
Under review as a conference paper at ICLR 2024

RETHINKING RGB COLOR REPRESENTATION
FOR IMAGE RESTORATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The per-pixel distance loss defined in the RGB color domain has been almost a
compulsory choice for training image restoration models, despite its well-known
tendency to guide the model to produce blurry, unrealistic textures. To enhance the
visual plausibility of restored images, recent methods employ auxiliary objectives
such as perceptual or adversarial losses. Nevertheless, they still do not eliminate
the reliance on the per-pixel distance in the RGB domain. In this work, we try to
redefine the very representation space over which the per-pixel distance is measured.
Our augmented RGB (aRGB) space is the latent space of an autoencoder that
comprises a single affine decoder and a nonlinear encoder, trained to preserve color
information while capturing low-level image structures. As a direct consequence,
per-pixel distance metrics, e.g., L1 , L2 , and smooth L1 losses, can also be defined
over our aRGB space in the same way as for the RGB space. We then replace the
per-pixel losses in the RGB space with their counterparts in training various image
restoration models such as deblurring, denoising, and perceptual super-resolution.
By simply redirecting the loss function to act upon the proposed aRGB space, we
demonstrate boosted performance without any modification to model architectures
or other hyperparameters. Our results imply that the RGB color is not the optimal
representation for image restoration tasks.

1 INTRODUCTION

Since SRCNN (Dong et al., 2016) reinterpreted image restoration pipeline as a cascade of deep
neural networks, the field of image restoration has undergone unprecedented improvements, most
of which are attributed to the advancements in model architectures (Kim et al., 2016b; Lim et al.,
2017; Nah et al., 2017; Tong et al., 2017; Wang et al., 2018b; Zhang et al., 2018b; Waqas Zamir
et al., 2021; Liang et al., 2021; Chen et al., 2022). On the contrary, shifting our interest to the very
objectives the models are optimized for, we see only a few variations: the per-pixel L1 or L2 distances
are used almost unanimously. This particular fondness for the distance metrics in the RGB color
space stems from the characteristics of the image restoration problem itself, where a low-quality
input, the model’s reconstruction, and the corresponding ground truth images have extremely dense,
pixel-grained correlations in between.

Unfortunately, it is widely known that those per-pixel losses are the main cause of the blurriness
easily found in the restored images (Ledig et al., 2017). Each spatial feature in the RGB color space
is only responsible for the three-dimensional color information at that specific locus; it does not
carry any information directly pertaining to local structures. In other words, the models do not
learn structural information from the loss function. Instead, they only learn it implicitly from its
architectural prior. The conventions to remedy the problem are to introduce auxiliary objectives such
as perceptual loss (Johnson et al., 2016) or adversarial loss (Ledig et al., 2017; Kupyn et al., 2018;
Wang et al., 2018b). Nonetheless, they cannot be used by themselves when accurate reconstruction is
required. In particular, a perceptual loss (Johnson et al., 2016) is a distance metric defined over the
range of another network, typically a pre-trained classifier (Simonyan and Zisserman, 2015). Those
classifiers, despite being favorable latent encoders for the perceptual losses, are originally designed
to prefer coarse semantic structures over high-frequency textual variations in order to achieve robust
classification accuracy. To this end, a classifier typically downscales inputs (Krizhevsky et al., 2012),
normalizes internal feature distributions (Ioffe and Szegedy, 2015; Ba et al., 2016), and filters out
insignificant patterns using noninvertible rectifiers (von der Malsburg, 1973; Hendrycks and Gimpel,

1

Under review as a conference paper at ICLR 2024

Figure 1: The proposed aRGB representation space. The augmented RGB (aRGB) representation is designed
to imbue the gradient-based supervision given by any per-pixel distance metric with rich structural information.
Defined with a mixture-of-experts encoder and a linear decoder, our aRGB space also gains interpretability, for
any aRGB encoding is orthogonally decomposable into the color encoding and structure encoding components.

2016). Such process can be advantageous in maintaining semantic information; however, the resulting
embeddings inevitably lose information about pixel-grained alignments and colors, which is crucial
when we want to reconstruct high-fidelity images that correctly match the given inputs. Adversarial
losses (Goodfellow et al., 2014; Ledig et al., 2017; Kupyn et al., 2018; Wang et al., 2018b) cannot
be used alone for restoration either, as they prioritize realism over pixel-level accuracy and content
preservation. As a consequence, the per-pixel distance metrics have been regarded almost necessary
evils in training a restoration network, despite their notoriety of producing blurry outputs.

In summary, yet the per-pixel distances defined over the RGB color representation does provide
fine-grained supervision for the paired data, it fails to convey information regarding local structures
within an image. On the other hand, despite their structural awareness, existing solutions such as
perceptual or adversarial losses cannot change the way of using the per-pixel distances. Because
these loss functions do not preserve the exact fine-grained information, the per-pixel distances are still
required to assist their supervision. We believe that, however, the lack of structural information within
the guidance of per-pixel distances is not attributed to the metrics themselves but rather, to the very
space those metrics are defined over, i.e., the RGB color domain. What we need is a representation
space where each pixel captures its neighboring structure while not losing its original color value so
as to provide better supervision with a per-pixel distance. For this goal, we design an encoder that
augments images into latent features that satisfy this condition. Our encoder is trained with a linear
decoder in an autoencoder fashion to ensure those latent features to be decoded back to the original
images almost losslessly (> 60dB PSNR). We refer to this latent feature space as the augmented
RGB (aRGB) space. Replacing the RGB representation with our aRGB space in calculation of
per-pixel distances enjoys several benefits:

Versatility. Directly altering the underlying representation space allows us an additional degree of
freedom in choosing the loss function. Among various high-performing image restoration models,
we choose frameworks employing different per-pixel and auxiliary losses for demonstration, namely:
MPRNet (Waqas Zamir et al., 2021), NAFNet (Chen et al., 2022), and ESRGAN (Wang et al., 2018b).

Performance improvement. Replacing per-pixel RGB losses with our aRGB space-based ones
improves not only in perceptual super-resolution tasks but, to our surprise, in the image denoising
and deblurring tasks in terms of PSNR and SSIM. Better PSNR metrics could be achieved without
using the per-pixel RGB distances, despite their mathematical equivalence.

Interpretability. In Section 4, we provide comprehensive analysis on our aRGB space. Thanks
to the linear decoder, we can separate the information added to the augmented space from the
existing RGB color information. We investigate further into the topology of the aRGB space and the
characteristics of the gradients from the aRGB distances using various visualization techniques.

2

Under review as a conference paper at ICLR 2024

2 LIFTING THE RGB COLOR SPACE

2.1 THE aRGB AUTOENCODER

Our primary goal is to design a representation space for low-level vision tasks in order to facilitate
training of image restoration networks. Designing a representation space is achieved by defining
the encoder and the decoder to translate images back and forth between the RGB space and the
target space. Building upon the discussion from Section 1, we can split our goal into two parts: (1)
the feature at each pixel in our space is required to encode its neighboring structure, and (2) the
integrity of the color information should be preserved. To fulfill the first requirement, our encoder is
a size-preserving ConvNet with nonlinearities to capture the structure among adjacent pixels. For
the latter, we employ a per-pixel linear decoder, i.e., a 1×1 convolution, to strongly constrain the
embedding of a pixel to include its RGB color information.

We start from an RGB image x ∈ R3×H×W . Our convolutional encoder f transforms image x into
a feature ξ ∈ RC×H×W of a new representation space. Unlike typical undercomplete autoencoders,
which removes information from its inputs, we aim to add more information regarding local structures
for each pixel [ξ]i j at coordinate (i, j) . Therefore, C must be greater than 3, and the receptive field size
R should be greater than unity. Our decoder g : ξ 7→ x is effectively a single 1×1 convolution. That
is, we can express g([ξ]i j) as a per-pixel linear operation: g([ξ]i j) =A[ξ]i j +b , where A∈R3×C and
b ∈ R3 . This ensures that each feature [ξ]i j in our representation space extends the color information
presented in [x]i j , hence the name of our new representation, augmented RGB. Additionally, using a
linear decoder g offers an interpretability: we can regard the nullspace of A , i.e., the set of undecoded
information, as a reservoir of any extra information captured by the encoder f other than local colors.

What is crucial at this juncture is to define our aRGB space to effectively capture the highly varying,
complex mixture of information from the color and the neighboring structure at each pixel. To this
end, we employ a mixture-of-experts (MoE) architecture (Jacobs et al., 1991; Shazeer et al., 2017;
Fedus et al., 2022) within our encoder. We choose this design based on our conjecture that the
topology of the space of image patches is disconnected, and therefore can be more efficiently modeled
with a MoE architecture than a single ConvNet. For the set of the smallest images, i.e., a set of pixels,
we can argue that their domain is a connected set under absence of quantization, since a pixel can take
arbitrary color value. This does not hold in general if the size of the patches become large enough
to contain semantic structures. In fact, we cannot interpolate between two images of semantically
distinct objects in the natural image domain, e.g., there is no such thing as a half-cat half-airplane
object in nature. This implies that topological disconnectedness emerge from the domain of patches
as the size of its patches increases. Since a single-module encoder is a continuous function, learning
a mapping over a disconnected set may require deeper architecture with a lot of parameters. An MoE
encoder, per contra, can model a discontinuous map more effectively through its discrete routing
strategy between small, specialized experts. We will revisit our conjecture in Section 4.

In practice, an RGB image x ∈ R3×H×W is fed into the router fr as well as K encoders f1, . . . , fK .
The router fr is a five-layer ConvNet classifier with a softmax at the end. The output of the router
y = fr(x) ∈ [0,1]K×H×W partitions each pixel of x into K different bins with top-1 policy. This
is equivalent to generating mutually exclusive and jointly exhaustive K masks m1, . . . ,mK of size
H ×W . Finally, the features ξ1 = f1(x), . . . ,ξK = fK(ξ) are aggregated into a single feature ξ , i.e.,

ξ = f (x) =
K

∑
k=1

mk ⊙ fk(x) =
K

∑
k=1

1argmaxk′ [fr(x)]k′=k ⊙ fk(x) ∈ RC×H×W , (1)

where ⊙ is an element-wise multiplication and 1 is the indicator function. We ensure that (g◦ f)(x) =
x′ ≃ x by training f and g jointly in an autoencoder scheme. After the training, the decoder g is
discarded and the encoder f is used to generate aRGB representations from RGB images.

