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ABSTRACT

Reconstructing human dynamic vision from brain activity is a challenging task
with great scientific significance. Although prior video reconstruction methods
have made substantial progress, they still suffer from several limitations, including:
(1) difficulty in simultaneously reconciling semantic (e.g. categorical descriptions),
structure (e.g. size and color), and consistent motion information (e.g. order of
frames); (2) low temporal resolution of fMRI, which poses a challenge in decoding
multiple frames of video dynamics from a single fMRI frame; (3) reliance on video
generation models, which introduces ambiguity regarding whether the dynamics
observed in the reconstructed videos are genuinely derived from fMRI data or are
hallucinations from generative model. To overcome these limitations, we propose
a two-stage model named Mind-Animator. During the fMRI-to-feature stage, we
decouple semantic, structure, and motion features from fMRI. Specifically, we
employ fMRI-vision-language tri-modal contrastive learning to decode semantic
feature from fMRI and design a sparse causal attention mechanism for decoding
multi-frame video motion features through a next-frame-prediction task. In the
feature-to-video stage, these features are integrated into videos using an inflated
Stable Diffusion, effectively eliminating external video data interference. Extensive
experiments on multiple video-fMRI datasets demonstrate that our model achieves
state-of-the-art performance. Comprehensive visualization analyses further eluci-
date the interpretability of our model from a neurobiological perspective. Project
page: https://mind-animator-design.github.io/.

1 INTRODUCTION

Advances in sensory neuroscience offer new perspectives on brain function and could enhance
artificial intelligence development (Palazzo et al. (2021); Yargholi & Hossein-Zadeh (2016)). One of
the critical aspects to the research is neural decoding, which links visual stimuli to corresponding
functional magnetic resonance imaging (fMRI) brain recordings. Neural decoding methods include
classification, identification, and reconstruction, with this study focusing on the most challenging
aspect: reconstruction.

Prior methods have made significant strides in the classification (Yargholi & Hossein-Zadeh (2016);
Horikawa & Kamitani (2017); Fujiwara et al. (2013)) and identification (Kay et al. (2008); Wildgruber
et al. (2005)) of static stimulus images. Remarkably, some researchers have advanced to the point
where they can reconstruct (Naselaris et al. (2009); Van Gerven et al. (2010); Chen et al. (2023);
Takagi & Nishimoto (2023); Ozcelik et al. (2022); Beliy et al. (2019)) images from brain signals that
closely resemble the original stimulus images. In reality, the majority of visual stimuli we encounter
in daily life are continuous and dynamic, hence there is a growing interest in reconstructing video
from brain signals. Building on previous work that decoupled semantic and structural information
from fMRI to reconstruct images (Scotti et al. (2024); Lu et al. (2023); Fang et al. (2020)), we argue
that when the visual stimulus shifts from static images to dynamic videos, as shown in Figure 1, it
is crucial to account for three dimensions: semantic, structural, and motion, considering the brain’s
processing of dynamic visual information.
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Due to the inherent nature of fMRI, which relies on the slow blood oxygenation level dependent
(BOLD) signal (Logothetis (2002); Kim & Ogawa (2012)), neural activity is integrated over a period
exceeding 10 seconds ( 300 video frames). This integration delay poses a fundamental challenge
in capturing rapid motion dynamics. Consequently, the task of reconstructing videos from fMRI
signals becomes exceedingly challenging.

What is this scenario?    (High-level Semantic Information)

-- A soldier is walking in a desert.

Where is the object in the scenario, what is its size, 

color, shape?                (Low-level Structure Information)

-- A black figure on the edge of a yellow background.

How the objects in the scene move? (Motion Information)

-- The figure moves from right to left in the movie.

Figure 1: The human brain’s comprehension of dynamic
visual scenes. When receiving dynamic visual information,
human brain gradually comprehends low-level structural
details such as position, shape and color in the primary vi-
sual cortex, discerns motion information, and ultimately con-
structs high-level semantic information in the higher visual
cortex, such as an overall description of the scene.

