
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GDAT: GENERALIZABLE DENSITY-AWARE TRANS-
FORMER FOR SOLVING THE TRAVELING SALESMAN
PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, Neural Combinatorial Optimization (NCO) solvers have demonstrated
significant potential in solving the Traveling Salesman Problem (TSP). However,
existing NCO solvers typically model only the positional features of nodes, ne-
glecting the differences in regional density among the unvisited nodes during
route construction. This would hinder their generalization capability on tasks with
unseen distributions and varying scales. To address this issue, we propose the
Generalizable Density-aware Transformer (GDaT) for solving the TSP. Specif-
ically, GDaT mainly includes two modules: the multi-scale density extraction
module and the density-aware attention module. The former generates multiple
nested subgraphs of each unvisited node via the k-nearest neighbors strategy and
estimates its densities using Gaussian kernels under each nested subgraph. These
densities are then fused by a multi-layer perceptron for capturing multi-scale den-
sity features for each unvisited node during route construction. The latter lever-
ages the extracted multi-scale density features to guide the attention-based mod-
eling of positional features, enabling the model to perceive variations in problem
scale and node distribution, thereby facilitating more accurate next-node selection
under unseen distributions and varying scales. Experimental results on synthetic
and real-world TSP datasets across diverse scales and distributions demonstrate
that GDaT achieves superior generalization performance. The code is available at
https://anonymous.4open.science/r/GDaT-31F2.

1 INTRODUCTION

The Traveling Salesman Problem (TSP) is a class of NP-hard combinatorial optimization problems
with broad applications in logistics scheduling (Konstantakopoulos et al., 2022), electronic design
automation (Alkaya & Duman, 2013), and related domains. Traditional methods, such as exact
solvers using branch-and-cut algorithms (Applegate et al., 2009) and heuristic approaches based on
local search (Helsgaun, 2017) or hybrid metaheuristics (Vidal, 2022), can produce optimal or high-
quality near-optimal solutions. These methods require extensive expert-driven design and parameter
tuning, while deteriorates rapidly as problem size grows, which limits their scalability and real-world
applicability.

In recent years, constructive Neural Combinatorial Optimization (NCO) approaches have received
increasing attention due to their fast inference speed and high solving efficiency (Bengio et al.,
2021). These methods (Bello et al., 2017; Nazari et al., 2018; Kool et al., 2019) leverage deep
neural networks to directly learn solution-construction strategies from data, thereby avoiding the re-
liance on hand-crafted design in traditional algorithms and significantly reducing development costs.
On small-scale TSP instances with specific data distributions, they have demonstrated performance
comparable to traditional solvers (Kwon et al., 2020; Hottung et al., 2022; Sun et al., 2024). In
particular, they show strong potential in uniformly distributed settings with no more than 100 nodes.

For constructive NCO solvers, they are usually trained on small-scale instances under fixed distri-
butions, such as uniformly distributed problems with 100 nodes, the learned solution construction
strategies often fail to generalize to larger scales or unseen distributions. Although some attempts
have been made to address the generalization issues of constructive NCO methods, most of them fo-

1

https://anonymous.4open.science/r/GDaT-31F2

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

cus solely on either cross-scale generalization (Luo et al., 2023; Ye et al., 2024; Zheng et al., 2024;
Zhou et al., 2025; Luo et al., 2025) or cross-distribution generalization (Zhang et al., 2022; Bi et al.,
2022; Fei Liu & Yuan, 2024). Since real-world TSP instances (e.g., TSPLIB95 (Reinelt, 1991))
usually simultaneously exhibit multi-scale and multi-distribution characteristics, jointly considering
both scale and distribution is more practically meaningful. Recently, some works have addressed this
issue. For example, some studies (Zhou et al., 2023; Liu et al., 2025) achieve omni-generalization
(i.e., generalization across diverse scales and distributions) by designing training-level generaliza-
tion strategies, but relying solely on training strategies may still lead to poor generalization when
applied to problems with distributions that is significantly different from the training set. Other
works (Gao et al., 2024; Fang et al., 2024) focus on designing local decision mechanisms that are
insensitive to scale and distribution.

However, these mechanisms tend to prioritize nearby nodes, which limits their effectiveness in sce-
narios where selecting distant nodes crucial for minimizing total tour length is required, such as in
clustered settings. Therefore, introducing a sense mechanism that enables the model to jointly per-
ceive variations in both scale and distribution is a more general and effective approach. We observe
that as the tour is incrementally constructed, the density of the unvisited nodes changes dynamically,
driven by variations in both the scale and distribution of the remaining subgraph (see Figure 1). Fur-
thermore, neighborhoods of different sizes around the same node may exhibit distinct distributional
patterns (see Figure 2(A)). Capturing such multi-scale density dynamics can reveal the current struc-
tural properties of the unvisited nodes and thereby enables the model to jointly perceive variations
in both scale and distribution.

Thus, we propose the Generalizable Density-aware Transformer (GDaT), which mainly includes
two modules: multi-scale density extraction module and density-aware attention module. The multi-
scale density extraction module first selects neighbor sets of varying sizes for each unvisited node
using the k-nearest neighbors strategy, forming a series of nested local subgraphs. Then, it applies
Gaussian kernel density estimation to each subgraph, where the smooth distance-decay property
of the Gaussian kernel allows a more accurate characterization of the influence of nearby nodes
on local density. Finally, it fuses the density estimates from different scales using the multi-layer
perceptron to obtain a comprehensive representation of the local density for each unvisited node.
The density-aware attention module incorporates density information into the query and key vectors
via linear summation with positional features. This enables the attention mechanism to adaptively
adjust weight allocation based on the multi-scale density features of each node, thereby allowing the
model to perceive local structural variations in scale and distribution. This perception facilitates finer
discrimination among proximal nodes in dense regions while maintaining sensitivity to distant nodes
in sparse regions, ultimately leading to more accurate next-node selection under unseen distributions
and varying problem scales.

The contributions of this paper are summarized as follows: (1) This paper proposes Generalizable
Density-aware Transformer (GDaT) for solving the TSP. To the best of our knowledge, this is the
first NCO constructive approach that explicitly extract node density features to address the challenge
of omni-generalization. (2) This paper introduces a multi-scale density extraction module constructs
nested subgraphs at multiple scales for each unvisited node during route construction, capturing a
comprehensive multi-scale density representation that reveals the local structural characteristics of
the unvisited node set. (3) This paper develops a density-aware attention module that integrates
multi-scale density features of each unvisited node into positional attention modeling, achieving
more accurate next-node selection on tasks with unseen distributions and varying scales. (4) This
paper conducts extensive experiments on synthetic and real-world TSP datasets with varying sizes
and distributions. The results demonstrate that GDaT achieves superior omni-generalization perfor-
mance compared to state-of-the-art methods, particularly on large-scale and and those with complex
distributions.

2 PRELIMINARIES

2.1 TSP DEFINITION

This work focuses on the Euclidean TSP. A TSP instance S can be represented by a complete
undirected graph G = (V, E), where V = {vi}n−1

i=0 denotes the set of n nodes with coordinates

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: The route construction process. (a) shows the complete solution tour, while (b)-(c) illus-
trate the local density changes as nodes are sequentially added to the path. Grey nodes represent
visited nodes, blue nodes indicate unvisited nodes, and orange regions highlight the local neighbor-
hoods of selected nodes.