2.2 TRAINING THE AUTOENCODER

Our objective is to ensure that the aRGB encoder f effectively learns accurate low-level features from
clean (or sharp) and natural images. To achieve this goal, we make use of a dataset D, consisting of
clean image patches. With this dataset, the aRGB autoencoder is trained to minimize the L1 distance
between a patch x ∈ D and its reconstruction (g◦ f)(x) . In addition, likewise in Switch Transformer

3

Under review as a conference paper at ICLR 2024

(Fedus et al., 2022), a load-balancing loss Lbalance is applied to encourage the router fr to distribute
pixels evenly across the K experts during training:

Lbalance = K2
H

∑
i=1

W

∑
j=1

[
max

k
[fr(x)]k

]
i j
, (2)

which is minimized when the distribution is uniform with the value of unity. Furthermore, to increase
the sensitivity of the encoder f , we simply add an isotropic Gaussian noise at the output of the
encoder only during the training of the aRGB autoencoder. That is, we have the reconstruction loss:

Lrecon = ∥g(f (x)+z)−x∥1 , (3)

where z ∼ N (0,I) . Although the decoder is only informed with three color channels of each pixel
during the training, we observe that the latent space does not degenerate into trivial solutions. See
Appendix A for more information. Overall, the training loss for the aRGB autoencoder is:

LAE = Lrecon +λLbalance . (4)

In practice, we choose λ = 0.01. The final autoencoder achieves 67.21 dB in reconstruction of the
Set5 benchmark (Bevilacqua et al., 2012). In other words, the average RGB color difference is below
tenth of the quantization step. Henceforth, we will consider our aRGB autoencoder lossless in the
analysis in Section 4. More implementation details are provided in Appendix B.

3 TRAINING IMAGE RESTORATION MODELS IN aRGB SPACE

3.1 INTEGRATION INTO EXISTING RESTORATION FRAMEWORKS

Training image restoration models with respect to the aRGB space only requires a few lines of code
modified. An image restoration model is typically trained to minimize a per-pixel distance Lpixel ,
optionally with some auxiliary losses Laux for perceptual quality, such as a perceptual loss (Johnson
et al., 2016) or an adversarial loss (Ledig et al., 2017). The overall loss can be represented as:

Ltotal(xH, x̂H) = Lpixel(xH, x̂H)+Laux(xH, x̂H) , (5)

where xH is the ground-truth image and x̂H is the restoration result. To train the model in the aRGB
space, we are only required to modify the the input to the per-pixel loss Lpixel. That is, the per-pixel
distances are now computed between the images in the aRGB space, namely, f (xH) and f (x̂H) .

Ltotal, aRGB(xH, x̂H) = Lpixel(f (xH), f (x̂H))+Laux(xH, x̂H) . (6)

Since what we present is not a specific loss function but the underlying space itself, our method can
be seamlessly integrated with any existing restoration framework regardless of the type of per-pixel
loss it uses. Typical per-pixel losses used for these tasks can be grouped into three categories: an
L1 loss; an L2 loss and its equivalents; and a group of smooth L1 losses that interpolate between
the former two. To demonstrate the versatility of our solution, we choose a high-performing image
restoration model trained by a loss from each of the group to solve different type of tasks. In specific,
a perceptual image super-resolution model trained for an L1 loss, a real image denoising model trained
for a PSNR loss, an equivalent to the L2 loss, and finally a motion blur deblurring model trained for a
Charbonnier loss, a type of smooth L1 loss, are chosen. A notable feature of our method is that the
trained image restoration models with respect to our aRGB representation space are generally better
at reconstructing the underlying edge structures. This offers visual artifact reduction for perceptual
image super-resolution in Section 3.2, sharper edges and enhanced alignments for image denoising
and deblurring in Section 3.3 and 3.4. More visual comparisons are provided in Appendix D.

3.2 PERCEPTUAL IMAGE SUPER-RESOLUTION WITH L1 LOSS

Our initial hypothesis revolved around the potential of our aRGB encoder f to enrich the supervision
of the per-pixel loss with structural information. Perceptual super-resolution should be a natural
starting point to search for the evidence, since in the task, the supervision from the original per-pixel
loss is heavily interfered by structure-aware auxiliary losses, i.e., the VGG perceptual loss (Simonyan
and Zisserman, 2015; Johnson et al., 2016) and the adversarial loss (Ledig et al., 2017). We trained
ESRGAN (Wang et al., 2018b) models and summarized the results in Table 1. Fine-tuned over the

4

Under review as a conference paper at ICLR 2024

Table 1: Quantitative results on training 4× super-resolution ESRGAN in the aRGB space. In our methods
using aRGB representation, we modify only the L1 loss by exchanging it with the L1,aRGB loss. All the other
training hyperparameters are left untouched. Better scores in each block are shown in boldface text.

DIV2K-Val Urban100

Objective PSNR↑ SSIM↑ LPIPS↓ NIQE↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ NIQE↓ FID↓
Pre-trained RRDBNet† 29.466 0.8306 0.2537 5.4860 15.910 25.496 0.7951 0.1963 5.6236 23.729

0.01L1 +0.005LAdv 27.102 0.7687 0.1282 3.0419 13.593 23.535 0.7373 0.1322 3.9479 18.428
0.01L1,aRGB +0.005LAdv 27.218 0.7622 0.1235 3.0896 12.936 23.348 0.7204 0.1289 3.8524 18.015

0.01L1 +LVGG +0.005LAdv
† 26.627 0.7033 0.1154 3.0913 13.557 22.776 0.7033 0.1232 4.2067 20.616

0.01L1,aRGB +LVGG +0.005LAdv 26.845 0.7500 0.1110 2.9615 12.799 23.270 0.7196 0.1183 3.8982 17.739
†The official ESRGAN model (Wang et al., 2018b).

(a) LR (b) RRDBNet (c) ESRGAN (d) L1,aRGB +LV +LA (e) HR

Figure 2: Qualitative comparison of ESRGAN models trained with different loss functions. Each column
corresponds to each row in Table 1. The loss weights are omitted for brevity, ESRGAN corresponds to the
0.01L1 +LVGG +0.005LAdv in Table 1.

same PSNR-oriented pre-trained RRDBNet, various combinations for the adversarial training are
examined. Here, our method simply modifies the L1 loss to act within the aRGB space.

First, as Table 1 indicates, the modified L1 metric, L1,aRGB , provides sufficient constraints for
stabilizing the adversarial training of a super-resolution model. Remarkably, even in the absence
of the perceptual loss, our L1,aRGB loss generally improves perceptual scores over the original L1
loss while maintaining similar PSNR scores during adversarial training. This implies that our aRGB
representation provides complementary information that the conventional per-pixel L1 distances does
not provide. Furthermore, the last two rows of Table 1 demonstrate that the benefit of training in our
aRGB space is maximized in the presence of the perceptual loss. This implies that the local structural
information captured within our aRGB representation is also complementary to the supervision from
a pre-trained classifier. As a result, this leads to superior performance in every distortion-based and
perceptual metric compared to the original ESRGAN. In particular, the improvements in the PSNR
and SSIM scores aligns with our design philosophy that the RGB colors are included as a subspace in
our aRGB representation; in other words, the effect of minimizing the L1 loss can also be achieved by
minimizing the L1,aRGB loss. From visual results in Figure 2 and Appendix D, we can observe how
artifacts are suppressed using our L1,aRGB loss, successfully guiding the adversarial training towards
visually pleasing restoration. More quantitative results are provided in Appendix C.

3.3 REAL NOISE DENOISING WITH L2 LOSS

To demonstrate the effect of aRGB representation with L2 loss, we choose NAFNet (Chen et al.,
2022), which employs a per-pixel PSNR loss LPSNR , a mathematically equivalent form of the L2 loss.
We first train a NAFNet-width32 on the SIDD Medium sRGB dataset (Abdelhamed et al., 2018) with
our new PSNR loss LPSNR,aRGB , the same metric but defined within the aRGB space. To our surprise,
Table 2 and Figure 3 reveal that our aRGB representation provides better PSNR and SSIM scores
than the original model directly trained using the PSNR metric LPSNR . The results imply that our
aRGB representation not only maintains most of original RGB information but also incorporates
additional local structural information that leads to better supervision in the denoising task. Additional
experiments using different metrics for the same task reveal another noteworthy characteristics of

5

Under review as a conference paper at ICLR 2024

(a) Noisy
17.1647 dB

(b) N32 LPSNR
36.0312 dB

(c) N32 LPSNR,aRGB

36.3540 dB
(d) N32 L1,aRGB

36.3747 dB
(e) N64 LPSNR

35.5460 dB
(f) N64 L1,aRGB

36.4639 dB

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(g) Clean GT
PSNR (dB)

Figure 3: Qualitative comparison of real image denoising models trained with different loss functions.
Each column corresponds to each row in Table 2. N32 corresponds to NAFNet-width32 and N64 corresponds to
NAFNet-width64. The bottom row shows the maximum absolute difference in color with a range of [0,1] .

changing the representation space. As elaborated in Section 4.3, changing the underlying space can
profoundly alters the scale and the shape of a metric and its gradients, resulting in different training
dynamics. A direct consequence is that the optimal hyperparameters and their resulting performance
may change for restoration framework in use. Better performance obtained with NAFNets trained for
the L1 metric in our aRGB space in the last rows of Table 3 clearly demonstrates this issue, revealing
a potential unexpected benefit from changing the underlying representation.

3.4 MOTION BLUR DEBLURRING WITH SMOOTH L1 LOSS

A Charbonnier loss (Bruhn et al., 2005) is a type of smooth L1 loss defined as LChar(x̂H,xH)= (∥x̂H−
xH∥2

2 − ε2)1/2 , where ε is a small constant. To show the effectiveness of our aRGB representation
with this type of loss, we train an MPRNet (Waqas Zamir et al., 2021) for motion blur deblurring task
using GoPro dataset (Nah et al., 2017). The MPRNet is originally trained with a Charbonnier loss with
ε = 10−3 together with an edge loss, an auxiliary loss defined as another Charbonnier loss calculated
between the Laplacians of two images. We leave the edge loss and its weight untouched and change
only the Charbonnier loss to act upon our aRGB space, i.e., LMPRNet, aRGB = LChar(f (x̂H), f (xH))+
0.05LChar(∆x̂H,∆xH) . We observe clear improvements in Table 3 and Figure 4. As shown, the
performance gain was orthogonal to existing enhancement techniques, e.g., test-time local converter
(TLC) (Chu et al., 2022). From the experiments, we conclude that our aRGB representation indeed
helps training image restoration models better than the RGB color representation in a variety of
tasks, architectures, loss functions, and lead to synergic effect with a variety of other enhancement
techniques, such as perceptual loss, adversarial training, edge loss, and test-time local converter.

4 DISCUSSION

In order to understand the representation learned by the aRGB autoencoder, we first explore the
consequence of our two key design choices: the linear decoder and the mixture-of-experts encoder.

(a) Blurry
21.1887 dB

(b) LChar
18.9074 dB

(c) LChar,aRGB
19.2360 dB

(d) LChar ,TLC
19.3418 dB

(e) LChar,aRGB ,TLC
23.3990 dB

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27
0.30

(f) Clean GT
PSNR (dB)

Figure 4: Qualitative comparison of motion blur deblurring models trained with different loss functions.
Each column corresponds to each row in Table 3. The bottom row is the maximum absolute RGB difference.

6

Under review as a conference paper at ICLR 2024

Table 2: Results on real image de-
noising using NAFNet.

