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ABSTRACT

Recently, Neural Combinatorial Optimization (NCO) solvers have demonstrated
significant potential in solving the Traveling Salesman Problem (TSP). However,
existing NCO solvers typically model only the positional features of nodes, ne-
glecting the differences in regional density among the unvisited nodes during
route construction. This would hinder their generalization capability on tasks with
unseen distributions and varying scales. To address this issue, we propose the
Generalizable Density-aware Transformer (GDaT) for solving the TSP. Specif-
ically, GDaT mainly includes two modules: the multi-scale density extraction
module and the density-aware attention module. The former generates multiple
nested subgraphs of each unvisited node via the k-nearest neighbors strategy and
estimates its densities using Gaussian kernels under each nested subgraph. These
densities are then fused by a multi-layer perceptron for capturing multi-scale den-
sity features for each unvisited node during route construction. The latter lever-
ages the extracted multi-scale density features to guide the attention-based mod-
eling of positional features, enabling the model to perceive variations in problem
scale and node distribution, thereby facilitating more accurate next-node selection
under unseen distributions and varying scales. Experimental results on synthetic
and real-world TSP datasets across diverse scales and distributions demonstrate
that GDaT achieves superior generalization performance. The code is available at
https://anonymous.4open.science/r/GDaT-31F2.

1 INTRODUCTION

The Traveling Salesman Problem (TSP) is a class of NP-hard combinatorial optimization problems
with broad applications in logistics scheduling (Konstantakopoulos et al., 2022), electronic design
automation (Alkaya & Duman, 2013), and related domains. Traditional methods, such as exact
solvers using branch-and-cut algorithms (Applegate et al., 2009) and heuristic approaches based on
local search (Helsgaun, 2017) or hybrid metaheuristics (Vidal, 2022), can produce optimal or high-
quality near-optimal solutions. These methods require extensive expert-driven design and parameter
tuning, while deteriorates rapidly as problem size grows, which limits their scalability and real-world
applicability.

In recent years, constructive Neural Combinatorial Optimization (NCO) approaches have received
increasing attention due to their fast inference speed and high solving efficiency (Bengio et al.,
2021). These methods (Bello et al., 2017; Nazari et al., 2018; Kool et al., 2019) leverage deep
neural networks to directly learn solution-construction strategies from data, thereby avoiding the re-
liance on hand-crafted design in traditional algorithms and significantly reducing development costs.
On small-scale TSP instances with specific data distributions, they have demonstrated performance
comparable to traditional solvers (Kwon et al., 2020; Hottung et al., 2022; Sun et al., 2024). In
particular, they show strong potential in uniformly distributed settings with no more than 100 nodes.

For constructive NCO solvers, they are usually trained on small-scale instances under fixed distri-
butions, such as uniformly distributed problems with 100 nodes, the learned solution construction
strategies often fail to generalize to larger scales or unseen distributions. Although some attempts
have been made to address the generalization issues of constructive NCO methods, most of them fo-
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cus solely on either cross-scale generalization (Luo et al., 2023; Ye et al., 2024; Zheng et al., 2024;
Zhou et al., 2025; Luo et al., 2025) or cross-distribution generalization (Zhang et al., 2022; Bi et al.,
2022; Fei Liu & Yuan, 2024). Since real-world TSP instances (e.g., TSPLIB95 (Reinelt, 1991))
usually simultaneously exhibit multi-scale and multi-distribution characteristics, jointly considering
both scale and distribution is more practically meaningful. Recently, some works have addressed this
issue. For example, some studies (Zhou et al., 2023; Liu et al., 2025) achieve omni-generalization
(i.e., generalization across diverse scales and distributions) by designing training-level generaliza-
tion strategies, but relying solely on training strategies may still lead to poor generalization when
applied to problems with distributions that is significantly different from the training set. Other
works (Gao et al., 2024; Fang et al., 2024) focus on designing local decision mechanisms that are
insensitive to scale and distribution.

However, these mechanisms tend to prioritize nearby nodes, which limits their effectiveness in sce-
narios where selecting distant nodes crucial for minimizing total tour length is required, such as in
clustered settings. Therefore, introducing a sense mechanism that enables the model to jointly per-
ceive variations in both scale and distribution is a more general and effective approach. We observe
that as the tour is incrementally constructed, the density of the unvisited nodes changes dynamically,
driven by variations in both the scale and distribution of the remaining subgraph (see Figure 1). Fur-
thermore, neighborhoods of different sizes around the same node may exhibit distinct distributional
patterns (see Figure 2(A)). Capturing such multi-scale density dynamics can reveal the current struc-
tural properties of the unvisited nodes and thereby enables the model to jointly perceive variations
in both scale and distribution.

Thus, we propose the Generalizable Density-aware Transformer (GDaT), which mainly includes
two modules: multi-scale density extraction module and density-aware attention module. The multi-
scale density extraction module first selects neighbor sets of varying sizes for each unvisited node
using the k-nearest neighbors strategy, forming a series of nested local subgraphs. Then, it applies
Gaussian kernel density estimation to each subgraph, where the smooth distance-decay property
of the Gaussian kernel allows a more accurate characterization of the influence of nearby nodes
on local density. Finally, it fuses the density estimates from different scales using the multi-layer
perceptron to obtain a comprehensive representation of the local density for each unvisited node.
The density-aware attention module incorporates density information into the query and key vectors
via linear summation with positional features. This enables the attention mechanism to adaptively
adjust weight allocation based on the multi-scale density features of each node, thereby allowing the
model to perceive local structural variations in scale and distribution. This perception facilitates finer
discrimination among proximal nodes in dense regions while maintaining sensitivity to distant nodes
in sparse regions, ultimately leading to more accurate next-node selection under unseen distributions
and varying problem scales.

The contributions of this paper are summarized as follows: (1) This paper proposes Generalizable
Density-aware Transformer (GDaT) for solving the TSP. To the best of our knowledge, this is the
first NCO constructive approach that explicitly extract node density features to address the challenge
of omni-generalization. (2) This paper introduces a multi-scale density extraction module constructs
nested subgraphs at multiple scales for each unvisited node during route construction, capturing a
comprehensive multi-scale density representation that reveals the local structural characteristics of
the unvisited node set. (3) This paper develops a density-aware attention module that integrates
multi-scale density features of each unvisited node into positional attention modeling, achieving
more accurate next-node selection on tasks with unseen distributions and varying scales. (4) This
paper conducts extensive experiments on synthetic and real-world TSP datasets with varying sizes
and distributions. The results demonstrate that GDaT achieves superior omni-generalization perfor-
mance compared to state-of-the-art methods, particularly on large-scale and and those with complex
distributions.