{ci}n−1
i=0 ⊂ R2, and E = {(vi, vj) | vi, vj ∈ V, i ̸= j} denotes the set of edges. A feasible

solution can be written as τ = (τ1, τ2, . . . , τn, τ1), where (τ1, τ2, . . . , τn) is a permutation of the
node indices {0, 1, . . . , n− 1}, and the tour is completed by returning to the starting node vτ0 . The
objective is to find a sequence τ that minimizes the total travel cost, formally expressed as:

min
τ

n∑
k=1

∥∥cτk − cτ(k+1) mod n

∥∥
2
.

2.2 CONSTRUCTIVE NCO SOLVERS

Constructive NCO solvers aim to learn end-to-end strategies for solving the TSP. Their core idea is
to model the generation of solution sequences as a sequential decision-making process, and most
approaches adopt a Transformer-based encoder–decoder architecture (Vaswani et al., 2017). Given
a TSP instance with n nodes, the encoder maps the input node features {xi}n−1

i=0 ∈ Rn×2 into initial
node embeddings {hi}n−1

i=0 ∈ Rn×d. The decoder then constructs the complete solution sequence τ
in an autoregressive manner, starting from an initially empty partial solution. At the t-th decoding
step, the decoder selects a node from the set of unvisited nodes. The selected index τt is then
appended to the partial solution (τ1, . . . , τt−1), with the corresponding node vτt marked as visited,
where τ1 and τt−1 denote the indices of the first and last visited nodes, respectively. This process
repeats until all nodes have been visited, resulting in a complete feasible solution sequence.

3 THE PROPOSED GDAT METHOD

This section describes the proposed GDaT in detail. Firstly, the framework of GDaT is introduced.
Then two core modules including the multi-scale density extraction module and the density-aware
attention module are presented.

3.1 FRAMEWORK OF GDAT

Figure 2 gives the framework of GDaT, which consists of a light encoder and a heavy decoder,
and generates solutions in an autoregressive manner. To facilitate the subsequent descriptions, we
give the following notations. At the t-th step of route construction, let the current partial solution
be τ<t = (τ1, . . . , τt−1), where τ1 and τt−1 denote the indices of the first and last visited nodes,
respectively. Denote by Vt the set of unvisited nodes, and define the context node set as Ct =
Vt ∪ {vτ1 , vτt−1

}.
Encoder. The encoder consists of a position feature embedding layer and the proposed multi-scale
density extraction module, which are used to encode node position features and multi-scale density
features, respectively. Given a TSP instance with n nodes, the input node features {xi}n−1

i=0 ∈ Rn×2

represent the 2D coordinate vectors of the nodes. The position feature embedding layer transforms
these features into initial node embeddings through a linear projection:

h
(0)
i = Wembxi + bemb, ∀i ∈ {0, . . . , n− 1}, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

KNN

KNN

Density

Adaptive Bandwidth
Subgraph

MLP

C C

Step 1: Nested Subgraph Construction Step 2: Local Density Estimation Step 3: Multi-scale
Feature Fusion

Gaussian Kernel

(A) Multi-Scale Density Extraction Module

n

Position Feature
Embedding Layer

Encoder

D
en

si
ty

 A
w

ar
e

A
tt

en
tio

n
M

od
ul

e

L
in

ea
r

Pr
oj

ec
tio

n

Decoder

Probs

VRP Instance
Current State

The Pipeline of GDaT
VRP Instance

Next State

Multi-scale Density
Extraction Module

Update the State

So
ft

m
ax

Autoregressive

Tr
an

sf
or

m
er

 B
lo

ck
 (w

/o
 n

or
m

)

(B) Density-Aware
Attention Module

Set of subgraph
node counts

First Visited Node Last Visited Node Other Visited Nodes Unvisited Center Nodes Unvisited Other Nodes

Density Feature

Figure 2: The overall architecture of GDaT.

where Wemb ∈ R2×d and bemb ∈ Rd are learnable parameters. The resulting initial position
embedding matrix is denoted as H0 ∈ Rn×d. This position feature embedding process is performed
only once at the beginning of the autoregressive construction. The multi-scale density extraction
module computes multi-scale density embeddings Dt ∈ R|Ct|×d for the current context Ct at the
t-th step of route construction (see Section 3.2).

Decoder. At the t-th decoding step, the decoder initializes its input embeddings by selecting the
rows of H0 corresponding to Ct, forming H

(0)
t ∈ R|Ct|×d. The embeddings (H(0)

t , Dt) are jointly
processed through L layers of the density-aware attention module (see Section 3.3). The output
embeddings H

(L)
t are used to compute the selection probabilities for the next node via a linear

projection followed by softmax. Specifically, the logit for node vi is computed as:

ui =

{
h
(L)
t,i WO, if i /∈ {τ1, . . . , τt−1},
−∞, otherwise,

p = softmax(u), (2)

where WO ∈ Rd×1 is learnable, and h
(L)
t,i denotes the row of H(L)

t corresponding to node vi ∈ Ct.
The next node index τt is sampled from p and appended to the partial solution. This autoregressive
process repeats until a complete solution is obtained.

3.2 MULTI-SCALE DENSITY EXTRACTION MODULE

As shown in Figure 2(A), the multi-scale density extraction process consists of three steps: nested
subgraph construction, local density estimation, and multi-scale feature fusion. The following de-
scribes each step in turn.

Step 1: Nested subgraph construction. Neighborhoods of different sizes around the same node
may exhibit distinct distributional patterns. To capture these multi-scale views for a more compre-
hensive representation of local density, we predefine an ordered collection of neighborhood scales
K = {k1, k2, . . . , km} with k1 < k2 < · · · < km, where each kj specifies the number of neighbors
for the j-th scale.

To avoid redundant neighbor searches, for each node vi ∈ Ct, we perform a single km-nearest neigh-
bors search within Ct \ {vi} to obtain its full neighborhood N (km)

i . Smaller-scale neighborhoods

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

are then derived by truncating this list:

N (kj)
i = prefixkj

(
N (km)

i

)
, j = 1, . . . ,m− 1, (3)

where prefixkj
(·) denotes taking the first kj elements. Each neighborhood N (k)

i defines a nested

local subgraph G(k)i = {vi} ∪ N (k)
i for all k ∈ K, which satisfies the nesting property G(k1)

i ⊂
G(k2)
i ⊂ · · · ⊂ G(km)

i for all vi ∈ Ct. Since we consider a complete undirected graph, the edge set is
implicit and thus omitted in our subgraph definition.

Step 2: Local Density Estimation. In this work, we compute the density of each nested subgraph
using Gaussian kernel density estimation (KDE), which provides a smooth and robust measure of
local concentration compared to hard counting methods. For node vi at scale kj , the density is given
by:

ρ
(kj)
i =

1

kj

∑
vi′∈N

(kj)

i

1

h
(kj)
i

√
2π

exp

(
− d2ii′

2(h
(kj)
i)2

)
, (4)

where ci ∈ R2 denotes the coordinate vector of node vi, dii′ = ∥ci−ci′∥2 is the Euclidean distance
between nodes vi and vi′ , and h

(kj)
i > 0 is the bandwidth parameter controlling the smoothness of

the estimate.