SIDD

Model Objective PSNR↑ SSIM↑
NAFNet-width32 LPSNR 39.9672 0.9599
NAFNet-width32 LPSNR,aRGB 39.9864 0.9601
NAFNet-width32 L1,aRGB 40.0106 0.9602
NAFNet-width64 LPSNR 40.3045 0.9614
NAFNet-width64 L1,aRGB 40.3364 0.9620

Table 3: Results on motion blur deblurring using MPRNet.

GoPro HIDE

Model Objective PSNR↑ SSIM↑ PSNR↑ SSIM↑
MPRNet LChar +0.05LEdge 32.6581 0.9589 30.9622 0.9394
MPRNet LChar,aRGB +0.05LEdge 32.7118 0.9594 31.0248 0.9398
MPRNet-TLC LChar +0.05LEdge 33.3137 0.9637 31.1868 0.9418
MPRNet-TLC LChar,aRGB +0.05LEdge 33.3886 0.9642 31.2082 0.9421

x1 x2

f−1(ξmix) ∇2 f−1(ξmix)

(a) Inverting orthogonal mix-
ture of two aRGB embeddings.

f0 (4.1 %)

f1 (2.8 %)

f2 (2.8 %)

f3 (7.6 %)

f4 (3.9 %)

f5 (8.5 %)

f6 (2.0 %)

f7 (17.9 %)

f8 (5.1 %)

f9 (3.9 %)

f10 (5.6 %)

f11 (4.4 %)

f12 (4.1 %)

f13 (2.7 %)

f14 (5.6 %)

f15 (3.6 %)

f16 (3.2 %)

f17 (3.5 %)

f18 (3.3 %)

f19 (5.4 %)

(b) Expert selection map
of the MoE router fr .

(c) t-SNE plot of the aRGB em-
bedding ξ of pixels in image 5b.

0.0 0.2 0.4 0.6 0.8 1.0

Distance in RGB

0

100

200

300

400

500

600

D
is

ta
n

ce
in

a
R

G
B

Metric Conversion between RGB and aRGB Representations

Urban100

Gaussian Noise

0.0 0.2 0.4 0.6 0.8 1.0

0
10
20
30

X −X0X1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5
Standard Deviation

(d) Change of L2 metrics in the aRGB space rela-
tive to the L2 metrics in the RGB space.

Figure 5: Understanding the learned aRGB representation. Figure 5a show a visual example of aRGB
embedding inversion. Figure 5b and 5c reveal clear evidence that the experts of our aRGB encoder f are
specialized for a particular type of input structures, and that even the embedding vectors within a single patch are
clustered in a complicated manner, justifying our usage of MoE architecture. Figure 5d shows how the distance
metric changes in the aRGB space relative to the distance in the RGB space. Mean distances and their standard
deviations are measured by MSE losses between an image and the same image with 100 AWGNs with the same
standard deviation. Note that the aRGB space slightly exaggerates the distance more outside natural image
domain, e.g., Gaussian noise, and the metric’s variance is negligibly small.

Then, we quantify the effect of changing the representation space on the scale of metrics defined over
the space and their gradients. We conclude our discussion with ablation studies.

4.1 NULLSPACE OF THE DECODER

In addition to the design simplicity, our pixel-wise linear decoder enjoys an additional benefit:
decomposability. Since our autoencoder is almost lossless as demonstrated in Table 8, we will
consider that the RGB x ∈ R3 and the aRGB ξ = f (x) ∈ RC representations of any given image
equivalent. That is, x′ = g(ξ) =Aξ+b= x . As a result of the linearity of our decoder g , the aRGB
representation ξ can be decomposed into the sum of two orthogonal components:

ξ = ξ∥+ξ⊥ , s.t. ξ∥ =A†Aξ =: f∥(x) and ξ⊥ = (I−A†A)ξ =: f⊥(x) , (7)

where A† is the Moore-Penrose pseudoinverse of A . The parallel component ξ∥ of the aRGB
representation lies in the three-dimensional subspace of RC that is projected onto the RGB colors by
the decoder g , i.e., Aξ∥ =AA†Aξ =Aξ . The remaining perpendicular part ξ⊥ can be regarded as
the information the aRGB space encodes in addition to the RGB colors. The contribution of the two
components can be visualized by inverting the encoder f with respect to a mixed embedding:

f−1(ξmix) = argmin
z

∥ f (z)−ξmix∥2
2 , s.t. ξmix = ξ1∥+ξ2⊥ =A†A f (x1)+(I−A†A) f (x2) . (8)

We use a SGD optimizer with a learning rate of 0.1 for 50 iterations. As shown in Figure 5a and
Appendix E, the inversion of the mixed embedding inherits color information from the parallel
embedding ξ1∥ , while the perpendicular part ξ2⊥ contributes to the high-frequency edge information.

4.2 SPECIALIZATION OF THE EXPERTS AND LEARNED STRUCTURES

Figure 5b visualizes how individual pixels of a natural image are distributed into K = 20 experts.
Unlike in semantic segmentation, where segmentation maps are chunked into large blocks of semanti-
cally correlated pixels, our pixel-wise router fr generates fine-grained distributions of pixels. That is,
multiple experts jointly involve in encoding the same texture such as the blue sky and the leafy trees.
Another salient feature we can observe in the figure is that edges of different orientations are dealt
with different experts, implying their specialization. Visualizing the aRGB embedding space using
t-SNE (van der Maaten and Hinton, 2008) provides us with additional insights on the topology of

7

Under review as a conference paper at ICLR 2024

xSR xGT

∇L1,RGB ∇L1,aRGB

(a) L1 loss gradients visualized.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00
×106

×10−5

−0.020−0.015−0.010−0.005 0.000 0.005 0.010 0.015 0.020

0

20

40

60

80

L1, aRGB

L1, RGB

(b) Histogram of gradients of 6a.

Figure 6: Gradients from
L1,RGB and L1,aRGB losses.

Table 4: Ablation studies on the aRGB autoencoder. RRDBNets (Wang
et al., 2018b) are trained with DIV2K (Agustsson and Timofte, 2017) for
300k iterations for 4× SISR tasks with only the L1 loss between the aRGB
embeddings.

RRDBNet in 4× SISR Set14 Urban100 DIV2K-Val

experts Routing aRGB train set Reg. noise PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
1 - DIV2K ✓ 26.87 0.7467 24.75 0.7735 29.08 0.8222
5 MoE DIV2K ✓ 26.87 0.7477 24.83 0.7745 29.12 0.8231

10 MoE DIV2K ✓ 26.89 0.7474 24.84 0.7750 29.11 0.8231
20 MoE DIV2K ✓ 26.91 0.7471 24.87 0.7745 29.14 0.8227
30 MoE DIV2K ✓ 26.89 0.7476 24.84 0.7750 29.11 0.8231

20 MoE GoPro ✓ 26.89 0.7459 24.83 0.7728 29.12 0.8220
20 MoE SIDD ✓ 26.86 0.7420 24.80 0.7691 29.08 0.8186
20 MoE Noise ✓ 26.65 0.7461 24.64 0.7729 28.87 0.8212

20 MoE DIV2K ✗ 26.91 0.7469 24.85 0.7722 29.13 0.8223

the space. Figure 5c reveals that the aRGB embeddings cluster into multiple disconnected groups
in two different types: common groups where multiple experts are involved in encoding process
and specialized groups where a single expert is exclusively allocated for the embeddings. These
observations align well with our initial design principles in Section 2.1, where the feature embeddings
occupy highly complicated, disconnected set, and an MoE architecture effectively deals with this
structure by specializing each expert to a subset of the embedding space.

4.3 aRGB METRIC SPACE AND PRODUCED GRADIENTS

The main purpose of our the aRGB space is to provide alternative supervision to the existing image
restoration framework. This supervision is realized with a metric defined over the space and its
gradients generated from pairs of images. To this end, we first visualize the correlation between L2
distances defined in the RGB and our aRGB spaces in Figure 5d. We plotted additional figure with
title X −X0X1 to show the deviation of the graph over the straight line, showing clear convexity of
the graph. This implies that the metrics within aRGB spaces are inflated when the given two images
are similar. Figure 6 shows the gradients from two per-pixel L1 losses between a restored image
and its high-quality counterpart defined over both spaces. Unlike RGB L1 loss which exhibits a
highly off-centered, discrete distribution, the L1,aRGB loss shows smooth and centered distribution of
gradients. We believe that this allows for the stable training of the image restoration models despite
its huge scale of the generated gradients from the L1,aRGB loss, which is more than a hundredfold
as shown in the x axis of Figure 6b. In the RGB domain, the same scale of gradient is achievable
only through increasing the learning rate, which leads to destabilization of the training. Overall, the
analyses show how our aRGB encoder helps the training of image restoration models.

4.4 ABLATION STUDY

Lastly, we provide ablation studies to determine the best hyperparameters for our aRGB autoencoder.
We compare the models by the results of training an RRDBNet (Wang et al., 2018b) only on DIV2K
dataset. The results are summarized in Table 4. More information is elaborated in Appendix B.

Number of experts. The first four rows of Table 4 show the effect of the number of experts of the
aRGB encoder f on its supervision quality. From the results, we choose to fix the number of experts
to 20 throughout our experiments.

Dataset dependence. As the second part of Table 4 presents, the training data for the aRGB autoen-
coder decides the quality of supervision the model gives. This implies that our aRGB autoencoder
utilizes structural priors of its training data. Appendix 7 provides additional theoretical and empirical
evidence that our aRGB autoencoder learns image structures to reconstruct given images.

Regularizers. In the last row of Table 4, we observe that the regularizing noise z added at the end
of the encoder during training helps the aRGB encoder to produce stronger supervision for image
restoration models. In practice, we observe more than tenfold reduction in the scale of produced
gradients when the aRGB autoencoder trained without the regularizing noise is applied. This
correlates to our discussion in Section 4.3, that our aRGB encoder helps training image restoration
models by stably increasing the scale of gradients.

8

Under review as a conference paper at ICLR 2024

5 RELATED WORK

Pairwise loss in image restoration. Training a deep neural network that translates low-quality
images into high-quality estimates has undoubtedly become the standard way of solving image
restoration. While most of the advancements have been made in the network architecture (Kim
et al., 2016b; Lim et al., 2017; Nah et al., 2017; Tong et al., 2017; Wang et al., 2018b; Zhang et al.,
2018b; Waqas Zamir et al., 2021; Liang et al., 2021; Waqas Zamir et al., 2022; Chen et al., 2022), the
importance of loss functions is also widely acknowledged. Since SRCNN (Dong et al., 2016), the
first pioneer, employed the MSE loss, the first image restoration models had been trained with the
MSE loss (Kim et al., 2016a;b; Nah et al., 2017; Zhang et al., 2017). However, after EDSR (Lim
et al., 2017) reported that better convergence can be achieved with L1 loss, various pairwise loss
functions are explored. LapSRN (Lai et al., 2017) rediscovers Charbonnier loss (Bruhn et al., 2005),
a type of smooth L1 loss, for image super-resolution, which is also employed in image deraining
(Jiang et al., 2020) with a new edge loss, defined as a Charbonnier loss between Laplacians, which is
then employed in general restoration by MPRNet (Waqas Zamir et al., 2021). NAFNet (Chen et al.,
2022), on the other hand, uses the PSNR score directly as a loss function. In accordance with these
approaches, we attempt a more general approach to design a representation space, over which those
loss functions can be redefined.

