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Abstract001

Retrieval-augmented generation (RAG) en-002
hances the quality of LLM generation by provid-003
ing relevant chunks, but retrieving accurately004
from external knowledge remains challenging005
due to missing contextually important words006
in query. We present Word2Passage, a novel007
approach that improves retrieval accuracy by008
optimizing word importance in query expan-009
sion. Our method generates references at word,010
sentence, and passage levels for query expan-011
sion, then determines word importance by con-012
sidering both their reference level origin and013
characteristics derived from query types and014
corpus analysis. Specifically, our method as-015
signs distinct importance scores to words based016
on whether they originate from word, sentence,017
or passage-level references. Extensive experi-018
ments demonstrate that Word2Passage outper-019
forms existing methods across various datasets020
and LLM configurations, effectively enhancing021
both retrieval accuracy and generation quality.022
The code will be released publicly.023

1 Introduction024

The advent of Large Language Models (LLMs)025

has significantly influenced the field of Information026

Retrieval (IR). One notable advancement in this027

domain is Retrieval-Augmented Generation (RAG)028

(Lewis et al., 2020), which integrates retrievers with029

generative models. By leveraging external knowl-030

edge sources during response generation (Gao et al.,031

2023b), RAG effectively mitigates key challenges032

of LLMs, such as hallucination (Ji et al., 2023).033

Within the evolving landscape of RAG, query ex-034

pansion has become a key technique for improving035

retrieval performance (Ma et al., 2023; Mao et al.,036

2024). It enhances retrieval by either reformulating037

the original query or generating pseudo passages –038

artificially created text that captures semantically039

relevant information. For instance, HyDE (Gao040

et al., 2023a) leverages a LLM to generate a pseudo041

passage, which serves as an enriched query contain- 042

ing contextually relevant words. Query2doc (Wang 043

et al., 2023) improves retrieval by repeating the 044

original query a fixed number of times alongside 045

the pseudo passage. These studies highlight that 046

generating pseudo passage helps augment highly 047

relevant words, enhancing retrieval performance 048

(Gao et al., 2023a; Wang et al., 2023, 2024). 049

Building upon them, recent studies have focused 050

on optimizing the integration of pseudo passages 051

with the original query. Specifically, MuGI (Zhang 052

et al., 2024) calculates query importance based 053

on the lengths of both the query and generated 054

pseudo passages, ensuring balanced integration and 055

improved retrieval performance. 056

Despite advancements in query expansion, meth- 057

ods like HyDE, Query2doc, and MuGI rely on 058

passage-level, treating all words in a pseudo pas- 059

sage equally (Song and Zheng, 2024), failing to 060

differentiate high-importance words that are crucial 061

for retrieval. Also, when determining importance, 062

solely relying on frequency overemphasizes com- 063

mon words and overlooks rare but meaningful ones, 064

leading to query drift. Therefore, low-importance 065

or misleading words by them lead to reduced re- 066

trieval effectiveness in RAG. This highlights the 067

need to properly adjust word importance in query 068

expansion (Chen et al., 2024; Kim et al., 2023). 069

To address this, we propose a novel approach 070

named Word2Passage, which introduces a word- 071

level importance re-weighting for query expansion. 072

It generates pseudo references at three different lev- 073

els, forming a hierarchical structure that progresses 074

from words→sentences→passages. This hierar- 075

chical structure enables a gradual expansion, captur- 076

ing the importance of query-relevant words more ac- 077

curately. As illustrated in Figure 1, Word2Passage 078

assesses the importance of individual words by 079

finely adjusting them based on the varying signifi- 080

cance of each level, while also incorporating query 081

type and domain characteristics to enhance word im- 082

1



“Georgia”:1, “South”:1, 
“California”:1, “New”:1…
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from in the us"

[“Georgia”, “South”, “California”, 
“New”, “Jersey”, “Peach”, “US”, 

“states”, “Production”]

The primary peach-producing states in 
the United States…

Optimizing step

Peaches are a popular fruit in the 
United States, and their origin dates 

back to European settlers…

Word-level
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Passage-level

Query 𝑸𝑸

Generate words, sentence 
and passage that answers 
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Prompt

“Where”:30
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⋮

“Georgia”:18
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⋮
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“Where”:30
“do”:30
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Figure 1: Overview of Word2Passage: The framework consists of three main steps. 1) Expanding Step, LLM
generates word, sentence, and passage-level references based on query type. 2) Optimizing Step, importance scores of
words are computed using corpus characteristics and query type-dependent reference-level weights. 3) Re-weighting
Step, final word weights are determined by aggregating significance scores from both references and original query.

portance estimation. Specifically, Word2Passage083

performs through a three-step process:084

• Expanding Step: This step expands the words085

in the original query 𝑄 by generating multi-level086

pseudo references using LLMs.087

• Optimizing Step: This step estimates the impor-088

tance 𝐼 of each word in the query and reference. A089

word’s weight in the pseudo reference is determined090

by two aspects: (1) its frequency at each level and (2)091

the significance scores of the three levels, adjusted092

based on the query type and domain characteris-093

tics. In contrast, words in the query are assigned094

importance weights solely based on their frequency.095

Finally, these weights are combined to produce the096

expanded query with world-level importance.097

• Re-weighting Step: This step incorporates the098

word importance weights obtained earlier into the099

retriever score computation, ensuring they are re-100

flected in the query-chunk scoring process. Then,101

we perform generation using the retrieved chunks102

following the standard RAG pipeline.103

In particular, we reveal that the significance of104

each reference level depends on the query type,105

e.g., description and entity, rather than adhering a106

single standard (see Table 7). Therefore, we define107

five query categories, which can be easily classi-108

fied by LLMs, allowing us to dynamically adjust109

the significance across words, sentences, and pas-110

sages instantaneously. In addition, we provide an111

analysis of the impact of domain characteristics112

on our importance re-weighting method. It reveals113

that domain-specific lexical diversity is essential to114

consider, and can be captured by analyzing the av-115

erage number of unique words per chunk across the116

corpus (see Section 4.3), as domains with repetitive117

terminology (e.g., Legal) tend to have lower unique118

word counts per chunk, while those with diverse 119

expressions (e.g., News) exhibit higher counts. 120

Our main contributions are as follows: 121

(1) Word2Passage: We are the first to present a multi- 122

perspective query expansion method that prompts 123

LLMs to generate word, sentence, and passage 124

level references. This multi-level approach enables 125

a more fine-grained analysis of word importance 126

than existing passage-only methods. 127

(2) Multi-level Adjustment: We propose a scheme 128

that can reflects the varying contribution of multi- 129

level references in importance re-weighting based 130

on query type, effectively adapting the contribu- 131

tion of each reference level to enhance retrieval 132

performance. 133

(3) Domain-aware Adjustment: We refine word 134

importance weighting by considering the number 135

of unique words in chunks, effectively capturing 136

domain-specific lexical diversity. This prevents the 137

incorrect overemphasis of words from references, 138

enabling a more balanced expansion. 139

2 Related work 140

Information retrieval (IR) Information retrieval 141

(IR) is a key component in RAG, where retrieval 142

effectiveness directly impacts generation quality. 143

Existing retrievers can be categorized into lexical- 144

based (sparse) retrievers and embedding-based 145

(dense) retrievers. Lexical-based retrievers, such 146

as BM25 (E. Robertson et al., 2009), are effi- 147

cient, interpretable, and robust to domain shifts, 148

but struggle with semantic variations due to exact 149

word matching. Embedding-based retrievers, such 150

as DPR (Karpukhin et al., 2020), ANCE(Xiong 151

et al., 2021), overcome this limitation by capturing 152

semantic similarity, but require large-scale training 153

and are sensitive to domain shifts. 154
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To improve retrieval effectiveness, ensemble re-155