We employ an adaptive bandwidth strategy in KDE, where the bandwidth for each node is set to the
root-mean-square distance to its k-nearest neighbors:

h
(kj)
i =

√√√√ 1

kj

∑
vi′∈N

(kj)

i

d2ii′ . (5)

This allows the density estimation to automatically adjust to local node distribution, yielding sharper
peaks in dense clusters and smoother estimates in sparse regions. Each ρ

(kj)
i thus constitutes a scale-

specific and context-dependent estimate of local density, serving as the basis for multi-scale feature
fusion in the subsequent step.

Step 3: Multi-scale Feature Fusion. For each node vi ∈ Ct, stack the scale-specific density
estimates into a multi-scale feature vector:

ρi =
[
ρ
(k1)
i , . . . , ρ

(km)
i

]
∈ Rm. (6)

This vector is transformed into a learnable embedding by a multi-layer perceptron:
ρ′
i = fMLP(ρi), (7)

where fMLP : Rm → Rd is a learnable nonlinear mapping. Stacking ρ′
i for all vi ∈ Ct yields the

density embedding matrix:

Dt =

 (ρ′
1)

⊤

...
(ρ′

|Ct|)
⊤

 ∈ R|Ct|×d. (8)

The resulting multi-scale density embeddings can reveal the current structural properties of the un-
visited nodes and serve to guide the attention-based modeling of positional features.

3.3 DENSITY-AWARE ATTENTION MODULE

The density-aware attention module is designed to enhance structural perception by leveraging the
extracted multi-scale density features to guide the modeling of positional features. As shown in
Figure 2(B), at the t-th decoding step, given position embeddings Ht ∈ R|Ct|×d and multi-scale
density embeddings Dt ∈ R|Ct|×d, the attention modeling at the ℓ-th layer is as follows:

Q
(ℓ)
t = H

(ℓ−1)
t W (ℓ)

q +DtW
(ℓ)
ρ1

,

K
(ℓ)
t = H

(ℓ−1)
t W

(ℓ)
k +DtW

(ℓ)
ρ2

,

V
(ℓ)
t = H

(ℓ−1)
t W (ℓ)

v ,

(9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where W (ℓ)
q ,W

(ℓ)
ρ1 ,W

(ℓ)
k ,W

(ℓ)
ρ2 ,W

(ℓ)
v ∈ Rd×d are layer-specific learnable matrices. These represen-

tations are processed by a Transformer block (without normalization). Specifically, the ℓ-th block
updates node positional embeddings as:

Ĥt

(ℓ)
= MHA(Q

(ℓ)
t ,K

(ℓ)
t , V

(ℓ)
t) +H

(ℓ−1)
t ,

H
(ℓ)
t = FFN(Ĥt

(ℓ)
) + Ĥt

(ℓ)
,

(10)

where MHA(·) is a multi-head self-attention layer, and FFN(·) is a feed forward network with
ReLU activation.

Although density embeddings enter Eq. (9) through simple linear addition, the resulting attention
scores embody rich interactions. For nodes vi and vj , the projected query and key at the ℓ-th layer
are:

q
(ℓ)
t,i = (W (ℓ)

q)⊤h
(ℓ−1)
t,i + (W (ℓ)

ρ1
)⊤ρt,i,

k
(ℓ)
t,j = (W

(ℓ)
k)⊤h

(ℓ−1)
t,j + (W (ℓ)

ρ2
)⊤ρt,j ,

(11)

so that the unnormalized compatibility expands as:

(q
(ℓ)
t,i)

⊤k
(ℓ)
t,j = h

(ℓ−1)
t,i

⊤
(W (ℓ)

q (W
(ℓ)
k)⊤)h

(ℓ−1)
t,j︸ ︷︷ ︸

pos–pos

+h
(ℓ−1)
t,i

⊤
(W (ℓ)

q (W (ℓ)
ρ2

)⊤)ρt,j︸ ︷︷ ︸
pos–density

+ ρ⊤
t,i(W

(ℓ)
ρ1

(W
(ℓ)
k)⊤)h

(ℓ−1)
t,j︸ ︷︷ ︸

density–pos

+ρ⊤
t,i(W

(ℓ)
ρ1

(W (ℓ)
ρ2

)⊤)ρt,j︸ ︷︷ ︸
density–density

.
(12)

This four-term decomposition demonstrates that positional and density embeddings interact multi-
plicatively within attention, amplifying differences among proximal nodes in dense regions while
enabling sustained exploration of distant nodes in sparse regions, thereby improving next-node se-
lection accuracy under unseen distributions and varying problem scales.

4 EXPERIMENTS

This paper conducts comprehensive experiments on both synthetic and real-world TSP datasets,
covering a diverse range of problem scales and node distributions, to demonstrate the omni-
generalization performance of GDaT. We compare GDaT with several state-of-the-art methods to
illustrate its superiority and perform ablation studies to validate the effectiveness of the proposed
key components.

Dataset. For the synthetic datasets, we generate 16 synthetic TSP datasets by combining four node
distributions (uniform, clustered, explosion, implosion) with four scales (1,000, 2,000, 5,000, and
10,000). Each scale-distribution combination contains 128 instances for 1K and 2K, and 16 instances
for 5K and 10K. The data generation process follows Fang et al. (2024) . For real-world benchmark
datasets, we use 80 symmetric TSP instances from TSPLIB951 that provide node coordinates in 2D
Euclidean space, with problem sizes ranging from 51 to 33,810 nodes. Additionally, we include
25 symmetric instances from National TSP2 in World TSP, also given as 2D Euclidean coordinates,
with problem sizes ranging from 29 to 24978 nodes.

Comparison Methods. We compare our method with: (1) Traditional Solvers: LKH3 (Helsgaun,
2017); (2) NCO Methods for Cross-Scale Generalization: LEHD (Fu Luo, 2023), GLOP (Ye
et al., 2024), UDC (Zheng et al., 2024), DEITSP (Wang et al., 2025a), GELD (Xiao et al., 2025),
SIL (Luo et al., 2025), DRHG (Li et al., 2025); (3) NCO Methods for Omni-Generalization:
Omni-POMO (Zhou et al., 2023), ELG (Gao et al., 2024), INViT (Fang et al., 2024).

Evaluation Metrics. We evaluate performance using the average gap to the (near-)optimal solution
and the total inference time in seconds (s), minutes (m), and hours (h). For each instance, the gap is
computed as:

gap =
costmodel − costopt

costopt
× 100%, (13)

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
2https://www.math.uwaterloo.ca/tsp/world/countries.html

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparisons on synthetic TSP datasets of different distributions and problem
scales. Symbols denote inference strategies: G denotes single-rollout greedy inference, G∗ denotes
multi-rollout greedy inference, A denotes the use of data augmentation during inference, D&C
denotes the use of a divide-and-conquer strategy, and 2OPT denotes the 2-opt search strategy.