Structural prior of natural images. It is generally recognized that a convolutional neural network,
either trained (Simonyan and Zisserman, 2015) or even untrained (Ulyanov et al., 2018), contains
structural prior that resonates with the internal structure of natural images. This prior information
permeates through the network into its output space. Attempts to exploit this information include
the perceptual loss (Johnson et al., 2016) and various perceptual metrics (Zhang et al., 2018a; Ding
et al., 2020). Those are pairwise distance metrics defined over the range space of pre-trained classifier
networks (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015). However, as mentioned in
Section 1, such losses cannot be used alone when it is required to respect the strong correspondence
between the generated and the desired images. Different from the strategies sought for the perceptual
metrics, our aRGB encoder is designed to preserve the full information of its inputs by a scale-
preserving architecture and a linear decoder to strictly constrain the representation.

Mixture of Experts. Instead of relying on a single model to handle complex large-scaled data,
a more effective approach is to distribute the workload among multiple workers. To achieve this,
a routing strategy (Shazeer et al., 2017) can be employed to divide information between different
models, each of which processes a subset of the training data. These individual models, referred to as
experts, collectively form a Mixture of Experts (MoE) (Jacobs et al., 1991). Recent studies (Zhou
et al., 2022; Fedus et al., 2022) have shown the advantages of MoE in deep learning. However, there
are two main challenges when working with multiple experts: limited computational resources and
training stability. The conventional routing strategy can lead to unstable training of the MoE unless
appropriate regularization methods are applied. Moreover, without advanced techniques (Fedus et al.,
2021; He et al., 2021), MoE experience longer processing times as the number of experts increases.
In response to these challenges, we employ a balancing loss (Fedus et al., 2022) to ensure the stable
training of expert networks and incorporate MoE exclusively during the training phase, leaving the
testing phase unaffected.

6 CONCLUSION

It is a well-known phenomenon (Ledig et al., 2017) that per-pixel pairwise loss functions, such as L1
or L2 distances, defined in the RGB color space have a strong tendency to guide the trained image
restoration model to produce blurry, unrealistic textures. We hypothesize that such problem can be
alleviated if we have a representation space that contains accurate color information as well as the
local structural information of an image. Our augmented RGB (aRGB) representation is designed
with a nonlinear mixture-of-experts encoder and a linear decoder to meet the requirements. From
diversified set of experiments, we demonstrate the improved performance across a variety of image
restoration tasks such as perceptual super-resolution, denoising, and deblurring could be achieved
by only changing the representation space to our aRGB space. Given our results suggesting that the
RGB color space may not be the optimal representation space for low-level computer vision tasks,
we hope our work spurs more interests and exploration in this research direction.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Abdelrahman Abdelhamed, Stephen Lin, and Michael S. Brown. A high-quality denoising dataset
for smartphone cameras. In CVPR, 2018.

Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on single image super-resolution:
Dataset and study. In CVPR Workshop, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprints,
2016.

Marco Bevilacqua, Roumy Aline, Guillemot Christine, and Morel Marie line Alberi. Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012.

Andrés Bruhn, Joachim Weickert, and Christoph Schnörr. Lucas/Kanade meets Horn/Schunck:
Combining local and global optic flow methods. International Journal of Computer Vision, 61:
211–231, 2005. URL https://api.semanticscholar.org/CorpusID:15374825.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
In ECCV, 2022.

Xiaojie Chu, Liangyu Chen, Chengpeng Chen, and Xin Lu. Improving Image Restoration by
Revisiting Global Information Aggregation. In ECCV, 2022.

Keyan Ding, Kede Ma, Shiqi Wang, and Eero P. Simoncelli. Image quality assessment: Unifying
structure and texture similarity. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 44:2567–2581, 2020. URL https://api.semanticscholar.org/CorpusID:
215785896.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2):
295–307, February 2016.

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity. arXiv e-prints, art. arXiv:2101.03961, January 2021.
doi: 10.48550/arXiv.2101.03961.

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(1):5232—-
5270, January 2022. ISSN 1532-4435.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Shuhang Gu, Andreas Lugmayr, Martin Danelljan, Manuel Fritsche, Julien Lamour, and Radu
Timofte. DIV8K: DIVerse 8K resolution image dataset. In ICCV Workshops, 2019.

Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and Jie Tang. Fastmoe: A fast
mixture-of-expert training system. arXiv preprint arXiv:2103.13262, 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv preprints, page
arXiv:1606.08415, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In NIPS,
2017.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
self-exemplars. In CVPR, 2015.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

10

https://api.semanticscholar.org/CorpusID:15374825
https://api.semanticscholar.org/CorpusID:215785896
https://api.semanticscholar.org/CorpusID:215785896

Under review as a conference paper at ICLR 2024

Kui Jiang, Zhongyuan Wang, Peng Yi, Chen Chen, Baojin Huang, Yimin Luo, Jiayi Ma, and Junjun
Jiang. Multi-Scale Progressive Fusion Network for Single Image Deraining. In CVPR, 2020.

Justin Johnson, Alexandre Alahi, and Fei-Fei Li. Perceptual losses for real-time style transfer and
super-resolution. In ECCV, 2016.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional network for image
super-resolution. In CVPR, 2016a.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In CVPR, 2016b.

Diederik P. Kingma and Jimmy Lei Ba. Adam: a method for stochastic optimization. In ICLR, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep
convolutional neural networks. In NIPS, 2012.

Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiri Matas. DeblurGAN:
blind motion deblurring using conditional adversarial networks. In CVPR, 2018.

Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang. Deep Laplacian pyramid
networks for fast and accurate super-resolution. In CVPR, 2017.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi. Photo-realistic
single image super-resolution using a generative adversarial network. In CVPR, 2017.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. SwinIR:
image restoration using Swin Transformer. In ICCV Workshops, 2021.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In CVPR Workshop, 2017.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In ICLR,
2017.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In ICCV, 2001.

Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshihiko Yamasaki, and
Kiyoharu Aizawa. Sketch-based manga retrieval using manga109 dataset. Multimedia Tools and
Applications, 76(20):21811–21838, oct 2017. ISSN 1380-7501. doi: 10.1007/s11042-016-4020-z.
URL https://doi.org/10.1007/s11042-016-4020-z.

Anish Mittal, Rajiv Soundararajan, and Alan C. Bovik. Making a “completely blind” image quality
analyzer. IEEE Signal Processing Letters, 20(3):209–212, 2013.

Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
for dynamic scene deblurring. In CVPR, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imperative style, high-performance deep
learning library. In NeurIPS, 2019.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht,
Yoshua Bengio, and Aaron Courville. On the Spectral Bias of Neural Networks. In ICML, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
large scale visual recognition challenge. IJCV, 115(3):211–252, 2015.

11

https://doi.org/10.1007/s11042-016-4020-z

Under review as a conference paper at ICLR 2024

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.3.0.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
ICLR, 2017.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Ziyi Shen, Wenguan Wang, Xiankai Lu, Jianbing Shen, Haibin Ling, Tingfa Xu, and Ling Shao.
Human-aware motion deblurring. In ICCV, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. NTIRE 2017
challenge on single image super-resolution: Methods and results. In CVPR Workshop, 2017.

Tong Tong, Gen Li, Xiejie Liu, and Qinquan Gao. Image super-resolution using dense skip connec-
tions. In ICCV, 2017.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In CVPR, 2018.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579 – 2605, November 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Christoph von der Malsburg. Self-organization of orientation sensitive cells in the striate cortex.
Biological Cybernetics, 14:85–100, December 1973.

Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Recovering realistic texture in image
super-resolution by deep spatial feature transform. In CVPR, 2018a.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change
Loy. ESRGAN: enhanced super-resolution generative adversarial networks. In ECCV Workshop,
2018b.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan
Yang, and Ling Shao. Multi-stage progressive image restoration. arXiv preprints, February 2021.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Restormer: Efficient Transformer for High-Resolution Image Restoration. In CVPR,
2022.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. In International Conference on Curves and Surfaces, pages 711–730, 2010.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a Gaussian denoiser:
Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26
(7):3142–3155, 2017.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018a.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution
using very deep residual channel attention networks. In ECCV, 2018b.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing. arXiv preprint
arXiv:2202.09368, 2022.

12

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

Under review as a conference paper at ICLR 2024

A THEORETICAL STUDY ON THE STRUCTURE EMBEDDED IN aRGB SPACE

The goal of this section is to provide a simple theoretical analysis on how the structure is learned in our
aRGB encoder f . This section comprises of two parts. The first part shows that our aRGB encoder is
a piecewise linear function over the connected neighborhood regions in the RGB pixel domain. From
this, we can equivalently transform our aRGB autoencoder to a coordinate-wise function, which is
useful in the upcoming analyses. In the second part, we will show that an autoencoder with a neural
network encoder and a linear decoder like ours does not learn structural priors if it is perfectly lossless.
In other words, we claim that imperfect, yet almost perfect (> 60dB PSNR), reconstruction capability
of our aRGB autoencoder helps its encoder to learn local structures within natural images. Based
on the mathematical analysis, we provide another method to measure how much image structure is
captured in the aRGB autoencoder.

A.1 THE aRGB ENCODER IS A PIECEWISE LINEAR FUNCTION OVER THE LOCAL
NEIGHBORHOOD STRUCTURES

It is known that a multi-layer perceptron (MLP) with a continuous piecewise linear activation is
also a continuous piecewise linear (CPWL) function (Rahaman et al., 2019). That is, given an input
x ∈ RC , the network f has an output y = f (x) ∈ RC′

, which can be explicitly written as:

f (x) = ∑
ε

1Pε (x)(Wεx+bε) , (9)

where ε is an index of a (connected) region Pε ⊂ RC and 1Pε
, the region’s indicator function. Wε ∈

RC′×C and bε ∈RC′
are the effective weight and bias at the region Pε , respectively. This interpretation

of neural networks is straightforward for multilayer perceptrons. An MLP is a composition of linear
layers and rectifiers, which are indeed continuous and piecewise linear, and a composition of a
continuous piecewise linear function is also continuous and piecewise linear.

