Constrained Optimization From a Control
Perspective via Feedback Linearization

Runyu Zhang Arvind Raghunathan
Massachusetts Institute of Technology Mitsubishi Electric Research Laboratories
runyuzha®@mit.edu raghunathan®@merl.com

Jeff Shamma Na Li
University of Illinois Urbana-Champaign Harvard University
jshamma@illinois.edu nali@seas.harvard.edu
Abstract

Tools from control and dynamical systems have proven valuable for analyzing and
developing optimization methods. In this paper, we establish rigorous theoretical
foundations for using feedback linearization (FL)—a well-established nonlinear
control technique—to solve constrained optimization problems. For equality-
constrained optimization, we establish global convergence rates to first-order
Karush-Kuhn-Tucker (KKT) points and uncover the close connection between the
FL method and the Sequential Quadratic Programming (SQP) algorithm. Building
on this relationship, we extend the FL approach to handle inequality-constrained
problems. Furthermore, we introduce a momentum-accelerated feedback lin-
earization algorithm and provide a rigorous convergence guarantee.

1 Introduction

Constrained optimization, also known as nonlinear programming, has found vast applications in sev-
eral domains including robotics [2], supply chains [30], and safe operations of power systems [23]].
First-order iterative algorithms are widely used to solve such problems, particularly in optimiza-
tion and machine learning settings with large-scale datasets. These algorithms can be interpreted as
discrete-time dynamical systems, while their continuous-time counterparts, derived by considering
infinitesimal step sizes, take the form of differential equations. Analyzing these continuous-time
systems can provide valuable theoretical insights, such as stability properties and convergence rates.
This perspective is well-developed for unconstrained optimization, exemplified by the gradient flow
z = =V f(x) [26}16, 70} 311 4], the continuous-time counterpart of gradient descent, as well as its
accelerated variants [75, (79, 51]]. However, for constrained optimization, this approach remains less
thoroughly explored.

Recent studies (c.f. [[15} 35} 1} 153} 17} [16} |29]) have explored the dynamical properties of continu-
ous time constrained optimization algorithms. These works leverage a feedback control perspective
to design and analyze the performance of optimization methods. Specifically, they propose frame-
works that model constrained optimization problems as control problems, where the iterations of
the optimization algorithm are represented by a dynamical system, and the Lagrange multipliers act
as control inputs. The objective in this framework is to drive the system to a feasible steady state
that satisfies the constraints. Within this framework, various control strategies can be employed to
design the update of Lagrange multipliers, resulting in different control-based first-order methods.
For example, it can be shown that Proportional-Integral (PI) control leads to Primal-Dual Gradient
Dynamics (PDGD), whose properties are well-studied [46} 166, 22]. However, most of the works
focuses on convergence for convex constrained problems.
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In this work, we adopt the same control perspective as above, and specifically focus on using another
approach, namely Feedback Linearization (FL) a standard approach in nonlinear control (cf. [45)
41]]), to design the Lagrange multiplier. One key advantage of this method is its natural suitability
for handling nonconvex constrained optimization problems. Although this approach [15], along
with similar dynamical system perspectives [72} [1} |52} 154], has been explored in the literature, its
theoretical properties are not yet fully understood. Several important questions remain open.

The first question concerns global convergence and convergence rates. While existing works estab-
lished local stability [15], global convergence and convergence rate have not been established. The
second question concerns the relationship between the feedback linearization approach and existing
optimization algorithms, specifically whether the discretization of the optimization dynamics de-
rived from feedback linearization aligns with any known optimization method. Additionally, since
most existing studies [15} [72] focus exclusively on equality constraints, this raises the third ques-
tion: how can the feedback linearization approach be extended effectively for inequality constraints?
Lastly, it remains unclear whether ideas from acceleration in optimization—such as momentum-based
techniques—can be incorporated to speed up feedback lienarization methods for constrained opti-
mization.

Our contributions. Motivated by the open questions discussed above, we aim to deepen the the-
oretical understanding of the feedback linearization (FL) approach for constrained optimization by
addressing these questions. Specifically, our contributions are as follows:

1. We establish a global convergence rate to a first-order Karush-Kuhn-Tucker (KKT) point for the
FL method for equality-constrained optimization (Section [3.T).

2. We demonstrate that the FL-based optimization algorithm is closely related to the Sequential
Quadratic Programming (SQP) algorithm, providing a new perspective on its connection to es-
tablished optimization techniques (Section [3.2).

3. Building on this insight, we extend the method to handle inequality constraints, broadening its
applicability (Section ).

4. Finally, we propose a momentum-accelerated FL algorithm for constrained optimization, which
empirically exhibits accelerated convergence in both equality constrained and inequality con-
strained settings. Furthermore, we establish O(ﬁ) convergence in the nonconvex equality con-

strained setting (Section [5).
Due to space limits, a comprehensive review of related literature is deferred to Appendix [A]

Notations: We use the notation [n],n € N to denote the set {1,2,3,...,n}. We use Vf(z)
to denote the gradient of a scalar function f : R® — R evaluated at the point x € R™ and use
V2 f(x) to denote its corresponding Hessian matrix. We use J;(z) to denote the Jacobian matrix of

a function i : R™ — R™ evaluated at z € R", i.e. [J4(2)];; = 8%;(_”), i € [m],j € [n]. Unless
J

specified otherwise, we use || - || to denote the Lo norm of matrices and vectors and use || - oo to

denote the Lo, norm. For a positive definite matrix 4, we use || X||4 := ||A~2 X/ to denote the

A-norm of X. For a set A, we use A° to denote its complement. When no ambiguity arises, we
denote 92 by i, and abbreviate time-dependent variables such as z(t), A(t), and y(¢) as z, A, and .

2 Feedback Linearization (FL) for solving equality constrained optimization

In this section, we briefly review related works that adopt a control perspective, particularly focusing
on the use of feedback linearization (FL) to address equality-constrained optimization problems.

Control perspective on equality-constrained optimization [15] Consider the constrained opti-
mization problem with equality constraints
min, f(x) s.t. h(z) =0, (1)

where z € R", f : R® — R, h : R® — R™. Here we assume that f, h are differentiable, and
additional assumptions will be introduced where needed to support the analysis. The first-order
KKT conditions are given by

~Vf(x) = Jn(z)"A=0, h(z)=0 2)



The key idea is to view finding the KKT point as a control problem (Figure [T) with the system
dynamics given by,
@ = ~T(®) (VI@®) + Ja(@@)TAD)
y(t) = h(xz(t)),
where z represents the system state, y = h(x) is system constraint variable and A is the control

input. T'(x) here is a positive definite matrix and throughout the paper we assume that there exists
Amins Amax such that for all z,

3)

)\minI j T($) j )\maxI

Note that at an equilibrium point 2* of the system in Fig.
must satisfy: & =0 = Vf(2*) + J,| (z*)A = 0. Bl

Further, if z* is feasible, i.e. h(z*) = 0, then we get that i=—T(z) (Vf(x)+Jn(z)A)
x* satisfies the first order KKT conditions (2). Thus, the key
idea is to manipulate the evolution of = so that we stabilize the
system to equilibrium and feasibility.

Figure 1: Control Perspective for
To measure convergence, We define the KKT-gap of (z, \) as Constrained Optimization

follows, such that converging to a KKT point is equivalent to
KKT-gap is zero [1}

KKT-gap(z, A) := max{||V f(z) + Jn(z) "All, [A(2)]| 0 }- )

To design the controller A(t) to reach a feasible equilibrium, we next introduce the feedback lin-
earization (FL) approach, which is the main focus of this paper.

Feedback linearization (FL) for equality-constrained optimization [15] Feedback linearization
(FL) [45,141] is a classical control method for controlling nonlinear dynamics which generally takes
the following form:

T = F(z)+ G(x)\ )

Directly designing a stabilizing controller for the nonlinear system is a challenging task. The FL
approach circumvents the difficulty by transforming the nonlinear control problem into an equivalent
linear control problem, which is much easier to analyze, through a change of variables and a suitable
control input. In particular, if G(x) is invertible, then one can let A := G(z) " (u — F(x)) where
u(t) is the new control input to be designed. Substituting A\ = G(z)~!(u— F(x)) into the dynamics
@), the dynamics becomes & = u, which is now a linear system.