Model TSP-Uniform TSP-Clustered TSP-Explosion TSP-Implosion Average gap(%)Gap(%) Time Gap(%) Time Gap(%) Time Gap(%) Time

T
SP

-1
00

0

LKH3 0.00 9.8m 0.00 10.4m 0.00 10.3m 0.00 9.7m 0.00

LEHD (NeurIPS’23, G) 2.56 1.2m 15.44 1.2m 6.17 1.2m 4.07 1.2m 7.06
UDC (NeurIPS’24, D&C+G∗+A) 2.20 42s 9.16 39.5s 6.44 40.3s 3.22 39.8s 5.26
GLOP (AAAI’24, D&C+G∗+A) 4.87 15s 5.30 14.2s 5.17 14.3s 4.65 14.2s 5.00
ELG (IJCAI’24, G∗+A) 10.53 1.3m 13.29 1.2m 12.67 1.2m 10.67 1.2m 11.79
INViT-3V (ICML’24, G∗+A) 4.49 30.6m 7.92 29.6m 7.66 30.2m 5.45 30.2m 6.38
DEITSP (KDD’25, G+2OPT) 3.68 3.3m 5.65 3.7m 4.94 3.7m 4.06 3.5m 4.58
GELD (arXiv’25, G) 2.76 9s 11.54 6s 5.42 5s 5.80 6s 6.38
SIL (ICLR’25, G) 1.39 20s 6.92 19s 3.95 19s 3.71 19s 3.99

GDaT (Ours, G) 2.33 5.9m 2.37 4.8m 2.49 5.9m 2.56 5.8m 2.44

T
SP

-2
00

0

LKH3 0.00 44.4m 0.00 41.2m 0.00 43.8m 0.00 46.4m 0.00

LEHD (NeurIPS’23, G) 5.70 8.6m 22.86 8.6m 11.88 8.6m 7.66 8.6m 12.03
UDC (NeurIPS’24, D&C+G∗+A) 3.63 1.2m 11.53 1.2m 9.82 1.2m 4.81 1.2m 7.45
GLOP (AAAI’24, D&C+G∗+A) 5.67 9.5s 5.97 9.5s 6.08 9.6s 5.51 9.6s 5.81
ELG (IJCAI’24, G∗+A) 13.44 4.7m 16.01 4.7m 16.63 4.7m 13.38 4.7m 14.87
INViT-3V (ICML’24, G∗+A) 4.82 1.2h 7.60 1.2h 8.03 1.2h 5.55 1.2h 6.50
GELD (arXiv’25, G) 4.02 11s 12.80 11s 8.48 11s 5.87 10s 7.79
SIL (ICLR’25, G) 1.56 1.2m 7.45 1.2m 4.07 1.2m 3.45 1.2m 4.13

GDaT (Ours, G) 2.62 42.7m 2.72 36.2m 2.75 42.3m 2.65 41.7m 2.69

T
SP

-5
00

0

LKH3 0.00 40.0m 0.00 39.6m 0.00 41.4m 0.00 41.7m 0.00

LEHD (NeurIPS’23, G) 14.45 15.9m 35.13 15.9m 20.28 15.9m 15.55 15.9m 21.35
GLOP (AAAI’24, D&C+G∗+A) 6.01 2.9s 5.65 2.9s 6.58 3.0s 5.65 2.9s 5.97
ELG (IJCAI’24, G∗+A) 16.38 4.4m 18.74 4.3m 21.55 4.4m 16.33 4.4m 18.25
INViT-3V (ICML’24, G∗+A) 5.17 21.3m 6.95 21.5m 8.69 21.2m 5.94 21.2m 6.69
GELD (arXiv’25, G) 6.98 27s 13.27 26s 11.55 27s 7.90 27s 9.93
SIL (ICLR’25, G) 2.16 1.1m 7.70 1.1m 6.36 1.1m 3.09 1.1m 4.83

GDaT (Ours, G) 3.02 20.7m 3.02 18.8m 3.14 20.5m 2.83 20.5m 3.00

T
SP

-1
00

00

LKH3 0.00 3.4h 0.00 3.5h 0.00 3.5h 0.00 3.1h 0.00

LEHD (NeurIPS’23, G) 24.86 2.1h 62.36 2.1h 30.36 2.1h 28.66 2.1h 36.56
GLOP (AAAI’24, D&C+G∗+A) 5.85 9.7s 4.89 9.5s 5.94 9.7s 5.79 9.8s 5.62
INViT-3V (ICML’24, G∗+A) 5.19 57.1m 5.77 57.8m 7.30 57m 5.79 57m 6.01
GELD (arXiv’25, G) 10.08 53s 12.87 55s 12.55 54s 10.02 55s 11.38
SIL (ICLR’25, G) 2.71 3.7m 9.90 3.7m 5.81 3.7m 3.39 3.7m 5.45

GDaT (Ours, G) 2.93 2.9h 3.29 2.7h 2.96 2.8h 3.16 2.8h 3.09

where costmodel denotes the tour length produced by the model, and costopt is the optimal or near-
optimal tour length. For synthetic datasets, costopt is obtained by LKH3; for real-world TSP in-
stances, costopt is taken from the official best-known solutions.

Implementing Details. In the multi-scale density extraction module of GDaT, the number of MLP
layers is set to 3, the hidden layer dimension is set to 512, and the number of neighborhood scales per
node is set to 3. The choice of scale number and node count per scale is analyzed in Appendix F.1.
The density-aware attention module employs multi-head attention with 8 heads, and the hidden
dimension of the feed-forward layer is set to 512. In our experiments, this module is integrated
within the linear attention framework of Luo et al. (2025), and additional architectural details are
provided in Appendix F.2. We adopt a supervised self-improvement training paradigm proposed
by Luo et al. (2025) and train on a synthetic dataset of 200,000 TSP-100 instances covering all
four distributions (uniform, clustered, explosion, implosion). Training proceeds for 100 epochs
with a batch size of 1024. We use the Adam optimizer (Kingma, 2014) with an initial learning
rate of 1 × 10−4, decayed by 0.97 per epoch. More training details are provided in Appendix G.
All experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU with 24GB memory,
except for the evaluation on the synthetic dataset (Table 1), which is performed on a single NVIDIA
GeForce RTX 4090 GPU with 24GB memory.

4.1 COMPARATIVE RESULTS

We conduct extensive experiments on synthetic TSP datasets with four different scales (1K, 2K, 5K,
10K) and four distributions (uniform, clustered, explosion, implosion). To fairly evaluate gener-
alization performance, all competing methods are tested without iterative improvement strategies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1
2

3
4

5

TSP-1000

2

4

6

TSP-2000

2 4 6

T
S
P
-5000

2

4

6

8

TSP-10000

1
2

3
4

5

TSP-Un
iform

2

4

6

TS
P-
C
lu
st
er
ed

12345

T
S
P
-E
xp
lo
si
on

1

2

3

4

5

TS
P-
Im
plo
sion

GDaT(ours)
INViT
GELD
ELG
LEHD

Figure 3: Polar Bar Chart of Variance Analysis on Synthetic Datasets. For better visualization, all
variances are shifted by 1 and log-transformed (base 2).