Convolutional neural networks with rectifiers are no different. A linear convolution operation

[k ⋆x]h,w :=
⌊kh/2⌋
∑

i=−⌊kh/2⌋

⌊kw/2⌋
∑

j=−⌊kw/2⌋
[k]i, j[x]h+i,w+ j , (10)

where kh and kw define the height and width of the discrete kernel, can be viewed as a coordinate-wise
linear layer with a flattened weight operating on a concatenation of translations of the input x , i.e.,

k ⋆x=Wkx̃ , where (11)
Wk = flatten(k) , and (12)
x̃= concat

i, j
[translate[x,(i, j)]] . (13)

In other words, with a receptive field of size R×R , an image x ∈ RC×H×W is (linearly) transformed
into the extended space x̃ ∈ RCR2×H×W , and the ConvNet f : RC×H×W → RC′×H×W is equivalent to
the coordinate-wise function f̃ : RCR2 → RC′

, which is continuous and piecewise linear.

Since our transform from f to f̃ can be applied to all the K experts f1, . . . fK of our aRGB autoencoder,
we can abstract away the coordinates for simplicity. Another virtue of this reform is that we do
not need to care about the router fr in our analysis hereafter. From equation 1, for each coordinate
c ∈ [H]× [W] , we have:

[ξ]c = [f (x)]c =
K

∑
k=1

[mk ⊙ fk(x)]c =
K

∑
k=1

[mk]c[fk(x)]c =
K

∑
k=1

[mk]c f̃k([x̃]c) =: f̃ ([x̃]c) , (14)

and since the coordinate-wise equivalent of each expert f̃k is continuous and piecewise linear, its
weighted summation is also piecewise linear, yet it may not be continuous. Moreover, the function’s
argument [x̃]c ∈ RCR2

is a reshaping of the receptive field of size R×R at the locus c . As a result,
our mixture of experts encoder f is equivalent to a piecewise linear, yet not generally continuous,
function over R×R neighborhood of each pixel in the RGB representation x . No matter how each
pixel is distributed by the router, each feature vector [ξ]c at an arbitrary coordinate c ∈ [H]× [W] is a
piecewise linear function of a local R×R neighborhood of image x at the locus c .

13

Under review as a conference paper at ICLR 2024

A.2 A FLAWLESS AUTOENCODER IS A BAD STRUCTURE ENCODER

From the previous analysis, we may omit the spatial coordinate c and assume x ∈ RC be an image in
the RGB color space, ξ ∈RC′

be the same image in the aRGB representation. Let x̃= [x B(x)]⊤ ∈
RCR2

be the flattened R×R neighborhood patch in the RGB domain. B : RC →RC(R2−1) is a structure
function that maps a center pixel x to its peripheral pixels. For the simplicity, we discard the function
notation and regard B as a vector in RC(R2−1) from now on. The aRGB autoencoder is equivalently
reformed coordinate-wise. Let our aRGB encoder be f : RCR2 → RC′

and the aRGB decoder be
g : RC′ → RC . Note that we discard tilde from the encoder equivalent f̃ for the sake of simplicity.
Again, since the decoder is linear, we can also write g(ξ) =Aξ+b , where A ∈ RC×C′

and b ∈ RC .

The piecewise linear characteristic of the encoder f lets us rewrite the autoencoder into a form:

f (x̃) = ∑
ε

1Pε (x̃)(Wε x̃+bε) = ξ , (15)

g(ξ) =Aξ+b= x′ ≃ x , (16)

following equation 9. The autoencoder h = g◦ f can be written as:

h(x̃) = g(f (x̃)) =A∑
ε

1Pε (x̃)(Wε x̃+bε)+b , (17)

= ∑
ε

1Pε (x̃) (AWε x̃+Abε +b) . (18)

Let ε ′ is a subscript for a connected region in the partition P that contains the coordinate c . That is,
1P

ε ′ (x̃) = 1 and 1Pε (x̃) = 0 for ε ̸= ε ′ . The summation from equation 18, then, can be simplified:

h(x̃) =AWε ′ x̃+Abε ′ +b= x′ ≃ x . (19)

In other words, we only care about the specific region of the partition generated by the mixture of
experts aRGB encoder that includes our pixel of interest. The flattened region x̃ is decomposed into
the center pixel x and the peripherals B .

h(x̃) = h
([

x
B

])
=AWε ′

[
x
B

]
+Abε ′ +b≃ x . (20)

This can be further decomposed if we decompose Wε ′ into two matrices,

h(x̃) =A
[
Wcen,ε ′ Wper,ε ′

][x
B

]
+Abε ′ +b , (21)

=AWcen,ε ′x+AWper,ε ′B+Abε ′ +b≃ x , (22)

where Wcen,ε ′ ∈ RC′×C is the effective weight for the center pixel x , and Wper,ε ′ ∈ RC′×C(R2−1) is
the effective weight for the peripheral pixels B .

Let us now assume a perfect lossless autoencoder h⋆(x̃) = x for every combination of x and B . That
is, the autoencoder h⋆ always returns the exact same pixel x without requiring B to be a function of
x . In this case, equation 22 can be further decomposed into three equations:

AWcen,ε ′x= x ∈ RC , (23)

AWper,ε ′B = 0 ∈ RC(R2−1) , and (24)

Abε ′ +b= 0 ∈ RC . (25)

In particular, equation 23 should be satisfied for every combinations of RGB colors x , and therefore
we can conclude that AWcen,ε ′ = I for the perfect autoencoder. Furthermore, equation 24 should be
satisfied for every possible B , signifying that the encoder f ⋆ of the perfect autoencoder h⋆ should
project peripheral pixels to the nullspace of the decoder’s weight A , nullifying the information from
the peripherals to propagate into estimating the pixel x at the center. In other words, the encoder f
does not learn to infer either x from B or B from x but simply acts as a separation of information
between the center pixel and the peripheral pixels.

14

Under review as a conference paper at ICLR 2024

0 50 100 150 200 250

0

50

100

150

200

250

(a) Sample image patch.

0 50 100 150 200 250

0

50

100

150

200

250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) A∂ f/∂x .

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

(c) Histogram of A∂ f/∂x .

Figure 7: Measurement of the degree of self-reference of the aRGB encoder. The sample image is brought
from Urban100 dataset (Huang et al., 2015). For a perfect autoencoder with no structure encoding capability,
the values of A∂ f/∂x should be 1 for every pixel. However, in spite of our high reconstruction accuracy
(62.738dB PSNR for this patch, which corresponds to an average color deviation of a pixel of 0.069/255), the
value of A∂ f/∂x vary from 0.0066 to 0.7582, with average of 0.2654. This is unexpectedly low regarding the
high accuracy, indicating that the reconstruction of our autoencoder heavily relies on the pixel’s neighboring
structure. Note that A ∈RC×C′

and f/∂x ∈RC′×H×W , where each element is obtained mutually independently.
The heatmap and the histogram is obtained by taking the root-mean-square of the values over the three color
channels.

In practice, however, this does not happen. In fact, the matrices Wcen,ε ′ and Wper,ε ′ are not just
mathematical tools to represent the mechanism how the complicated nonlinear encoder f acts upon
the given input x . From equation 21, we can express only the encoder f as:

f (x̃) = f
([

x
B

])
=
[
Wcen,ε ′ Wper,ε ′

][x
B

]
+bε ′ =Wcen,ε ′x+Wper,ε ′B+bε ′ . (26)

Taking the derivatives reveals interesting relationship between the gradients of f and the effective
weight at a particular pixel.

∂ f
∂x

=Wcen,ε ′ and
∂ f
∂B

=Wper,ε ′ . (27)

Therefore, for the lossless autoencoder, the relationship between the encoder’s gradient and the
decoder’s weights are:

A
∂ f
∂x

= I and A
∂ f
∂B

B = 0 . (28)

We can calculate the matrix multiplication A∂ f/∂x and see how this differs from the identity to
determine how the encoder mixes information between x and B . Note that ∂ f/∂x ∈ RC′×C is a
gradient only at the locus c . Figure 7 shows a simple experiment to check if the value of A∂ f/∂x
deviates from unity. As the result presents, our aRGB encoder relies strongly on the neighboring
structure to reconstruct a pixel.

B IMPLEMENTATION DETAIL

This section presents additional details for training the main aRGB autoencoder used throughout the
experiments in Section 3.

B.1 TRAINING THE aRGB AUTOENCODER

Architecture. The aRGB autoencoder consists of three models: a convolutional router fr , K = 20
convolutional experts f1, . . . , fK , and a linear decoder g . The architecture is drawn in Table 5, 6,
and 7, where C3 and C1 denote convolutions with kernel size 3 and 1, respectively, and L0.2 is
a leaky ReLU with negative slope 0.2. Also, BN is a batch normalization with the same channel
width as the output channel of the convolution in the same line. For 3× 3 convolutions, we use
zero padding of size 1. The router fr consists of three 3×3 and two 1×1 convolutions, with batch
normalization (Ioffe and Szegedy, 2015) and leaky ReLU with negative slope 0.2 between each pair

15

Under review as a conference paper at ICLR 2024

Table 5: Architecture of fr .

C3 → L0.2 3ch → 64ch

C3 → BN → L0.2 64ch → 128ch

C3 → BN → L0.2 128ch → 256ch

C1 → BN → L0.2 256ch → 512ch

C1 → Softmax 512ch → 20ch

Table 6: Architecture of fk .

C3 → L0.2 3ch → 32ch

C3 → L0.2 32ch → 64ch

C3 → L0.2 64ch → 128ch

C3 128ch → 128ch

Table 7: Architecture of g .

C1 (no bias) 128ch → 64ch

C1 (no bias) 64ch → 32ch

C1 32ch → 3ch

of convolutions, except for after the first convolution, where we put only a leaky ReLU. Each expert
fk for all k ∈ {1, . . . ,K} has identical architecture, with four 3×3 convolutions and leaky ReLUs
with negative slope of 0.2 in between. We do not use normalization layers in the experts. All the
layers are initialized by the default PyTorch initializer (Paszke et al., 2019), meaning that each expert
is initialized with different weights. Overall, the router fr has a receptive field of size 7×7, and each
expert fk has a receptive field of size 9×9, hence R = 9 in Section 2.2. For the linear decoder, we
use three 1×1 convolutions without activations and normalization layers, with each layer gradually
reducing the channel dimension. Only the last convolution of the decoder has a bias term. We have
empirically found that this three linear layer architecture leads to a slightly better convergence. We
can easily compute the effective weight of the decoder by multiplying all the internal weights with
standard matrix multiplication. The decoder has receptive field of a single pixel and is also linear.

Data preparation. Our training dataset consists of a mix of image patches obtained from sev-
eral sources, including DIV2K (Agustsson and Timofte, 2017), Flickr2K (Timofte et al., 2017),
DIV8K (Gu et al., 2019), and ImageNet-1k (Russakovsky et al., 2015) datasets. The DIV2K,
Flickr2K, and DIV8K datasets are high quality high resolution image datasets designed for training
image super-resolution models. Those are selected in order to provide our autoencoder with rich
structural information in clean, visually pleasing natural images. The DIV2K training set contains
800 high quality images, the Flickr2K set has 2,650 images, and the DIV8K dataset consists of 1,500
very high quality images up to 8K resolution. We also added the ImageNet-1k dataset to the training
data to increase the diversity of image structures for supervision. Since the DIV2K, Flickr2K, and
DIV8K datasets have much higher image size than one typically used for training a network, we have
preprocessed these three dataset by cropping into patches of size 480× 480 with stride 240. The
results are 32,592 patches for the DIV2K, 107,403 patches for the Flickr2K, and 551,136 patches
for the DIV8K dataset. The patch datasets are then concatenated with 1,281,167 images from the
ImageNet-1k training data to build up the training data with 1,972,298 images in total. For each
image fetched for training, a random crop of 256×256 is applied first, and then random horizontal
and vertical flips, followed by a random 90 degrees rotation are applied consecutively.