Similarly, in the equality constrained optimization problem, we write out the dynamics for y:
§ = Ju(2)d = —Ju(2)T(2) Vf(2) =Jn(@)T () Jn(z)" A
F(z) G(z)

Thus, by setting
-1

A== (Jn@)T(x)Jn(z)") " (u+ Ju(z)T(z)V f(x))

we have that y = u, then we can simply set u = —Ky where K is a Hurwitz matrix to guarantee
that y asymptotically converge to zero. Thus the feedback linearization (FL) dynamics is given as:

FL for Equality-Constrained Optimization [15]]

i=-T(z) (Vf(x)+ Jn(z)"A)

1 (6)
A=~ (Ja(@)T(2)Jn(z)") " (Jn(2)T(2)V f(z) — Kh(z))

The FL approach is particularly effective for handling nonlinear dynamics, making it well-suited for
nonconvex constrained optimization. Numerical results in [[15}[72] highlight its strong performance

'In this paper, we use the term ‘convergence’ to refer to the decay of the KKT gap to zero. While this
is weaker than convergence to a local or global optimum, it remains a meaningful guarantee in nonconvex
constrained optimization. Extending the framework to incorporate saddle-point escape techniques and ensure
convergence to local optima is an important direction for future work.



in such settings. However, its theoretical properties remain less well understood. Existing analyses
primarily focus on local stability [[15], while global convergence and convergence rates are largely
unexplored. Additionally, the connection between the FL algorithm and existing optimization meth-
ods is not well established. It also remains unclear how to leverage the FL approach to develop
novel techniques for inequality-constrained optimization and faster constrained optimization. In the
following sections, we will systematically address these open problems.

Remark 1 (Scalability and Computational Complexity). Note that although (0) requires calculat-
ing the matrix inversion of Jy(z)T(x)Jn(z)T € R™X™, the dimension scales with the number of
constraints m instead of the dimension of the optimization variable x € R™. In many practical set-
tings, e.g. safe RL, the number of constraints is significantly smaller than the dimension of x. In such
cases, the inversion is computationally inexpensive and can be performed efficiently. Moreover, even
in cases where the number of constraints is large and the matrix inversion becomes computationally
burdensome, we show that it is possible to approximate the inverse efficiently while still maintaining
convergence guarantees. Specifically, in Appendix [B.2] we present a modified FL algorithm that
incorporates a Proportional-Integral (PI) controller to tolerate approximation error and still ensure
convergence to an optimal solution.

Remark 2 (Extensions of the FL approach). Although similar dynamics to (6) has also been pro-
posed from other perspectives such as control barrier functions [I|], nonsmooth dynamics design
[531155)], we believe that the feedback linearization perspective provides a more general framework.

In principle, beyond specifying a linear target of the form y = — Ky, this approach allows us to
leverage arbitrary stable controllers, such as PI controllers, e.g.

. t

y=—Kyy—K; [;y(s)ds @)

for constraint enforcement, potentially offering new algorithmic behaviors or robustness benefits.
In Appendix [B.2] we present an example where the algorithm in succeeds in converging to the

optimal solution, even when only an inaccurate approximation of (Jy(x)T(z)J,(z) ") s avail-
able—while (6) fails to converge to an optimal solution. This highlights the robustness and broader
applicability of the feedback linearization framework.

3 FL control method: Convergence and Relationship to SQP

3.1 Convergence Results

Section 2]introduces the FL method for equality-constrained optimization. The analyses in existing
works mainly focus on the local stability, and little is known about the global convergence property.
In this section, we establish a global convergence rate to a first order KKT point (Contribution|T).

The result relies on the following assumptions:
Assumption 1. There exists a constant M such that |V f(z)|| < M, ||Jn(x)|| < M for all x;
Assumption 2. The function f(z) is lower-bounded, i.e. f(x) > fmin for all x.

Assumption 3. There exists a constant D such that (Jy,(z)Jn(2) 7)™t < D21 for all x.

Note that Assumption [3]is similar to the assumption made in [13] that assumes that rank(Jj, (z)) =
m for all z, which is equivalent to .Jy,(x).J, () " being invertible, thereby ensuring the regularity of
the transformation in (6)) and the existence of a well-defined feedback linearization. This assumption
is also known as the linear independence constraint qualification (LICQ, cf. [61} I57]], see more
discussion in Appendix [A) in optimization literature. Assumption [I]implies that the functions f and
g are Lipschitz. We would like to acknowledge that this assumption is relatively restrictive and is
solely for analysis purposeﬂ In our numerical simulations we found that the algorithm is suitable
for non-uniformly-Lipschitz functions. We now state our result in terms of the convergence rate:

Theorem 1. Let Assumption [1} 2] and [3| hold and let the control gain K be a diagonal positive
definite matrix, i.e., K = diag{k;}™,, where k; > 0. Then we have that the dynamic of the
feedback linearization method (6) satisfies:

>We note that if * € D is known a priori for a compact domain D, a potential approach for handling
non-uniformly Lipschitz functions f, g is to construct Lipschitz extensions f’, g’ such that their gradients and
Jacobians match those of f, g within D while remaining uniformly Lipschitz outside D (cf. [74]).



1. For the set & = {x : hy(z) > 0}, if (0) € &, then z(t) € & for all t > 0. Similarly, if
2(0) € EF, then z(t) € EF for all t > 0, further h;(z(t)) = e **h;(x(0)), i.e, h(x(t)) — 0
with an exponential rate as t — +oc.

2. Define ¢(x) := f(z) + %(MD)2 St [hi(z)|, then £(x(t)) is non-increasing w.r:t. t.
3. Let \(t) == — (Jh(x)T(x)Jh(x)T)fl Jn(x)T(x)V f(x(t)), then we have that
JZo IV F(@(®) + Tu () "X 2t < 52— (€(2(0) = £a(T))).

and that lim_, 4 o (A(t) — A(t)) = 0.

4. (Asymptotic convergence and convergence rate) The above statements imply that,

info<, <7 KKT-gap(x(t), A(t)) <max { \/ 2 (Lt 4 g2 57 |y (2(0))) )

Amin min

maxi<i<m {hi(fﬂ(o))f &3 }} ~ 0 (%)

further, we have that lim;_, ; o, KKT-gap(x(t), A(t)) = 0, lim;_, , oo KKT-gap(x(t), A(t)) = 0.

Statement 4 in Theorem [I] implies that the algorithm can find an e-first-order-KKT-point within
time %. We note that ensuring last-iterate convergence in nonconvex optimization is generally
challenging. Hence, our analysis focuses on the best iterate, a widely adopted criterion in nonconvex
optimization. However, in the setting where the optimization problem (TJ) is strongly convex, we
are able to strengthen our convergence result to the last iterate convergence to the global optimal
solution. Due to space limitations, we defer the detailed proof of Theorem [I] as well as the result
for the strongly convex setting to Appendix [C] The key step of the proof involves constructing the
merit function ¢(x) in Statement 2. We also note that ¢(x) also serves as the exact penalty function
in constrained optimization literature (cf. [27, 184]).

3.2 Relationship with SQP

The FL dynamics (6)) provides a concise and elegant formulation, prompting the question of whether
certain optimization algorithms can be derived through its discretization. In this section, we establish
a fundamental connection between the continuous-time FL. dynamics and the Sequential Quadratic
Programming (SQP) algorithm (Contribution[Z). Specifically, we demonstrate that the forward-Euler
discretization (cf. [8[7]) of (6) is equivalent to the SQP algorithm.

The state space continuous time dynamic for (@) is

. ~1

b= =T(@) (V@) = @) (a@)T@) @) ) (a(@)T @)V (@) - Kh(z)),
Its forward-Euler discretization scheme is

-1
Tpp1 =z — T () (Vf(xt)—Jh(It)T (Jh(ft)T(th)Jh(l’t)T) (Jn(@e)T(2¢)V f(24) —Kh(xt)))
3
We now consider the following SQP method, which is widely discussed in literature (cf. [S7, 12,
581)):
x441 = argmin, Vf(z,) (2 — 2;) + %n(x — ) T () L (x — x4)

sit. h(xy) + Jn(xy)(x —ax¢) =0 )

We are now ready to state the main result of this section, which demonstrates the equivalence of (8]
and (O)

Theorem 2. Under Assumption |3} when K = %I , the discretization of FL [§) is equivalent to the
SQOP algorithm ().

The proof of Theorem 2] leverages the fact that () satisfies the relaxed Slater condition. The detailed
proof is deferred to Appendix [D]



Remark 3 (Choice of T'(x)). Theorem 2| provides insights into the selection of T (x) for the FL
approach. Different choices of T (x) lead to different types of SQP algorithms. Here we discuss
two specific types of T'(x). First, T(x) is set as the inverse of the Hessian matrix, i.e., T(z) =
(V2 f (x))fl, then ) corresponds to the Newton-type algorithm where the quadratic term in the
objective function is given by (xz — x;) T V2 f(x)(x — x;), which is widely considered in literature
(cf. [57[12)]). For this specific type of T'(x), we name its corresponding FL dynamics (0)) as the FL-
Newton method. However, in the setting where the Hessian information is not available, another
choice of T'(x) is simply setting it as the identity matrix T'(x) = I, which is considered in recent
works such as [58)]. In this case, the objective function resembles a proximal operator (cf. [I3}160]),
hence we name this as FL-proximal method. Due to space limit, we defer a more comprehensive
overview of SQP to Appendix[A] We would also like to emphasize that FL-proximal belongs to the
class of first-order methods as its update only requires the first-order information V f (x), Jp(x).