2 PRELIMINARIES

2.1 TSP DEFINITION

This work focuses on the Euclidean TSP. A TSP instance S can be represented by a complete
undirected graph G = (V, E), where V = {vi}n−1

i=0 denotes the set of n nodes with coordinates

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: The route construction process. (a) shows the complete solution tour, while (b)-(c) illus-
trate the local density changes as nodes are sequentially added to the path. Grey nodes represent
visited nodes, blue nodes indicate unvisited nodes, and orange regions highlight the local neighbor-
hoods of selected nodes.

{ci}n−1
i=0 ⊂ R2, and E = {(vi, vj) | vi, vj ∈ V, i ̸= j} denotes the set of edges. A feasible

solution can be written as τ = (τ1, τ2, . . . , τn, τ1), where (τ1, τ2, . . . , τn) is a permutation of the
node indices {0, 1, . . . , n− 1}, and the tour is completed by returning to the starting node vτ0 . The
objective is to find a sequence τ that minimizes the total travel cost, formally expressed as:

min
τ

n∑
k=1

∥∥cτk − cτ(k+1) mod n

∥∥
2
.

2.2 CONSTRUCTIVE NCO SOLVERS

Constructive NCO solvers aim to learn end-to-end strategies for solving the TSP. Their core idea is
to model the generation of solution sequences as a sequential decision-making process, and most
approaches adopt a Transformer-based encoder–decoder architecture (Vaswani et al., 2017). Given
a TSP instance with n nodes, the encoder maps the input node features {xi}n−1

i=0 ∈ Rn×2 into initial
node embeddings {hi}n−1

i=0 ∈ Rn×d. The decoder then constructs the complete solution sequence τ
in an autoregressive manner, starting from an initially empty partial solution. At the t-th decoding
step, the decoder selects a node from the set of unvisited nodes. The selected index τt is then
appended to the partial solution (τ1, . . . , τt−1), with the corresponding node vτt marked as visited,
where τ1 and τt−1 denote the indices of the first and last visited nodes, respectively. This process
repeats until all nodes have been visited, resulting in a complete feasible solution sequence.

3 THE PROPOSED GDAT METHOD

This section describes the proposed GDaT in detail. Firstly, the framework of GDaT is introduced.
Then two core modules including the multi-scale density extraction module and the density-aware
attention module are presented.

3.1 FRAMEWORK OF GDAT

Figure 2 gives the framework of GDaT, which consists of a light encoder and a heavy decoder,
and generates solutions in an autoregressive manner. To facilitate the subsequent descriptions, we
give the following notations. At the t-th step of route construction, let the current partial solution
be τ<t = (τ1, . . . , τt−1), where τ1 and τt−1 denote the indices of the first and last visited nodes,
respectively. Denote by Vt the set of unvisited nodes, and define the context node set as Ct =
Vt ∪ {vτ1 , vτt−1

}.
Encoder. The encoder consists of a position feature embedding layer and the proposed multi-scale
density extraction module, which are used to encode node position features and multi-scale density
features, respectively. Given a TSP instance with n nodes, the input node features {xi}n−1

i=0 ∈ Rn×2

represent the 2D coordinate vectors of the nodes. The position feature embedding layer transforms
these features into initial node embeddings through a linear projection:

h
(0)
i = Wembxi + bemb, ∀i ∈ {0, . . . , n− 1}, (1)
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Figure 2: The overall architecture of GDaT.

where Wemb ∈ R2×d and bemb ∈ Rd are learnable parameters. The resulting initial position
embedding matrix is denoted as H0 ∈ Rn×d. This position feature embedding process is performed
only once at the beginning of the autoregressive construction. The multi-scale density extraction
module computes multi-scale density embeddings Dt ∈ R|Ct|×d for the current context Ct at the
t-th step of route construction (see Section 3.2).

Decoder. At the t-th decoding step, the decoder initializes its input embeddings by selecting the
rows of H0 corresponding to Ct, forming H

(0)
t ∈ R|Ct|×d. The embeddings (H(0)

t , Dt) are jointly
processed through L layers of the density-aware attention module (see Section 3.3). The output
embeddings H

(L)
t are used to compute the selection probabilities for the next node via a linear

projection followed by softmax. Specifically, the logit for node vi is computed as:

ui =

{
h
(L)
t,i WO, if i /∈ {τ1, . . . , τt−1},
−∞, otherwise,

p = softmax(u), (2)

where WO ∈ Rd×1 is learnable, and h
(L)
t,i denotes the row of H(L)

t corresponding to node vi ∈ Ct.
The next node index τt is sampled from p and appended to the partial solution. This autoregressive
process repeats until a complete solution is obtained.

3.2 MULTI-SCALE DENSITY EXTRACTION MODULE

As shown in Figure 2(A), the multi-scale density extraction process consists of three steps: nested
subgraph construction, local density estimation, and multi-scale feature fusion. The following de-
scribes each step in turn.

Step 1: Nested subgraph construction. Neighborhoods of different sizes around the same node
may exhibit distinct distributional patterns. To capture these multi-scale views for a more compre-
hensive representation of local density, we predefine an ordered collection of neighborhood scales
K = {k1, k2, . . . , km} with k1 < k2 < · · · < km, where each kj specifies the number of neighbors
for the j-th scale.

To avoid redundant neighbor searches, for each node vi ∈ Ct, we perform a single km-nearest neigh-
bors search within Ct \ {vi} to obtain its full neighborhood N (km)

i . Smaller-scale neighborhoods

4
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are then derived by truncating this list:

N (kj)
i = prefixkj

(
N (km)

i

)
, j = 1, . . . ,m− 1, (3)

where prefixkj
(·) denotes taking the first kj elements. Each neighborhood N (k)

i defines a nested

local subgraph G(k)i = {vi} ∪ N (k)
i for all k ∈ K, which satisfies the nesting property G(k1)

i ⊂
G(k2)
i ⊂ · · · ⊂ G(km)

i for all vi ∈ Ct. Since we consider a complete undirected graph, the edge set is
implicit and thus omitted in our subgraph definition.

