuracy than the baselines after a fixed training time, and the relative time of ORTHOFL is low.

Number of Local Training Epochs. The number of local training epochs E determines how much
information is learned during a round and impacts the overall convergence speed. A larger E allows

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

5 10 15
Latency (min)

0.0

0.2

Fr
eq

ue
nc

y

RPi original

2.5 5.0
Latency (min)

0.0

0.5

Half-normal

2 4
Latency (min)

0.0

0.5
Log-normal

1 2 3
Latency (min)

0.0

0.5

Uniform

Figure 8: Delay patterns under different distributions: measurements from RPis show discrete peaks
and high variability, half-normal and lognormal distributions have long tails, and uniform distribution
assumes equal probability within a bounded range.

0 5
Training Time (h)

0.0

0.5

1.0

A
cc

ur
ac

y

MNIST

0 200
Training Time (h)

0.0
0.2
0.4
0.6
0.8

CIFAR-10

0 4 8
Training Time (h)

0.00
0.24
0.48
0.72
0.96 HAR

0 2500
Training Time (h)

0.25

0.50

20 Newsgroups

0 2500
Training Time (h)

0.00

0.25

0.50

CIFAR-100

OrthoFL
FedAvg

FedAdam
FedProx

FADAS
CA2FL

FedBuff
FedAsync

Figure 9: Accuracy over training time. ORTHOFL converges faster and exhibits more stable perfor-
mance compared to baselines.

clients to learn more information from their local data, potentially improving local model performance.
However, it has the risk of larger divergence among client models and global models. On the other
hand, setting a smaller E ensures closer alignment between client and global models but comes at
the cost of higher communication latency due to more frequent synchronization. We vary the value
of E from {1, 5, 10} and show the results in Figure 10. The upper row shows the final accuracy
after a fixed training time and the bottom row presents the relative time to reach 95% of FedAvg’s
target accuracy when E = 5. We observe that when E = 1, both methods reach lower accuracy
compared to larger E. This is due to insufficient local learning, requiring more communication
rounds to achieve comparable performance. ORTHOFL achieves similar final accuracy when E = 5
and E = 10. Notably, ORTHOFL outperforms FedAvg across different E values. The speedup of
ORTHOFL is more obvious at smaller E values (e.g., E = 1).

G CONNECTIONS WITH OTHER AREAS

Asynchronous Stochastic Gradient Descent. Asynchronous stochastic gradient descent (SGD)
is closely related to asynchronous federated learning and has provided theoretical and empirical
foundations for scalable distributed training. Early studies analyzed error-runtime trade-offs, showing
that incorporating stale gradients can alleviate system bottlenecks without significantly compromising
accuracy (Dutta et al., 2018). Subsequent work refined convergence bounds based on maximum (Stich
and Karimireddy, 2019) or average (Koloskova et al., 2022) delay and demonstrated that asynchronous
SGD can converge faster than traditional minibatch SGD (Mishchenko et al., 2022). To tackle
challenges such as gradient staleness, communication delays, and convergence guarantees, various
strategies have been proposed, such as filtering out outlier gradients (Xie et al., 2020; Cohen et al.,
2021), adjusting update steps according to delay (Mishchenko et al., 2018; Aviv et al., 2021), and
approximating gradients to compensate for delayed information (Zheng et al., 2017). However, unlike
federated learning, most asynchronous SGD formulations do not explicitly address non-i.i.d. data
distributions or the strict data privacy constraints inherent in federated settings, which limits their
direct applicability.

Orthogonal Gradient Descent. There are works in continual learning (Farajtabar et al., 2020;
Chaudhry et al., 2020; Saha et al., 2021; Lin et al., 2022; Chen et al., 2022) that leverage the idea
of orthogonalization to project gradients onto non-conflicting subspaces across tasks. The goal is

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Sensitivity analysis on the aggregation hyperparameters a and β. ORTHOFL demonstrates
robustness to variations in the two hyperparameters, maintaining high accuracy and fast training
speed (measured as time relative to FedAvg).