Remark 4 (Comparison with other first-order methods). To this end, we briefly compare FL-
proximal methods with other first-order approaches, including Primal-Dual Gradient Descent
(PDGD), Projected Gradient Descent (PGD), and the Augmented Lagrangian Method (ALM), with
further details in Appendix[A] PDGD has been well studied [46| [77 166|], but is largely limited to
convex settings and may fail in nonconvex problems [87,5|]. PGD also struggles with nonconvexity,
as projections onto nonconvex sets are often intractable. ALM can handle nonconvex constraints,
but each iteration requires solving a potentially expensive nonconvex subproblem. In contrast, when
the constraint dimension is small relative to that of x, SQP-based methods like ours often perform
better in practice [134] 149].

4 Extension to inequality constraints

The above sections primarily focus on the constrained optimization setting with equality constraints
(I). This section aims to address the question of whether we can extend to setting with inequality
constraints (Contribution[3), i.e.,

min, f(x) s.t. h(z) <0, (10)
The KKT conditions for the above problem are given by
~Vf(@)—Jp(@)"TA=0, h(z)<0, AX>0, A 'h(z)=0 (11)

To measure convergence, we define the KKT-gap of the state variable x and nonnegative control
variable A > 0 as follows:

KKT-gap(z, A) := max { ||V f(x) + Ja(x) "All, AT h(z)] , max;[h(x)]4 }
where [h;(z)];+ = max{h;(x),0}.

We can still view the problem as a control problem whose corresponding dynamics can be written
as

i=—T(z) (Vf(x)+ n(z)"A), y=nh(z), A>0. (12)

However, the problem becomes more complicated because we require the non-negativity constraints
A > 0 and complementary slackness A" h(z) = 0. At first glance, it is unclear how to guaran-
tee these conditions through the control process. However, inspired by the relationship with SQP
algorithms, we carefully design a more intricate FL controller as follows:

FL for Inequality-Constrained Optimization

i=—T(z) (Vf(x)+ Jn(z)"X) (13.1)
A =argminy o (5A7 I (2)T(2) I (2) TA+ AT (Ju(2)T(2)V f(2) = Kh(x)))  (13.2)

Here we assume that the optimization problem in equation (13.2)) admits a finite solution. We would
also like to point out that X in (I3.2) takes the form of the solution of an optimization problem,
resulting in a non-smooth trajectory. A similar formulation of non-smooth ordinary differential
equations (ODEs) has been explored in the context of differential variational inequalities (cf. [24,
59, [14]).



At first glance, it may not be immediately clear why the algorithm is structured as in (I3). The
derivation of (I3)) was inspired by the connection between the FL method and SQP in the equality-
constrained setting. Hence, for the inequality-constrained case, we first analyzed SQP and then
reverse-engineered its principles to derive its continuous-time counterpart, leading to the formulation
of the FL method in (T3). To ensure a coherent and intuitive presentation, we begin by establishing
its relationship with the SQP algorithm.

Relationship with the SQP algorithm The corresponding forward Euler discretization of is
given by

zop1 =z — () (Vf (@) + Jn(@e) T M\e)

. (14)
A = argminy s (3AT Jn (@) T (o) Jn(20) TA+ AT (Jn(2)T (20)V f (20) — Kh(z)))
We now consider the following SQP type of optimization method
Ty = argming V() " (z — 24) + 2—177(:13 —2) T () Y — )
st. h(xe) + Jp(z)(z —2) <0 (15)

The following theorem states the equivalence between and (T3).

Theorem 3. When K = %I , if (13)) is feasible, then the discretization of feedback linearization (14)
is equivalent to the SQP algorithm (13).

Similar to the proof of Theorem |2} the proof of Theorem |3|also leverages strong duality and KKT
conditions. The detailed proof is deferred to Appendix

Convergence Result Theorem 3|demonstrates the relationship between the FL algorithm and
(T3)). Since SQP algorithms are known to be capable of converging to a KKT point [57], intuitively
similar convergence can be established for our FL algorithm , which is the main focus of the
following part.

We define the index set Z(x) := {i : h;(z) > 0}. Our results rely on the following assumptions:

Assumption 4. Given the initial state x(0) at t = 0, the optimization problem in (13.2) admits
a bounded solution ||N|co < L for all x € &, where € is defined by € = {z|0 < h;(z) <
hi(x(0)), Vi € Z(x(0))}.

Although Assumption [ is quite complicated, there are some simplified versions that serve as a
sufficient condition of Assumption E} For example, if we start with a feasible z(0), then & = ()
and hence Assumption []is automatically satisfied. Additionally, note that Assumption [3is another
sufficient condition of Assumption[d](see Lemma[3|in Appendix[G]). Notably Assumption/]is similar
to the Mangasarian-Fromovitz constraint qualification (MFCQ) considered in literature 53, [1]]

Theorem 4. Let Assumption[I} 2)and[] hold and let the control gain matrix K be a diagonal matrix,
ie, K = diag{k;}i=1, where k; > 0. Then the learning dynamics satisfies the following
properties

1. w < —k;hi(x(t)), and hence the dynamic will converge to the feasible set.

2. Define l(x) := f(x(t)) + LY ,[hi(x)], then £(x(t)) is non-increasing w.r.t t. Here [h;(z)]+ =
max{h;(z),0}.

3. The following inequality holds
S (19 @) + Tn@ENONE (a0)) — Siczare kids(®hi(a(t)) ) dt < £((0)) - £(2(T))

4. (Asymptotic convergence and convergence rate) The above statements imply that

=g (a(0) A0) < max {527 (1G0(0) = foio + L 5o haa(0D).
e 2 (F@0) = fanin + (L4 1) Siczaon Mi@0)) } ~ 0 ()
1

Further we have that KKT-gap asymptotically converges to zero,
lim;_, oo KKT-gap(z(t), A(t)) =0

.e.



Statement 4 in Theorem [4implies that the algorithm can find an e-first-order KKT-point within time
E%. Similar to Theorem , the key step of the proof is to construct the merit function in Statement 2
(detailed proof deferred to Appendix [E).

5 Momentum Acceleration for Constrained Optimization

In Remark [3} we introduced the FL-proximal and FL-Newton algorithms. Generally, FL-Newton
achieves faster convergence than FL-proximal due to its use of second-order information. However,
in scenarios where Hessian information is unavailable, FL-proximal must be used instead, raising the
question of whether its convergence can be accelerated. Given that momentum acceleration has been
shown to improve convergence rates in unconstrained optimization, a natural question arises: can a
momentum-accelerated version of the FL-proximal algorithm, along with its corresponding discrete-
time SQP formulation, achieve faster convergence? This section aims to address this question as part
of Contribution 4

Momentum acceleration is a technique commonly used in optimization to enhance convergence rates
(cf. 63,156, 20], see Appendixfor more detailed introduction about momentum acceleration). For
unconstrained optimization, the discrete-time momentum acceleration for gradient descent generally
takes the form of

wy = ¢+ B(wr —x4-1), Tey1 = wy — NV [f(wy) (16)
Its corresponding continuous-time analogue can be written as a second-order ODE [63, [75]]
t=z i=—-az—Vf(x) a7

Inspired by the form of and (T7), for equality constrained optimization, we propose the follow-
ing heuristic momentum-accelerated discrete time SQP scheme

wy =z + Bz — mi—1), @1 = w + V[ (we) + Jn(wy) TN
A= = (In(we) Jn(we) ") (Ju(we) V£ (wp) — Lh(w) (18)

and continuous time FL scheme, which we name as FL-momentum:

FL-momentum for Equality-Constrained Optimization

T=z i=—az— (Vf(x)+ Ju(z)" )

19)
A= —(In(@)In(@) )" (Jn(2)V f(2) = Kh(z))

Note that compared with FL-proximal (8), the difference in (T8) is the addition of a momentum
step wy = x4 + B(x; — x4—1). Similarly we can propose the FL-momentum scheme for inequality
constraint case as follows:

FL-momentum for Inquality-Constrained Optimization

i=z i=-az— (Vf(x)+Jh(x)"N) (20)
A= argminyso g A" (@) Ja(2) A+ AT (Jn(2)V f(2) — Kh(x))

The numerical simulation in Section [6] (Figure [2)) suggests that momentum methods indeed accel-
erate the convergence rate. We would also like to note that as far as we know, the acceleration of
SQP methods are generally achieved via Newton or quasi-Newton methods, there’s little work on
exploring acceleration via momentum approaches, which makes our proposed momentum algorithm
a novel contribution.