trievers (Karpukhin et al., 2020; Xiong et al., 2021;156

Thakur et al., 2021) combine BM25’s efficiency157

with dense retrieval’s semantic capabilities, enhanc-158

ing retrieval perfomance. Despite these advances,159

BM25 remains widely used for its zero-shot perfor-160

mance, efficiency, and interpretability, but struggles161

with semantic variations due to exact word matching.162

To address this, we propose Word2Passage, which163

enhances BM25 retrieval by enriching queries with164

semantically relevant words and re-weighting word165

importance.166

Generation in RAG In Retrieval-Augmented167

Generation (RAG), the combination of Informa-168

tion Retrieval (IR) and LLMs allows the system to169

leverage external knowledge, improving the quality170

and accuracy of generated responses. Retrieval first171

retrieves relevant documents based on the query,172

and these documents are then used by the LLM to173

generate contextually appropriate answers. Thus,174

the performance of LLMs is crucial in generating175

coherent, contextually relevant answers based on176

the retrieved information. Several LLMs, including177

GPT-4 (OpenAI et al., 2024), LLaMA (Grattafiori178

et al., 2024), and Qwen (Bai et al., 2023), have179

been widely adopted in RAG-based systems. These180

models excel at generating natural language outputs,181

utilizing both the retrieved documents and the query182

to produce contextually appropriate responses.183

Query Expansion Query expansion enhances184

search results by reformulating the original query185

to include additional relevant terms, addressing is-186

sues like vocabulary mismatch between users and187

documents (Huang et al., 2021). Traditional meth-188

ods, such as Pseudo-Relevance Feedback (PRF),189

assume that top-ranked documents from an initial190

query are relevant and use terms from these docu-191

ments to expand the query (Li et al., 2022; Lavrenko192

and Croft, 2017). However, PRF can be susceptible193

to errors if the initial retrieval includes irrelevant194

documents.195

Advancements in LLMs have introduced new196

avenues for query expansion (Gao et al., 2023a;197

Wang et al., 2023; Song and Zheng, 2024; Chen198

et al., 2024; Kim et al., 2023; Lei et al., 2024).199

One approach leverages the generative capabili-200

ties of LLMs to expand queries, differing from201

traditional methods by relying on the model’s in-202

herent knowledge (Jagerman et al., 2023). Another203

method introduces a framework that employs LLMs204

to generate multiple pseudo-references, enhancing205

both sparse and dense retrieval systems (Zhang 206

et al., 2024). They highlight a shift towards utiliz- 207

ing LLMs to improve query expansion, offering 208

promising directions in information retrieval. 209

3 Proposed Method: Word2Passage 210

In this section, we start with formulating the impact 211

of importance re-weighting in query expansion on 212

the <query, chunk> score in retrieval, specifically 213

within the BM25 framework. Next, we outline the 214

three key components of Word2Passage: Expand- 215

ing 𝑄, Optimizing 𝐼, and Re-weighting 𝑡 Steps. 216

3.1 Formulation of Query Expansion 217

The BM25 framework can be re-formulated to 218

illustrate the impact of word-level importance re- 219

weighting in query expansion as: 220

𝑆(�̃�,Chunk) =
∑︁

∀ (𝑡 ,𝐼𝑡 ) ∈�̃�

𝐼𝑡 · BM25(𝑡,Chunk), (1) 221

where �̃� denotes an expanded query derived from 222

the original query 𝑄, using a query expansion 223

method. Specifically, it is a set of tuples, each con- 224

taining a unique word 𝑡 inside and its corresponding 225

importance score 𝐼𝑡 . Here, BM25(𝑡,Chunk) rep- 226

resents the original BM25 score of word 𝑡 with 227

respect to a given chunk. Accordingly, we confirm 228

that two factors influence retrieval results in query 229

expansion: (1) the set of unique words and (2) the 230

importance score of each word. 231

HyDE (Gao et al., 2023a) focuses solely on gen- 232

erating an expanded query �̃� without adjusting 233

importance. Query2doc (Wang et al., 2013) and 234

MuGI (Zhang et al., 2024) applies a uniform con- 235

stant (or dynamic) weight only to the words in 236

the original query 𝑄 to adjust the importance 𝐼𝑡 . 237

This family of methods do not make any weight 238

adjustments to the unique word in pseudo passages. 239

Unlike these studies, we explicitly optimize both 240

the expanded query �̃� and the individual word 241

weights 𝐼𝑡 . From the 𝑄 perspective, we introduce 242

multi-level references with hierarchical structure 243

spanning three levels: word, sentence, and passage. 244

From the 𝐼𝑡 perspective, we define the word weight 245

𝐼𝑡 by accounting for the varying contributions of 246

different levels to word importance, while also 247

separately inspecting importance based on whether 248

the word is from the original query or the references. 249

This enables precise word re-weighting, improving 250

retrieval effectiveness. 251

The following sections detail the three compo- 252

nents to implement Word2Passage. 253
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Category Generated
Query "who played the predator in the movie predator"

Type "Person"
Word ["Predator", "Kevin Peter Hall", "John McTier-

nan", "movie", "actor", "1987"]
Sentence "Kevin Peter Hall portrayed the Predator in the

1987 movie Predator."
Passage "The movie Predator is a science fiction action

thriller directed by John McTiernan, released
in 1987. The iconic alien species, the Predator,
was brought to life by actor Kevin Peter Hall
in the first film of the series. Known for its
advanced technology and lethal hunting skills,
the creature became a popular figure in popular
culture. Throughout the series, the role of the
Predator has been played by several actors, using
elaborate costumes and prosthetics to recreate
the creature’s terrifying appearance. Kevin Peter
Hall was the original actor to wear the Predator
suit and is well-remembered for his portrayal in
the 1987 film."

Table 1: Example multi-level references generated by
Word2Passage in Expanding 𝑄 Step.

3.2 Expanding 𝑄 Step254

We generate multiple pseudo references set, de-255

noted as R = {𝑟𝑖 | 1 ≤ 𝑖 ≤ 𝑁}, where each pseudo256

reference 𝑟𝑖 consists of three different levels of257

granularity (i.e., word, sentence, and passage) gen-258

erated by a LLM1 with our prompt (in Table 8259

in Appendix). Here, 𝑁 represents the number of260

generated pseudo references.261

As demonstrated in Table 1, the word, sentence,262

and passage levels provide distinct contextual per-263

spectives, enabling the extraction of diverse query-264

relevant words from the LLM’s internal knowledge.265

Specifically, at each pseudo reference 𝑟𝑖:266

•Word𝑖: A list of keywords likely to serve as answer267

candidates, extracted based on query relevance and268

concatenated into a single string.269

• Sentence𝑖: A knowledge-intensive sentence that270

captures essential query-related context while pre-271

serving semantic coherence.272

• Passage𝑖: A longer, more structured passage that273

provides additional supporting details and broader274

contextual information.275

Then, each pseudo reference 𝑟𝑖 is formulated as:276

𝑟𝑖 = Concat(Word𝑖 Sentence𝑖 Passage𝑖), (2)277

where Concat denotes concatenation, combining278

the word, sentence, and passage-level outputs within279

each 𝑟𝑖 as a single structured reference.280

1Following prior work (Wang et al., 2023; Zhang et al.,
2024), we use the same LLM employed for RAG.

Finally, we construct the set 𝑅 of unique words 281

appearing in all pseudo references in R as: 282

𝑅 = Split
(
Concat(𝑟𝑖 | 𝑟𝑖 ∈ R)