Dataset Metric β (a = 0.5) a (β = 0.6)

0.2 0.4 0.6 0.8 0.3 0.5 0.7

MNIST Accuracy 98.3±0.2 98.3±0.3 98.2±0.3 98.0±0.4 98.0±0.6 98.2±0.3 98.2±0.3
Time 0.19× 0.18× 0.18× 0.19× 0.20× 0.18× 0.19×

CIFAR10 Accuracy 77.8±2.6 77.3±3.2 76.5±3.3 77.9±1.9 76.2±4.2 76.5±3.3 76.8±3.5
Time 0.17× 0.17× 0.19× 0.23× 0.20× 0.19× 0.19×

HAR Accuracy 88.5±2.3 89.3±1.7 89.7±1.0 88.3±0.8 88.2±1.1 89.7±1.0 89.8±1.4
Time 0.20× 0.19× 0.23× 0.18× 0.19× 0.23× 0.18×

1 5 10
Local Epochs E

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

MNIST

OrthoFL
FedAvg

1 5 10
Local Epochs E

0.6

0.8
CIFAR-10

OrthoFL
FedAvg

1 5 10
Local Epochs E

0.6

0.8

HAR

OrthoFL
FedAvg

1 5 10
Local Epochs E

0

2

Ti
m

e
M

ul
tip

lie
r MNIST

FedAvg
OrthoFL

1 5 10
Local Epochs E

0

2

CIFAR-10
FedAvg
OrthoFL

1 5 10
Local Epochs E

0

2

4

HAR
FedAvg
OrthoFL

Figure 10: Sensitivity analysis on the number of local training epochs E. An appropriately chosen E
improves accuracy within the same training duration and expedites convergence.

to prevent catastrophic forgetting, where new knowledge overrides previously learned information
when training a model on a sequence of tasks. It shares a common goal with asynchronous federated
learning, which is to mitigate knowledge interference. The earliest formulation (Farajtabar et al.,
2020) proposes projecting new gradients onto the space orthogonal to all previously stored gradient
directions from old tasks. Chaudhry et al. (2020) extends this by assigning each task a low-rank
orthogonal projection and trains the network via Stiefel manifold optimization to ensure orthonality.
Saha et al. (2021) identifies important gradient subspaces by applying singular value decomposition
(SVD) on hidden activations and constrains new gradients to be orthogonal to these subspaces. Lin
et al. (2022) further enhances this approach by defining a trust region of relevant past tasks and
selectively reusing their subspaces through scaled projections, enabling a balance between preserving
old knowledge and transferring to new tasks. Despite the similarities, the two fields follow distinct
training paradigms. Continual learning typically processes tasks sequentially in a centralized setting.
Methods can reuse data or access sample-level information (e.g., gradient, representations) from
previous tasks. In contrast, federated learning involves repeated rounds of training from distributed
clients with data constraints. The model must integrate updates without knowing data or gradients
from clients to preserve privacy. Therefore, the two fields require different optimization techniques
and system designs.

H ADAPTABILITY TO DYNAMIC ENVIRONMENTS

The asynchrony and orthogonal calibration mechanisms not only accelerate training but also extend
its applicability to more complex scenarios. These features make ORTHOFL suitable in dynamic
federated learning environments. We discuss the following situations:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Dynamic Client Participation. In real-world federated learning applications, it is common for
new clients to join the training process (Park et al., 2021) or for previously unseen data with new
tasks to appear over time (Yang et al., 2024; Yoon et al., 2021; Ma et al., 2022; Dong et al., 2022).
Scalability to new clients and tasks is essential for long-term performance. ORTHOFL is readily
applicable to these settings. By orthogonal calibration on asynchronous updates, ORTHOFL mitigates
the disruptive impact of newly joined clients, especially if the global model is well-trained and
initial updates from newly joined clients are noisy or biased due to limited data or distribution shifts.
Similarly, when new classes are introduced, ORTHOFL preserves knowledge of previously learned
classes, reducing forgetting and performance degradation caused by sudden distribution shifts.

Failure Handling. Large-scale federated learning faces a high risk of client or system failures due
to issues such as out-of-memory (OOM) errors during training, hardware malfunctions, or network
interruptions (Jang et al., 2023; Gupta et al., 2017; Jeon et al., 2019; Weng et al., 2022), particularly
when training large models across many devices. Failure rates tend to increase with larger models and
more clients, as the computational and communication demands scale up significantly. The ability
to effectively handle these failures is critical for ensuring robust and reliable training in federated
learning systems. The asynchronous nature of ORTHOFL makes it robust to such failures. When a
client fails, training continues with updates from the remaining clients. A single node’s failure does
not block global progress.

I ANALYSIS

In this section, we present the theoretical analysis of an one-step local gradient update, comparing
ORTHOFL which calibrates local model weights, with conventional asynchronous methods (e.g.,
FedAsync) which directly assign the aggregated global weight to the client model. We characterize
the conditions under which ORTHOFL yields better updates than conventional methods.