5.1 Convergence Analysis for FL-momentum: Nonconvex Case

In this section, we provide some convergence guarantees for the proposed algorithm. In particular,
we primarily focus on the convergence analysis for the continuous-time algorithm for equality con-
strained optimization (19). It remains future work to establish the convergence for the discrete-time
algorithm (I8) or the inequality-constrained algorithm (20).

We first define the following notation

Az) = —(In(@)Jn(2) ") " (In(2)V f(2)) @21



Apart from Assumption [I)and 2] we also make the following assumptions on f and h.

Assumption 5. Both f(x), h(x) are three-times differentiable and the derivatives are bounded,
thus, we know that there exist some constants Ly, Ly, Lo such that

& (@) "A@)+ (32 " h(n)))
ox

I3/ @)l < Ly, |52

SLla <L2

Assumption 6. We also assume that that there exists a constant H such that | H(z)|| < H, Vax,
where H(z) = [h(z) T V2h;(2)|,

We are now ready to state our main result
Theorem 5. Assume that Assumpnon [7} 2| Bl and 6| hold. Let two positive constants a1, az be such

that ag > (4 )\“‘“"‘(K) LaD + X a1 > 0. We define the following merit function:

mm(K)

Uz, 2) = araf(z) + %Ilh( )? +araA(@) " h(z) + |||

+ (a1Vf(Jc) + ath(x)Th(m) + a1Jh(a:)T5\(a:) + a1 825:6) h(m)) z

then for a > (al(Lf + Lo) +ax(M? + H) + a—ll + M) + 1, we have that

as
1. £(x(t), 2(t)) is non-increasing with respect to t.

2. the following inequality holds

[ el o) + IV £@le) + (o 0) M) < (2 (0),2(0)) = min £(z, 2

=0 T,z

3. We can bound the KKT-gap by

: By 0(x(0),z —Cmin
info<¢<7 KKT-gap(z(t), A(z(t))) < min({ (218(0&)%}T ~O(75)

and lim;_, | o KKT-gap(z(t), A(z(t))) =0, lim;_, 4o KKT-gap(z(t), A(z(t))) = 0.

The detailed proof is provided in Appendix [F}

Remark 5 (Limitation of the result). One limitation of Theorem[3)is that it establishes convergence
but not acceleration over FL-proximal. However, when the constraint function h(x) is affine, the
algorithm is equivalent to the momentum-accelerated projected gradient method (see Appendix[F1)),
offering insight into its potential for accelerating optimization.

6 Numerical Verifications

For numerical validation, we consider a logistic regression problem involving heterogeneous clients
[73,142]. Many scenarios, such as federated learning and fair machine learning, require training a
common model in a distributed manner by utilizing data samples from diverse clients or distribu-
tions. In practice, heterogeneity in local data distributions often results in uneven model performance
across clients [48] [76]. Since this outcome may be undesirable, a reasonable objective in such set-
tings is to add constraints to ensure that the model’s loss is comparable across all clients.

We formulate the above problem as a constrained optimization problem as follows: consider solving
the logistic regression for C clients. For each client ¢ € {1,2,...,C}, itis associated with its own

dataset D, = {(z, yi)}gil, where the label is y; € {—1,1} and data feature is z; € R?. For each
client ¢, its own logistic regression loss R.(6) is defined as

Ro(0) = 1 Yo, log(1 + exp(—y; - 67,)),

where 6 is the parameter of the regression model. We further define the averaged regression loss

R(0) as R(0) := & 2L, fe(0)-



As suggested in [[73] [42]], heterogeneity challenges can be addressed by introducing a proximity
constraint that links the performance of each individual client, R., to the average loss across all

clients, R. This approach naturally formulates a constrained learning problemE]
ming R(0), s.t. R.(0) — R(f) —e <0, Vee {1,2,...,C} (22)

where € > 0 is a small, fixed positive scalar.
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Figure 2: Result for Heterogeneous Logistic Regression

We solve the constrained optimization problem by running the FL-proximal, FL-Newton, and
FL-momentum algorithm . Here we set the number of clients to C = 5 and |D.| = 200, the
data y; is randomly generated from a Bernoulli distribution and x; is generated from a Gaussian
distribution whose mean differs among different agents. The results of the numerical simulation are
presented in Figure 2| All algorithms converge to a first-order KKT point. FL-Newton converges
fastest owing to its use of second-order (Hessian) information, while among first-order methods, FL-
momentum outperforms FL-proximal in convergence speed. More comprehensive numerical results
are provided in Appendix [B]

7 Conclusion

In this paper, we study the theoretical foundations for solving constrained optimization problems
from a control perspective via feedback linearization (FL). We established global convergence
rates for equality-constrained optimization, highlighted the relationship between FL and Sequential
Quadratic Programming (SQP), and extended FL methods to handle inequality constraints. Fur-
thermore, we introduced a momentum-accelerated FL algorithm, which empirically demonstrated
faster convergence and provided rigorous convergence guarantees for its continuous-time dynamics.
Future directions include exploring the potential extension to zeroth-order optimization settings and
relaxing assumptions in the theoretical analysis.

Several limitations of our framework remain. First, our analysis ensures convergence of the best-
found iterate to a first-order KKT point, but does not distinguish between local optima, global op-
tima, and saddle points. Extending the framework to guarantee convergence to local optima via
saddle-point escape mechanisms is an important direction for future work. Second, the applicabil-
ity of feedback linearization depends on structural assumptions such as the Linear Independence
Constraint Qualification (LICQ). Third, while FL-momentum empirically accelerates convergence,
our current analysis yields the same O(1/+/T) rate as its non-accelerated counterpart. Relaxing
these assumptions and strengthening convergence guarantees remain promising directions for future
research.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While ’[Yes] ” is generally preferable to ” ”, it is perfectly acceptable to answer ”

” provided a proper justification is given (e.g., “error bars are not reported because it would be too
computationally expensive” or “we were unable to find the license for the dataset we used”). In
general, answering ”’ ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:
* Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list”,
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately summarize the main theoretical and
empirical contributions. They clearly reflect the scope and significance of the work and
include relevant assumptions and limitations.
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Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes multiple remarks discussing limitations, assumptions, etc.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-

dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results are accompanied by clearly stated assumptions and
complete proofs, either in the main text or the appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.
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* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Although primarily theoretical and foundational, this work includes compre-
hensive details of the experimental setup.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: An anonymized version of the code and data is included in the supplemental
material,

Guidelines:

* The answer NA means that paper does not include experiments requiring code.
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The paper specifies numerical details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper considers deterministic algorithms so there’s no error bars, but we
measure the performance with standard criteria in literature.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer “’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.
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8.

10.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This work is primarily theoretical, and the numerical simulations are simple
and lightweight. They were run on a standard personal computer and do not require spe-
cialized hardware or significant computational resources, so detailed compute reporting is
not necessary.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Although this work is primarily theoretical and foundational, we conduct
experiments on representative applications and discuss how the theoretical insights could
inform broader practical use.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work does not involve models or datasets with a high risk of misuse that
would require safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

21


paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA|
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Literature

Control and Dynamical System Perspective for Optimization As mentioned in the introduc-
tion, many papers analyze the performance continuous time optimization algorithms in different
settings. For unconstrained cases, various continuous algorithms are studied such as gradient flow
[26, 16l [70} 1311 4]}, stochastic gradient [67, [82], Nesterov acceleration [75, 79, I51], and momentum
acceleration [|63} 162]]. Notably, control-theoretic tools, such as integral quadratic constraints (IQC)
[47,144], Proportional Integral Derivative (PID) control [43]], are used to bring interesting insights to
the convergence property of optimization algorithms. However, for constrained cases, less work is
known. One direction focuses on the dynamics of PDGD algorithm, which primarily focuses on the
convex setting and establishing global convergence [46} [77, 22, 185] [15]]. However, this approach is
primarily limited to convex optimization. For nonconvex optimization, prior research has explored
modifications of the gradient flow to accommodate equality constraints (see, e.g., [83} 72 [78]) as
well as inequality constraints [1} 152} |54] . The algorithms proposed in these works share similari-
ties with the feedback linearization approach considered in [[15] and this paper. Notably, [72]] also
highlighted connections to sequential quadratic programming (SQP). This paper advances the exist-
ing literature in several key ways: i) while prior analyses [83| [72] [89] primarily focus on equality
constraints, our results extend the algorithm to handle inequality constraints; ii) although the algo-
rithms in these works resemble ours, we introduce a novel perspective based on feedback lineariza-
tion; iii) previous convergence results are largely asymptotic, whereas we establish non-asymptotic
convergence rates in terms of the KKT gap; and iv) We establish acceleration results through the
momentum method, further contributing to the theoretical understanding of the algorithm. Notably,
[54] also considers a momentum-based acceleration for constrained optimization, however, both the
continuous-time dynamics and the discretization approach are different, and thus resulting in distinct
algorithms.