Finding the optimal hyperparameters. We searched for the optimal architecture and other training
hyperparameters by ablation studies mentioned in Section 4.4. For the ease of comparison, we unify
the training process for the ablation studies in a simpler setting. Only using DIV2K dataset (Agustsson
and Timofte, 2017) except for the second batch of experiments in Table 4, we vary the hyperparameters
for training. Because the training dataset and the task become simple, we reduce the patch size to
192×192 and train our autoencoder for 300k iterations. Furthermore, since the per-pixel router fr
of our aRGB encoder distributes each pixel to a single expert, the number of iterations required for
each expert to be trained using the same amount of data scales linearly to the number of experts. To
compensate the effect, we changed the number of training iterations for the autoencoder accordingly.
All the results in Section 4.4 is quantified by the accuracy of ×4 image super-resolution task using
RRDBNets (Wang et al., 2018b) trained to minimize the L1 loss defined over the aRGB space. All
the RRDBNet models are trained only with DIV2K dataset for 300k iterations from scratch.

Training hyperparameters. The weight of the load-balancing loss is selected to be λ = 10−2

based on empirical observations. We found this to be the minimum value that ensures uniform expert
assignment throughout the training process. This was chosen from a parameter sweep in the ranges
from 100 to 10−5 in powers of 10 . The network is trained with a batch size of 16 . An Adam (Kingma
and Ba, 2015) optimizer is used with its default hyperparameters and an initial learning rate of 5e-4 is
used. We use cosine learning rate schedule (Loshchilov and Hutter, 2017), starting from a period of
1k iteration, increased doubly up to 256k iterations. The training ends at 511k iterations.

16

Under review as a conference paper at ICLR 2024

Table 8: Reconstruction accuracy of the aRGB autoencoder on out-of-distribution datasets. We measured
the PSNR scores wihtout quantization to 255 scale. Average RGB difference in the second row stands for the
average absolute difference in the pixel’s color value out of the maximum range of 255. All the values are
significantly below the quantization gap of 0.5, indicating almost perfect reconstruction of the input.

Set5 Set14 Urban100 DIV2K-Val SIDD-Val GoPro-Val

PSNR [dB] 67.206 64.531 65.556 70.812 72.007 72.853
Avg. RGB diff. 0.0477 0.0602 0.0669 0.0418 0.0301 0.0266

Autoencoding accuracy. For completeness, we provide the autoencoding accuracy for the vali-
dation datasets used throughout this work in Table 8. Because the output of the aRGB autoencoder
deviates from the original image only less than a single quantization step (1/255) on average, we
regard the aRGB autoencoder as almost lossless in our analysis except for Appendix A, where we find
that the nonideal reconstruction capability helps the autoencoder to learn structural prior of images.

B.2 NOTES ON TRAINING IMAGE RESTORATION MODELS

Change in optimal training hyperparameters As emphasized throughout our manuscript, we
have not changed the hyperparameters except for the very loss function in every experiment in
Section 3. However, we also note that our demonstration does not necessarily mean that those setups
are optimal. For instance, as mentioned in Section 4.3, altering the representation space leads to
dramatic change in the scale and the shape of the gradients fed into the image restoration model
during its training. Under stochastic gradient descent algorithms, this increase in the size of gradients
of more than a hundredfold leads to significant changes in the training dynamics of those models. It is,
therefore, less likely that the original set of hyperparameters is still optimal in the new representation
space. Likewise, replacing the representation space may also change the optimal architecture for
the image restoration task defined over the new space. Although we strongly believe that searching
through the new possibilities allowed by our aRGB representation should be a fascinating research
topic, this is beyond the scope of our paper. One example close to this direction is our demonstration
of the NAFNet trained for L1,aRGB loss, reported in Section 3.3. In this experiment, because the
replacement of metric causes the change in scale and shape of its gradients, we have doubled the
weight of the metric for better convergence. As a result, this new setup has led us to better denoisers
than both the original one and the one trained with only the representation space being altered. We
leave further exploration of this topic for future work.

Recommendation regarding gradient clipping As a final remark, it is highly recommended
to remove gradient clipping to maximize the advantage of using aRGB-based losses. Section 2.2
attributes the performance gain caused by the additive noise to the sensitivity increase in the aRGB
encoder f . In practice, the effect can be observed as an increment of two orders of magnitude in
the size of gradients of the image restoration models being trained. The same scale of optimizer’s
step size can only be achieved by increasing the learning rate a hundredfold, which quickly leads to
training instability. We may safely conclude that the per-pixel distance losses in our aRGB space
helps training of image restoration models by stably increasing the internal gradients. However, in
recent image restoration techniques (Waqas Zamir et al., 2021; Chen et al., 2022), especially for
the models with attention layers (Vaswani et al., 2017), gradient clipping is a common practice to
stabilize the training of the model. To take advantage of our method, in Section 3, we changed
gradient clipping mechanism to clamp at a inf norm of 20 for every experiment. This value is barely
touched throughout the training process.

C MORE QUANTITATIVE RESULTS ON PERCEPTUAL IMAGE
SUPER-RESOLUTION

Table 9 extends Section 3.2 to provide full evaluation results on the 4× perceptual super-resolution
task using ESRGAN (Wang et al., 2018b). As mentioned in Section 3.2, our training process exactly
follows the official implementation (Wang et al., 2018b). We first pre-train the network, RRDBNet,
with DIV2K (Agustsson and Timofte, 2017) and Flickr2K (Timofte et al., 2017) combined, for 1M
iterations using RGB L1 loss. Then, the weights are fine-tuned with the loss written in the first column

17

Under review as a conference paper at ICLR 2024

Table 9: Complete quantitative results for training ESRGAN ×4 in the aRGB space. Improved results are
highlighted in boldface characters.

Set14 B100

Training objective PSNR↑ SSIM↑ LPIPS↓ DISTS↓ NIQE↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓ NIQE↓ FID↓
Pre-trained RRDBNet† 27.189 0.7551 0.2710 0.09212 6.1376 74.673 26.492 0.7216 0.3578 0.16287 6.3598 92.620

0.01L1 +0.005LAdv 24.629 0.6590 0.1823 0.07302 4.3218 62.582 24.084 0.6351 0.1805 0.10795 3.8023 57.491
0.01L1,aRGB +0.005LAdv 24.955 0.6648 0.1431 0.06825 4.0553 52.020 24.423 0.6384 0.1683 0.10239 3.6126 52.355

0.01L1 +LVGG +0.005LAdv
† 24.494 0.6543 0.1341 0.06374 3.8774 56.700 23.909 0.6205 0.1617 0.09603 3.6636 51.521

0.01L1,aRGB +LVGG +0.005LAdv 24.796 0.6623 0.1281 0.06052 3.7230 52.797 24.138 0.6306 0.1595 0.09578 3.4185 47.665
Manga109 Urban100

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ NIQE↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓ NIQE↓ FID↓
Pre-trained RRDBNet† 29.654 0.8928 0.0972 0.00880 5.4084 12.190 25.496 0.7951 0.1963 0.02278 5.6236 23.729

0.01L1 +0.005LAdv 27.059 0.8349 0.0671 0.00759 3.4607 11.472 23.535 0.7373 0.1322 0.01911 3.9479 18.428
0.01L1,aRGB +0.005LAdv 26.932 0.8255 0.0685 0.00806 3.4006 11.366 23.348 0.7204 0.1289 0.01990 3.8524 18.015

0.01L1 +LVGG +0.005LAdv
† 26.441 0.8170 0.0646 0.01036 3.5758 11.282 22.776 0.7033 0.1232 0.02432 4.2067 20.616

0.01L1,aRGB +LVGG +0.005LAdv 26.651 0.8186 0.0630 0.00863 3.4245 10.907 23.270 0.7196 0.1183 0.02050 3.8982 17.739
DIV2K-Val OST300

PSNR↑ SSIM↑ LPIPS↓ DISTS↓ NIQE↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ DISTS↓ NIQE↓ FID↓
Pre-trained RRDBNet† 29.466 0.8306 0.2537 0.00190 5.4860 15.910 25.960 0.7218 0.3565 0.10544 6.2643 41.673

0.01L1 +0.005LAdv 27.102 0.7687 0.1282 0.00248 3.0419 13.593 23.613 0.6311 0.1856 0.06141 3.5593 22.749
0.01L1,aRGB +0.005LAdv 27.218 0.7622 0.1235 0.00240 3.0896 12.936 23.587 0.6212 0.1989 0.06762 3.4612 24.603

0.01L1 +LVGG +0.005LAdv
† 26.627 0.7033 0.1154 0.00545 3.0913 13.557 23.249 0.6166 0.1688 0.05734 3.3834 21.851

0.01L1,aRGB +LVGG +0.005LAdv 26.845 0.7500 0.1110 0.00351 2.9615 12.799 23.649 0.6338 0.1662 0.05484 3.5247 19.952
†The official ESRGAN models (Wang et al., 2018b).

for 400k iterations using DIV2K, Flickr2K, and OSTv2 (Wang et al., 2018a) datasets combined.
Preparation of the datasets are done with the same code the authors has provided. In this task, the
aRGB loss is a simple L1 loss over the range of the aRGB encoder. We leave all the other training
hyperparameters untouched.

In addition to LPIPS (Zhang et al., 2018a), NIQE (Mittal et al., 2013), and FID (Heusel et al., 2017)
metrics, we added DISTS (Ding et al., 2020), a pairwise perceptual metric for image restoration.
Moreover, four common benchmarks for the percpeptual super-resolution, i.e., Set14 (Zeyde et al.,
2010), BSD100 (Martin et al., 2001), Manga109 (Matsui et al., 2017), and OutdoorSceneTest300
(Wang et al., 2018a) datasets are added for comparison. The updated results are shown in Table 9.
The reported values are calculated in the RGB domain, cropping 4 pixels from the outer sides for
PSNR, SSIM, and NIQE (Mittal et al., 2013) scores. For DISTS (Ding et al., 2020) and LPIPS
(Zhang et al., 2018a), we use the code from official repo, and for FID (Heusel et al., 2017), we report
scores from the PyTorch reimplementation (Seitzer, 2020) of the original Tensorflow code.

The data shows that L1,aRGB loss without the VGG perceptual loss yields comparable results to the
L1 loss without the perceptual loss in adversarial training. However, when equipped with VGG
perceptual loss, the results show a general increase in performance over the original ESRGAN in all
the distoration-based metrics (PSNR, SSIM), the pairwise perceptual metrics (LPIPS, DISTS), and
the unpaired quality assessment metrics (NIQE, FID).