)
, (3) 283

where Split(·) splits textual sequences into a set of 284

words using a single space as the delimiter. 285

By expanding the query with semantically rel- 286

evant words extracted across different granularity 287

levels, our approach enhances BM25-based retrieval 288

while maintaining interpretability and efficiency. 289

3.3 Optimizing 𝐼𝑡 Step 290

We compute the importance scores of each word 291

by separately evaluating their contributions to the 292

pseudo references R and the original query 𝑄. This 293

step ensures that expanded queries retain essential 294

words while incorporating relevant contextual terms. 295

For simplicity, 𝑄 and 𝑅 can represent either sets 296

of words or textual sequences, corresponding to 297

the original query and the combined reference text, 298

respectively. 299

Importance of Words in Reference (𝐼𝑡 ,𝑅) To 300

determine the importance score of each word 𝑡 in 301

the reference text 𝑅, we first compute its importance 302

score 𝐼𝑡 ,𝑟𝑖 for each pseudo reference 𝑟𝑖 ∈ R. That 303

is, we evaluate 𝐼𝑡 ,𝑟𝑖 for each word 𝑡 appearing in 304

𝑟𝑖 across R, where 1 ≤ 𝑖 ≤ 𝑁 . Here, since the 305

effectiveness of extracting query-relevant words 306

varies across different granularity levels depending 307

on the query type, we define the significance score 308

of each reference, 𝐼𝑡 ,𝑟𝑖 . 309

Note that since different query types require vary- 310

ing scopes and contextual depths of information, 311

the significance score is influenced by the query 312

type, which falls into five categories defined in MS 313

MARCO (Bajaj et al., 2016) (see Appendix E): de- 314

scription, person, entity, numeric, and location. Let 315

𝐹𝑡 ,𝑤𝑖
, 𝐹𝑡 ,𝑠𝑖 , 𝐹𝑡 , 𝑝𝑖 denote the frequency of a word 𝑡 316

appearing at the word, sentence, and passage levels 317

of 𝑟𝑖. Then, the importance score of a word 𝑡 for a 318

pseudo reference 𝑟𝑖 is formulated as: 319

𝐼𝑡 ,𝑟𝑖 = 𝐼𝑞,𝑤𝐹𝑡 ,𝑤𝑖
+ 𝐼𝑞,𝑠𝐹𝑡 ,𝑠𝑖 + 𝐼𝑞,𝑝 𝐹𝑡 , 𝑝𝑖 ,

where 𝑡 ∈ 𝑟𝑖 and 1 ≤ 𝑖 ≤ 𝑁,
(4) 320

and 0 ≤ 𝐼𝑞,𝑤 , 𝐼𝑞,𝑠, 𝐼𝑞,𝑝; and 𝑞 represents the 321

query type. Here, 𝐹𝑡 ,𝑤𝑖
, 𝐹𝑡 ,𝑠𝑖 , 𝐹𝑡 , 𝑝𝑖 serves as in- 322

tra-level importance scores, measuring word im- 323

portance within each respective level. Meanwhile, 324

𝐼𝑞,𝑤 , 𝐼𝑞,𝑠, 𝐼𝑞,𝑝 serve as the significant scores for 325

word, sentence, and passage, respectively, control- 326

ling the inter-level relative contributions. With this 327
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level-aware adjustment, we account for the varying328

significance of reference levels based on the query329

type, enabling dynamic weighting.330

Specifically for the query type, it is first identified331

using an the same LLM (used for query expansion)332

by prompting the prompt in Table 9 of Appendix.333

Then, the corresponding importance scores are334

assigned to word-, sentence-, and passage-level ref-335

erences, as determined by our empirical analysis336

in Section A. This design allows us to reflect the337

uneven distribution of words across different levels,338

ensuring that words from more important levels339

receive higher weights while maintaining propor-340

tional contributions from less significant levels.341

Next, we aggregate the score of a word 𝑡 for342

a single reference 𝑟𝑖 across all pseudo references343

in R to obtain the overall word importance score344

to the reference text. Instead of simple averaging,345

we apply domain-aware averaging, introducing a346

scaling factor𝛼 and𝑊 , which represents the average347

number of unique words per chunk within each348

corpus, to decay the original importance as:349

𝐼𝑡 ,𝑅 =
𝛼
√
𝑊

∑︁
𝑖

𝐼𝑡 ,𝑟𝑖
∀𝑡 ∈ 𝑅. (5)350

Without this adjustment, a corpus (i.e., domain) with351

a high number of unique word can cause excessive352

expansion during the Expansion𝑄 step. As a result,353

the importance of words in the original query is354

marginalized, as their relative importance is diluted355

by the large number of expanded words from pseudo-356

references. This also prevents the expanded query357

from unfairly favoring longer chunks, ensuring a358

more balanced retrieval process.359

Importance of Words in Query (𝐼𝑡 ,𝑄) Now we360

determine the contribution of a word 𝑡 to the original361

query 𝑄. We compute the importance of words in362

the original query 𝑄, denoted as 𝐼𝑡 ,𝑄, where 𝑡 ∈ 𝑄,363

and being formulated as:364

𝐼𝑡 ,𝑄 =

∑
𝑡 ′∈R 𝐹𝑡 ′ ,R∑
𝑡 ′∈𝑄 𝐹𝑡 ′ ,𝑄

· 𝐹𝑡 ,𝑄 ∀𝑡 ∈ 𝑄, (6)365

where 𝐹 is the frequency of a word 𝑡 in either the ref-366

erence text 𝑅 or the original query𝑄. The rightmost367

term (𝐹𝑡 ,𝑄) is the original contribution of a word368

𝑡 to the query. Contrary to the right one, the left369

term acts as a normalization mechanism between370

the query and its pseudo references, adjusting the371

importance score of words in the query to balance372

the influence of the two word sets: one from the373

query (typically smaller) and the other from the374

pseudo-references (typically larger).375

Aggregation for Expanded Query (𝐼𝑡 ) The over- 376

all word importance score is computed by integrat- 377

ing contributions from both the reference text and 378

the original query: 379

𝐼𝑡 = 𝐼𝑡 ,𝑅 + 𝐼𝑡 ,𝑄 ∀𝑡 ∈ 𝑅 ∪𝑄,
where 𝐼𝑡 ,𝑄 = 0 if 𝑡 ∉ 𝑄,

𝐼𝑡 ,𝑅 = 0 if 𝑡 ∉ 𝑅.
(7) 380

Note that we optimize word importance sep- 381

arately for the pseudo reference and the query, 382

followed by aggregating their importance. This 383

approach ensures a well-balanced importance ag- 384

gregation between words from the two sources. 385

3.4 Re-weighting 𝑡 step 386

We refine word importance to enhance relevant 387

words while suppressing less informative ones un- 388

der the BM25 framework. Therefore, the expanded 389

query �̃� is formed by aligning the unique word 𝑡 in 390

𝑅 ∪ 𝑄 with its final word-level importance score 391

computed in Eq. (7). Therefore, the re-weighting is 392

applied to the BM25-like retrieval as: 393

𝑆(�̃�,Chunk) =
∑︁

∀ (𝑡 ,𝐼𝑡 ) ∈�̃�

𝐼𝑡 · BM25(𝑡,Chunk)

where �̃� = {(𝑡, 𝐼𝑡 ) | 𝑡 ∈ 𝑅 ∪𝑄}.
(8) 394

Retrieval and Generation Pipeline Given the 395

score function 𝑆(�̃�,Chunk), we select the top-𝐾 396

ranked chunks defined as: 397

𝐷�̃� = {𝑑 ∈ C | rank(𝑑; 𝑆, �̃�) ≤ 𝐾}, (9) 398

where C is the entire corpus of chunks and rank is 399

a function that returns the rank of a chunk 𝑑 based 400

on the score function 𝑆(�̃�, 𝑑). 401

Then, the retrieved chunks are then utilized as 402

context for response generation as: 403

Response = LLM(𝑄, 𝐷�̃�), (10) 404

where the language model generates a response 405

conditioned on both the original query 𝑄 and the 406

top-𝐾 ranked chunks 𝐷�̃�. 407

𝐷�̃� = {𝑑 ∈ C | rank(𝑆(�̃�, 𝑑)) ≤ 𝐾}, (11) 408

4 Experiments 409

In this section, we conduct experiments for IR and 410

QA tasks, the two main tasks of RAG. 411
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4.1 Experiment Setup412