Another related line of research explores real-time optimization from a systems perspective [25} 38}
39| 140, [88]]. These works primarily focus on scenarios where the optimizer (controller) interacts
with a physical dynamical system (plant) and employ control-theoretic approaches, such as time-
scale separation and the small-gain theorem, to design and analyze the performance of real-time
interactive optimization schemes. In contrast, our setting differs in that the plant itself corresponds
to the gradient dynamics of the Lagrangian, while the controller is represented by the dual variable

A

A series of works have also explored the properties of learning and optimization in neural networks
using tools from control and dynamical systems, including the proportional-integral-derivative (PID)
approach [3], quadratic constraints [28]], and Lyapunov stability [68]]. However, as these studies
focus on different problem settings and techniques, they fall outside the scope of this paper.

Sequential Quadratic Programming (SQP) Originally proposed in [80, 37, 65], SQP serves as
a powerful optimization algorithm for nonconvex constrained optimization. Generally speaking, the
algorithm talks the following form (cf. [[11])

reor = argmin ¥/ (e) (@ — 2) + L (o — 2) H(z)(@ — )

s.t. h(xe) + Jp(xe)(x — x) = (L) 0.
For faster convergence, matrix H (x;) is generally set as the Hessian matrix of the objective func-
tion f. However, in the setting where only first order information is available, [19] has employed
Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton Hessian approximations. In our FL-

proximal algorithm, the matrix H (z;) as the scalar matrix H(x;) = -1, which is also a common

choice when second-order information is unavailable [58]. We would also like to note that as far
as we know, the acceleration of SQP methods are generally achieved via Newton or quasi-Newton
methods, there’s little work on exploring acceleration via momentum approaches, which makes our
proposed momentum algorithm (T8)),(T9) a novel contribution.

Note that our convergence results rely on the linear independent constraint qualification (LICQ)
assumption (Assumption [3). In literature, there are works that seek to replace this restrictive as-
sumption with milder conditions while still maintaining convergence properties, which is generally
known as the stabilized SQP (cf. [32}133,[36} 81, 186]). It is an interesting open question whether we
can borrow insights from stabilized SQP to modify our FL algorithms such that the LICQ assump-
tion can be removed.
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Other Constrained Optimization Algorithms Apart from SQP methods, there are also other op-
timization algorithms for solving constrained optimization. Interior point method (IPM, cf. [21}164]])
is one of the most deployed algorithm for nonconvex constrained optimization. The algorithm in-
volves navigating through the interior of the feasible region to reach an optimal solution. A common
approach within IPMs involves the use of barrier functions to prevent iterates from approaching the
boundary of the feasible region. By incorporating these barrier terms into the objective function, the
algorithm ensures that each iteration remains within the feasible region’s interior. Newton’s method
is then applied to solve the modified optimization problem, iteratively updating the solution estimate
until convergence criteria are met. This methodology allows IPMs to efficiently handle large-scale
optimization problems with numerous constraints. While both IPMs and SQP methods can ad-
dress similar optimization challenges, they differ fundamentally in their approaches: IPMs focus on
maintaining iterates within the interior of the feasible region using barrier functions, whereas SQP
methods iteratively solve quadratic approximations, often employing active-set strategies to handle
constraints.

Augmented Lagrangian Methods (ALMs) (cf. [[10, [18]]), also known as the method of multipliers,
is another popular approach to solve large-scale constrained optimization problems by transform-
ing them into a series of unconstrained problems. This transformation is achieved by augmenting
the standard Lagrangian function with a penalty term that penalizes constraint violations, thereby
facilitating convergence to the optimal solution.

Further, in convex optimization, proximal gradient methods (cf. [[13}160]) can be applied for a wide
class of optimization problems that take the form of

min f(x) + g()

where f(x) is a smooth convex function and g(z) is a convex but potentially nonsmooth, non-
differentiable function. The proximal gradient method iteratively updates the solution estimate by:

Ter1 = prox,, (ve — Vf(zt)),
where 7) is the stepsize and prox, , denotes the proximal operator associated with g defined as:

1
prox,, () = argmin { (o) + 5.1y oI}

In particular, for convex constrained optimization, we can set g(x) as the indicator function:

{ 0 if h(z) = ()0

9(z) = 400 Otherwise

and in this setting, the proximal operator is equivalent to projection onto the feasible set h(x) =
(<) 0. One limitation of the proximal gradient type of algorithms is that it is hard to generalize
to the nonconvex setting and that the projection onto the feasible set might be hard to compute the
proximal operator for complex h(z).

Acceleration Algorithms First-order acceleration methods, such as momentum and Nesterov Ac-
celerated Gradient (NAG), are key advancements in gradient-based optimization. Momentum, in-
troduced by [63]], enhances gradient descent by incorporating an extrapolation step that accelerates
convergence. Specifically, the update rule wy = (1 + 8)x; — Bas—1 extrapolates the current position
x; by considering the previous position x;_1, effectively predicting a future point in the parameter
space. This anticipatory step allows the optimization process to gain speed, particularly in regions
where the objective function exhibits gentle slopes or low curvature. Nesterov’s Accelerated Gra-
dient [56] refines momentum by proposing a more refined extrapolation parameter [3; that possibly
varies with iterations, enabling more precise adjustments and achieving faster convergence rates.

Note that momentum or Nesterov acceleration can also be applied to proximal gradient methods (cf.
(9, [711]), i.e.
Yt = ¢ + Be(Tr — T4-1)
Tip1 = ProX,, (Ye =V f(yt)) -
By integrating a momentum term, it is able to accelerate convergence while maintaining the benefits
of the proximal operator in handling nonsmooth g(x). We would also like to note that when g(x) is

chosen as the indicator function of h(x) = Az + b = 0 then the momentum accelerated proximal
gradient method recovers our momentum SQP scheme (18)).
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B More Numerical Simulations

B.1 Comparison with other first-order methods

Here we also compare the performance of our algorithm with existing first order methods such as
primal dual gradient descent (PDGD) and Augmented Lagrangian method (ALM), as show in the
figure below:

Function Value over lterations KKT Gap over Iterations
3.0 2
= FL-proximal 10 = FL-proximal
FL-momentum 100 FL-momentum
25 —— FL-Newton —— FL-Newton
—— PDGD 102 — PDGD
— o —
—~ 20 ALM & . ALM
= o 10 \
= 7
15 S 107
10-°
1.0
10710
0 60 120 180 240 300 0 60 120 180 240 300
Iteration Iteration

Figure 3: Running different constrained optimization algorithm for Problem (22)

From the above figure, we note that our FL-proximal method performs comparably with existing
methods such as PDGD and ALM. And as expected, FL-momentum converges faster as it lever-
ages momentum acceleration and FL-Newton performs the best as it leverages the second order
information.

B.2 Generalization of the FL algorithm using PI Control

As pointed out by Remark [I] one drawback of the FL-proximal is that it requires calculation of the
inverse matrix of Jy, (x)Jy, (x) T, which might be inefficient when the number of constraints becomes
larger. In reality, there are ways to solve the inverse of Jj,(x)J, () " approximately using heuristic
methods or conjugate gradient.

Assume that instead of calculating (.J;, (x).J,(z) ") ™! we approximate it with some matrix F(z) ~
(Ju(z)Jn(z)T)~L. For example, in the setting where Jj,(x)J,(x) " is diagonal dominant, we can
heuristically set F'(z) to be a diagonal matrix where the diagonal element of F'(z) is the inverse of
the corresponding entry of .J, (z)J,(z) T, i.e.,

-1

F(z) := (diag(Jn(z)Ju(2) ")) . (23)

Thus, it is of great importance to study the algorithm’s robustness towards the approximation error
of F(x). We are going to see in this section that it might be beneficial to consider a PI controller for
feedback linearization.

We begin by introducing the Approximated FL algorithm for equality constrained optimization as
follows:

i=—(Vf(x)+ Ju(z) A
A =—F(z)(Jp(x)T(2)V f(x) = Kh(z))

Note that the only difference of Approximated FL comparing with FL-proximal is that we replace
(Jn(z)Jn(z)T)~1 with its approximation F'(x).

As mentioned in Remark [2| apart from considering the feedback linearization with a proportional
controller, i.e. § = —Ky, we can also consider a more general algorithm variant where we also
include the integral term and thus formulate the dynamics as

g =—Kyy — K; [} y(s)ds
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Figure 4: Comparison of Approximated FL and Approximated FL-PI algorithm

This gives rises to the (Approximated) FL-PI algorithm as follows:

Approximated FL-PI

i=—(Vf(z)+Jnlz) )

A= —F(x) (Jh(z:)T(x)V f@) - (Kph(m) + K / t_o h(x(s))ds))

To test the robustness of the algorithm towards approximation error, we run both Approximated FL
and Approximated FL-PI algorithm on a quadratic programming problem

1
min -z ' Qr +¢'z

z 2
st. Az +b<0

where m = 10,n = 20, and A, b, ¢, Q'/? are all random matrices or vectors whose entries are
generated following an i.i.d random Gaussian distribution.