D MORE QUALITATIVE RESULTS

This section provides more visual results from the main experiments. Figure 8 through 13 show
results from the ESRGAN models (Wang et al., 2018b) trained with and without aRGB represen-
tation. Empirically, the supervision given by our aRGB encoder helps the model avoid generating
visual artifacts and color inconsistency induced by adversarial training. Figure 14 shows additional
results from the real image denoising task solved with NAFNet (Chen et al., 2022). Lastly, image
deblurring using MPRNet (Waqas Zamir et al., 2021) trained from our aRGB representation is
further demontrated in Figure 15 and 16. As visualized in Appendix E, the additional information
embodied in the extra dimensions of the aRGB representation resembles edgeness information of an
image. We conjecture that this allows a pairwise per-pixel distance defined over our aRGB space to
provide image restoration models with stronger supervision leading to the reconstruction of sharper
edges. The results reveal that this effect is realized as suppression of artifacts in the perceptual image
super-resolution task, sharper produced images in the image denoising task, and better reconstruction
of edges and more accurate alignments in the image deblurring task.

18

Under review as a conference paper at ICLR 2024

(a) LR (b) RRDBNet (c) ESRGAN (d) L1,aRGB +LV +LA (e) HR

Figure 8: Qualitative comparison of ESRGAN models trained with different loss functions on DIV2K-Val
(Agustsson and Timofte, 2017) benchmark.

(a) LR (b) RRDBNet (c) ESRGAN (d) L1,aRGB +LV +LA (e) HR

Figure 9: Qualitative comparison of ESRGAN models trained with different loss functions on B100
(Martin et al., 2001) benchmark.

19

Under review as a conference paper at ICLR 2024

(a) LR (b) RRDBNet (c) ESRGAN (d) L1,aRGB +LV +LA (e) HR

Figure 10: Qualitative comparison of ESRGAN models trained with different loss functions on Set14
(Zeyde et al., 2010) benchmark.

(a) LR (b) RRDBNet (c) ESRGAN (d) L1,aRGB +LV +LA (e) HR

Figure 11: Qualitative comparison of ESRGAN models trained with different loss functions on Manga109
(Matsui et al., 2017) benchmark.

20

Under review as a conference paper at ICLR 2024

(a) LR (b) RRDBNet (c) ESRGAN (d) L1,aRGB +LV +LA (e) HR

Figure 12: Qualitative comparison of ESRGAN models trained with different loss functions on Urban100
(Huang et al., 2015) benchmark.

21

Under review as a conference paper at ICLR 2024

(a) LR (b) RRDBNet (c) ESRGAN (d) L1,aRGB +LV +LA (e) HR

Figure 13: Qualitative comparison of ESRGAN models trained with different loss functions on Out-
doorSceneTest300 (Wang et al., 2018a) benchmark.

22

Under review as a conference paper at ICLR 2024

(a) Noisy
19.7557 dB

(b) N32 LPSNR
37.0814 dB

(c) N32 LPSNR,aRGB

37.2545 dB
(d) N32 L1,aRGB

37.0479 dB
(e) N64 LPSNR

37.5211 dB
(f) N64 L1,aRGB

38.2478 dB

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(g) Clean GT
PSNR (dB)

(a) Noisy
25.9609 dB

(b) N32 LPSNR
38.7499 dB

(c) N32 LPSNR,aRGB

40.1597 dB
(d) N32 L1,aRGB

40.2695 dB
(e) N64 LPSNR

39.6910 dB
(f) N64 L1,aRGB

40.3953 dB

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(g) Clean GT
PSNR (dB)

(a) Noisy
29.4107 dB

(b) N32 LPSNR
47.1689 dB

(c) N32 LPSNR,aRGB

47.5380 dB
(d) N32 L1,aRGB

47.4457 dB
(e) N64 LPSNR

46.9483 dB
(f) N64 L1,aRGB

47.8430 dB

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(g) Clean GT
PSNR (dB)

(a) Noisy
25.5477 dB

(b) N32 LPSNR
39.4739 dB

(c) N32 LPSNR,aRGB

39.4866 dB
(d) N32 L1,aRGB

39.5938 dB
(e) N64 LPSNR

39.8979 dB
(f) N64 L1,aRGB

40.6133 dB

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(g) Clean GT
PSNR (dB)

Figure 14: Qualitative comparison of real image denoising models on SIDD benchmark (Abdelhamed
et al., 2018). Each column corresponds to each row in Table 2. N32 corresponds to NAFNet-width32 and N64
corresponds to NAFNet-width64. The bottom rows show the maximum absolute difference in color with a range
of [0,1] .

23

Under review as a conference paper at ICLR 2024

(a) Blurry
30.3011 dB

(b) LChar
31.1395 dB

(c) LChar,aRGB
32.0593 dB

(d) LChar ,TLC
32.5316 dB

(e) LChar,aRGB ,TLC
36.9283 dB

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

(f) Clean GT
PSNR (dB)

(a) Blurry
28.1351 dB

(b) LChar
33.4039 dB

(c) LChar,aRGB
34.0545 dB

(d) LChar ,TLC
32.9235 dB

(e) LChar,aRGB ,TLC
35.0932 dB

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

(f) Clean GT
PSNR (dB)

(a) Blurry
22.6186 dB

(b) LChar
28.3096 dB

(c) LChar,aRGB
28.2597 dB

(d) LChar ,TLC
27.2944 dB

(e) LChar,aRGB ,TLC
29.3727 dB

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

(f) Clean GT
PSNR (dB)

(a) Blurry
38.1823 dB

(b) LChar
41.8038 dB

(c) LChar,aRGB
42.0144 dB

(d) LChar ,TLC
37.5406 dB

(e) LChar,aRGB ,TLC
39.7551 dB

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

(f) Clean GT
PSNR (dB)

(a) Blurry
24.9808 dB

(b) LChar
30.5654 dB

(c) LChar,aRGB
33.5537 dB

(d) LChar ,TLC
28.8951 dB

(e) LChar,aRGB ,TLC
33.2253 dB

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

(f) Clean GT
PSNR (dB)

Figure 15: Qualitative comparison of motion blur deblurring models in GoPro benchmark (Nah et al.,
2017). Each column corresponds to each row in Table 3. The bottom rows show the maximum absolute
difference in color with a range of [0,1] .

24

Under review as a conference paper at ICLR 2024

(a) Blurry
27.2154 dB

(b) LChar
27.0476 dB

(c) LChar,aRGB
27.5802 dB

(d) LChar ,TLC
27.2900 dB

(e) LChar,aRGB ,TLC
31.4381 dB

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27
0.30

(f) Clean GT
PSNR (dB)

(a) Blurry
26.3822 dB

(b) LChar
30.8486 dB

(c) LChar,aRGB
32.9989 dB

(d) LChar ,TLC
30.6344 dB

(e) LChar,aRGB ,TLC
32.6934 dB

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

(f) Clean GT
PSNR (dB)

(a) Blurry
28.0323 dB

(b) LChar
29.3776 dB

(c) LChar,aRGB
30.0996 dB

(d) LChar ,TLC
30.0415 dB

(e) LChar,aRGB ,TLC
32.9874 dB

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

(f) Clean GT
PSNR (dB)

(a) Blurry
22.4634 dB

(b) LChar
26.8664 dB

(c) LChar,aRGB
28.2696 dB

(d) LChar ,TLC
26.9314 dB

(e) LChar,aRGB ,TLC
28.9543 dB

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

(f) Clean GT
PSNR (dB)

(a) Blurry
21.5565 dB

(b) LChar
23.6871 dB

(c) LChar,aRGB
25.9344 dB

(d) LChar ,TLC
23.7183 dB

(e) LChar,aRGB ,TLC
26.4518 dB

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

(f) Clean GT
PSNR (dB)

Figure 16: Qualitative comparison of motion blur deblurring models in HIDE benchmark (Shen et al.,
2019). Each column corresponds to each row in Table 3. The bottom rows show the maximum absolute
difference in color with a range of [0,1] .

25

Under review as a conference paper at ICLR 2024

E UNDERSTANDING THE aRGB REPRESENTATION SPACE

This section is divided into three parts: In the first part of this section, we discuss further on the
embedding decomposition test conducted in Section 4.1. Mixing different types of images in the same
way as we did in Section 4.1 reveals how our aRGB representation encodes additional information
in the extra dimensions. Next, we show more examples of the t-SNE (van der Maaten and Hinton,
2008) visualization of our learned embeddings in addition to Figure 5c. Unlike segmentation maps
typically generated and assessed for semantic tasks, the ones produced by our aRGB encoder are
extremely fine-grained and complicated, yet we find some common structural features in the results.
In the last part, we conduct another experiment to visualize how each expert in the aRGB encoder f
learns to specialize.

E.1 DECOMPOSITION OF aRGB REPRESENTATION

In Section 4.1, we have discussed how the linearity of our decoder g helps understanding the learned
representation space. In particular, given its linear weight A and bias b , we can decompose any given
embedding in the aRGB representation ξ ∈ RC into a sum of two orthogonal vectors:

ξ =A†Aξ+(I−A†A)ξ , (29)

where we denote the matrix A† as the Moore-Penrose pseudoinverse of A . We can regard the
multiplicand of the second term I−A†A as a linear projection operator onto the nullspace of A ,
and the multiplicand of the first term A†A as a linear projection onto the orthogonal complement of
the nullspace of A . Mathematically, and also empirically, it is easy to see that summation of any
vector projected onto the nullspace of A leads to no change in the decoded image x′ = g(ξ) . That is,

g(ξ+(I−A†A)ζ) =A(ξ+(I−A†A)ζ)+b (30)

=Aξ+b+A(I−A†A)ζ (31)

=Aξ+b+(A−AA†A)ζ (32)
=Aξ+b+(A−A)ζ (33)
=Aξ+b (34)
= g(ξ) . (35)

The identity in the fourth row is from the equality A =AA†A of Moore-Penrose pseudoinverse.
Therefore, the subspace to which the projection operator I−A†A is mapped is the allowed degree
of freedom that additional information can be embedded.

Inversion of mixed embedding uncovers what information lies in this particular subspace. In addition
to the results in Figure 5a, Figure 17 and 18 show visual results of aRGB embedding inversion. The
flat image source is manually synthesized by a single color gradient. The real image source is a
patch brought from DIV2K validation dataset (Agustsson and Timofte, 2017), and the Gaussian noise
source is sampled from N (0.5,0.5) , where the RGB range is [0,1] . Each patch has an equal size
of 256× 256. First, we obtain the two aRGB embeddings from both sources. Then, we take the
parallel part f∥ from the first source and the perpendicular part f⊥ from the second source. An image
is optimized to produce the synthesized embedding as its aRGB representation. Due to the simple
training setup, all the optimization quickly converges after 50 iterations of SGD with learning rate
0.1 , as shown in Figure 19. We show the result of the optimization in Figure 17. The edge structure
is extracted and highlighted by applying the Laplacian operator on the final image and displayed in
Figure 18.