Datasets For the IR task, we conduct experiments413

on 11 IR datasets from the BeIR benchmark (Thakur414

et al., 2021), including DL19–20, Covid, Toche,415

SciFact, NFC, Arguana, Scidocs, Hotpot, NQ, and416

FiQA. For QA task, 5 QA datasets based on the417

WikiCorpus. In particular, the QA datasets are cat-418

egorized according to their reasoning complexity:419

• Single-hop QA: NQ (Kwiatkowski et al., 2019),420

SQuAD (Rajpurkar et al., 2016), TriviaQA (Joshi421

et al., 2017)422

• Multi-hop QA: HotpotQA (Yang et al., 2018)423

• Long-form QA: FiQA (Maia et al., 2018)424

Among these, three datasets, i.e., NQ, HotpotQA,425

and FiQA, are used for QA while also being in-426

cluded in the BeIR benchmark for IR evaluation.427

This allows us to analyze how well retrieval perfor-428

mance aligns with answer generation quality. Other429

IR datasets are not suitable for the QA task as they430

lack corresponding QA pairs.431

Metrics We evaluate retrieval effectiveness using432

nDCG@10, a widely adopted metric for IR. For433

QA, we measure performance using Accuracy (Acc)434

and LLM-based evaluation (LLM Eval) (See Table435

10) (Rau et al., 2024), which assesses the quality436

of generated responses beyond traditional lexical437

overlap metrics. Regardig LLM Eval, we employ438

GPT4o as the LLM evaluation model for assessing439

the quality of generated responses.440

4.2 Implementation Details441

Baselines To assess impact the retrieval ef-442

fectiveness and generation quality, we compare443

Word2Passage (W2P) with four existing retrieval444

methods: one canonical lexical retreival, BM25445

(E. Robertson et al., 2009), and three latest query446

expansion approaches, including Query2Doc (Q2D)447

(Wang et al., 2023), HyDE (Gao et al., 2023a), and448

MuGI (Zhang et al., 2024).449

LLM Backbones For IR and QA datasets,450

we conduct experiments using three instruction-451

tuned LLMs: Llama3.1-8B-Instruct, Qwen2.5-7B-452

Instruct, and Qwen2.5-72B-Instruct, which serve as453

the backbone for generating the pseudo passages for454

HyDE, Q2D, and MuGI; or the pseudo references455

of Word2Passage. The 7B, 8B and 72B models456

are run on NVIDIA L40s GPUs, while the GPT4o457

models are accessed via their respective APIs. For458

the QA task, all answer generation is performed459

using Llama3.1-8B-Instruct.460

Retriever For retrieval, we use LuceneSearcher 461

(Pérez-Iglesias et al., 2009; Lin et al., 2021) as 462

the BM25 retriever with default BM25 parameters, 463

following the literature (Gao et al., 2023a; Zhang 464

et al., 2024; Shen et al., 2024). We set the top-𝑘 to 465

be 10 for all experiments. Our method is tailored 466

for BM25-like retrieval but achieves synergy when 467

combined with dense retrieval. This adaptability is 468

another strength (see Section 4.7). 469

Corpus We use the Wikipedia corpus from DPR 470

(Karpukhin et al., 2020), which contains 21M pro- 471

cessed chunks, as the document corpus for SQuAD 472

and TriviaQA. For all other datasets, we use their 473

respective corpora from BeIR (Thakur et al., 2021) 474

to ensure consistency with prior work. 475

Hyperparameters Our method introduces hyper- 476

parameters: the scaling factor 𝛼, and the signifi- 477

cance scores for different levels of word generation, 478

i.e., 𝐼𝑞,𝑤 (word-level), 𝐼𝑞,𝑠 (sentence-level), and 479

𝐼𝑞,𝑝 (passage-level), where 𝑁 represents the num- 480

ber of pseudo reference generations. We fix 𝛼 = 30 481

and 𝑁 = 5 across all datasets. 482

We determine the best values of 𝐼𝑞,𝑤 , 𝐼𝑞,𝑠, and 483

𝐼𝑞,𝑝 through grid search on a balanced subset of 484

500 queries from the training set, sampling 100 485

queries for each of the five query types. While 486

these parameters may add complexity, the process 487

remains efficient, requiring only a few hundred data 488

points and typically completing within 1–2 hours, 489

depending on the corpus size. Our analysis reveals 490

that the best values varies depending on query type, 491

as presented in Table 7. The detailed analysis is 492

presented in Appendix C. 493

4.3 Task 1: Information Retrieval 494

Table 2 shows the IR performance of four query 495

expansion methods, along with the canonical BM25 496

as a reference. Among the four methods, Q2D 497

uniquely applies few-shot demonstration in passage 498

generation, thus we borrow the results from the 499

original paper (Wang et al., 2023). 500

In general, Word2Passage achieves the high- 501

est nDCG@10 scores over other baselines in 502

most cases, consistently outperforming across both 503

backbone types and datasets. This suggests that 504

Word2Passage’s word-level re-weighting method 505

is more effective than the passage-level re-weighting 506

methods employed by other methods. That is, finely 507

adjusting word importance scores by incorporating 508

multi-level references alongside the original query 509

is essential for achieving higher IR performance. 510
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LLM Method IR

DL19 DL20 Covid Touche SciFact NFC Arguana Scidocs Hotpot NQ FiQA

- BM25 50.6 48.0 59.5 44.2 67.9 32.2 30.5 14.9 65.3 28.9 23.4

ChatGPT-3.5 Q2D 66.2 62.9 72.2 39.8 68.6 34.9 - - - - -

Llama3.1-8B-Inst.
HyDE 47.6 48.8 59.9 41.8 67.0 31.8 25.6 12.9 52.9 42.8 18.6
MuGI 66.5 61.1 73.1 49.6 72.2 36.4 29.4 15.3 65.2 50.2 24.3
W2P 68.1 62.5 78.4 50.7 72.4 36.1 32.5 15.3 71.9 50.4 26.1

Qwen2.5-7B-Inst.
HyDE 43.9 41.8 56.4 34.8 67.0 28.4 24.8 12.0 48.8 29.7 17.3
MuGI 65.8 62.9 67.7 44.2 71.6 36.5 28.9 14.7 67.8 43.9 24.7
W2P 67.5 62.8 77.0 49.6 71.5 36.5 32.7 15.6 70.1 44.4 26.3

Qwen2.5-72B-Inst.
HyDE 52.9 52.5 59.2 38.6 68.5 32.2 26.0 13.1 56.9 39.1 18.2
MuGI 69.4 62.7 70.3 47.3 72.8 36.4 28.3 15.2 72.2 49.7 25.5
W2P 69.7 64.1 75.6 48.1 72.1 36.9 33.3 15.5 73.6 50.3 26.6

Table 2: IR performance for four different retrieval methods using varying LLM backbones. Performance is measured
using nDCG@10. The best nDCG@10 score is marked in bold for each dataset, as well as for each backbone.

LLM Method Hotpot NQ FiQA SQuAD Trivia

Acc LLM Eval Acc LLM Eval Acc LLM Eval Acc LLM Eval Acc LLM Eval

- BM25 31.2 49.4 42.4 56.8 - 21.6 28.8 48.8 52.4 71.8

Llama3.1-8B-Inst.
HyDE 30.3 45.8 46.2 63.6 - 22.2 23.8 39.8 53.6 72.6
MuGI 32.2 50.2 49.2 64.6 - 22.8 27.6 48.6 55.2 75.2
W2P 35.8 54.2 51.8 68.0 - 25.2 31.4 52.0 56.0 76.6

Qwen2.5-7B-Inst.
HyDE 26.0 38.8 38.0 52.8 - 22.4 21.6 37.4 49.6 68.6
MuGI 34.2 51.0 47.2 64.8 - 24.2 31.4 51.6 55.8 75.4
W2P 34.8 54.0 48.2 66.0 - 26.8 31.8 51.8 56.6 77.2

Table 3: QA performance for three retrieval methods using two LLM backbones. We reports both accuracy (Acc) and
LLM-based metric (LLMEval). The best values are marked in bold for each dataset, as well as for each backbone.