To address this challenge, Nishimoto
et al. (2011) transforms the video re-
construction task into an identification
task, employing the Motion-Energy
model (Adelson & Bergen (1985))
and Bayesian inference to retrieve
videos from a predefined video library.
Subsequently, Han et al. (2019), Wen
et al. (2018) and Wang et al. (2022)
map brain responses to the feature
spaces of deep neural network (DNN)
to reconstruct video stimuli. To miti-
gate the scarcity of video-fMRI data,
Kupershmidt et al. (2022) utilizes
self-supervised learning (Kingma &
Welling (2014)) to incorporate a large
amount of unpaired video data. While these efforts have confirmed the feasibility of video reconstruc-
tion from fMRI, the results are notably deficient in explicit semantic information. Chen et al. (2024)
utilizes contrastive learning to map fMRI to the Contrastive Language-Image Pre-training (CLIP)
(Radford et al. (2021)) representation space and co-training with a video generation model, success-
fully reconstructing coherent videos with clear semantic information for the first time. However, this
work does not consider structure information such as color and position, and it is uncertain whether
the motion information in the reconstructed videos originate from the fMRI or the external video
data used in training the video generation model.

In summary, current video reconstruction models face two challenges:

(1) They fail to simultaneously capture semantic, structure, and motion information within the
reconstructed videos.

(2) The reliance on external video datasets and video generation models introduces ambiguity
regarding whether the dynamics observed in the reconstructed videos are genuinely derived
from fMRI data or are hallucinations from video generative model.

To address the issues, we introduce Mind-Animator, a video reconstruction model that decouples
semantic, structure, and motion information from fMRI, as illustrated in Figure 3. Specifically,
we map fMRI to the CLIP representation space and the Vector Quantized-Variational Autoencoder
(VQ-VAE) (Van Den Oord et al. (2017)) latent space to capture semantic and structure information.
We design a Transformer-based (Vaswani et al. (2017)) motion decoder to extract motion information
frame by frame from fMRI through a next-frame-prediction task. Finally, the decoded semantic,
structure, and motion information is fed into an inflated Stable Diffusion (Rombach et al. (2022); Wu
et al. (2023)) without any fine-tuning with video data to generate each frame of the video.

Our contributions are summarized as follows:

(1) Method: We propose Mind-Animator, which enables video reconstruction by decoupling semantic,
structural, and motion information from fMRI data for the first time.

To address the mismatch in timescales between fMRI and video data, we propose a Consistency
Motion Generator with Sparse Causal Attention. This model decodes subtle yet significant motion
patterns through a next-frame token prediction task despite the limitations imposed by the slow
BOLD signal integration in fMRI.

(2) Interpretability: We use voxel-wise and ROI-wise visualization techniques to elucidate the
interpretability of our proposed model from a neurobiological perspective.

(3) Comprehensive evaluation: We introduce eight evaluation metrics that comprehensively assess
the reconstruction results of our model and all previous models across three dimensions—semantic,
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structure, and spatiotemporal consistency—on three publicly available video-fMRI datasets. This
establishes our work as the first unified benchmark for subsequent researchers. We will release all
data and code to facilitate future research.

2 RELATED WORK

2.1 RECONSTRUCTING VIDEOS FROM BRAIN ACTIVITIES

DNN VideofMRI

fMRI

Noise

Semantic 

Video generation model
Video

fMRI

Semantic 

Structure

Motion 

Video
Inflated image generation model

Noise

(a) End-to-end models (b) Video generation model based (c) Our model

Figure 2: Overview of the video reconstruction paradigms.

The video reconstruction task involves recreating the video frames a subject was viewing based
on their brain responses (e.g., fMRI). The challenge in video reconstruction lies in the significant
discrepancy between the temporal resolution of fMRI (0.5 Hz) and the frame rate of the stimulus
video (30 Hz), making it difficult to model the mapping between fMRI signals and video content.

To tackle this challenge, Nishimoto et al. (2011) reframes video reconstruction as an identification
task, using the Motion-Energy model (Adelson & Bergen (1985)) and Bayesian inference to retrieve
videos from a predefined library. With the advancement of deep learning, early works by Han et al.
(2019), Wen et al. (2018) and Wang et al. (2022), as shown in Figure 2 (a), mapped brain responses to
the feature spaces of deep neural networks (DNNs) for end-to-end video reconstruction. To address
the scarcity of paired video-fMRI data, Kupershmidt et al. (2022) further advanced this approach by
leveraging self-supervised learning to incorporate a large volume of unpaired video data. Although
these studies demonstrated the feasibility of reconstructing videos from fMRI signals, the results
notably lacked explicit semantic information. As shown in Figure 2 (b), with advancements in
multimodal and generative models, Chen et al. (2024), Sun et al. (2024) used contrastive learning to
map fMRI signals to the CLIP latent space for semantic decoding, followed by input into a video
generation model for reconstruction. This approach produces semantically coherent and smooth
videos, but it remains unclear whether the motion information in the reconstructions originates from
the fMRI or from the external video data used to train the video generation model.