Figure ] demonstrates the algorithm performance for both Approximated FL and Approximated FL-
PI. Interestingly, in this setting, Approximated FL fails to converge to the optimal solution, whereas
Approximated FL-PI is able to find the optimal solution. This indicates that it is beneficial to include
an additional integral controller term into the optimization algorithm.

B.3 More numerical examples: Optimal Power Flow

The Alternating Current Optimal Power Flow (AC OPF) problem is a fundamental optimization task
in power systems. Its goal is to determine the most efficient operating conditions while satisfying
system constraints. This involves optimizing the generation and distribution of electrical power
to minimize costs, losses, or other objectives while ensuring that physical laws (such as power
flow equations) and operational limits are respected, thus it can be summarized as the following
constrained optimization problem:

min, f(z), s.t. heq(x) = 0, hineg(x) <0, (24)

where the objective function f(x) represents the power generation cost and the equality constraints
heq() generally represents the physical law of the power system, i.e., the power flow equations and
hineq includes operational limits in terms of voltage, power generation, transmission capacities etc.
The optimization variable x generally consists of voltage angles and magnitudes at each bus, and
the real and reactive power injections at each generator (see [S0] for a detailed introduction on AC
OPF).

We solve the AC OPF problem by running the FL-proximal algorithm, FL-Newton algorithm,
and FL-momentum algorithm. Figure [5] presents the numerical results for solving AC OPF on the
IEEE-39 and IEEE-118 bus systems, respectively. In both cases, FL-Newton demonstrates the
fastest convergence, which is expected given that it leverages second-order information (i.e., the
Hessian). Comparing FL-proximal and FL-momentum, both of which rely solely on first-order
information, Figure [5] indicates that FL-momentum accelerates the learning process and achieves
faster convergence than FL-proximal for the IEEE-39 bus system. However, in the IEEE-118 bus
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Figure 5: Result for AC OPF on
IEEE-39 bus (left) and IEEE-118 bus (right) bus system
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system, FL-proximal and FL-momentum exhibit similar convergence speeds, with their learning
curves nearly overlapping. We hypothesize that this problem is ill-conditioned, limiting the effec-
tiveness of momentum in accelerating the algorithm.

C Proof of Theorem[1]

Proof of Theorem|]} Statement 1 is obvious from the derivation in Section [ because we have that
Ui = —kqy;, thus y;(t) = e~ %y, (0) always keeps the same sign, since y;(t) = h;(x(t)), we have
completed the proof for statement 1.

For statement 2, we first derive the time derivative for f(x). For notational simplicity we define
P(z) := T(x) — T(z)Jp(x)" (Jh(as)T(ac)Jh(:z:)T)_1 Jn(x)T(x). Note that P(z) = 0 and that
P(x)T(x) 1 P(z) = P(x).

fl@)=Vf)i
= V(@) T(@)Vf(x) = V@) T()Jn) "\
= Vf(2) T(@)V (@) + V@) T(@) (@) (Ju(@)T(@)In@)T) " (Ju(@)T(2)V f(z) — Kh(z))
= Vf(z) P@)Vf(x) - V(@) T(x)Ju(@) (Ja(@)T(x)Ju(x)T) " Kh(z)

< V(@) P@)V (@) + V@) T (@) In@) T (Ja@)T@)In@)7) " e Z kilhi(z)

Amax "
< —Vf(x) P(z)Vf(z)+ Ai_(MD)Z Z kilhi(z)].
min i=1
Further, from statement 1 we have that
dhi(z)| _
dt = —kilhi(z)|,
thus we have
d(f(@)+ 3= MDY, |hi(a)])
dt
A
T max max
< —Vf(x)" Px)Vf(x)+ Amm (MD) Zlk il hi(z)] — o (MD) Zlk; i ()|
< —Vf(z) P(x)Vf(x) <0, (25)

ie., L(z(t)) == f(z(t)) + (MD)*Y" |hi(x(t))| is non-increasing, which completes the proof.
Note that £(x(¢)) is always differentiable with respect to ¢ because based on Statement 1, x(t) will
always stay in &; (or &F) if the initialization 2(0) € &; (or &f).

Now we prove statement 3. Since f is lower bounded and that h(z) — 0 asymptotically, we arrive
at the conclusion that the trajectory of £(x(t)) is bounded. From (23)) we have that

% < -V f(a(t) T P(a(t)Vf(x(t))
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T T
= (D) = @0) < = [ VIO) POV = = [ P00 a0

= /., 1P (2(6))V F (@) 17 (a2t < (€((0)) — £x(T))) -

Further, it is not hard to verify that
P(a()V f(2(t)) = T(x(t)) V£ (x(t) = T(x)Jn(x) " (Ju(@)T(@)Jn(@)T) " Jn(@)T ()Y f(x(t))
= T(x(t)) (Vf(2(t) + Ju(2() TA®))

so we have
T T
/t:O [PV (@) 7y -2t = /t:O IV f(2(8) + Tn(@(t)) " X0 o)y dt < ((0)) = £(z(T)).
= [ V) + T 0) K0Pl < 5 (1((0) ~ €a(T))

We also have that

_ —1 1
IAE) = XD = | (Jn(@)T(2)Jn(2) ") Kh(z(t)] < - DA IK (o) = 0, ast — 400
which completes the proof of statement 3.
We now prove statement 4. From statement 3 we have that

2

inf |V f(2(t) + Jn(z(t) "X <

. <
T<4<T

< (f(x(())) - fmin + AmaxMZD Z hz(x(o)”)

(x(0)) — £(=(T))

)\min /\min

2
)\min

A
2
T
= inf|[Vf(x(t) + Jn(z () TA@)]| < J

Nl
—

f(z(0)) = fuin n AmaxM2D? Z |hi($(0))|>'

)\min
Further, from statement 1

hi(z ()] < hy(2(0))e "5, forallt >

T
2 b
thus

inf KKT-gap(x(t), A(t)) = pinf max{[|Vf(z(t)) + Tn(a(8)) @), max {[|h(z(t))]}}

T i< 1<i<m

2 [ f(@(0) = fmin | AmaxM>D? ok
< maX{J T ( _ + 5 ;|hl(x(0))|>7121);{}11@(0))6 2 }} .

)\mm )\min

Additionally, it is not hard to verify from statement 3 and statement 1 that
. T o . _ . ~ . _
i (VS (0) + T O) TN = 0, Tim [h(0) e =0, lm_[X(2) ~A@)] =0
thus

lim KKT-gap(z(t),A(t)) =0, lim KKT-gap(z(t), A(t)) = 0.

t— o0 t——+o0

C.1 Global Convergence for Strongly Convex Settings

Under the assumption that the optimization problem (T)) is strongly convex, we are able to establish
the result that FL-proximal converges to the global optimal solution with a linear rate. We make the
following assumption.
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Assumption 7 (Strong Convexity). The objective function f(x) is strongly convex, i.e. for any
z,y € R”,

F@) = ) = V@) @ —y) + Sl =yl

The constraint function h(z) in (1) takes the form of h(z) = Ax + b where A € R™*" b € R™,
and A is of full row rank.

Theorem 6. Under Assumptionlz we have that running FL-proximal (() with T'(x) = I) will give
fl@) = f@*) < e (f(2(0)) — f(z*)),

where x* is the global optimal solution of ().

Proof. We denote P4 := AT(AAT)"YA, P+ = I — P4. Then the key argument is that according
to strong convexity we have:

f@) = f@*) < Vi@ (@ —a*) = Slle —a*|?
< Vf(@) Pi (e —a*) = SlIPk (@ — )P + V(@) Pi(a - 2

< in(x)Pij(z) + Vf(z)Pa(x — z*).