Notation and setup. Fix a client m with local objective Fm : Rd → R. Let Lm > 0 be a smoothness
constant: for all X,Y , ∥∇Fm(X)−∇Fm(Y)∥ ≤ Lm ∥X − Y ∥ (equivalently, Fm is Lm-smooth).
At global round t, denote the current client model weight W (t)

m and the current global state W (t). Let
τ < t be the previous global round when client m communicated with the server. Define gm as the
gradient of Fm at W (t)

m :

gm := ∇Fm

(
W (t)

m

)
, Gm := ∥gm∥ .

Define the weight changes for the global model and the client model m during delay t− τ as:

∆ := W (t) −W (τ+), ∆m := W (t)
m −W (τ+)

m .

Set u := ∆m/ ∥∆m∥ as the unit vector pointing in the direction of local client update. Let ∆α :=
∥∆m∥. Decompose the global shift into the u-axis and its orthogonal complement δ:

∆ = αu+ δ, ⟨δ, u⟩ = 0, α := ⟨∆, u⟩ .
The difference between the global state and the client model weight at τ+ can be represented as:

D := W (τ+) −W (τ+)
m = ρu+ d, ⟨d, u⟩ = 0.

Let SORTHOFL and Sbaseline denote the starting points of the client model before the one-step local
gradient update in ORTHOFL and in the baseline, respectively. Let sORTHOFL and sbaseline denote the
gaps between these starting points and the client’s local state at the end of its previous training. They
are defined as follows:

• ORTHOFL. The client adds the orthogonal part of the global shift to its weight, so it starts from:

SORTHOFL := W (t)
m + δ, sORTHOFL := SORTHOFL −W (t)

m = δ.

• Baseline (directly assigning global weights to clients). The server aggregates the global model by
moving average: W (t+) = (1−βt)W

(t)+βtW
(t)
m , where βt ∈ [0, 1] is the global moving-average

weight at round t. The client starts from this aggregated global weight:

Sbaseline := W (t+) = W (t)
m + (1− βt)

(
(ρ+ α−∆α)u+ (d+ δ)

)
,

so
sbaseline := Sbaseline −W (t)

m = (1− βt)
(
(ρ+ α−∆α)u+ (d+ δ)

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

For a step size η > 0, we define the difference of loss of ORTHOFL and the baseline after one step
update as:

∆1step := Fm

(
Sbaseline − η∇Fm(Sbaseline)

)
− Fm

(
SORTHOFL − η∇Fm(SORTHOFL)

)
.

Lemma I.1 (One-step bounds for Lm-smooth Fm). Let Fm : Rd → R have Lm-Lipschitz gradient,
i.e.,

∥∇Fm(x)−∇Fm(y)∥ ≤ Lm ∥x− y∥ ∀x, y ∈ Rd.

Then for any point S ∈ Rd and any step size η ≥ 0,

Fm

(
S − η∇Fm(S)

)
≤ Fm(S) − η

(
1− Lmη

2

)
∥∇Fm(S)∥2 , (12)

Fm

(
S − η∇Fm(S)

)
≥ Fm(S) − η

(
1 + Lmη

2

)
∥∇Fm(S)∥2 . (13)

Equivalently, we have∣∣∣Fm

(
S − η∇Fm(S)

)
− Fm(S) + η ∥∇Fm(S)∥2

∣∣∣ ≤ Lm

2 η2 ∥∇Fm(S)∥2 . (14)

In particular, if 0 < η ≤ 1/Lm, then

Fm

(
S − η∇Fm(S)

)
≤ Fm(S) − η

2 ∥∇Fm(S)∥2 .

Proof. The Lm-smoothness (Lipschitz gradient) condition is equivalent to the standard upper bound

Fm(y) ≤ Fm(x) + ⟨∇Fm(x), y − x ⟩ + Lm

2 ∥y − x∥2 ∀x, y, (15)

and the corresponding two-sided form∣∣Fm(y)− Fm(x)− ⟨∇Fm(x), y − x ⟩
∣∣ ≤ Lm

2 ∥y − x∥2 . (16)

Set x = S and y = S − η∇Fm(S), so y − x = −η∇Fm(S). Then

Fm(y)− Fm(x) + η ∥∇Fm(S)∥2 = Fm(y)− Fm(x)− ⟨∇Fm(S), y − x ⟩ .

Applying (16) yields (14). Expanding (14) to the “≤” and “≥” directions gives (12) and (13),
respectively.