To address the above issues, we propose Mind-Animator. By independently decoding semantic,
structural, and motion information from fMRI signals and inputting them into an inflated image
generation model, we ensure that the motion in the reconstructed videos originates solely from the
fMRI data.

2.2 DIFFUSION MODELS FOR VIDEO GENERATION

After significant progress in text-to-image (T2I) generation, diffusion models have drawn interest
for text-to-video (T2V) tasks. Ho et al. (2022b) made a breakthrough by introducing 3D diffusion
U-Net for video generation, followed by advancements like cascaded sampling frameworks and
super-resolution methods (Ho et al. (2022a)), and the integration of temporal attention mechanisms
(Singer et al. (2022); Zhou et al. (2022); He et al. (2022b)). However, due to limited paired text-video
datasets and high memory demands of 3D U-Nets, alternative approaches have emerged, refining
pre-trained T2I models for T2V tasks. Khachatryan et al. (2023) and Wu et al. (2023) introduced
techniques like cross-frame attention and inter-frame correlation consideration to adapt T2I models
for video generation.

In our work on video reconstruction from fMRI, we avoided pre-trained T2V models to prevent
external video data from interfering with motion information decoding from fMRI. As shown in
Figure 2 (c), we adapted an inflated T2I model to generate each frame. This ensured that the motion
information in the reconstructed videos was derived solely from fMRI decoding, as the generative
model had never been exposed to video data.

3
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3 METHODOLOGY
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Figure 3: The overall architecture of Mind-Animator, a two-stage video reconstruction model based
on fMRI. Three decoders are trained during the fMRI-to-feature stage to disentangle semantic,
structural, and motion feature from fMRI, respectively. In the feature-to-video stage, the decoded
information is input into an inflated Text-to-Image (T2I) model for video reconstruction.

3.1 PROBLEM STATEMENT

We aim to decode videos from brain activity recorded with fMRI when healthy participants watch a
sequence of natural videos. Let X and Y denote the voxel space and pixel space, respectively. Let
xi ∈ R1×n be the fMRI signal when a video vi,j ∈ R1×3×512×512 is presented to the participant,
where n is the number of fMRI voxels, j is the frame ID of video i and i ∈ [1, N ], j ∈ [1, 8], with N
the total number of videos. Let Z(k) denotes the feature space, k ∈ {semantic, structure,motion}.
The goal of fMRI-to-feature stage is to train decoders D(k) : X → Z(k), and the goal of feature-to-
video stage is to construct a generation model G : Z(semantic)×Z(structure)×Z(motion)→ Y ,
without introducing motion information from external video data.

3.2 FMRI-TO-FEATURE STAGE

Semantic Decoder. Due to the low signal-to-noise ratio of the fMRI signal xi and the substantial
dimension discrepancy with the text condition ci ∈ R1×20×768 of Stable Diffusion (SD), learning a
mapping between them directly is prone to overfitting. Considering both the lower dimensionality
(ti or vi ∈ R1×512) and the robust semantic information embedded in the latent space of CLIP
(Gao et al. (2020)), and given that CLIP has been shown to outperform various single-modal DNNs
in explaining cortical activity (Wang et al.; Zhou et al. (2024)), we employ bidirectional InfoNCE
loss to align the fMRI embedding fi with the latent space of CLIP (Vit-B/32)⊆ R512, followed by a
two-layer MLP to map it to text condition ci. In this context, fi = DSemantic(xi), where DSemantic

is a three-layer MLP,

LBiInfoNCE = − 1

B

B∑
i=1

(
log

exp(s(ẑi, zi)/τ)∑B
j=1 exp(s(ẑi, zj)/τ)

+ log
exp(s(ẑi, zi)/τ)∑B

k=1 exp(s(ẑk, zi)/τ)

)
. (1)

where s(·, ·) is the cosine similarity, z and ẑ are the latent representation from two modalities, B
is the batch size, and τ is a learned temperature parameter. Then, given f ∈ RB×512, v ∈ RB×512,
and t ∈ RB×512 as the respective embeddings of fMRI, video, and text, the fMRI-vision-language
tri-modal loss is:

LSemantic = α · LBiInfoNCE(f , t) + (1− α) · LBiInfoNCE(f ,v). (2)
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Subsequently, to map the fMRI embedding fi to the text condition ci for the purpose of conditioning
generative image models, a projection loss is utilized,

LProjection =
1

B

B∑
i=1

∥MLP (fi)− ci∥22. (3)

Finally, we combine the semantic and projection losses using tuned hyperparameters λ1, λ2,
LCombined = λ1 · LSemantic + λ2 · LProjection. (4)

Structure Decoder. For a short video clip, it can be assumed that the low-level feature (e.g. size,
shape, and color) contained in each frame remains largely consistent with that of the first frame.
Consequently, we utilize the token extracted from the first frame by VQ-VAE as structural feature
and train the structural decoder (a two-layer MLP) using the standard mean squared error (MSE) loss
function. Let Φ denote the encoder of VQVAE, the structure loss is defined as:

LStructure =
1

B

B∑
i=1

∥DStructure(fi)− Φ(vi,1)∥22. (5)

Consistency Motion Generator. Drawing inspiration from natural language processing, we treat
each video frame token as a word embedding and develop an L-layer Transformer-based Consistency
Motion Generator (CMG) to implicitly decode dynamic information between consecutive frames.
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Figure 4: The architecture of CMG with Temporal Module and fMRI guided Spatial Module.

Handling raw pixels for a video clip vi ∈ Rf×3×H×W in the CMG can be computationally intensive.
To overcome this, we follow Stable Diffusion’s approach (Rombach et al. (2022)) by projecting
the video into a latent space using a pre-trained VAE tokenizer. After compressing the video clip
to Φ(vi) ∈ Rf×3×H

8 ×W
8 , it is divided into patches, which are then converted into frame tokens

Φtok(vi) ∈ RP×dtoken through an embedding layer.

In the Temporal Module, visible frame tokens Φtok(vi) ∈ Rm×dtoken and positional encoding
Epos ∈ Rm×dtoken are jointly input into a Sparse Causal Self-Attention layer to learn inter-frame
temporal information. This attention layer incorporates a specially designed Sparse Causal Mask to
ensure sparsity between frames. As illustrated in Figure 4, the mask is divided into fixed and random
components. The fixed mask ensures that each frame cannot access information from subsequent
frames, while the random mask maintains sparsity among visible frames, preventing the model from
taking shortcuts (Tong et al. (2022)). During inference, we eliminate the random mask. For other
variants of the spatial-temporal module, please refer to Appendix D.2.

In the Spatial Module, to extract spatial information for subsequent frames from fMRI, the embedding
of the visible frames zl serves as the Query, while the fMRI signal f , after passing through an
embedding layer, serves as the Key and Value in the cross-attention block, as shown in Eq. (6).
Following residual connections and layer normalization, zl is input into the Feed Forward Network
(FFN) to predict the subsequent unseen frame tokens ˆΦ(vi,j), j ∈ [m+ 1, n]:

zl =CrossAttention(Q,K,V), l = 1, 2, . . . , L (6)

Q =WQ
l · zl, K = WK

l · Emb(f), V = WV
l · Emb(f),

zl =FFN(LN(zl) + zl−1). l = 1, 2, . . . , L (7)
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Then, the final motion consistency loss is defined as:

LConsistency =
1

B

B∑
i=1

n∑
j=m+1

∥ ˆΦtok(vi,j)− Φtok(vi,j)∥22. (8)

3.3 FEATURE-TO-VIDEO STAGE

Inflated Stable Diffusion for Video Reconstruction. Despite the rapid development of video
generation models capable of producing vivid videos from text conditions, it is crucial to emphasize
that the objective of our work is to disentangle semantic, structural, and motion information from
fMRI to reconstruct the stimulus video. Utilizing pre-trained video generation models could obscure
whether the motion information in the reconstructed video originates from the fMRI or external
video data.