W2P significantly outperforms other methods511

(HyDE and MuGI) in Covid data. This dataset512

belong to the Medical domain, focusing on biomed-513

ical literature. Unlike other domains (e.g., News514

and Simple QA), the medical domain exhibits dis-515

tinct domain characteristics, particularly in terms516

of lexical diversity—it contains highly specialized517

terminology, frequent abbreviations, and complex518

multi-word expressions that are uncommon in gen-519

eral text. Therefore, it confirms that Word2Passage520

effectively handles domain-specific lexical diver-521

sity in word-level re-weighting, thereby achieving522

significantly higher IR performance than others.523

4.4 Task 2: Question and Answering524

While HyDE, Q2D, and MuGI (Wang et al., 2023;525

Zhang et al., 2024; Gao et al., 2023a) have focused526

primarily on IR evaluation without reporting their527

QA performance in RAG, it remains uncertain528

whether gains in IR performance directly lead to529

better QA results. Therefore, evaluating both IR530

and QA performance is crucial. Table 3 shows the531

QA performance of three query expansion methods,532

along with the canonical BM25 as a reference. Note533

that we omit the Acc scores for the FiQA dataset,534

as all values are 0 due to its long-form QA nature.535

Interestingly, performance gains in the IR task536

do not translate proportionally to improvements537

in the QA task, indicating that enhanced retrieval 538

does not always lead to a corresponding level of 539

QA improvement. This is evident in the NQ dataset, 540

where Word2Passage shows only marginal im- 541

provement of 0.2–0.5 (in nDCG@10) over MuGI in 542

the IR task (see the 2nd last column in Table 2), yet 543

achieves a significantly larger performance boost of 544

1.0–2.6 (in Acc) and 1.2–3.4 (in LLMEval) in the 545

QA task. This demonstrates that Word2Passage’s 546

word-level re-weighting is likely to yield greater 547

performance gains in QA tasks than in IR tasks. 548

Overall, across all datasets, Word2Passage con- 549

sistently outperforms the other three query expan- 550

sion methods across both evaluation metrics and 551

LLM backbones. 552

4.5 Component Ablation Study 553

In Table 4, we analyze the effects of two main 554

components of Word2Passage: 555

(1) "Multi-level:" Removing contribution differ- 556

ences among word-, sentence-, and passage-levels 557

by assigning a uniform significance of "1" in Eq. (4). 558

(2) "Domain-aware:" Removing the domain-aware 559

adjustment factor. We simply set "𝑊 = 1" in Eq. (5). 560

Firstly, the results show that, across most datasets, 561

equalizing the contribution of multi-level references 562

in Word2Passage leads to a decline in nDCG@10 563

performance. Notably, the extent of performance 564
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LLM Method IR IR & QA

Covid Touche NFC Arguana Scidocs Hotpot NQ FiQA

Llama3.1-8B-Inst.
W2P 78.4 50.7 36.1 32.5 15.3 71.9 50.4 26.1
( - ) Multi-level 73.4 50.2 35.8 31.5 15.4 71.9 49.5 25.2
( - ) Domain-aware 73.6 47.9 36.0 30.9 15.4 71.3 49.5 24.8

Qwen2.5-7B-Inst.
W2P 77.0 49.6 36.5 32.7 15.6 70.1 44.4 26.3
( - ) Multi-level 74.7 48.9 36.5 31.9 15.2 69.6 44.3 25.8
( - ) Domain-aware 74.2 46.6 36.5 31.4 15.3 69.9 44.1 25.6

Table 4: Ablation study on Word2Passage in the IR task (nDCG@10), excluding (1) the contribution differences
among three-level references and (2) the contribution differences and domain-aware adjustment.
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Figure 2: Analysis on the correlation between nDCG@10
in IR and LLMEval in QA task across three datasets.

drop varies across datasets, indicating that the sig-565

nificance scores of the three levels exhibit high566

variability within each dataset. This highlights567

the crucial role of properly defining these scores in568

achieving performance improvements.569

Secondly, when both key components, Multi-570

level and Domain-aware, are eliminated, perfor-571

mance generally drops, but the decline is less pro-572

nounced compared to removing only the multi-573

level contribution adjustment. This highlights that574

the use of multi-level significance scoring plays575

a more critical role in performance improve-576

ments than domain-aware adjustment, suggesting577

that capturing hierarchical importance is essential578

for effective ranking.579

4.6 Alignment between IR and QA580

Lastly, we perform an analysis on the alignment581

between IR and QA performance. This analysis is582

conducted on three datasets, i.e., NQ, HotpotQA,583

and FiQA, all of which provide ground-truth chunk584

IDs for IR and answers for QA. Figure 2 shows the585

nDCG@10 and LLMEval scores for IR and QA586

tasks, respectively. To ensure a sufficient number of587

data points, we plot the results across four methods588

and two backbone architectures for each dataset.589

The results show a fairly high positive correla-590

tion of 0.69–0.96 between retrieval and generation591

performance in three datasets. This indicates that592

higher-quality retrieval is likely to lead to better593

Retrieval Method Llama3.1-8B-Instruct Qwen2.5-7B-Instruct

BM25 (Sparse) 23.4 23.4
Dense 16.0 16.0
BM25 + Dense 25.5 25.5

W2P (Sparse) 26.1 26.3
W2P + Dense 27.8 27.7

Table 5: IR (nDCG@10) performance for sparse and
dense retrieval methods and their ensemble on FiQA.
The best value score is marked in bold for each backbone.

answer generation in RAG. However, as men- 594

tioned in Section 4.3, a closer examination reveals 595

that there are cases where this trend does not hold. 596

Additionally, for each dataset, we observe that 597

Word2Passage locates the top-most and right-most 598

points in the plot. This indicates that it generally 599

achieves the highest retrieval and generation per- 600

formance. This suggests that Word2Passage ef- 601

fectively enhances both retrieval quality and down- 602

stream QA performance by enabling effective word- 603

level re-weighting in retrieval. 604

4.7 Ensemble with Dense Retrieval 605

Another advantage of Word2Passage is its synergy 606

with dense retrieval, where the ensemble selects 607

the top-5 from both sparse and dense, removing 608

duplicates. Table 5 shows that, while dense re- 609

trieval alone performs poorly, integrating it with 610

the canonical BM25 enhances performance. This 611

improvement persists when BM25 is replaced with 612

W2P, and ensembling further amplifies the synergy, 613

achieving the highest nDCG@10 score. 614

5 Conclusion 615

We introduce Word2Passage, a word-level re- 616

weighting approach for query expansion. By gener- 617

ating multi-level references and optimizing word- 618

level importance, Word2Passage enhances query 619

expansion effectiveness and improves retrieval per- 620

formance. Experimental results demonstrate that 621

Word2Passage consistently outperforms existing 622

methods, including HyDE, Q2D, and MuGI, across 623

diverse datasets and LLM backbones. Furthermore, 624

Word2Passage exhibits synergy when integrated 625

with a dense retrieval approach. 626
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6 Limitations627

Our method has several limitations that motivate628

future work.629

First, the word-level significance scores are tuned630

via grid search on a per-dataset basis, which is com-631

putationally expensive. Future work could explore632

developing a model that directly predicts optimal633

importance scores given a query and its multi-level634

references, potentially offering more general and635

precise tuning than grid search.636

Second, our approach is currently limited to637

BM25-based retrieval. While BM25 is a powerful638

retriever, hybrid approaches combining sparse and639

dense retrievers have shown superior performance.640

Extending Word2Passage to dense retrievers or641

developing a hybrid approach remains an important642

direction for future work.643

Additionally, the method requires multiple LLM644

calls for generating multi-level references, which645

can be time-consuming and costly. Future research646

could investigate more efficient reference genera-647

tion strategies or methods to reduce the number648

of required LLM queries while maintaining perfor-649

mance. Finally, while our query type-based impor-650

tance scoring is effective, it relies on predefined651

query categories. Developing a more flexible and652

fine-grained query analysis system could potentially653

lead to better word importance estimation.654

Ethical Statement. Our research centers on query655

expansion to improve retrieval performance through656

Word2Passage. As our study relies predominantly657

on outputs generated by well-established open-658

source models and publicly accessible datasets,659

it does not involve the collection of sensitive or660

personally identifiable information. Consequently,661

our work does not present any immediate ethical662

concerns regarding privacy or data security.663

Scientific Artifacts. We conducted experiments664

with Llama3.1-8B-Instruct, Qwen2.5-7B-Instruct,665

Qwen2.5-72B-Instruct, and GPT4o to evaluate our666

approach across varying model scales (see Sec-667

tion 4.2). We used Hugging Face checkpoints668

for Llama3.1-8B-Inst. and Qwen2.5-7B-Instruct,669

Qwen2.5-72B-Instruct and accessed GPT4o via the670

OpenAI API. The prompts are provided in Table 8671

in the Appendix for reproducibility.672
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A Analysis of Reference Level826