Step 2: Local Density Estimation. In this work, we compute the density of each nested subgraph
using Gaussian kernel density estimation (KDE), which provides a smooth and robust measure of
local concentration compared to hard counting methods. For node vi at scale kj , the density is given
by:

ρ
(kj)
i =

1

kj

∑
vi′∈N

(kj)

i

1

h
(kj)
i

√
2π

exp

(
− d2ii′

2(h
(kj)
i )2

)
, (4)

where ci ∈ R2 denotes the coordinate vector of node vi, dii′ = ∥ci−ci′∥2 is the Euclidean distance
between nodes vi and vi′ , and h

(kj)
i > 0 is the bandwidth parameter controlling the smoothness of

the estimate.

We employ an adaptive bandwidth strategy in KDE, where the bandwidth for each node is set to the
root-mean-square distance to its k-nearest neighbors:

h
(kj)
i =

√√√√ 1

kj

∑
vi′∈N

(kj)

i

d2ii′ . (5)

This allows the density estimation to automatically adjust to local node distribution, yielding sharper
peaks in dense clusters and smoother estimates in sparse regions. Each ρ

(kj)
i thus constitutes a scale-

specific and context-dependent estimate of local density, serving as the basis for multi-scale feature
fusion in the subsequent step.

Step 3: Multi-scale Feature Fusion. For each node vi ∈ Ct, stack the scale-specific density
estimates into a multi-scale feature vector:

ρi =
[
ρ
(k1)
i , . . . , ρ

(km)
i

]
∈ Rm. (6)

This vector is transformed into a learnable embedding by a multi-layer perceptron:
ρ′
i = fMLP(ρi), (7)

where fMLP : Rm → Rd is a learnable nonlinear mapping. Stacking ρ′
i for all vi ∈ Ct yields the

density embedding matrix:

Dt =

 (ρ′
1)

⊤

...
(ρ′

|Ct|)
⊤

 ∈ R|Ct|×d. (8)

The resulting multi-scale density embeddings can reveal the current structural properties of the un-
visited nodes and serve to guide the attention-based modeling of positional features.

3.3 DENSITY-AWARE ATTENTION MODULE

The density-aware attention module is designed to enhance structural perception by leveraging the
extracted multi-scale density features to guide the modeling of positional features. As shown in
Figure 2(B), at the t-th decoding step, given position embeddings Ht ∈ R|Ct|×d and multi-scale
density embeddings Dt ∈ R|Ct|×d, the attention modeling at the ℓ-th layer is as follows:

Q
(ℓ)
t = H

(ℓ−1)
t W (ℓ)

q +DtW
(ℓ)
ρ1

,

K
(ℓ)
t = H

(ℓ−1)
t W

(ℓ)
k +DtW

(ℓ)
ρ2

,

V
(ℓ)
t = H

(ℓ−1)
t W (ℓ)

v ,

(9)
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where W (ℓ)
q ,W

(ℓ)
ρ1 ,W

(ℓ)
k ,W

(ℓ)
ρ2 ,W

(ℓ)
v ∈ Rd×d are layer-specific learnable matrices. These represen-

tations are processed by a Transformer block (without normalization). Specifically, the ℓ-th block
updates node positional embeddings as:

Ĥt

(ℓ)
= MHA(Q

(ℓ)
t ,K

(ℓ)
t , V

(ℓ)
t ) +H

(ℓ−1)
t ,

H
(ℓ)
t = FFN(Ĥt

(ℓ)
) + Ĥt

(ℓ)
,

(10)

where MHA(·) is a multi-head self-attention layer, and FFN(·) is a feed forward network with
ReLU activation.

Although density embeddings enter Eq. (9) through simple linear addition, the resulting attention
scores embody rich interactions. For nodes vi and vj , the projected query and key at the ℓ-th layer
are:

q
(ℓ)
t,i = (W (ℓ)

q )⊤h
(ℓ−1)
t,i + (W (ℓ)

ρ1
)⊤ρt,i,

k
(ℓ)
t,j = (W

(ℓ)
k )⊤h

(ℓ−1)
t,j + (W (ℓ)

ρ2
)⊤ρt,j ,

(11)

so that the unnormalized compatibility expands as:

(q
(ℓ)
t,i )

⊤k
(ℓ)
t,j = h

(ℓ−1)
t,i

⊤
(W (ℓ)

q (W
(ℓ)
k )⊤)h

(ℓ−1)
t,j︸ ︷︷ ︸

pos–pos

+h
(ℓ−1)
t,i

⊤
(W (ℓ)

q (W (ℓ)
ρ2

)⊤)ρt,j︸ ︷︷ ︸
pos–density

+ ρ⊤
t,i(W

(ℓ)
ρ1

(W
(ℓ)
k )⊤)h

(ℓ−1)
t,j︸ ︷︷ ︸

density–pos

+ρ⊤
t,i(W

(ℓ)
ρ1

(W (ℓ)
ρ2

)⊤)ρt,j︸ ︷︷ ︸
density–density

.
(12)

This four-term decomposition demonstrates that positional and density embeddings interact multi-
plicatively within attention, amplifying differences among proximal nodes in dense regions while
enabling sustained exploration of distant nodes in sparse regions, thereby improving next-node se-
lection accuracy under unseen distributions and varying problem scales.

4 EXPERIMENTS

This paper conducts comprehensive experiments on both synthetic and real-world TSP datasets,
covering a diverse range of problem scales and node distributions, to demonstrate the omni-
generalization performance of GDaT. We compare GDaT with several state-of-the-art methods to
illustrate its superiority and perform ablation studies to validate the effectiveness of the proposed
key components.

Dataset. For the synthetic datasets, we generate 16 synthetic TSP datasets by combining four node
distributions (uniform, clustered, explosion, implosion) with four scales (1,000, 2,000, 5,000, and
10,000). Each scale-distribution combination contains 128 instances for 1K and 2K, and 16 instances
for 5K and 10K. The data generation process follows Fang et al. (2024) . For real-world benchmark
datasets, we use 80 symmetric TSP instances from TSPLIB951 that provide node coordinates in 2D
Euclidean space, with problem sizes ranging from 51 to 33,810 nodes. Additionally, we include
25 symmetric instances from National TSP2 in World TSP, also given as 2D Euclidean coordinates,
with problem sizes ranging from 29 to 24978 nodes.