To address this issue, we employ the network inflation (Carreira & Zisserman (2017); Khachatryan
et al. (2023); Wu et al. (2023)) technique to implement an inflated Stable Diffusion, which is
used to reconstruct each frame of the video without introducing additional motion information.
Specifically, after the motion features Φ(vi) ∈ RB×f×3×H

8 ×W
8 are decoded, they are reshaped

((B, f, 3, H
8 ,

W
8 ) → (B · f, 3, H

8 ,
W
8 )) and input into the U-Net of Stable Diffusion for reverse

denoising. The result is then mapped back to pixel space through the VQ-VAE decoder and reshaped
((B · f, 3, H,W )→ (B, f, 3, H,W )) to yield the final video vi ∈ RB×f×3×H×W . In this context,
B denotes the batch dimension, with B = 1 during inference.

4 EXPERIMENT

4.1 DATASETS

In this study, we utilize three publicly available video-fMRI datasets, which encompass paired
stimulus videos and their corresponding fMRI responses. As depicted in Table 1, these datasets
collectively comprise brain signals recorded from multiple healthy subjects while they are viewing
the videos. The video stimuli are diverse, covering animals, humans, and natural scenery. For detailed
information on the datasets and preprocessing steps, please refer to Appendix B.

Table 1: Characteristics of the video-fMRI datasets used in our experiments.

Dataset Adopted subjects TR Train samples Test samples
CC2017 (Wen et al. (2018)) 3 2s 4320 1200
HCP (Marcus et al. (2011)) 3 1s 2736 304

Algonauts2021 (Cichy et al. (2021)) 10 1.75s 900 100

4.2 EVALUATION METRICS

To comprehensively evaluate the performance of our model, we use the following evaluation metrics.

Semantic-level metrics. Following prior studies (Chen et al. (2023; 2024)), we use the N-way
top-K accuracy classification test and VIFI-score as the semantic-level metrics. For the classification
test, we implement two modes: image-based (2-way-I) and video-based (2-way-V). We describe this
evaluation method in Algorithm 2. For the VIFI-score, we utilize a CLIP model fine-tuned on the
video dataset (VIFICLIP) (Rasheed et al. (2023)) to extract features from both the ground truth and
predicted videos, followed by the calculation of cosine similarity.
Pixel-level metrics. We employ the structural similarity index measure (SSIM), peak signal-to-
noise ratio (PSNR), and hue-based Pearson correlation coefficient (Swain & Ballard (1991)) (Hue-pcc)
as pixel-level metrics.
Spatiotemporal (ST) -level metrics. We adopt CLIP-pcc, a widely used metric in video editing
research (Wu et al. (2023)), to evaluate the smoothness and consistency between consecutive video
frames. This metric computes the CLIP image embeddings for each frame in the predicted videos and
reports the average cosine similarity between all pairs of adjacent frames.To measure the similarity of
motion trajectories, we introduce End-Point Error (EPE) (Barron et al. (1994)), which calculates the
Euclidean distance between the predicted and ground truth endpoints for each frame.

6
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5 RESULTS

5.1 COMPARATIVE EXPERIMENTAL RESULTS

We compare our model with all previous video reconstruction models on the aforementioned datasets.
In the computation of quantitative metrics, the results of Wen et al. (2018) pertain to the first segment
of the test set, whereas the results of other researchers are derived from the whole test set. Visual
comparisons on CC2017 dataset are presented in Figure 5, while quantitative comparisons are detailed
in Table 2, which indicates that our model achieves SOTA performance in six out of eight metrics.
Specifically, our model outperforms the previous SOTA model by 83% and 13% in terms of SSIM and
EPE respectively, which underscores the benefits of incorporating structural and motion information.
The results in Tables 3 and 4 demonstrate that our model maintains strong performance on other
datasets as well. For instance, our model outperforms Mind-video by 196%/ 21%/ 4% on the HCP
and 275%/ 27%/ 5% on the Algonauts 2021 dataset across the three pixel-level metrics.

GT

Ours

Chen
(NeurIPS

2023 Oral)

Kupershmit,

2022

Wang
(Cerebral 

Cortex 2022)

Wen

(Cerebral       

Cortex 2017)

and
Nishimoto,

2011

Figure 5: Reconstruction results on CC2017 dataset. Our reconstructed results are highlighted with a
red box, while those of Wen and Nishimoto are delineated by blue and green boxes, respectively.