Significance by Query Type827

A.1 Methodology828

In our approach to query expansion using pseudo829

references, we assign different weights to word,830

sentence, and passage-level expansions based on the831

query type. The weighting scheme was determined832

through grid search for each dataset and query type,833

which includes five categories: description, entity,834

person, numeric, and location.835

A.2 Query Type Characteristics836

Description Queries Description-type queries837

seek explanatory information, requiring a compre-838

hensive understanding of the topic. Passage-level839

expansion plays a dominant role as it provides richer840

context and more complete answers. While key841

terms are important, they alone lack sufficient con-842

text. Sentence-level expansion provides additional843

meaning but remains less effective than passage-844

level expansion.845

Entity Queries Entity-type queries aim to iden-846

tify specific named entities, such as organizations,847

products, or technologies. Sentence-level expansion848

proves most effective, as entities are typically well-849

defined within a single sentence. Word-level and850

passage-level expansions demonstrate comparable851

performance, with the former capturing core en-852

tity terms and the latter providing broader context853

without yielding substantial performance gains.854

Person Queries Person-type queries retrieve in-855

formation about specific individuals. Personal de-856

tails are typically captured at the word or sentence857

level. Names are key identifying factors, making858

word-level expansion highly relevant. Sentences of-859

ten contain structured information about individuals860

(e.g., "Marie Curie was a physicist"). While pas-861

sages may offer biographical details, most queries862

are effectively answered at a finer granularity.863

Numeric Queries Numeric-type queries focus864

on retrieving numerical values. These values are865

usually embedded within sentences that provide866

necessary context (e.g., "The GDP growth rate in867

2023 was 3.1%"). Context from multiple sentences868

can be useful for trend analysis but is not always869

necessary. Numbers alone lack meaning without870

surrounding context, making word-level expansion871

least effective.872

Location Queries Location-type queries target 873

geographic names. Such information is often explic- 874

itly mentioned in individual words or concise sen- 875

tences (e.g., "Seoul is the capital of South Korea"). 876

Since location names themselves carry significant 877

information, word-level expansion plays a crucial 878

role. While additional background information may 879

be useful, retrieval effectiveness is primarily deter- 880

mined at the sentence and word levels. 881

Query Type Relative Ratio of Significance Scores

Word-level Sentence-level Passage-level

Description 0.32 0.25 0.43
Entity 0.29 0.41 0.30
Person 0.38 0.38 0.24
Numeric 0.28 0.40 0.32
Location 0.38 0.38 0.24

Table 6: Average relative ratio of significance scores
across word-level, sentence-level, and passage-level ref-
erences.

A.3 Impact on Reference Level Weights 882

Table 6 shows the relative ratios of significance 883

scores across different reference levels for each 884

query type. Our analysis reveals that the optimal 885

weight distribution aligns with the intrinsic charac- 886

teristics of each query type: 887

• Description queries benefit most from passage- 888

level expansion (0.43) due to their need for 889

rich contextual information 890

• Entity queries achieve optimal performance 891

with sentence-level expansion (0.41), where 892

entity-specific details are most prevalent 893

• Person and location queries rely on balanced 894

word- and sentence-level expansions (both 895

0.38) 896

• Numeric queries are best captured at the sen- 897

tence level (0.40), where values appear with 898

necessary context 899

B Domain-aware Adjustments 900

In this section, we analyze the characteristics of 901

different corpora and the effect of the domain-aware 902

factor𝑊 on token importance calculation. 903

B.1 Characteristics of each corpus 904

Figure 3 shows the distribution of unique tokens per 905

chunk across different datasets through box plots, 906
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where the red line indicates the average number of907

unique tokens per chunk and the box represents the908

interquartile range (IQR).909
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Figure 3: Distribution of unique tokens per chunk across
different datasets. The numbers above each box represent
the average number of unique tokens per chunk for each
dataset.

The average number of unique tokens per910

chunk varies significantly across datasets. MSmarco911

(42.07), NQ (56.01), and Hotpot (35.15) show rela-912

tively low token counts with small IQRs, indicating913

consistent chunk sizes. In contrast, Touche (153.10),914

NFC (138.80), and SciFact (128.22) exhibit high915

token counts, with Touche showing the largest vari-916

ance as evidenced by its extended whiskers.917

A middle range of token counts is observed in918

several datasets: Covid (95.85), FiQA (89.50), and919

Wiki (73.50). Among these, Covid shows notably920

larger variance in its distribution compared to FiQA921

and Wiki, as shown by its larger box size and longer922

whiskers.923

The academic datasets—SciFact (128.22), Ar-924

guana (111.78), and Scidocs (109.66)—demon-925

strate similar average token counts and relatively926

consistent distributions, as indicated by their com-927

parable box sizes and whisker lengths.928

B.2 Effect of𝑊 on Word Importance929

To investigate the effect of domain-aware factor𝑊930

on word importance 𝐼𝑡 , we analyze Eq. (7):931

𝐼𝑡 = 𝐼𝑡 ,𝑅 + 𝐼𝑡 ,𝑄

=
𝛼
√
𝑊

∑︁
𝑖

𝐼𝑡 ,𝑟𝑖 +
∑

𝑡 ′∈R 𝐹𝑡 ′ ,R∑
𝑡 ′∈𝑄 𝐹𝑡 ′ ,𝑄

· 𝐹𝑡 ,𝑄

where 𝐼𝑡 ,𝑄 = 0 if 𝑡 ∉ 𝑄,
𝐼𝑡 ,𝑅 = 0 if 𝑡 ∉ 𝑅,
∀𝑡 ∈ 𝑅 ∪𝑄.

(12)932

Since 𝑊 directly affects 𝐼𝑡 ,𝑅 but not 𝐼𝑡 ,𝑄, ana-933

lyzing their relationship requires controlling the934

relative influence between 𝐼𝑡 ,𝑅 and 𝐼𝑡 ,𝑄. We denote 935∑
𝑡′ ∈R 𝐹𝑡′ ,R∑
𝑡′ ∈𝑄 𝐹𝑡′ ,𝑄

as 𝛽, which represents the relative word 936

frequency between reference and query. By varying 937

𝛽, we can observe how different balances between 938

importance of words in reference and query af- 939

fect retrieval performance, indirectly revealing the 940

optimal range for𝑊 . 941
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Figure 4: Relationship between 𝛽 and retrieval perfor-
mance. The x-axis represents 𝛽 values, and the y-axis
shows normalized nDCG@10 scores (scaled to [0,1]
for each dataset). The plot demonstrates how optimal
𝛽 values increase with the average number of unique
tokens per chunk.

As shown in the figure 4, datasets with higher av- 942

erage numbers of unique tokens per chunk achieve 943

optimal nDCG@10 scores at larger 𝛽 values. This 944

observation suggests that as corpus complexity 945

increases, more emphasis needs to be placed on 946

words in query relative words in reference. In our 947

formulation, this balance is automatically achieved 948

through 𝑊 : when a corpus has more unique to- 949

kens per chunk (larger 𝑊), the term 𝛼√
𝑊

∑
𝑖 𝐼𝑡 ,𝑟𝑖 950

decreases, effectively reducing the influence of ref- 951

erence tokens. This confirms that our domain-aware 952

factor 𝑊 appropriately adapts to varying corpus 953

characteristics. 954

C Grid Search Configuration 955

This section details our methodology for determin- 956

ing optimal significance scores across different ref- 957

erence levels (word, sentence, and passage) through 958

a comprehensive grid search process, evaluated 959

using the nDCG@10 metric. For the complete re- 960

sults showing optimal significance scores across 961

different query types and datasets, see Table 7. 962

C.1 Dataset Preparation 963

For each dataset and query type, we implemented 964

a systematic sampling approach using the training 965
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data when available. In cases where only validation966