Table 2: Performance comparisons on TSPLIB95 instances grouped by problem size. Each cell
shows the average gap and number of successfully solved instances (out of total). OOM: The method
is inapplicable due to the memory limit. Symbol I indicates iterative strategies not directly compa-
rable to ours, hence grouped in Non-iterative. These methods follow the settings of their original
papers.

Model 1–100 101–1000 1001–10000 >10000

N
on

-it
er

at
iv

e

LEHD (NeurIPS’23, G) 0.61% (12/12) 3.28% (37/37) 13.48% (25/25) 46.55% (4/6)
UDC (NeurIPS’24, D&C+I) 0.19% (6/12) 1.57% (37/37) 7.54% (19/25) OOM
GLOP (AAAI’24, D&C+I) 0.32% (12/12) 1.01% (37/37) 5.64% (25/25) 6.97% (3/6)
ELG (IJCAI’24, G∗+A) 0.57% (12/12) 3.93% (37/37) 11.13% (21/25) OOM
INViT-3V (ICML’24, G∗+A) 1.26% (12/12) 4.28% (37/37) 7.76% (25/25) 8.07% (6/6)
DEITSP (KDD’25, I) 0.67% (12/12) 1.44% (37/37) 5.01% (11/25) OOM
SIL (ICLR’25, G) 3.72% (12/12) 5.62% (37/37) 6.88% (25/25) 13.48% (6/6)
GELD (arXiv’2025, G) 0.89% (12/12) 4.84% (37/37) 9.23% (25/25) 15.47% (6/6)

GDaT (Ours, G) 1.00% (12/12) 2.06% (37/37) 4.16% (25/25) 5.73% (6/6)

It
er

at
iv

e SIL (ICLR’25, T=1000) 0.28% (12/12) 0.28% (37/37) 1.46% (25/25) 4.57% (6/6)
DRHG (AAAI’25, T=1000) 0.24% (12/12) 0.23% (37/37) 2.12% (25/25) 7.37% (6/6)
GELD (arXiv’25, T=1000) 0.26% (12/12) 1.65% (37/37) 3.83% (25/25) 6.03% (6/6)

GDaT (Ours, T=(100,1000)) 0.24% (12/12) 0.25% (37/37) 1.33% (25/25) 3.60% (6/6)

As shown in Table 1, our method achieves the best performance in 12 out of 16 subsets and con-
sistently outperforms all baselines in terms of the average gap across each scale. Although the
uniform distribution remains challenging—where our performance is slightly behind the strongest
baseline—our approach still maintains a competitive level. More importantly, Figure 3 presents a
variance analysis across eight groups: four by scale (e.g., TSP-1000, aggregating all distributions)
and four by distribution (e.g., TSP-Uniform, aggregating all scales), comparing our method with
four state-of-the-art generalization-focused models. Our method shows significantly lower variance
across all scale groups, demonstrating superior cross-distribution generalization. It also achieves the
lowest variance on TSP-Clustered and TSP-Explosion across scales, indicating strong cross-scale
robustness in complex distribution settings. Overall, these results indicate that our method achieves
state-of-the-art omni-generalization performance without relying on data augmentation or search
heuristics.

The performance on TSPLIB95 instances, grouped by problem size, is summarized in Table 2. we
divide the 80 TSPLIB95 instances into four groups according to their problem sizes and conduct
comprehensive comparisons. Using only greedy inference, GDaT achieves the best performance on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on Synthetic TSP and TSPLIB95 instances. Results on Synthetic TSP are
averaged over all distributions within each scale.

Synthetic TSP TSPLIB95

Variant (Ablation) 1000 5000 1–100 101–1000 1001–10000 >10000

w/o density-aware 2.75% 8.20% 1.66% 2.27% 5.74% 21.60%
w/o multi-scale 3.06% 6.51% 1.47% 1.86% 6.00% 12.84%
GDaT (Ours) 2.44% 3.00% 1.00% 2.06% 4.16% 5.73%

the two larger groups and exhibits the smallest performance variation across groups: the gap on the
largest group is only 4.73% worse than that on the smallest group, highlighting its robust general-
ization across both problem scales and the diverse distributions present in real-world instances. We
also report results using the iterative improvement strategy employed by SIL (Luo et al., 2025) and
GELD (Xiao et al., 2025), and compare them with three state-of-the-art iterative methods. For a
fair comparison, all iterative baselines use the number of iterations specified in their original papers.
To balance efficiency and solution quality, our method performs 1000 iterations on the two smaller
groups, 500 on the 1001–10000 group, and 100 on the largest group. The results show that GDaT
with iterative improvement achieves competitive performance on small-scale instances and achieves
the best performance on larger scales while using fewer iterations, further demonstrating its supe-
rior generalization across scales and distributions. Additional comparative results are provided in
Appendix H.

4.2 ABLATION STUDY

We conduct ablation studies on synthetic TSP instances of size 1000 and 5000, as well as on real-
world TSPLIB95 benchmark, to validate the effectiveness of key components in our method. Specif-
ically, we compare three variants: (1) w/o density-aware, which removes both the multi-scale density
extraction and density-aware attention modules; (2) w/o multi-scale, which retains only the single-
scale (largest-scale) density estimation in the density extraction module. All variants are trained
using the same protocol for fair comparison.

As shown in Table 3, the incorporation of density modeling (both in single-scale and multi-scale
forms) leads to consistently better generalization, particularly on large-scale instances. When com-
paring w/o multi-scale with w/o density-aware, we observe that introducing node density estimation,
even within a single-scale framework, results in superior overall performance. Although the gains
are modest on smaller instances, the improvement becomes significantly more pronounced on larger
scales (e.g., TSP-5000 and TSPLIB95 >10K), which indicates that density-aware modeling en-
hances generalization to large-scale problems. Furthermore, extending the density modeling from
a single-scale to a multi-scale design yields additional and substantial performance gains across the
board. Our GDaT consistently outperforms the single-scale variant, with the most notable improve-
ments observed in the largest instance groups. This demonstrates that multi-scale density modeling
plays a critical role in achieving robust omni-generalization on both synthetic and real-world TSP
instances.

5 CONCLUSION

This paper proposes the Generalizable Density-aware Transformer (GDaT) for solving the TSP.
By extracting multi-scale density features of unvisited nodes and incorporating them into attention-
based modeling, GDaT enables more informed and accurate next-node selection under unseen dis-
tributions and varying problem scales. Extensive experiments on both synthetic and real-world
TSP datasets demonstrate that GDaT outperforms state-of-the-art methods, particularly on large-
scale instances and instances with complex node distributions, which highlights its strong omni-
generalization performance. A limitation of GDaT lies in the computational overhead incurred by
repeatedly computing multi-scale densities during autoregressive route construction. Future work
will focus on improving the efficiency of density computation, as well as extending the proposed
framework to other combinatorial optimization problems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ali Fuat Alkaya and Ekrem Duman. Application of sequence-dependent traveling salesman problem
in printed circuit board assembly. IEEE Transactions on Components, Packaging and Manufac-
turing Technology, 3(6):1063–1076, 2013.