Comparison Methods. We compare our method with: (1) Traditional Solvers: LKH3 (Helsgaun,
2017); (2) NCO Methods for Cross-Scale Generalization: LEHD (Fu Luo, 2023), GLOP (Ye
et al., 2024), UDC (Zheng et al., 2024), DEITSP (Wang et al., 2025a), GELD (Xiao et al., 2025),
SIL (Luo et al., 2025), DRHG (Li et al., 2025); (3) NCO Methods for Omni-Generalization:
Omni-POMO (Zhou et al., 2023), ELG (Gao et al., 2024), INViT (Fang et al., 2024).

Evaluation Metrics. We evaluate performance using the average gap to the (near-)optimal solution
and the total inference time in seconds (s), minutes (m), and hours (h). For each instance, the gap is
computed as:

gap =
costmodel − costopt

costopt
× 100%, (13)

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
2https://www.math.uwaterloo.ca/tsp/world/countries.html
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Table 1: Performance comparisons on synthetic TSP datasets of different distributions and problem
scales. Symbols denote inference strategies: G denotes single-rollout greedy inference, G∗ denotes
multi-rollout greedy inference, A denotes the use of data augmentation during inference, D&C
denotes the use of a divide-and-conquer strategy, and 2OPT denotes the 2-opt search strategy.

Model TSP-Uniform TSP-Clustered TSP-Explosion TSP-Implosion Average gap(%)Gap(%) Time Gap(%) Time Gap(%) Time Gap(%) Time

T
SP

-1
00

0

LKH3 0.00 9.8m 0.00 10.4m 0.00 10.3m 0.00 9.7m 0.00

LEHD (NeurIPS’23, G) 2.56 1.2m 15.44 1.2m 6.17 1.2m 4.07 1.2m 7.06
UDC (NeurIPS’24, D&C+G∗+A) 2.20 42s 9.16 39.5s 6.44 40.3s 3.22 39.8s 5.26
GLOP (AAAI’24, D&C+G∗+A) 4.87 15s 5.30 14.2s 5.17 14.3s 4.65 14.2s 5.00
ELG (IJCAI’24, G∗+A) 10.53 1.3m 13.29 1.2m 12.67 1.2m 10.67 1.2m 11.79
INViT-3V (ICML’24, G∗+A) 4.49 30.6m 7.92 29.6m 7.66 30.2m 5.45 30.2m 6.38
DEITSP (KDD’25, G+2OPT ) 3.68 3.3m 5.65 3.7m 4.94 3.7m 4.06 3.5m 4.58
GELD (arXiv’25, G) 2.76 9s 11.54 6s 5.42 5s 5.80 6s 6.38
SIL (ICLR’25, G) 1.39 20s 6.92 19s 3.95 19s 3.71 19s 3.99

GDaT (Ours, G) 2.33 5.9m 2.37 4.8m 2.49 5.9m 2.56 5.8m 2.44

T
SP

-2
00

0

LKH3 0.00 44.4m 0.00 41.2m 0.00 43.8m 0.00 46.4m 0.00

LEHD (NeurIPS’23, G) 5.70 8.6m 22.86 8.6m 11.88 8.6m 7.66 8.6m 12.03
UDC (NeurIPS’24, D&C+G∗+A) 3.63 1.2m 11.53 1.2m 9.82 1.2m 4.81 1.2m 7.45
GLOP (AAAI’24, D&C+G∗+A) 5.67 9.5s 5.97 9.5s 6.08 9.6s 5.51 9.6s 5.81
ELG (IJCAI’24, G∗+A) 13.44 4.7m 16.01 4.7m 16.63 4.7m 13.38 4.7m 14.87
INViT-3V (ICML’24, G∗+A) 4.82 1.2h 7.60 1.2h 8.03 1.2h 5.55 1.2h 6.50
GELD (arXiv’25, G) 4.02 11s 12.80 11s 8.48 11s 5.87 10s 7.79
SIL (ICLR’25, G) 1.56 1.2m 7.45 1.2m 4.07 1.2m 3.45 1.2m 4.13

GDaT (Ours, G) 2.62 42.7m 2.72 36.2m 2.75 42.3m 2.65 41.7m 2.69

T
SP

-5
00

0

LKH3 0.00 40.0m 0.00 39.6m 0.00 41.4m 0.00 41.7m 0.00

LEHD (NeurIPS’23, G) 14.45 15.9m 35.13 15.9m 20.28 15.9m 15.55 15.9m 21.35
GLOP (AAAI’24, D&C+G∗+A) 6.01 2.9s 5.65 2.9s 6.58 3.0s 5.65 2.9s 5.97
ELG (IJCAI’24, G∗+A) 16.38 4.4m 18.74 4.3m 21.55 4.4m 16.33 4.4m 18.25
INViT-3V (ICML’24, G∗+A) 5.17 21.3m 6.95 21.5m 8.69 21.2m 5.94 21.2m 6.69
GELD (arXiv’25, G) 6.98 27s 13.27 26s 11.55 27s 7.90 27s 9.93
SIL (ICLR’25, G) 2.16 1.1m 7.70 1.1m 6.36 1.1m 3.09 1.1m 4.83

GDaT (Ours, G) 3.02 20.7m 3.02 18.8m 3.14 20.5m 2.83 20.5m 3.00

T
SP

-1
00

00

LKH3 0.00 3.4h 0.00 3.5h 0.00 3.5h 0.00 3.1h 0.00

LEHD (NeurIPS’23, G) 24.86 2.1h 62.36 2.1h 30.36 2.1h 28.66 2.1h 36.56
GLOP (AAAI’24, D&C+G∗+A) 5.85 9.7s 4.89 9.5s 5.94 9.7s 5.79 9.8s 5.62
INViT-3V (ICML’24, G∗+A) 5.19 57.1m 5.77 57.8m 7.30 57m 5.79 57m 6.01
GELD (arXiv’25, G) 10.08 53s 12.87 55s 12.55 54s 10.02 55s 11.38
SIL (ICLR’25, G) 2.71 3.7m 9.90 3.7m 5.81 3.7m 3.39 3.7m 5.45

GDaT (Ours, G) 2.93 2.9h 3.29 2.7h 2.96 2.8h 3.16 2.8h 3.09

where costmodel denotes the tour length produced by the model, and costopt is the optimal or near-
optimal tour length. For synthetic datasets, costopt is obtained by LKH3; for real-world TSP in-
stances, costopt is taken from the official best-known solutions.