data was available, we utilized the validation set as967

our training data. For datasets lacking both training968

and validation splits, we employed a domain-based969

grouping strategy, clustering datasets with similar970

domain characteristics. Specifically, we formed four971

groups sharing similar corpus properties:972

• MS MARCO group (DL19, DL20): Web docu-973

ments with diverse topics and general domain974

knowledge975

• Financial/Medical group (FiQA, Covid):976

Domain-specific documents with technical ter-977

minology978

• Scientific/Academic group (Scifact, Scidocs,979

Arguana): Research papers, scientific articles,980

and academic arguments981

• News/Factual group (NFC, Touche): News982

articles and fact-checking documents983

These groupings reflect the inherent similarities in984

document structure, vocabulary, and information985

density within each domain. To ensure balanced986

representation across query types, we constructed987

a standardized training set comprising 100 queries988

per query type.989

C.2 Significance Score Optimization990

We conducted a grid search across all reference991

levels with a search range of (0, 1.6] and step size992

of 0.2, using nDCG@10 as our evaluation met-993

ric. All grid search experiments were performed994

exclusively on the training datasets to ensure fair995

evaluation. Rather than selecting the configuration996

with the highest nDCG@10 score, which might997

lead to overfitting on the training data, we opted998

for a more robust approach by identifying the 95th999

percentile point of performance across all config-1000

urations. The combination of word, sentence, and1001

passage significance scores at this percentile was1002

selected as our final configuration and applied to1003

the test set without further adjustment.1004

C.3 Analysis of Score Distribution1005

Figure 5 illustrates the distribution of training set1006

nDCG@10 scores across different combinations1007

of word, sentence, and passage significance scores.1008

The visualization reveals that the top 5% performing1009

points form distinct clusters, indicating the existence1010

of consistent patterns in the relationship between1011

significance scores and query types. Our selected1012
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Figure 5: Distribution of nDCG@10 scores on training
data across different combinations of word, sentence,
and passage significance scores for person queries in
DL19.

point, corresponding to the 95th percentile of train- 1013

ing performance, is strategically positioned within 1014

these clusters. This positioning ensures that no sin- 1015

gle reference level dominates the others with an 1016

exceptionally high significance score, thereby pro- 1017

moting robust performance across different query 1018

scenarios. The balanced nature of our selected point 1019

suggests that it can effectively generalize to the test 1020

set while maintaining stable performance charac- 1021

teristics. 1022

D Prompts 1023

This section presents the prompts used in our exper- 1024

iments. Table 8 shows the prompts used for gener- 1025

ating word, sentence, and passage-level references 1026

in Word2Passage. For query type classification, 1027

we use the prompts detailed in Table 9. The prompt 1028

used for LLM-based evaluation is provided in Table 1029

10. 1030

E Word2Passage Generation Examples by 1031

Query Type 1032

We provide representative examples of 1033

Word2Passage’s reference generation across 1034

different query types to illustrate how our method 1035

adapts to varying information needs. Tables 11-15 1036

present examples for five different query types: 1037

description, person, entity, numeric, and location. 1038

For each query type, word-level references ex- 1039

tract key terms and concepts, sentence-level refer- 1040

ences provide concise but structured information, 1041

and passage-level references offer comprehensive 1042

context. Description queries focus on explanatory 1043

content, person queries capture hierarchical relation- 1044

ships, entity queries identify core characteristics, 1045
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numeric queries handle quantitative information,1046

and location queries establish geographical context.1047

The highlighted spans in each example indicate1048

word matches with ground truth chunks, demon-1049

strating how different reference levels contribute to1050

capturing relevant information while maintaining1051

precision at different granularities.1052
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Query Type DL19-20 Covid NFC Touche SciFact Arguana

Description (0.2, 0.6, 1.6) (0.4, 0.6, 0.4) (0.4, 0.2, 1.2) (0.4, 0.2, 1.2) (1.2, 0.4, 0.2) (1.2, 0.4, 0.2)
Entity (1.2, 0.8, 0.4) (0.6, 1.4, 0.2) (0.4, 0.4, 0.4) (0.4, 0.4, 0.4) (0.2, 0.2, 0.2) (0.2, 0.2, 0.2)
Person (0.8, 1.4, 0.8) (1.2, 1.4, 0.2) (0.8, 0.6, 0.4) (0.8, 0.6, 0.4) (1, 1, 1) (1, 1, 1)
Numeric (1.6, 1.4, 1.4) (1.2, 1.2, 1.2) (0.4, 0.6, 0.2) (0.4, 0.6, 0.2) (0.2, 0.8, 0.8) (0.2, 0.8, 0.8)
Location (1.2, 1.6, 0.2) (0.8, 0.2, 0.4) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

Query Type Scidocs Hotpot NQ FiQA SQuAD Trivia

Description (1.2, 0.4, 0.2) (1.4, 0.6, 1.0) (0.2, 1.2, 1.6) (0.4, 0.6, 0.4) (1.0, 0.8, 1.6) (1.6, 0.8, 1.2)
Entity (0.2, 0.2, 0.2) (0.4, 1.0, 1.2) (0.6, 0.8, 1.2) (0.6, 1.4, 0.2) (0.4, 0.6, 1.0) (0.8, 1.4, 0.2)
Person (1, 1, 1) (0.8, 1.6, 0.6) (1.6, 1.2, 0.4) (1.2, 1.4, 0.2) (1.4, 0.6, 1.4) (1.6, 1.2, 1.0)
Numeric (0.2, 0.8, 0.8) (1.4, 1.4, 1.2) (1.6, 1.6, 0.2) (1.2, 1.2, 1.2) (0.4, 1.6, 1.2) (0.6, 0.8, 1.6)
Location (1, 1, 1) (1.6, 1.2, 0.8) (1.2, 1.4, 0.8) (0.8, 0.2, 0.4) (0.6, 1.4, 0.8) (0.8, 1.0, 0.4)

Table 7: Significance scores for word, sentence, and passage-level references (𝐼𝑞,𝑤 , 𝐼𝑞,𝑠, 𝐼𝑞,𝑝) obtained by grid
search on a balanced subset of 500 queries from the training set. Note that (1,1,1) is assigned for query types absent
in the training set to ensure stability.

Word2Passage Generation Prompt

Generate a passage, a sentence, and words that answer the given QUERY.
Terms that are important for answering the QUERY should frequently appear in the generation of the passage, the
sentence, and words.

### Definition:
**passage**: Answer the given QUERY in a passage perspective by generating an informative and clear passage.
**sentence**: Answer the given QUERY in a sentence perspective by generating a knowledge-intensive sentence.
**word**: Answer the given QUERY in a word perspective by generating a list of words.

### QUERY:
{query}

### FINAL OUTPUT JSON FORMAT (strictly follow this structure):
{{
"passage": "Your passage here",
"sentence": "Your sentence here",
"word": [Your words here],
}}
(From here on, only produce the final output in the specified JSON format.)

Table 8: Prompt of Word2Passage
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Query Type Classification Prompt

You are given a dataset containing queries categorized into different types. Here are some examples:

Query Type: description
- Query: causes of inflamed pelvis
- Query: name the two types of cells in the cortical collecting ducts and describe their function

Query Type: numeric
- Query: military family life consultant salary
- Query: average amount of money spent on entertainment per month

Query Type: location
- Query: what is the biggest continent
- Query: where is trinidad located

Query Type: entity
- Query: what kind of plants grow in oregon?
- Query: what are therapy animals

Query Type: person
- Query: who is guardian angel cassiel
- Query: interstellar film cast

Now, classify the following query into one of the above categories.
Choose only one of the following categories:
[description, numeric, location, entity, person]

Query : {query}

### OUTPUT FORMAT
Query Type: your answer (must be one of the categories listed above)

Table 9: Prompt of query type classification

LLM Evaluation Prompt

You are an evaluation tool . Just answer by Yes or No .
Here is a question , a golden answer and an AI-generated answer.
Judge whether the AI-generated answer is correct according to the question and golden answer ,
answer with Yes or No .

Question : { Question }
Golden answer : { Golden answer }
Generated answer : { Generated answer }
Response :

Table 10: Prompt of LLM Evaluation from BERGEN(Rau et al., 2024)
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Dataset FiQA

Query Type Description
Query "How to pay with cash when car shopping?"
GT Answer You could write a personal check after the final price has been set and you’re ready to purchase. Another option

would be to get the final price - then walk over to your bank and get a cashier’s check.