From the results, we can conclude the followings: Firstly, the parallel part of the aRGB embedding
dominates the color information. This is predictable since this parallel component is the information
that is decoded back to the RGB image with our linear decoder g . Secondly, the perpendicular
part of the aRGB embedding conveys edge structure from the source image. As a consequence,
we can retrieve this information from the aRGB representation following the same process used to
train the inversion in this section. Moreover, this edgeness is the additional information brought
with our aRGB representation to serve as a performance boost for training the image restoration
models. As our main results in Section 3 suggests, the reduction of visual artifacts in perceptual
image super-resolution and the enhancement of edge structures in image denoising and deblurring

26

Under review as a conference paper at ICLR 2024

are attributed to this particular information carried in the perpendicular embeddings. Lastly, we can
clearly observe that this additional information is diminished away if the underlying image is highly
noisy, far from the manifold of clean, natural images. From this observation, we can conclude that the
information learned by the aRGB autoencoder from its training dataset gives the model a structural
prior in order to process images similar to its original training data. This argument aligns with our
finding in the ablation studies in Section 4.4, where a network trained from different dataset generally
produce poorer restoration models.

E.2 TOPOLOGY OF THE LEARNED aRGB SPACE

We have conjectured in Section 2.1 that the underlying distribution of small image patches are
disconnected, exhibiting very complex structures. We can indirectly check the validity of our
argument by visualizing the learned embeddings of an image using dimension reduction techniques.
Specifically, we use t-SNE (van der Maaten and Hinton, 2008) algorithm to embed H ×W = 65,536
vectors of size C = 128 into a two dimensional plane to visualize the structure of our learned
embedding for a particular image patch.

In this small experiment, we expect two outcomes: First, we expect perceptually distinct groups
of embedding vectors to be appeared in the t-SNE results. Although the geometric information of
the 2D projection carries little meaning in depicting the exact structure of the underlying feature
space, visually distinguishable clustering in this region will signify that the structure of underlying
representation is not connected into a single manifold, but consists of multiple disconnected regions
with distinct characteristic values. Second, we expect that the experts are well specialized, requiring
that clusters of aRGB pixels each assigned to a single expert to be appeared in the embeddings.
Figure 20 shows three more examples in addition to Figure 5b and 5c from our main manuscript. The
sample images are picked from different datasets, i.e., DIV2K (Agustsson and Timofte, 2017), Ur-
ban100 (Huang et al., 2015), and Manga109 (Matsui et al., 2017), having different color distributions,
contents, and styles. However, as the results show that the embeddings generated from this set of
images have several commonalities: First, the embeddings are clustered in a well-separated regions.
We can observe two distinct types of clusters: common groups where multiple experts are involved
in generating similar embeddings and expert-specific groups where a single expert dominates in
encoding the information of pixels. Existence of the first type of groups indicates the existence of
common subspace between the feature spaces of each specialized expert. The latter type of groups
show a clear evidence of expert specialization in our aRGB encoder. From the observations, we
conclude that our initial design philosophy of the network serves its original purpose.

E.3 VISUALIZATION OF THE LEARNED FEATURES OF THE aRGB ENCODER

In this last section of our paper, we provide another visualization results to facilitate understanding of
the behavior of our aRGB encoder. In order to visualized the learned features for individual expert of
our encoder, we simply maximize the activation of a single last channel of one of the experts. Starting
from a random image of size 32×32, which is more than three times larger than the receptive field
of our network, we run a simple maximization of the average activation of each channels to produce
a single feature image for each channel of an expert. Figure E.3 shows some of the results. First, we
observe that channels of the same index at each of the experts are maximally activated at the similar
color distribution. This similarity comes from the shared linear decoder of our autoencoder. However,
we also notice that the same set of filters are maximally stimulated at different patterns. The results
uncover another evidence of expert specialization in our aRGB autoencoder.

27

Under review as a conference paper at ICLR 2024

Flat image Natural image Gaussian noise

Source f∥(x1)

So
ur

ce
f ⊥
(x

2)

Fl
at

im
ag

e
N

at
ur

al
im

ag
e

G
au

ss
ia

n
no

is
e

Figure 17: Decomposition of the aRGB representation space. The aRGB embeddings of the two groups of
images are decomposed into orthogonal components and mixed together ξmix = f∥(x1)+ f⊥(x2) . The matrix
shows images that best matches the synthesized aRGB embedding f−1(ξmix) .

Flat image Natural image Gaussian noise

Source f∥(x1)

So
ur

ce
f ⊥
(x

2)

Fl
at

im
ag

e
N

at
ur

al
im

ag
e

G
au

ss
ia

n
no

is
e

Figure 18: Edge-enhanced inversion results of Figure 17. A discrete Laplacian operator is applied to the
same images in Figure 17 to enhance the high-frequency structures for clearer understanding. The results reveal
that the perpendicular component of the aRGB embedding f⊥ contributes to high-frequency structures.

28

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
Iterations

103

104

105

L
o
ss

RGB: flat; Nsp: flat

Loss

RGB

Nullspace

0 20 40 60 80 100
Iterations

103

104

105

L
o
ss

RGB: image; Nsp: flat

0 20 40 60 80 100
Iterations

104

105

L
o
ss

RGB: noise; Nsp: flat

0 20 40 60 80 100
Iterations

103

104

105

L
o
ss

RGB: flat; Nsp: image

0 20 40 60 80 100
Iterations

103

104

105

L
o
ss

RGB: image; Nsp: image

Loss

RGB

Nullspace

0 20 40 60 80 100
Iterations

104

105

L
o
ss

RGB: noise; Nsp: image

0 20 40 60 80 100
Iterations

105

L
o
ss

RGB: flat; Nsp: noise

0 20 40 60 80 100
Iterations

105

L
o
ss

RGB: image; Nsp: noise

0 20 40 60 80 100
Iterations

105L
o
ss

RGB: noise; Nsp: noise

Loss

RGB

Nullspace

0

10

20

30

40

P
S
N

R

0

10

20

30

40

P
S
N

R

5

10

15

20

P
S
N

R

0

10

20

30

40

P
S
N

R

10

20

30

40

P
S
N

R

5

10

15

20

P
S
N

R

5

10

15

20

25

P
S
N

R

5

10

15

20

25

P
S
N

R

5

10

15

20

P
S
N

R

Figure 19: Training curve for the decomposition test. All the embedding inversion test quickly converge after
50 iterations. RGB corresponds to the source image x1 used for the parallel component ξ∥ =A†A f (x1) =

A†Aξmix of the target aRGB embedding ξmix , and Nullspace corresponds to the source image xw used for
the perpendicular component ξ⊥ = (I−A†A) f (x2) = (I−A†A)ξmix , where mA is the weight of the linear
decoder g . As shown in Figure 17, The low-frequency color distribution of the resulting inversion follows that
of the parallel component’s source x1 , resulting in high PSNR scores. Although the PSNR scores between the
inversions f−1(ξmix) and the corresponding source images x2 of the perpendicular component f⊥(x2) are low,
Figure 18 reveals that the perpendicular components encode high frequency information of the image.

29

Under review as a conference paper at ICLR 2024

f0 (2.9 %)

f1 (6.6 %)

f2 (4.0 %)

f3 (6.4 %)

f4 (2.0 %)

f5 (8.8 %)

f6 (4.7 %)

f7 (3.2 %)

f8 (1.9 %)

f9 (6.3 %)

f10 (4.5 %)

f11 (3.5 %)

f12 (8.2 %)

f13 (2.6 %)

f14 (9.7 %)

f15 (8.1 %)

f16 (2.5 %)

f17 (3.3 %)

f18 (6.7 %)

f19 (4.2 %)

(a) 0899 from DIV2K-Val.

f0 (5.0 %)

f1 (3.3 %)

f2 (6.3 %)

f3 (2.9 %)

f4 (6.6 %)

f5 (4.3 %)

f6 (8.2 %)

f7 (4.7 %)

f8 (5.2 %)

f9 (7.0 %)

f10 (1.1 %)

f11 (6.0 %)

f12 (5.1 %)

f13 (1.2 %)

f14 (3.4 %)

f15 (5.3 %)

f16 (6.1 %)

f17 (9.7 %)

f18 (5.7 %)

f19 (2.8 %)

(b) img009 from Urban100.

f0 (4.7 %)

f1 (5.5 %)

f2 (4.8 %)

f3 (4.3 %)

f4 (5.5 %)

f5 (7.3 %)

f6 (3.9 %)

f7 (2.3 %)

f8 (3.3 %)

f9 (4.3 %)

f10 (3.4 %)

f11 (4.1 %)

f12 (4.2 %)

f13 (5.7 %)

f14 (3.0 %)

f15 (7.1 %)

f16 (3.3 %)

f17 (4.8 %)

f18 (13.9 %)

f19 (4.4 %)

(c) Raphael from Manga109.

Figure 20: More examples on expert specialization using t-SNE and segmentation map. Sample images
are brought from three well-used super-resolution benchmark datasets, i.e., DIV2K (Agustsson and Timofte,
2017), Urban100 (Huang et al., 2015), and Manga109 (Matsui et al., 2017). Although the content and the style
of each patches are widely different, the distribution of the learned aRGB embeddings in these patches exhibit
similar pattern: the distributions are decomposed into common groups, where multiple experts are involved in
the encoding, and expert-specific groups.

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

(a) Expert 5 .

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

(b) Expert 10 .

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

(c) Expert 15 .

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

121

123

125

127

(d) Expert 20 .

Figure 21: Visualization of the output filters of the experts. Randomly initialized 32×32 images are trained
to maximize a specific filter at the last convolutional layer of the selected expert. The ID of each filter is annotated
with white numbers. Note that the aRGB representation space has a dimension of 128 , the same as the number
of filters in the last layer of each experts. The results show that while filters of different experts encoding the
same channel is maximally activated at a similar average color, the high-frequency patterns each filter maximally
attends to vary significantly.

30

	Introduction
	Lifting the RGB color space
	The aRGB autoencoder
	Training the autoencoder

	Training image restoration models in aRGB space
	Integration into existing restoration frameworks
	Perceptual image super-resolution with L1 loss
	Real noise denoising with L2 loss
	Motion blur deblurring with smooth L1 loss

	Discussion
	Nullspace of the decoder
	Specialization of the experts and learned structures
	aRGB metric space and produced gradients
	Ablation study

	Related work
	Conclusion
	Theoretical study on the structure embedded in aRGB space
	The aRGB encoder is a piecewise linear function over the local neighborhood structures
	A flawless autoencoder is a bad structure encoder

	Implementation detail
	Training the aRGB autoencoder
	Notes on training image restoration models

	More quantitative results on perceptual image super-resolution
	More qualitative results
	Understanding the aRGB representation space
	Decomposition of aRGB representation
	Topology of the learned aRGB space
	Visualization of the learned features of the aRGB encoder