Lemma I.2 (Pre-step lower bound). With the notation above, for any client m,

∆pre := Fm(Sbaseline)− Fm(SORTHOFL)

≥ − (1− βt)
(
|ρ+ α−∆α| | ⟨gm, u⟩ |+Gm ∥d∥

)
− βtGm ∥δ∥

− Lm

2

(
(1− βt)

2
(
(ρ+ α−∆α)2 + ∥d+ δ∥2

)
+ ∥δ∥2

)
. (17)

Proof. Apply the two-sided first-order bound:∣∣Fm(X + s)− Fm(X)− ⟨∇Fm(X), s⟩
∣∣ ≤ Lm

2 ∥s∥
2
.

Using base X = W
(t)
m and steps sbaseline and sORTHOFL = δ, subtract the two inequalities to get

∆pre ≥ ⟨gm, sbaseline − sORTHOFL⟩ − Lm

2

(
∥sbaseline∥2 + ∥sORTHOFL∥2

)
.

Since sbaseline − sORTHOFL = (1 − βt)(ρ + α −∆α)u + (1 − βt)d − βtδ, Cauchy–Schwarz yields
⟨gm, sbaseline − sORTHOFL⟩ ≥ −(1 − βt)|ρ + α − ∆α| | ⟨gm, u⟩ | − (1 − βt)Gm ∥d∥ − βtGm ∥δ∥,
and ∥sbaseline∥2 = (1− βt)

2
(
(ρ+α−∆α)2 + ∥d+ δ∥2

)
, ∥sORTHOFL∥2 = ∥δ∥2. Combine to obtain

(17).

Proposition 1 (One-step sufficient condition). For any step size η ∈ (0, 1/Lm],

∆1step ≥ ∆pre − η
(
1 + Lmη

2

)
∥∇Fm(Sbaseline)∥2 + η

(
1− Lmη

2

)
∥∇Fm(SORTHOFL)∥2 . (18)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Consequently, using Lipschitzness of∇Fm,

∥∇Fm(Sbaseline)∥ ≤ Gm + Lm ∥sbaseline∥ , ∥∇Fm(SORTHOFL)∥ ≥ max{0, Gm − Lm ∥δ∥},

a sufficient condition for ∆1step ≥ 0 is:

(1− βt) |ρ+ α−∆α| | ⟨gm, u⟩ | + (1− βt)Gm ∥d∥ + βtGm ∥δ∥

+ Lm

2

(
(1− βt)

2
(
(ρ+ α−∆α)2 + ∥d+ δ∥2

)
+ ∥δ∥2

)
(19)

≤ η
(
1− Lmη

2

)(
max{0, Gm − Lm ∥δ∥}

)2 − η
(
1 + Lmη

2

)(
Gm + Lm ∥sbaseline∥

)2
.

In particular, if (19) holds for some η ∈ (0, 1/Lm], then

Fm

(
SORTHOFL − η∇Fm(SORTHOFL)

)
≤ Fm

(
Sbaseline − η∇Fm(Sbaseline)

)
.

Proof. The one-step bounds for Lm-smooth Fm gives, for any S and η > 0,

Fm(S − η∇Fm(S)) ≤ Fm(S)− η
(
1− Lmη

2

)
∥∇Fm(S)∥2 ,

and also the reverse inequality Fm(S − η∇Fm(S)) ≥ Fm(S)− η
(
1 + Lmη

2

)
∥∇Fm(S)∥2. Apply

a lower bound to the baseline and an upper bound to ORTHOFL, then subtract to obtain (18). Bound
the gradients by Lipschitzness around W

(t)
m to get (19).

23

	Introduction
	Related Works
	Preliminaries
	Asynchronous System Architecture
	A Motivating Study

	Method: Orthogonal Weight Calibration
	OrthoFL Algorithm
	Visualization of Optimization Trajectories

	Experiments
	Experiment Setup
	Main Experiment Results
	Ablation Studies
	Exploratory Studies
	Case Study: Interference in Local Training
	Calibration Overhead Analysis

	Conclusions
	The Use of Large Language Models (LLMs)
	Pseudo-code of OrthoFL
	Mathematical Basis of Orthogonalization
	Details of Experiment Setup
	Applications and Datasets
	Baseline Methods
	Federated Learning Configuration
	Derivation of Delay Distributions

	Convergence Stability Over Time
	Sensitivity Analyses
	Connections with Other Areas
	Adaptability to Dynamic Environments
	Analysis