Word cash payment car shopping dealership policies payment procedures accept confirm purchase taxes fees process
negotiate finance loan

Sentence To pay with cash when car shopping it’s essential to call ahead or check the dealership’s website to confirm their
payment policies as some may not accept large sums or require full payment in advance

Passage When shopping for a car many consumers prefer to use cash as a payment method. However car dealerships
may have varying policies and procedures for accepting cash payments. To determine if a dealership accepts
cash payments it’s best to call ahead or visit their website to confirm their payment policies. Additionally if a
dealership does accept cash they may require payment in full for the purchase including any applicable taxes and
fees. It’s also essential to ensure that you have the exact amount of cash to avoid any issues or complications
during the transaction process. Some car dealerships may not accept large sums of cash and this can cause
problems when trying to purchase a car with a significant price tag. On the other hand some buyers may find it
beneficial to negotiate for a better price when paying with cash as it’s generally considered a more attractive
offer than financing through a loan. Overall using cash to purchase a car can be a straightforward process but it’s
crucial to be prepared and informed about the dealership’s policies to avoid any potential issues

GT Chunk I have in the last few years purchased several used cars from dealers. They have handled it two different ways.
They accepted a small check $1,000 now, and then gave me three business days to bring the rest as a cashiers
check. They also insisted that I submit a application for credit, in case I needed a loan. They accepted a personal
check on the spot. Ask them before you drive to the dealer. Of course they would love you to get a loan from them.

Table 11: Example of generated references for FiQA dataset. The example shows how Word2Passage generates
different levels of references for a description query. The highlighted spans indicate words that appear in the GT
chunk.

Dataset NQ

Query Type Person
Query "who is next in line to be the monarch of england"
GT Answer "Charles, Prince of Wales"

Word Prince William Queen Elizabeth II Prince Charles Camilla Parker Bowles Prince George Catherine Princess of
Wales monarch england

Sentence Prince William the Prince of Wales is currently second in line to the throne and next in line to become the
monarch of England

Passage The line of succession to the British monarchy is determined by the Act of Settlement of 1701 and the Succession
to the Crown Act of 2013. Currently Charles III is the monarch of England having ascended to the throne after
the passing of his mother Queen Elizabeth II. The next in line to the throne is Prince William the Prince of
Wales who is the eldest son of Charles III and is currently second in line to the throne. Following Prince William
is Prince George of Cambridge who is the eldest child and son of Prince William and his wife Catherine the
Princess of Wales. Prince Charles’s marriage to Camilla Parker Bowles has resulted in his son’s children taking
precedence over Camilla’s previous marriage and children meaning Prince Harry and his children will be fifth
and sixth in line to the throne

GT Chunk Catholics are eligible. Queen Elizabeth II is the sovereign, and her heir apparent is her eldest son, Charles, Prince
of Wales. Next in line after him is Prince William, Duke of Cambridge, the Prince of Wales’s elder son. Third in
line is Prince George, the eldest child of the Duke of Cambridge, followed by his sister, Princess Charlotte and
younger brother, Prince Louis. Sixth in line is Prince Harry, Duke of Sussex, the younger son of the Prince of
Wales. Under the Perth Agreement, which came into effect in 2015, only the first six in line of succession require
the

Table 12: Example of generated references for the NQ dataset. The example shows how Word2Passage generates
different levels of references for a person query. The highlighted spans indicate words that appear in the GT chunk.
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Dataset NQ

Query Type Entity
Query "what is the number 1 sport in the usa"
GT Answer "American football"

Word American football National Football League USA most popular sport country
Sentence The National Football League (NFL) is widely considered the most popular sport in the USA with American

football being the country’s most widely followed and watched sport
Passage The number 1 sport in the USA is American football also known as the National Football League (NFL). It is a

contact team sport played with an oval-shaped ball and its popularity in the country can be attributed to its rich
history high-energy gameplay and the enthusiasm of its fan base. The NFL has been a favorite among Americans
for decades with millions of people attending games and watching broadcasts. The Super Bowl the championship
game of the NFL is one of the most-watched television events in the world attracting a massive audience and
generating massive revenue. As a result American football has become an integral part of American culture and
is often referred to as ’football’ in the USA much to the confusion of people from other countries who refer to the
sport as’soccer

GT Chunk $69 billion, roughly 50% larger than that of all of Europe, the Middle East, and Africa combined. All four enjoy
wide-ranging domestic media coverage and are considered the preeminent leagues in their respective sports in
the world, although American football does not have a substantial following in other nations. Three of those
leagues have teams that represent Canadian cities, and all four are the most financially lucrative sports leagues of
their sport. Major League Soccer (MLS), which also includes teams based in Canada, is sometimes included in a
ẗop fiveöf leagues. Professional teams in all major sports in the

Table 13: Example of generated references for NQ dataset. The example shows how Word2Passage generates
different levels of references for an Entity query. The highlighted spans indicate words that appear in the GT chunk.

Dataset SQuAD

Query Type Numeric
Query "How much did Sequoia Capital invest in youtube in November of 2005?"
GT Answer "$3.5 million"

Word Sequoia Capital November 2005 invest $3.5 million YouTube
Sentence In November 2005 Sequoia Capital invested $3.5 million in YouTube
Passage Sequoia Capital played a crucial role in YouTube’s early days providing significant financial backing to help the

video-sharing platform expand its operations. In November 2005 Sequoia Capital invested in YouTube marking a
pivotal moment in the company’s growth. This strategic investment enabled YouTube to solidify its position
in the emerging online video market and attracted new users to the platform. With Sequoia Capital’s support
YouTube was able to increase its staff improve infrastructure and enhance its content offerings. This collaboration
ultimately propelled YouTube towards its current status as a leading video-sharing platform

GT Chunk 2005, and can still be viewed on the site. YouTube offered the public a beta test of the site in May 2005. The first
video to reach one million views was a Nike advertisement featuring Ronaldinho in November 2005. Following a
$3.5 million investment from Sequoia Capital in November, the site launched officially on December 15, 2005,
by which time the site was receiving 8 million views a day. The site grew rapidly and, in July 2006, the company
announced that more than 65,000 new videos were being uploaded every day, and that the site was receiving 100
million video

Table 14: Example of generated references for SQuAD dataset. The example shows how Word2Passage generates
different levels of references for a Numeric query. The highlighted spans indicate words that appear in the GT chunk.
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Dataset TriviaQA

Query Type Location
Query "Why use accounting software like Quickbooks instead of Excel spreadsheets?"
GT Answer "Harlem, NY", "Harlem (New York, N.Y.)", "Demographics of Harlem", "Central Harlem", "New Harlem",

"Black Harlem", "Vinegar Hill, Manhattan", "Harlem, New York City", "Harlem, Manhattan", "Harlem, New
York", "Harlem (Manhattan)", "Harlem", "Harlem (New York City)"

Word Harlem Manhattan Apollo Theater neighborhood New York
Sentence The Apollo Theater is situated in the historic Harlem neighborhood of Manhattan a legendary hub of music arts

and culture in New York City
Passage The Apollo Theater is located in the Harlem neighborhood of Manhattan in New York City. It has a rich history

of hosting numerous iconic performers and is a cultural gem of the area. Known for its incredible acoustics and
historic grandeur the Apollo Theater stands as a symbol of the city’s rich musical heritage. Whether you’re a
music lover or just interested in exploring the city’s vibrant culture a visit to the Apollo Theater is an absolute
must

GT Chunk Apollo Theater The Apollo Theater is a music hall located at 253 West 125th Street between Adam Clayton
Powell Jr. Boulevard (formerly Seventh Avenue) and Frederick Douglass Boulevard (formerly Eighth Avenue) in
the Harlem neighborhood of Manhattan, New York City. It is a noted venue for African-American performers,
and is the home of S̈howtime at the Apollo,̈ a nationally syndicated television variety show which showcased new
talent, from 1987 to 2008, encompassing 1,093 episodes; the show was rebooted in 2018. The theater, which has
a capacity of 1,506, opened in 1914 as Hurtig & Seamon’s New Burlesque Theater, and was

Table 15: Example of generated references for TriviaQA dataset. The example shows how Word2Passage generates
different levels of references for a location query. The highlighted spans indicate words that appear in the GT chunk.
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