Implementing Details. In the multi-scale density extraction module of GDaT, the number of MLP
layers is set to 3, the hidden layer dimension is set to 512, and the number of neighborhood scales per
node is set to 3. The choice of scale number and node count per scale is analyzed in Appendix F.1.
The density-aware attention module employs multi-head attention with 8 heads, and the hidden
dimension of the feed-forward layer is set to 512. In our experiments, this module is integrated
within the linear attention framework of Luo et al. (2025), and additional architectural details are
provided in Appendix F.2. We adopt a supervised self-improvement training paradigm proposed
by Luo et al. (2025) and train on a synthetic dataset of 200,000 TSP-100 instances covering all
four distributions (uniform, clustered, explosion, implosion). Training proceeds for 100 epochs
with a batch size of 1024. We use the Adam optimizer (Kingma, 2014) with an initial learning
rate of 1 × 10−4, decayed by 0.97 per epoch. More training details are provided in Appendix G.
All experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU with 24GB memory,
except for the evaluation on the synthetic dataset (Table 1), which is performed on a single NVIDIA
GeForce RTX 4090 GPU with 24GB memory.

4.1 COMPARATIVE RESULTS

We conduct extensive experiments on synthetic TSP datasets with four different scales (1K, 2K, 5K,
10K) and four distributions (uniform, clustered, explosion, implosion). To fairly evaluate gener-
alization performance, all competing methods are tested without iterative improvement strategies.
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Figure 3: Polar Bar Chart of Variance Analysis on Synthetic Datasets. For better visualization, all
variances are shifted by 1 and log-transformed (base 2).

Table 2: Performance comparisons on TSPLIB95 instances grouped by problem size. Each cell
shows the average gap and number of successfully solved instances (out of total). OOM: The method
is inapplicable due to the memory limit. Symbol I indicates iterative strategies not directly compa-
rable to ours, hence grouped in Non-iterative. These methods follow the settings of their original
papers.

Model 1–100 101–1000 1001–10000 >10000

N
on

-it
er

at
iv

e

LEHD (NeurIPS’23, G) 0.61% (12/12) 3.28% (37/37) 13.48% (25/25) 46.55% (4/6)
UDC (NeurIPS’24, D&C+I) 0.19% (6/12) 1.57% (37/37) 7.54% (19/25) OOM
GLOP (AAAI’24, D&C+I) 0.32% (12/12) 1.01% (37/37) 5.64% (25/25) 6.97% (3/6)
ELG (IJCAI’24, G∗+A) 0.57% (12/12) 3.93% (37/37) 11.13% (21/25) OOM
INViT-3V (ICML’24, G∗+A) 1.26% (12/12) 4.28% (37/37) 7.76% (25/25) 8.07% (6/6)
DEITSP (KDD’25, I) 0.67% (12/12) 1.44% (37/37) 5.01% (11/25) OOM
SIL (ICLR’25, G) 3.72% (12/12) 5.62% (37/37) 6.88% (25/25) 13.48% (6/6)
GELD (arXiv’2025, G) 0.89% (12/12) 4.84% (37/37) 9.23% (25/25) 15.47% (6/6)

GDaT (Ours, G) 1.00% (12/12) 2.06% (37/37) 4.16% (25/25) 5.73% (6/6)

It
er

at
iv

e SIL (ICLR’25, T=1000) 0.28% (12/12) 0.28% (37/37) 1.46% (25/25) 4.57% (6/6)
DRHG (AAAI’25, T=1000) 0.24% (12/12) 0.23% (37/37) 2.12% (25/25) 7.37% (6/6)
GELD (arXiv’25, T=1000) 0.26% (12/12) 1.65% (37/37) 3.83% (25/25) 6.03% (6/6)

GDaT (Ours, T=(100,1000)) 0.24% (12/12) 0.25% (37/37) 1.33% (25/25) 3.60% (6/6)

As shown in Table 1, our method achieves the best performance in 12 out of 16 subsets and con-
sistently outperforms all baselines in terms of the average gap across each scale. Although the
uniform distribution remains challenging—where our performance is slightly behind the strongest
baseline—our approach still maintains a competitive level. More importantly, Figure 3 presents a
variance analysis across eight groups: four by scale (e.g., TSP-1000, aggregating all distributions)
and four by distribution (e.g., TSP-Uniform, aggregating all scales), comparing our method with
four state-of-the-art generalization-focused models. Our method shows significantly lower variance
across all scale groups, demonstrating superior cross-distribution generalization. It also achieves the
lowest variance on TSP-Clustered and TSP-Explosion across scales, indicating strong cross-scale
robustness in complex distribution settings. Overall, these results indicate that our method achieves
state-of-the-art omni-generalization performance without relying on data augmentation or search
heuristics.

The performance on TSPLIB95 instances, grouped by problem size, is summarized in Table 2. we
divide the 80 TSPLIB95 instances into four groups according to their problem sizes and conduct
comprehensive comparisons. Using only greedy inference, GDaT achieves the best performance on
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Table 3: Ablation study on Synthetic TSP and TSPLIB95 instances. Results on Synthetic TSP are
averaged over all distributions within each scale.

Synthetic TSP TSPLIB95

Variant (Ablation) 1000 5000 1–100 101–1000 1001–10000 >10000

w/o density-aware 2.75% 8.20% 1.66% 2.27% 5.74% 21.60%
w/o multi-scale 3.06% 6.51% 1.47% 1.86% 6.00% 12.84%
GDaT (Ours) 2.44% 3.00% 1.00% 2.06% 4.16% 5.73%

the two larger groups and exhibits the smallest performance variation across groups: the gap on the
largest group is only 4.73% worse than that on the smallest group, highlighting its robust general-
ization across both problem scales and the diverse distributions present in real-world instances. We
also report results using the iterative improvement strategy employed by SIL (Luo et al., 2025) and
GELD (Xiao et al., 2025), and compare them with three state-of-the-art iterative methods. For a
fair comparison, all iterative baselines use the number of iterations specified in their original papers.
To balance efficiency and solution quality, our method performs 1000 iterations on the two smaller
groups, 500 on the 1001–10000 group, and 100 on the largest group. The results show that GDaT
with iterative improvement achieves competitive performance on small-scale instances and achieves
the best performance on larger scales while using fewer iterations, further demonstrating its supe-
rior generalization across scales and distributions. Additional comparative results are provided in
Appendix H.