Table 2: Quantitative comparison of reconstruction results on the CC2017 dataset. All metrics are
averaged across all samples and three subjects, with the best results highlighted in bold and the
second-best results underlined. EV refers to the External Video Dataset. The symbol † refers to
using Stable Diffusion fine-tuned on video data. The results of fine-tuning Stable Diffusion on the
video dataset used in our model are provided in Appendix E.6.1. Colors reflect statistical significance
(paired t-test) compared to our model. p < 0.0001 (purple); p < 0.01 (pink); p < 0.05 (yellow); p > 0.05 (green).

Models Training data
Semantic-level ↑ Pixel-level ↑ ST-level

2-way-I 2-way-V VIFI SSIM PSNR Hue-pcc CLIP↑ EPE↓
Nishimoto (Nishimoto et al. (2011)) CC2017 0.742 —— —— 0.119 8.383 0.737 —— ——

Wen (Wen et al. (2018)) CC2017 0.771 —— —— 0.130 8.031 0.637 —— ——
Kupershmidt (Kupershmidt et al. (2022)) CC2017+EV 0.769 0.768 0.591 0.140 10.637 0.616 0.382 ——

f-CVGAN (Wang et al. (2022)) CC2017 0.721 0.777 0.592 0.108 11.043 0.583 0.399 6.344
Mind-video † (Chen et al. (2024)) CC2017+HCP 0.797 0.848 0.593 0.177 8.868 0.768 0.409 6.125

Ours CC2017 0.805 0.830 0.608 0.321 9.220 0.786 0.425 5.422

Table 3: Quantitative comparison of reconstruc-
tion results on the HCP dataset. The full table can
be found in Appendix E.7.

Models Semantic-level ↑ Pixel-level ↑
2-way-I SSIM PSNR Hue-pcc

Nishimoto 0.658 0.321 11.316 0.645
Wen 0.702 0.058 10.197 0.727

f-CVGAN —— 0.159 13.033 ——
Mind-video 0.779 0.116 9.275 0.793

Ours 0.786 0.344 11.233 0.829

Table 4: Quantitative comparison of reconstruc-
tion results on the Algonauts 2021 dataset. The
full table can be found in Appendix E.8.

Models Semantic-level ↑ Pixel-level ↑
2-way-I SSIM PSNR Hue-pcc

Nishimoto 0.687 0.443 9.578 0.666
Wen 0.625 0.172 8.822 0.627

Mind-video 0.681 0.124 8.673 0.796
Ours 0.701 0.465 10.989 0.833
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Table 5: Retrieval accuracy (%) on CC2017 dataset. For the ’small test set’, the chance-level
accuracies for top-10 and top-100 accuracy are 0.83% and 8.3%, respectively. For the ’large test set’,
the chance-level accuracies for top-10 and top-100 accuracy are 0.24% and 2.4%, respectively. ∗
denotes our performance is significantly better than the compared method (paired t-test, p<0.05).

Dataset
CC2017

Subjet1 Subjet2 Subjet3 Average
Model Test set top-10 top-100 top-10 top-100 top-10 top-100 top-10 top-100

Wen (Wen et al. (2018)) Small 2.17 19.50 3.33 19.17 —— —— 2.75∗ 19.33∗
Kupershmidt (Kupershmidt et al. (2022)) Small 1.09 8.57 0.92 8.24 0.84 8.24 0.95∗ 8.35∗

Mind-video (Chen et al. (2024)) Small 3.22 19.08 2.75 16.83 3.58 22.08 3.18∗ 19.33∗
Ours Small 3.08 22.58 4.75 26.90 4.50 24.67 4.11 24.72

Wen (Wen et al. (2018)) Large 1.41 11.58 2.08 9.58 —— —— 1.75∗ 10.58∗
Kupershmidt (Kupershmidt et al. (2022)) Large 0.17 2.94 0.17 2.77 0.25 2.18 0.19∗ 2.63∗

Mind-video (Chen et al. (2024)) Large 1.75 7.17 0.83 5.17 1.25 9.00 1.28∗ 7.11∗
Ours Large 2.17 12.50 2.25 17.00 2.75 16.42 2.39 15.31

In addition to the reconstruction task, we evaluate the retrieval task on the CC2017 dataset. We use
top-10 accuracy and top-100 accuracy as evaluation metrics. To assess the model’s generalization
capability, we perform retrieval not only on the CC2017 test set with 1,200 samples (’Small’) but
also on an extended stimulus set. Specifically, we augment the collection with 3,040 video clips from
the HCP dataset, resulting in a total of 4,240 samples (’Large’).
As shown in Table 5, our model achieves superior performance across all three subjects in the
CC2017 dataset. Compared to Mind-Video, our model exhibits a smaller performance drop when the
stimulus set is expanded to the ’Large’ scale, demonstrating its generalization capability. Notably,
Wen’s results surpass those of Kupershmidt largely and are comparable to Mind-Video. This can be
attributed to their approach of reconstructing a single frame from each video segment, simplifying the
video reconstruction task into an image reconstruction task, thereby achieving superior performance
on the retrieval metrics.