David L Applegate, Robert E Bixby, Vašek Chvátal, William Cook, Daniel G Espinoza, Marcos
Goycoolea, and Keld Helsgaun. Certification of an optimal TSP tour through 85,900 cities. Op-
erations Research Letters, 37:11–15, 2009.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In International Conference on Learning Representa-
tions Workshop Track, 2017.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. In Ad-
vances in Neural Information Processing Systems, 2022.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. INViT: A generalizable routing problem
solver with invariant nested view transformer. In International Conference on Machine Learning,
2024.

Weiduo Liao Zhenkun Wang Qingfu Zhang Xialiang Tong Fei Liu, Xi Lin and Mingxuan Yuan.
Prompt learning for generalized vehicle routing. International Joint Conferences on Artificial
Intelligence (IJCAI), 2024.

Fei Liu Qingfu Zhang Zhenkun Wang Fu Luo, Xi Lin. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. In The 37th Anniversary Conference on Neural
Information Processing Systems, NeurIPS 2023, 2023.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. In IJCAI, 2024.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, pp. 24–50, 2017.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. 2022.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2023.

Yuan Jiang, Yaoxin Wu, Zhiguang Cao, and Jie Zhang. Learning to solve routing problems via dis-
tributionally robust optimization. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 9786–9794, 2022.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing
problem and related algorithms for logistics distribution: A literature review and classification.
Operational research, pp. 1–30, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems, volume 33, pp. 21188–21198, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ke Li, Fei Liu, Zhenkun Wang, and Qingfu Zhang. Destroy and repair using hyper-graphs for
routing. Proceedings of the AAAI Conference on Artificial Intelligence, 39(17):18341–18349,
2025.

Wenzhao Liu, Haoran Li, Congying Han, Zicheng Zhang, Anqi Li, and Tiande Guo. Purity law for
generalizable neural tsp solvers. arXiv preprint arXiv:2505.04558, 2025.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. In Advances in Neural Information Processing
Systems, volume 36, pp. 8845–8864, 2023.

Fu Luo, Xi Lin, Yaoxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang.
Boosting neural combinatorial optimization for large-scale vehicle routing problems. In The Thir-
teenth International Conference on Learning Representations, 2025.

Mohammadreza Nazari, Afshin Oroojlooy, Martin Takáč, and Lawrence V Snyder. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pp. 9861–9871, 2018.

Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian. H-
tsp: Hierarchically solving the large-scale traveling salesman problem. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(8):9345–9353, Jun. 2023.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Rui Sun, Zhi Zheng, and Zhenkun Wang. Learning encodings for constructive neural combinatorial
optimization needs to regret. Proceedings of the AAAI Conference on Artificial Intelligence, 38
(18):20803–20811, 2024.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022.

Mingzhao Wang, You Zhou, Zhiguang Cao, Yubin Xiao, Xuan Wu, Wei Pang, Yuan Jiang, Hui
Yang, Peng Zhao, and Yuanshu Li. An efficient diffusion-based non-autoregressive solver for
traveling salesman problem. In Proceedings of the 31th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2025a.

Yang Wang, Ya-Hui Jia, Wei-Neng Chen, and Yi Mei. Distance-aware attention reshaping for en-
hancing generalization of neural solvers. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–15, 2025b.

Yubin Xiao, Di Wang, Rui Cao, Xuan Wu, Boyang Li, and You Zhou. Geld: A unified neural
model for efficiently solving traveling salesman problems across different scales. arXiv preprint
arXiv:2506.06634, 2025.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

Zeyang Zhang, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning to solve travelling salesman
problem with hardness-adaptive curriculum. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hang Zhao, Kexiong Yu, Yuhang Huang, Renjiao Yi, Chenyang Zhu, and Kai Xu. Disco: Ef-
ficient diffusion solver for large-scale combinatorial optimization problems. arXiv preprint
arXiv:2406.19705, 2024.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. UDC: A unified
neural divide-and-conquer framework for large-scale combinatorial optimization problems. In
Advances in Neural Information Processing Systems, 2024.

Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang.
Instance-conditioned adaptation for large-scale generalization of neural combinatorial optimiza-
tion. arXiv preprint arXiv:2405.01906, 2024.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pp. 42769–42789. PMLR, 2023.

Shipei Zhou, Yuandong Ding, Chi Zhang, Zhiguang Cao, and Yan Jin. Dualopt: A dual divide-
and-optimize algorithm for the large-scale traveling salesman problem. In AAAI 2025, February
2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

B ETHICS STATEMENT

This work follows the ICLR Code of Ethics. This study does not involve human subjects or animal
experiments. All datasets used, including synthetic TSP datasets, TSPLIB95, and National TSP,
were collected in compliance with relevant usage guidelines and do not involve privacy issues. We
have taken care to avoid any bias or discriminatory outcomes in our research process. No person-
ally identifiable information was used, and no experiments were conducted that could raise privacy
or security concerns. We are committed to maintaining transparency and integrity throughout the
research process.

C REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. Additionally, the public datasets used in this pa-
per, such as benchmark instances for the Traveling Salesman Problem in combinatorial optimization,
including TSPLIB95 and National TSP, are publicly available to ensure consistent and reproducible
evaluation results.

D LLM USAGE

Large Language Models (LLMs) were used to assist in improving the language clarity and grammat-
ical accuracy of this manuscript. Specifically, the model helped refine sentence structures, correct
grammar, and enhance overall readability. We carefully reviewed and edited all text, ensuring that
the final content accurately reflects our original ideas and scientific contributions. We confirm that
the use of LLMs adheres to ethical guidelines and does not lead to plagiarism or any form of aca-
demic misconduct.

E RELATED WORK

This section reviews recent NCO methods that aim to improve generalization, which can be broadly
categorized into three scenarios: cross-scale generalization, cross-distribution generalization, and
omni-generalization.

E.1 CROSS-SCALE GENERALIZATION

Strategy-based approaches aim to develop generalization techniques that are independent of the
specific NCO solver, to handle large-scale instances. Some works focus on designing training algo-
rithms to enhance scalability. Zhou et al. (2024) propose a three-stage variable-scale training scheme
to improve cross-scale generalization. Similarly, Luo et al. (2023) introduce a method to learn the
construction of partial solutions at varying scales during training for the same purpose. In addi-
tion, Luo et al. (2025) propose a self-improvement training paradigm that combines the strengths of
reinforcement learning and supervised learning, enabling efficient training on large-scale instances
and further improving model adaptability. Other research focuses on designing divide-and-conquer
strategies to tackle large-scale problems (Pan et al., 2023; Hou et al., 2023; Ye et al., 2024; Zheng
et al., 2024; Zhou et al., 2025). Among them, Ye et al. (2024) and Zheng et al. (2024) leverage Graph
Neural Networks (GNNs) to partition large-scale problems into multiple simpler sub-problems, en-
abling more efficient processing of large instances through parallel sub-problem solving.