4.2 ABLATION STUDY

We conduct ablation studies on synthetic TSP instances of size 1000 and 5000, as well as on real-
world TSPLIB95 benchmark, to validate the effectiveness of key components in our method. Specif-
ically, we compare three variants: (1) w/o density-aware, which removes both the multi-scale density
extraction and density-aware attention modules; (2) w/o multi-scale, which retains only the single-
scale (largest-scale) density estimation in the density extraction module. All variants are trained
using the same protocol for fair comparison.

As shown in Table 3, the incorporation of density modeling (both in single-scale and multi-scale
forms) leads to consistently better generalization, particularly on large-scale instances. When com-
paring w/o multi-scale with w/o density-aware, we observe that introducing node density estimation,
even within a single-scale framework, results in superior overall performance. Although the gains
are modest on smaller instances, the improvement becomes significantly more pronounced on larger
scales (e.g., TSP-5000 and TSPLIB95 >10K), which indicates that density-aware modeling en-
hances generalization to large-scale problems. Furthermore, extending the density modeling from
a single-scale to a multi-scale design yields additional and substantial performance gains across the
board. Our GDaT consistently outperforms the single-scale variant, with the most notable improve-
ments observed in the largest instance groups. This demonstrates that multi-scale density modeling
plays a critical role in achieving robust omni-generalization on both synthetic and real-world TSP
instances.

5 CONCLUSION

This paper proposes the Generalizable Density-aware Transformer (GDaT) for solving the TSP.
By extracting multi-scale density features of unvisited nodes and incorporating them into attention-
based modeling, GDaT enables more informed and accurate next-node selection under unseen dis-
tributions and varying problem scales. Extensive experiments on both synthetic and real-world
TSP datasets demonstrate that GDaT outperforms state-of-the-art methods, particularly on large-
scale instances and instances with complex node distributions, which highlights its strong omni-
generalization performance. A limitation of GDaT lies in the computational overhead incurred by
repeatedly computing multi-scale densities during autoregressive route construction. Future work
will focus on improving the efficiency of density computation, as well as extending the proposed
framework to other combinatorial optimization problems.
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A APPENDIX

B ETHICS STATEMENT

This work follows the ICLR Code of Ethics. This study does not involve human subjects or animal
experiments. All datasets used, including synthetic TSP datasets, TSPLIB95, and National TSP,
were collected in compliance with relevant usage guidelines and do not involve privacy issues. We
have taken care to avoid any bias or discriminatory outcomes in our research process. No person-
ally identifiable information was used, and no experiments were conducted that could raise privacy
or security concerns. We are committed to maintaining transparency and integrity throughout the
research process.

C REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. Additionally, the public datasets used in this pa-
per, such as benchmark instances for the Traveling Salesman Problem in combinatorial optimization,
including TSPLIB95 and National TSP, are publicly available to ensure consistent and reproducible
evaluation results.

D LLM USAGE

Large Language Models (LLMs) were used to assist in improving the language clarity and grammat-
ical accuracy of this manuscript. Specifically, the model helped refine sentence structures, correct
grammar, and enhance overall readability. We carefully reviewed and edited all text, ensuring that
the final content accurately reflects our original ideas and scientific contributions. We confirm that
the use of LLMs adheres to ethical guidelines and does not lead to plagiarism or any form of aca-
demic misconduct.

E RELATED WORK

This section reviews recent NCO methods that aim to improve generalization, which can be broadly
categorized into three scenarios: cross-scale generalization, cross-distribution generalization, and
omni-generalization.

E.1 CROSS-SCALE GENERALIZATION

Strategy-based approaches aim to develop generalization techniques that are independent of the
specific NCO solver, to handle large-scale instances. Some works focus on designing training algo-
rithms to enhance scalability. Zhou et al. (2024) propose a three-stage variable-scale training scheme
to improve cross-scale generalization. Similarly, Luo et al. (2023) introduce a method to learn the
construction of partial solutions at varying scales during training for the same purpose. In addi-
tion, Luo et al. (2025) propose a self-improvement training paradigm that combines the strengths of
reinforcement learning and supervised learning, enabling efficient training on large-scale instances
and further improving model adaptability. Other research focuses on designing divide-and-conquer
strategies to tackle large-scale problems (Pan et al., 2023; Hou et al., 2023; Ye et al., 2024; Zheng
et al., 2024; Zhou et al., 2025). Among them, Ye et al. (2024) and Zheng et al. (2024) leverage Graph
Neural Networks (GNNs) to partition large-scale problems into multiple simpler sub-problems, en-
abling more efficient processing of large instances through parallel sub-problem solving.

From the model-design perspective for cross-scale generalization, Zhou et al. (2024) design an
instance-conditioned adaptation module, which explicitly incorporates problem-scale information
into the attention mechanism to make the model scale-aware. Similarly, Wang et al. (2025b) pro-
pose a Distance-aware Attention Reshaping (DAR) method that leverages scale-related signals to
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guide the model’s adaptation to varying problem sizes. In contrast, Luo et al. (2023) propose a Light
Encoder and Heavy Decoder (LEHD) structure, which enables the model to learn scale-independent
features. Additionally, some diffusion-based methods (Sun & Yang, 2023; Zhao et al., 2024) have
been found useful for cross-scale generalization.

E.2 CROSS-DISTRIBUTION GENERALIZATION

Another line of research focuses on improving robustness to unseen distributions. Zhang et al.
(2022) present an adaptive curriculum learning strategy based on task difficulty to improve cross-
distribution generalization for NCO solvers. Jiang et al. (2022) strengthen generalization by group-
ing training instances according to their generating distributions and minimizing the worst-case loss
across groups. Building on this direction, Bi et al. (2022) propose an adaptive multi-distribution
knowledge distillation framework that transfers the strategies of multiple teachers trained on dif-
ferent distributions into a single student model, thereby improving out-of-distribution performance.
Overall, these methods mitigate performance degradation in cross-distribution scenarios by optimiz-
ing training strategies.