Further,
e V@) (Vs @)+ )Y
= V) AT AT AT~ (he ) ()=
= V()T PAVI) - V()T AT(AAT) AT (Ax 4 1)
= V@) TPAV () - V) TAT(AAT) AT (Ax — Ar)

—(Vf(@)PxVf(z)+ Vf(x)Palx — z)),
and thus we have

which completes the proof O

D Proof of Theorem 2 and

Proof of Theorem[2] We write out the lagrangian for the SQP problem ()
1 _
L(z,\) = Vf(x,) (x —z) + %(a:—xt)TT(xt) Ya—ay) + XN (h(xs) + Tn (@) (z — 2)).
Since the optimization problem (9) is convex and satisfies the relaxed Slater condition, the KKT
condition is necessary and sufficient for global optimality. The KKT condition implies that

Oy L(z,\) =0 = Vf(wt)—k%T(xt)_l(x—mt)-i-Jh(a:t)T)\:O

— x—x; = —T(x)n(Vf(x) + Jn(x) T N).
Since h(xt) + Jp(xt)(z — x) = 0, we have
h(xe) + Jn(xe)(x — 21) = h(xe) — nJn(2e)T(xe)(Vf(26) + Jn(20) TA) =0

— (Tn(e)T (@) () ) A = %h(xt) (@) T(2)V f ()
— A= — (@) @) Tu(@) ) (ned) T () V f () — %h(mt)).
Thus we have that
Toy1 = @y — 0T (24) (Vf(fﬂt) - Jh(a?t)T(Jh(xt)T(fUt)Jh(xt)T)_l (Jh(xt)T(xt)Vf(xt)—;h(fﬂt)))

. . . o l
This is exatcly (8) with K = . O

30



Proof of Theorem 3] We write out the Lagrangian for the convex optimization problem (T3])
1
L(x,A) = V()" (x — )+ %(Ifﬂvt)TT(l’t)fl (z—4)

FAR(xy) + Jp(xe)(x — ).
Since @ is feasible, it satisfies the relaxed Slater condition, thus we have that strong duality holds
for (I5). Also note that the optimization problem in (I4)

1
X' := argmin (/\TJh(zt)T(xt)Jh(zt)T)\
A>0  \2

+ AT (Jn(@) T (@) f ()~ Kh(w)) )
is the dual problem of (I3)) (see Lemma[2]in Appendix [G). Thus the solution of A* in (T4) serves as

the Lagrangian dual variable of (9). Then, we have that the 2* is an optimal solution of (T3) if and
only if

2 =argmin L(z, \*) <= 0,L(z,\*) =0

1
— Vf(fft)‘f';T(l"t)_l(x* — z)+Jn () TAT =0
= 2 —xp = 0T () (Vf () + Tnlze) TN,
thus we have that both (T4) and (T3)) follow the update:
o1 — xp = =0T (@) (Vf () + Tn () " NY),
which completes the proof. O

E Proof of Theoremd

Before proving Theorem[d] we first introduce the following lemma which plays an important role in
the proof.

Lemma 1. Solving X in (13) is equivalent to solving the following equations:

In(@)T () Jn(x) A+ Jn(2)T(2)V f(z) = Ky + s,

sTA=0 (26)
s>0, A>0
Proof. The proof is simply writing out the KKT condition of the optimization problem. O

We are now ready to prove Theorem 4]

Proof of Theoremd} We first prove statement 1.
y = Jn(x)i = —Jn(2)T(x)Vf(x) — Ju(x)T(x)Jn(x) "\
= —Ky—s (Lemmal[l)
thus
Ui = —kiyi — s < —kiy;

and hence we have proven statement 1.
Now we prove statement 2.
f2) =V f(2)Td = -Vf(@) T(2)Vf(z) = A Jn(2)T(2)V f(2)

= Vi) T(@)Vfx) = AN Ju(2)T(2)Vfz) - A Ky+ A Ky

= —Vf(@) T(@)Vf(z) = A" Jp(@)T(@)V f(x) = X Ju(@)T (@) Jp(2) "X = AT (@) T(2)V f(z) + AT Ky
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—IVf(@) + Jn(@) "AlF) + AT Ky
—[IVF(@) + Jn() "M[F () + Aze(Ky)ze + A7 (Ky)z

< V(@) + Ju @) MG o) + AZe(Ky)ze + IA]loc D Kiys
i€L
< V(@) + Jn@) MG o) + AZe(Ky)ze + LY kiys
i€l

Here we abbreviate Z(x) = {i|h;(x) > 0,1 < i < m} as Z. From the proof of Statement 1 we have
that fori € 7

hi(x) = —kiyi — s; < —kiys

Thus, combining the inequalities together, we have that

d L . _-h;
V) L 2wex M) < 19 1) 4 o) My + A (K2 + L3 i — L3
€T €L
< IV f (@) + Tn(@) "7 () + Aze(Ky)ze <0 (y; < 0fori € I°. 27)

Further, we have that the function on the righthand side is equivalent to
z)+ LY hi(z) = +LZ )]y = ().
i€T
We would also like to note that given f(z) and h(z) are differentiable and Lipschitz, we have that
¢(x) is an absolute continuous function (cf. [69]) and almost everywhere differentiable. Hence,

given that 2“() < 0 holds almost everywhere, we have that ¢ (z(t)) is non-increasing with respect
to ¢t which completes the proof.

We now prove Statement 3. From (27) we have that
() < =V F(x) + In(@) " AlF @) + Ao (Ky)ze

T

= IV £ (@) + Tn(@@AD @) — D kahi®hi(e(®) | dt < €(x(0)) — £((T)),

t=0 €T (x)°
which completes the proof. Note that here we leverage the fact that /() is absolute continuous.

We now prove Statement 4. From Statement 3 we have that

Lt IVFG0) + BN~ X kA OR(() | < 5 (@) - ()
TS5 ieT(z)e
< 2 1O~ fam+ L S ha(a(0))

i€Z(2(0))

Thus we have that there exists a % < t* < T such that

IV £ @) + Tn(zENAEN G — D kiki(t*)hi(x(t*))é% F@(0)) = fuin +L Y

iE€T(w(t*))e i€T((0))
Thus
IV (@) + Ju(@@E)NAE)N < | 5 2 7 | f(@(0) = funin + L >
i i€Z(x(0))
— Y R < o F@0) ~ fum LY hi((0))

i€ (x(t*))e i€Z(x(0))



Since t* > % we have that

k; T

ha(a(t)) < hi(x(0))e™ 5",
ST Nha(a() < LeET Y b

i€L(x(t*)) i€Z(z(0))
Thus we have that
M) Th(E) == > M)+ D NE)hi(x(th))
i€Z(x(t*))° i€Z(x(t*))
< b2 0 L hi(z(0 Le~ ™05 hi
J— — . . 2
<o (FEO) = fain+ L DT hi(a(0) |+ Le )
i€Z(z(0)) i€Z(z(0))
1 2
< 7 | f(@(0) = fuin + (L +1) ) > b
B 1€Z(2(0))

Thus we have that

oo KKT-gap(x(t), A(t)) < KKT-gap(x(t"), A(t"))

ax { IV F((t*)) + Tn((@)) TAE), [AE) T h(z(t))] ,m?X[hi(w(t*))h}

< max )\m?nT (f(:v(O)) — fomin + L Z hl(x(O))> )

1€Z(x(0))

1 2

min b, T (f(x(o)) — famin + (L+1) Z{)))hi(x(()))) }

i€Z(x(

Further, from statement 3 we get that

Jim [V F(e(0) + Ju (=)A= 0,

Y RO =0
i€Z(x)e

From statement 1 we get that

lim [hi(2(t))]+ =0

t—+oo
t—li—&-moo )\i (t)hi (x(t)) =0.
1€Z(x)
Additionally,
Jim (A@®R(z ()] < —mml 5 dm > kdi(hi(x) + lim Y Ni(t)hi(() =0,
i€L(x)° 1€Z(x)
thus we have that
Jim_KKT-gap(z(t), A(t)) = 0,
which completes the proof. O

F Proof of Theorem 3

We first define the following notations: denote P(z) := I — Ju(x) " (Jn(z)Jn(z) ")~ Jn(2). Note
that we have P(z) = P(r).
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Proof of Theorem 5] From (19) we have that

f(z) _d(Vf(z)'2)
dt? dt
=2V f(2)2+ Vf(z) (~az = Vf(z) -
= 2" V2f(z)z—aVf(z) 2=V f(z)"
=2V f(x)z2—aVf(zx) 2=V f(x)"
Thus by combining o x 28) + (29) we have
& (0f @)+ VI(@)T
Similarly we have
1 2

3D
B h(x)TJh(x)z
N dt

(28)

(29)

2) = 2"V f(2)z — Vf(z) " P(z)f(z) + A(z) " Kh(z) (30)

3 ||h(x)|
dt?