From the model-design perspective for cross-scale generalization, Zhou et al. (2024) design an
instance-conditioned adaptation module, which explicitly incorporates problem-scale information
into the attention mechanism to make the model scale-aware. Similarly, Wang et al. (2025b) pro-
pose a Distance-aware Attention Reshaping (DAR) method that leverages scale-related signals to

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

guide the model’s adaptation to varying problem sizes. In contrast, Luo et al. (2023) propose a Light
Encoder and Heavy Decoder (LEHD) structure, which enables the model to learn scale-independent
features. Additionally, some diffusion-based methods (Sun & Yang, 2023; Zhao et al., 2024) have
been found useful for cross-scale generalization.

E.2 CROSS-DISTRIBUTION GENERALIZATION

Another line of research focuses on improving robustness to unseen distributions. Zhang et al.
(2022) present an adaptive curriculum learning strategy based on task difficulty to improve cross-
distribution generalization for NCO solvers. Jiang et al. (2022) strengthen generalization by group-
ing training instances according to their generating distributions and minimizing the worst-case loss
across groups. Building on this direction, Bi et al. (2022) propose an adaptive multi-distribution
knowledge distillation framework that transfers the strategies of multiple teachers trained on dif-
ferent distributions into a single student model, thereby improving out-of-distribution performance.
Overall, these methods mitigate performance degradation in cross-distribution scenarios by optimiz-
ing training strategies.

E.3 OMNI-GENERALIZATION

Since real-world TSP instances often exhibit diverse distributions and varying scales, recent stud-
ies have begun to simultaneously address both aspects. From the strategy side, Zhou et al. (2023)
propose a general meta-learning framework, while Liu et al. (2025) introduce the Purity Policy Opti-
mization training paradigm, both aiming to simultaneously boost cross-distribution and cross-scale
generalization. From the model-design side, another line of research aims at omni-generalization
by developing local decision mechanisms that are insensitive to both scale and distribution. For
example, Gao et al. (2024) integrate local policies learned from neighborhood information with
global policies learned from complete instances, and jointly train them to achieve complementary
effects. Fang et al. (2024), on the other hand, restrict the decision space to the neighborhood of the
last visited node. Different from previous works, our GDaT focuses on designing modules that are
simultaneously scale-aware and distribution-aware.

F METHOD DETAILS

This section presents the detailed implementation of the proposed GDaT model, focusing on two
key modules: the multi-scale density extraction module and the density-aware attention module.

F.1 SELECTION OF NEIGHBORHOOD SCALES

To determine the appropriate neighborhood scales for the multi-scale density extraction module, we
conduct a statistical analysis on the optimal solutions of the entire training set, which consists of
200K TSP-100 instances. Specifically, for each instance, we examine the optimal tour and record, at
each step, the nearest-neighbor rank of the next node among all unvisited nodes with respect to the
current node. We denote the maximum such rank across all steps in instance i as ki, which reflects
the farthest node (in rank) considered by the optimal solution when selecting the next node during
the tour construction.

Let N denote the size of the dataset. Given {ki}Ni=1, we compute:

kmin =
1

N

N∑
i=1

ki, (14)

kmax = max
1≤i≤N

ki, (15)

where kmin reflects the average farthest neighbor considered by the optimal solutions, while kmax

corresponds to the worst-case dependency across all instances. In our analysis on the training set,
we obtain kmin = 16 and kmax = 98. To capture richer density-aware features, we further introduce
a third scale kmid, defined as the average of the two, yielding kmid = 57.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1 Density-Aware Linear Attention Module

1: Input: Node position embeddings H(ℓ−1)
t ∈ R|Ct|×d, density embeddings Dt ∈ R|Ct|×d

2: Output: Updated node position embeddings H(ℓ)
t ∈ R|Ct|×d

3: Extract representative node position embeddings and density embeddings:
4: H

(ℓ−1)
t,a = [H

(ℓ−1)
t]a, Dt,a = [Dt]a {a denotes first and last visited nodes}

5: Update representative nodenode position embeddings:
6: Qa ← H

(ℓ−1)
t,a W

(ℓ)
q +Dt,aW

(ℓ)
ρ1

7: Ka ← H
(ℓ−1)
t W

(ℓ)
k +DtW

(ℓ)
ρ2

8: Va ← H
(ℓ−1)
t W

(ℓ)
v

9: Ĥ
(ℓ)
t,a ← MHA(Qa,Ka, Va) +H

(ℓ−1)
t,a

10: H
(ℓ)
t,a ← FFN(Ĥ

(ℓ)
t,a) + Ĥ

(ℓ)
t,a

11: Update context node position embeddings:
12: Qc ← H

(ℓ−1)
t W

′(ℓ)
q +DtW

(ℓ)
ρ3

13: Kc ← H
(ℓ)
t,aW

′(ℓ)
k +Dt,aW

(ℓ)
ρ4

14: Vc ← H
(ℓ)
t,aW

′(ℓ)
v

15: Ĥ
(ℓ)
t ← MHA(Qc,Kc, Vc) +H

(ℓ−1)
t

16: H
(ℓ)
t ← FFN(Ĥ

(ℓ)
t) + Ĥ

(ℓ)
t

17: return H
(ℓ)
t

Table 4: Ablation study on the number of neighborhood scales.

Model 1–100 101–1000 1001–10000 >10000

GDaT-2V 1.25% 2.52% 4.49% 7.28%
GDaT-3V 1.00% 2.06% 4.16% 5.73%

To evaluate the impact of varying neighborhood scales, we compare two-scale and three-scale vari-
ants on the TSPLIB95 benchmark, as shown in Table 4. GDaT-2V uses {kmin, kmax}, while GDaT-
3V uses {kmin, kmid, kmax}. The results demonstrate that adding the third scale consistently im-
proves performance. Given the additional computational cost of further increasing the number of
scales, we adopt a fixed three-scale design in all experiments.

F.2 DENSITY-AWARE LINEAR ATTENTION MODULE

In our experiments, we integrate the proposed density-aware attention module into the linear atten-
tion framework of Luo et al. (2025), forming the Density-Aware Linear Attention Module as the
core component of the decoder. The core idea of the linear attention is as follows: the context node
embeddings are first used to update the representative node embeddings (i.e., the first and last visited
nodes), and then the updated representative node embeddings are used to update the context node
embeddings. This procedure ensures effective information propagation while achieving linear time
and space complexity. Algorithm 1 provides the detailed pseudocode of this module.

G TRAINING DETAILS

In training neural combinatorial optimization (NCO) models, supervised learning (SL) approaches
often struggle to obtain sufficient (near)-optimal solutions as labels, while reinforcement learning
(RL) methods suffer from sparse rewards and high GPU memory usage. To address these challenges,
Luo et al. (2025) proposed a supervised self-improvement training (SIT) paradigm. The core idea
of SIT is to first generate an initial solution, which serves as pseudo-labels for model training. The
trained model then reconstructs solutions using a local improvement strategy, producing improved
pseudo-labels that are used to further refine the model. By iterating solution reconstruction in this

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Performance comparisons on synthetic TSP instances under a clustered distribution with
5 clusters. OOM: The method is inapplicable due to the memory limit. Symbols denote inference
strategies: G denotes single-rollout greedy inference, G∗ denotes multi-rollout greedy inference,
A denotes the use of data augmentation during inference, D&C denotes the use of a divide-and-
conquer strategy, and 2OPT denotes the 2-opt search strategy.