E.3 OMNI-GENERALIZATION

Since real-world TSP instances often exhibit diverse distributions and varying scales, recent stud-
ies have begun to simultaneously address both aspects. From the strategy side, Zhou et al. (2023)
propose a general meta-learning framework, while Liu et al. (2025) introduce the Purity Policy Opti-
mization training paradigm, both aiming to simultaneously boost cross-distribution and cross-scale
generalization. From the model-design side, another line of research aims at omni-generalization
by developing local decision mechanisms that are insensitive to both scale and distribution. For
example, Gao et al. (2024) integrate local policies learned from neighborhood information with
global policies learned from complete instances, and jointly train them to achieve complementary
effects. Fang et al. (2024), on the other hand, restrict the decision space to the neighborhood of the
last visited node. Different from previous works, our GDaT focuses on designing modules that are
simultaneously scale-aware and distribution-aware.

F METHOD DETAILS

This section presents the detailed implementation of the proposed GDaT model, focusing on two
key modules: the multi-scale density extraction module and the density-aware attention module.

F.1 SELECTION OF NEIGHBORHOOD SCALES

To determine the appropriate neighborhood scales for the multi-scale density extraction module, we
conduct a statistical analysis on the optimal solutions of the entire training set, which consists of
200K TSP-100 instances. Specifically, for each instance, we examine the optimal tour and record, at
each step, the nearest-neighbor rank of the next node among all unvisited nodes with respect to the
current node. We denote the maximum such rank across all steps in instance i as ki, which reflects
the farthest node (in rank) considered by the optimal solution when selecting the next node during
the tour construction.

Let N denote the size of the dataset. Given {ki}Ni=1, we compute:

kmin =
1

N

N∑
i=1

ki, (14)

kmax = max
1≤i≤N

ki, (15)

where kmin reflects the average farthest neighbor considered by the optimal solutions, while kmax

corresponds to the worst-case dependency across all instances. In our analysis on the training set,
we obtain kmin = 16 and kmax = 98. To capture richer density-aware features, we further introduce
a third scale kmid, defined as the average of the two, yielding kmid = 57.
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Algorithm 1 Density-Aware Linear Attention Module

1: Input: Node position embeddings H(ℓ−1)
t ∈ R|Ct|×d, density embeddings Dt ∈ R|Ct|×d

2: Output: Updated node position embeddings H(ℓ)
t ∈ R|Ct|×d

3: Extract representative node position embeddings and density embeddings:
4: H

(ℓ−1)
t,a = [H

(ℓ−1)
t ]a, Dt,a = [Dt]a {a denotes first and last visited nodes}

5: Update representative nodenode position embeddings:
6: Qa ← H

(ℓ−1)
t,a W

(ℓ)
q +Dt,aW

(ℓ)
ρ1

7: Ka ← H
(ℓ−1)
t W

(ℓ)
k +DtW

(ℓ)
ρ2

8: Va ← H
(ℓ−1)
t W

(ℓ)
v

9: Ĥ
(ℓ)
t,a ← MHA(Qa,Ka, Va) +H

(ℓ−1)
t,a

10: H
(ℓ)
t,a ← FFN(Ĥ

(ℓ)
t,a ) + Ĥ

(ℓ)
t,a

11: Update context node position embeddings:
12: Qc ← H

(ℓ−1)
t W

′(ℓ)
q +DtW

(ℓ)
ρ3

13: Kc ← H
(ℓ)
t,aW

′(ℓ)
k +Dt,aW

(ℓ)
ρ4

14: Vc ← H
(ℓ)
t,aW

′(ℓ)
v

15: Ĥ
(ℓ)
t ← MHA(Qc,Kc, Vc) +H

(ℓ−1)
t

16: H
(ℓ)
t ← FFN(Ĥ

(ℓ)
t ) + Ĥ

(ℓ)
t

17: return H
(ℓ)
t

Table 4: Ablation study on the number of neighborhood scales.

Model 1–100 101–1000 1001–10000 >10000

GDaT-2V 1.25% 2.52% 4.49% 7.28%
GDaT-3V 1.00% 2.06% 4.16% 5.73%

To evaluate the impact of varying neighborhood scales, we compare two-scale and three-scale vari-
ants on the TSPLIB95 benchmark, as shown in Table 4. GDaT-2V uses {kmin, kmax}, while GDaT-
3V uses {kmin, kmid, kmax}. The results demonstrate that adding the third scale consistently im-
proves performance. Given the additional computational cost of further increasing the number of
scales, we adopt a fixed three-scale design in all experiments.

F.2 DENSITY-AWARE LINEAR ATTENTION MODULE

In our experiments, we integrate the proposed density-aware attention module into the linear atten-
tion framework of Luo et al. (2025), forming the Density-Aware Linear Attention Module as the
core component of the decoder. The core idea of the linear attention is as follows: the context node
embeddings are first used to update the representative node embeddings (i.e., the first and last visited
nodes), and then the updated representative node embeddings are used to update the context node
embeddings. This procedure ensures effective information propagation while achieving linear time
and space complexity. Algorithm 1 provides the detailed pseudocode of this module.

G TRAINING DETAILS

In training neural combinatorial optimization (NCO) models, supervised learning (SL) approaches
often struggle to obtain sufficient (near)-optimal solutions as labels, while reinforcement learning
(RL) methods suffer from sparse rewards and high GPU memory usage. To address these challenges,
Luo et al. (2025) proposed a supervised self-improvement training (SIT) paradigm. The core idea
of SIT is to first generate an initial solution, which serves as pseudo-labels for model training. The
trained model then reconstructs solutions using a local improvement strategy, producing improved
pseudo-labels that are used to further refine the model. By iterating solution reconstruction in this

15
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Table 5: Performance comparisons on synthetic TSP instances under a clustered distribution with
5 clusters. OOM: The method is inapplicable due to the memory limit. Symbols denote inference
strategies: G denotes single-rollout greedy inference, G∗ denotes multi-rollout greedy inference,
A denotes the use of data augmentation during inference, D&C denotes the use of a divide-and-
conquer strategy, and 2OPT denotes the 2-opt search strategy.