2T Un(@) (@) + (@) (@) (—az — V() )+ zzz )T V2hi(x)2
= 2" Jn(x) " In(x)z — ah(z) " Jh(z)z — h(z) " Jn(2)(Vf(x) + Jn(x) TA) + Zzl

By the definition of A we know that

(32)
Tn(@)(V f(z) + Jn()TA) = Kh(),
thus we have
X T )z Ui
% = 2" Jn(x) " Tn(x)z — ah(x) " Jy(x)z — h(z) T Kh(z) + Zzih(a:)TVQh‘( )
- (33)
Let ﬁ%)Jr:(]’gi[jD( )ThVth(x)]?zl, then Y"1 | z;h(x) TV2h;(z)2 = 2T H(x)z. Thus by combining
a x we have
© (S + (@) Iu(w)2) = 2T () Tl@)z — () Kh(@) + 2T H@: G4
Anf)ther set of ODE we will use is
%Ih(x) = X)) " Jn(2)z + h(x)" 62(;) z (35)
% <5\(x)TJh(:c)z + h(a:)Tag(;)z>
z)" '
=z <{W> 24+ Ma) T (2)(—az = Vf(z) = Ju(x)TN)

) (s = V@) = Tu@) )




o) O\(x)
—ah(z)" o 2 h(z)" o P(x)Vf(z) — h(x)

Thus by combining o x (33) + (36) we get

jt(oz)\(x) B@) + (@) T (@) + h(z)T Wz)z)

- (8 (Jh(x)T/\(x) (82(;) h(z )))) ) KH)

ox
()" 2 P () — ()T
Further we also have
g 2?

s =2 P(2)Vf(2) = Ju(2) " (Ju(x)Jn(2) ")~ Kh(z))
= —allz|? = 2" P(2)Vf(x) = 2" Ju(2) " (Ju(2)Jn(2) ") " Kh() (38)
Finally, we combine a; x (0) + a1 x @7) + a2(34) + (B8) we get

(@) T (T () Jn(2) ) T K h(z) (37)

d a20‘ 2 T Ty 55\($)T ' T/oNT 2
D araf @)+ 2@+ (097 @) o) ThG) a1 () @)+ 0 h(w) )z banod) ThG)+ ]
L(z,z)
o ("N + (22T hw)) ) ]
=2" [ a1 V2f(z) + ay 5 +agJp(x) " Tn(z) +aoH(z) | 2 — alz|?

=" P@)V]{2) ~ = (s )T (Jn()Jn(x) ) K ()

—a1h(2)T BB P(@)V f(2) = arh(w) "5 T (2) T (Jn(w) Jn(2) ) KA () }
_alvf( ) ( )f(l‘)—agh(I)TKh<.%‘) Part [

(39)

, we have

Note that for ay > dap x Jmex) H"”\(x) A

Ainin (K)
that

- 2
- o |lox
VITR@ @ + 52 || 22

—ash(z) " Kh(z) — a1h(x )Tagf)J ()" (Jn(x)Jn(z) )1 Kh(z) < —Zagh(a:)TKh(a:)

91 P@) (@)~ () O Py () < 4

S|

Amin (K)

h(z) " Kh(z)

Thus substituting the above equation into Part I of (39) we get

Part I < —%h( o) Kh(z) — ﬂw( )T P(2)f(z) — sz(x)Vf(x) — 2T (@) T (Ja(2) T (2)T) " K h(z)

1 ai
< (Tlllz\l2 *IIKII [T (@) Tn(@) )M 121 = () T Kh(z) - 7 1P@V @)
Then, substitute the above inequality to (39) and by setting
Amax (K) L3
> 4 LoD
2 = a1 x < )\min(K) 2 * )\min(K)
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we get

dl(z, = 1 2(Amax(K)D?
Fak (“1<Lf + Lo) +as(M? + H) 4+ — + (())) ]2 = o 2|1
a as

- Shia) Kh(z) - V(@) P(a)f (@)

Thus by setting
[] 1 2 )\max K D2
o> <al(Lf+L2)+a2(M2+H)+a1+(a(2))> 41

we get

dé(x, z) , Gy . a ,

P < —l=l)F = gh(x) Kh(z) — ZHP(;C)VJC(QJ)H <0, 40)

thus ¢(z(t), z(t)) is non-increasing with respect to ¢, which proves Statement 1.

For Statement 2, note that

P(x)V f(z) = Vf(z) + Jn(z) " A(x),

thus from (@0) we have
T
/t:o l2@)]* + C%2h(m(t))TKh(%"(t)) + %HP(m(t))Vf(gc(ﬁ))Hth < U(2(0),2(0)) = £(=(T), 2(T))
r a2 Amin a1 Y
— [ el (o) + 1T (0) + 0Nt < ((0),3(0) o

which completes the proof.

We now prove Statement 3. Note that

in(K in (K
min{a2)\mm( )’ﬂ 2<a2)\mm< )Hh

o), 4 b kar-gap(e Xw)? < 222 o)+ 519 0(0) + (oA

thus we have

T _ 0(x(0), 2(0)) — lmin
| per-gepte () X)) < £ (o o)

and thus gives

inf KKT-gap(e(t) X(x(1)) < mﬁf{ml(‘)ﬁii Z}T ~0(—=)
8 74

and that
til?oo KKT-gap(z(t), \M(z(t))) = 0,

further, given that lim,_, , o A(x(£)) — A(t) = 0, we have
,lim _KKT-gap(z(t), A(t)) = 0,

which completes the proof.

F.1 Intuition: optimization with affine constraints

The main goal of this section is to provide intuition for why FL-momentum is able to accelerate
convergence compared with FL-proximal. We will focus on the setting where the constraints are
affine functions and show that in this setting, the FL-proximal method corresponds to the projected
gradient descent, and the FL-momentum corresponds to its momentum-accelerated version.
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The problem that we consider is

min f(z)
N (4D
st. Az +b=0,
In this setting, the forward Euler discretization for FL-proximal is given by
1
Toa=x4+nVf(zy) —nAT(AAT)! <AVf(xf) — 5(Azt + b))
= (I—-AT(AAT) Y A) (2 —nV fay)— AT (AAT) "D
= Proj(zy — nV f(z4)), 42)

where Proj is the projection onto the hyperplane Az + b = 0. Note that the above scheme is
equivalent to projected gradient descent. Further, the forward Euler discretization for FL-momentum
is given by

wy = ¢ + Blay — x4-1)

At = — (Jh(wt)Jh(wt)T)—l (Jp(w)V f (wy) — %h(wt))

i = w4 )= ATAAT) ™ (A9 (w0) - ()

=(I—AT(AAT) T A) (we—nVf (w))— AT (AAT) "D
= Proj(w; — 0V f(wy)),

Note that this is exactly the momentum-accelerated projected gradient descent (cf. [20]).

O
G Auxiliaries
Lemma 2. The following two problems are the dual problem for each other.
1
: T _ . _ TT —1 _
min Vi(xy) (x—mx)+ o (x — ) ' T(xe)” (x — x¢) “3)
sit. h(xy) + Jp(z)(x — ) <0
N T T 1

wmin 5)\ Jn(@)T () In(ze) AN+ X | Jp(x)T(2)V f(20) — §h(a:t) (44)

Proof. We write out the lagrangian for (#3)
1
L(z,\) = Vf(x) " (x — x) + %(x —x) T ()" — x) + AT (W) + Tn(x)(z — x4))
Note that strong duality holds for (#3). Thus solving (43) is equivalent to solving

min max V) (= a0) + i(33 — ) ' T(w) ™ (@ — ) + AT (A1) + Jn(w) (x — 21))

2n
: 1 .
= maxmin V() (@ — ) + 2—77(33 — @) [ T(xe) Ha —2) + AT (h(@e) + Jn(2)(2 — 24))

Note that
argmin ¥ f ()T ( 1) + 2= 2) (@) ™ @ — ) + AT () + Ju(aw) (@ — 21)

=z — 0T () (Vf(20) + () TN,
substituting this to the lagrangian we get

max min L(z, \)
A>0 =z
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A>0

=1 <ma>< —Vf (@) T () (Vf () + Tn (@) TA) + %(Vf(wt) + () TN TT (@) (V f () + Tn(ae) A

+ AT (;h(xt) + I (@) T (ze) (V () — Jh(xt)T)\)> >
=7 (m%(—l)\ Tn ()T () Tn(ze) TA = AT (Jh(xt)T(a?t)Vf(a?t) - ;h(xt)>)

=~ (i AT T ) A+ AT (e TV ) — L))

The proof is thus completed by strong duality O

Lemma 3. Assumption[3|along with Assumption[l|is a sufficient condition of Assumption

Proof. From LemmalT|we have that
AT (@)L () Jn(2) "X+ AT (I (2)T(2)V f(x) — Ky) =0
= Awin (S (2) I (2) ) Amin [N < AT I (@) T () Jn(2) A
= A (@) T (@)Vf () = Ky) < [MI(Jn(2)T(2)V f(2) = Ky)|

”)‘H < ”Jh(x)T(x)vf(l‘) —Ky)H < max”(‘]h(x) ( )” + H>\max( )h(x(O))H
> )\min(Jh(l')Jh(fE)T))\min - )\mm(Jh( )Jh( ) ) min

From Assumption [3]and Assumption [I]we have that

1
Amin(Jh(x)‘]h(x)—r)

< D2 [|(Jn(2) V()] < M?

And thus
Amax M? + [ Amax (F) 1 (z(0))]| D2
- .

Amasc M+ A (K O) | 2. 0

min

Al <

Hence, Assumptionis satisfied by setting L =
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