Model TSP-1000 TSP-2000 TSP-5000 TSP-10000
Gap(%) Time Gap(%) Time Gap(%) Time Gap(%) Time

LKH3 0.00 9.9m 0.00 42.0m 0.00 39.8m 0.00 3.3h

LEHD (NeurIPS’23, G) 14.09 1.2m 20.42 8.6m 39.53 15.9m 72.53 2.1h
UDC (NeurIPS’24, D&C+G∗+A) 9.47 39.6s 11.95 1.2m OOM OOM
GLOP (AAAI’24, D&C+G∗+A) 5.19 14.23s 6.18 9.58s 5.81 2.9s 5.25 9.39s
ELG (IJCAI’24, G∗+A) 12.66 1.2m 15.33 4.7m 18.42 4.3m OOM
INViT-3V (ICML’24, G∗+A) 8.58 29.5m 8.59 1.2h 7.95 21.7m 6.76 58.3m
DEITSP (KDD’25, G+2OPT) 5.93 3.6m OOM OOM OOM
GELD (arXiv’25, G) 12.58 5s 13.09 11s 14.69 27s 14.02 54s
SIL (ICLR’25, G) 7.57 19s 7.44 1.2m 7.99 1.1m 9.45 3.7m

GDaT (Ours, G) 2.20 5.9m 2.62 33.4m 3.49 19.2m 3.27 2.5h

Table 6: Performance comparisons on National TSP instances grouped by problem size. Each cell
shows the average gap and number of successfully solved instances (out of total). Symbol I denotes
iterative improvement strategies inherent to the respective methods. These approaches follow the
settings of their original papers. † indicates results taken from Xiao et al. (2025).

Model 1–100 101–1000 1001–10000 >10000

Omni-TSP (ICML’23, G∗)† 2.63% (2/2) 16.02% (4/4) 79.67% (13/13) 71.67% (1/6)
LEHD (NeurIPS’23, G)† 0.12% (2/2) 39.94% (4/4) 82.43% (13/13) 98.52% (1/6)
UDC (NeurIPS’24, D&C+I)† – 7.68% (4/4) 23.21% (13/13) 18.41% (1/6)
GLOP (AAAI’24, D&C+I) 3.76% (2/2) 4.55% (4/4) 6.49% (13/13) 5.99% (6/6)
ELG (IJCAI’24, G∗+A)† 2.28% (2/2) 11.18% (4/4) 44.64% (13/13) 22.44% (1/6)
INViT-3V (ICML’24, G∗+A)† 0.03% (2/2) 4.94% (4/4) 10.86% (13/13) 9.84% (6/6)
SIL (ICLR’25, G) 0.03% (2/2) 25.73% (4/4) 59.96% (13/13) 92.01% (6/6)
GELD (arXiv’2025, G) 0.41% (2/2) 3.96% (4/4) 17.01% (13/13) 17.45% (6/6)

GDaT (Ours, G) 0.03% (2/2) 2.48% (4/4) 5.62% (13/13) 5.88% (6/6)

manner, SIT enables NCO methods to effectively solve large-scale problems without requiring any
labeled data.

However, since our model is trained solely on small-scale TSP-100 instances, multiple rounds of
self-improvement are not required. Specifically, we first use the LKH3 solver (Helsgaun, 2017) to
quickly generate high-quality approximate solutions for the training set as pseudo-labels. The model
is then trained for 50 epochs using supervised learning. After a single round of local reconstruction
to generate improved pseudo-labels, training continues for another 50 epochs. This single round
of self-improvement is sufficient to achieve good performance while substantially reducing training
time.

H ADDITIONAL RESULTS

We further conduct comparative experiments on (i) a synthetic datasets with a clustered distribution
containing five clusters across four problem scales, and (ii) the real-world National TSP benchmark.
These additional evaluations aim to verify the robustness and generalization of our method under
more complex distributions and real-world instances.

Table 5 reports the results on the synthetic clustered datasets. The results show that, even with
greedy inference only, our method consistently achieves the best performance across all scales,
demonstrating strong generalization to complex clustered distributions. Table 6 presents the results
on the National TSP dataset. Compared with the results on TSPLIB95 (see main text), we observe
that most competing methods suffer from significant performance degradation, with the exception

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 4: TSP-500 Instances under four different distributions.

of GLOP, INViT, and our GDaT. In particular, GDaT not only maintains stable performance but
also achieves the best overall results, which highlights its effectiveness and robustness on real-world
benchmarks.

I VISUALIZATION

In this work, we consider four distinct node distributions to evaluate the generalization performance
of our model. Figure 4 visualizes representative instances of each distribution with N = 500 nodes.
All instances are normalized to the unit square [0, 1]2 using min-max scaling while preserving aspect
ratio. The generation process and characteristics of each distribution are as follows:

Uniform distribution. All nodes are independently and uniformly sampled from [0, 1]2:

pi ∼ U([0, 1]2), i = 1, . . . , N, (16)

where pi = (xi, yi). This distribution exhibits uniform node density with no local structure.

Clustered distribution. The N nodes are divided into K clusters of approximately equal size. Each
cluster center ck is uniformly sampled from [0, 1]2, and the coordinates of nodes within the cluster
are generated by adding isotropic Gaussian noise with standard deviation σ = 0.04:

pi = ck + ϵ, ϵ ∼ N (0, σ2I), (17)

where I is the 2 × 2 identity matrix. In our experiments, K = 3. This results in multiple dense
groups separated by sparse regions.

Explosion distribution. Nodes are first uniformly sampled from [0, 1]2. Then, for each instance, an
explosion center c ∈ [0, 1]2 and radius r ∼ U(0.1, 0.5) are selected. For any node pi within the disc
of radius r centered at c, its position is updated as:

p′
i = c+

pi − c

∥pi − c∥
· δ, δ ∼ Exp(λ), λ = 8, (18)

pushing it radially outward. This creates a central void with higher node density around the perime-
ter.

Implosion distribution. Nodes are initially sampled uniformly from [0, 1]2. An implosion center c
and radius r ∼ U(0.1, 0.5) are sampled. For nodes inside the disc, the position is updated as:

p′
i = c+ α · (pi − c), (19)

where α = min(r, |N (0, 1)|) is a scaling factor derived from a half-normal distribution and clipped
by r. This results in a dense core around c with sparser surroundings.

17

	Introduction
	Preliminaries
	TSP Definition
	Constructive NCO Solvers

	The proposed GDaT Method
	Framework of GDaT
	Multi-Scale Density Extraction Module
	Density-Aware Attention Module

	Experiments
	Comparative Results
	Ablation Study

	Conclusion
	Appendix
	Ethics Statement
	Reproducibility Statement
	LLM Usage
	Related Work
	Cross-Scale Generalization
	Cross-Distribution Generalization
	Omni-Generalization

	Method Details
	Selection of Neighborhood Scales
	Density-Aware Linear Attention Module

	Training Details
	Additional Results
	Visualization