Model TSP-1000 TSP-2000 TSP-5000 TSP-10000
Gap(%) Time Gap(%) Time Gap(%) Time Gap(%) Time

LKH3 0.00 9.9m 0.00 42.0m 0.00 39.8m 0.00 3.3h

LEHD (NeurIPS’23, G) 14.09 1.2m 20.42 8.6m 39.53 15.9m 72.53 2.1h
UDC (NeurIPS’24, D&C+G∗+A) 9.47 39.6s 11.95 1.2m OOM OOM
GLOP (AAAI’24, D&C+G∗+A) 5.19 14.23s 6.18 9.58s 5.81 2.9s 5.25 9.39s
ELG (IJCAI’24, G∗+A) 12.66 1.2m 15.33 4.7m 18.42 4.3m OOM
INViT-3V (ICML’24, G∗+A) 8.58 29.5m 8.59 1.2h 7.95 21.7m 6.76 58.3m
DEITSP (KDD’25, G+2OPT ) 5.93 3.6m OOM OOM OOM
GELD (arXiv’25, G) 12.58 5s 13.09 11s 14.69 27s 14.02 54s
SIL (ICLR’25, G) 7.57 19s 7.44 1.2m 7.99 1.1m 9.45 3.7m

GDaT (Ours, G) 2.20 5.9m 2.62 33.4m 3.49 19.2m 3.27 2.5h

Table 6: Performance comparisons on National TSP instances grouped by problem size. Each cell
shows the average gap and number of successfully solved instances (out of total). Symbol I denotes
iterative improvement strategies inherent to the respective methods. These approaches follow the
settings of their original papers. † indicates results taken from Xiao et al. (2025).

Model 1–100 101–1000 1001–10000 >10000

Omni-TSP (ICML’23, G∗)† 2.63% (2/2) 16.02% (4/4) 79.67% (13/13) 71.67% (1/6)
LEHD (NeurIPS’23, G)† 0.12% (2/2) 39.94% (4/4) 82.43% (13/13) 98.52% (1/6)
UDC (NeurIPS’24, D&C+I)† – 7.68% (4/4) 23.21% (13/13) 18.41% (1/6)
GLOP (AAAI’24, D&C+I) 3.76% (2/2) 4.55% (4/4) 6.49% (13/13) 5.99% (6/6)
ELG (IJCAI’24, G∗+A)† 2.28% (2/2) 11.18% (4/4) 44.64% (13/13) 22.44% (1/6)
INViT-3V (ICML’24, G∗+A)† 0.03% (2/2) 4.94% (4/4) 10.86% (13/13) 9.84% (6/6)
SIL (ICLR’25, G) 0.03% (2/2) 25.73% (4/4) 59.96% (13/13) 92.01% (6/6)
GELD (arXiv’2025, G) 0.41% (2/2) 3.96% (4/4) 17.01% (13/13) 17.45% (6/6)

GDaT (Ours, G) 0.03% (2/2) 2.48% (4/4) 5.62% (13/13) 5.88% (6/6)

manner, SIT enables NCO methods to effectively solve large-scale problems without requiring any
labeled data.

However, since our model is trained solely on small-scale TSP-100 instances, multiple rounds of
self-improvement are not required. Specifically, we first use the LKH3 solver (Helsgaun, 2017) to
quickly generate high-quality approximate solutions for the training set as pseudo-labels. The model
is then trained for 50 epochs using supervised learning. After a single round of local reconstruction
to generate improved pseudo-labels, training continues for another 50 epochs. This single round
of self-improvement is sufficient to achieve good performance while substantially reducing training
time.

H ADDITIONAL RESULTS

We further conduct comparative experiments on (i) a synthetic datasets with a clustered distribution
containing five clusters across four problem scales, and (ii) the real-world National TSP benchmark.
These additional evaluations aim to verify the robustness and generalization of our method under
more complex distributions and real-world instances.

Table 5 reports the results on the synthetic clustered datasets. The results show that, even with
greedy inference only, our method consistently achieves the best performance across all scales,
demonstrating strong generalization to complex clustered distributions. Table 6 presents the results
on the National TSP dataset. Compared with the results on TSPLIB95 (see main text), we observe
that most competing methods suffer from significant performance degradation, with the exception
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Figure 4: TSP-500 Instances under four different distributions.

of GLOP, INViT, and our GDaT. In particular, GDaT not only maintains stable performance but
also achieves the best overall results, which highlights its effectiveness and robustness on real-world
benchmarks.

I VISUALIZATION

In this work, we consider four distinct node distributions to evaluate the generalization performance
of our model. Figure 4 visualizes representative instances of each distribution with N = 500 nodes.
All instances are normalized to the unit square [0, 1]2 using min-max scaling while preserving aspect
ratio. The generation process and characteristics of each distribution are as follows:

Uniform distribution. All nodes are independently and uniformly sampled from [0, 1]2:

pi ∼ U([0, 1]2), i = 1, . . . , N, (16)

where pi = (xi, yi). This distribution exhibits uniform node density with no local structure.

Clustered distribution. The N nodes are divided into K clusters of approximately equal size. Each
cluster center ck is uniformly sampled from [0, 1]2, and the coordinates of nodes within the cluster
are generated by adding isotropic Gaussian noise with standard deviation σ = 0.04:

pi = ck + ϵ, ϵ ∼ N (0, σ2I), (17)

where I is the 2 × 2 identity matrix. In our experiments, K = 3. This results in multiple dense
groups separated by sparse regions.

Explosion distribution. Nodes are first uniformly sampled from [0, 1]2. Then, for each instance, an
explosion center c ∈ [0, 1]2 and radius r ∼ U(0.1, 0.5) are selected. For any node pi within the disc
of radius r centered at c, its position is updated as:

p′
i = c+

pi − c

∥pi − c∥
· δ, δ ∼ Exp(λ), λ = 8, (18)

pushing it radially outward. This creates a central void with higher node density around the perime-
ter.

Implosion distribution. Nodes are initially sampled uniformly from [0, 1]2. An implosion center c
and radius r ∼ U(0.1, 0.5) are sampled. For nodes inside the disc, the position is updated as:

p′
i = c+ α · (pi − c), (19)

where α = min(r, |N (0, 1)|) is a scaling factor derived from a half-normal distribution and clipped
by r. This results in a dense core around c with sparser surroundings.
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