5.2 ABLATION STUDY

Table 6: Ablation study about our proposed decoders on subject 1 of CC2017 dataset. More results
on subject 2 and 3 can be found in Appendix 12 and 13. 100 repetitions are conducted on the metrics
2-way-I and 2-way-V, while 5 trials are performed on other metrics, with the results being averaged
across all samples in test set and trials. Colors reflect statistical significance (paired t-test with
Bonferroni correction) compared to the Full Model. p < 0.0001 (purple); p < 0.01 (pink); p < 0.05 (yellow);
p > 0.05 (green).

Models Semantic-level ↑ Pixel-level ↑ ST-level
2-way-I 2-way-V VIFI-score SSIM PSNR Hue-pcc CLIP-pcc↑ EPE↓

w/o Semantic 0.679 0.766 0.523 0.097 8.005 0.737 0.123 8.719
w/o Structure 0.789 0.814 0.555 0.184 8.712 0.791 0.260 7.683
w/o Motion 0.674 0.789 0.585 0.136 8.611 0.715 0.376 6.374

w/o fMRI guidance 0.765 0.834 0.571 0.317 9.543 0.789 0.381 6.293
Full Model 0.812 0.839 0.604 0.319 9.116 0.778 0.413 5.572

In this subsection, we conduct a detailed ablation study to assess the effectiveness of the three
decoders we proposed and evaluate the impact of various hyperparameters on video reconstruction.
First, we present the results obtained using the full model. Then, based on the full model, we eliminate
the semantic decoder (w/o Semantic) and the structure decoder (w/o Structure) separately, replacing
their outputs with random Gaussian noise. For the consistency motion generator, we replace it with 8
simple MLPs to model each frame individually (w/o Motion). Table 6 demonstrates that the removal
of any decoder results in a significant decline in the model’s performance across nearly all metrics,
which shows the efficacy of our proposed decoders.
To verify that the motion information originates from the fMRI rather than the training videos, we
further removed the fMRI guidance during the training of the CMG module (w/o fMRI guidance)
by replacing the cross-attention in the Spatial Module with self-attention, while keeping the rest of
the architecture and hyperparameters unchanged. It can be observed that after removing the fMRI
guidance, the ST-level metrics deteriorated significantly, validating that the proposed CMG can
indeed decode motion information from fMRI. Meanwhile, comparing the removal of the whole
CMG module (w/o Motion) with the removal of fMRI guidance from the CMG (w/o fMRI guidance),
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it is observed that the latter makes up most of the impact of the former on ST-level metrics. (i.e. in the
CLIP-pcc metric, 86% of the decrease observed in the w/o Motion scenario comes from the absence
of fMRI guidance, while in the EPE metric, 90% of the decrease can be attributed to the removal
of fMRI guidance.) This further demonstrates that fMRI guidance plays a crucial role in decoding
accurate motion information from brain signals.
Notably, the Hue-pcc significantly increased after removing the structure decoder or fMRI guidance.
We hypothesize that while fMRI contains structure and motion information, its low signal-to-noise
ratio introduces noise that affects the generation quality of Sable Diffusion. This is further supported
by the significant increase in PSNR after removing fMRI guidance.

6 INTERPRETABILITY ANALYSIS

6.1 HAVE WE TRULY DECODED MOTION INFORMATION FROM FMRI?

Following the work of Wang et al. (2022), we perform a shuffle test on 3 subjects from the CC2017
dataset to ascertain whether the CMG decodes the correct motion information from fMRI. Specifically,
for each 8-frame reconstructed video clip from each subject, we shuffle the frame order 100 times
randomly and compute spatiotemporal-level metrics on the original and shuffled frames. Subsequently,
we estimate the P-value by the following formula: P =

∑100
i=1 δi/100, where δi = 1 if the i-th shuffle

outperforms the reconstruction result in the original order based on the metrics; otherwise, δi = 0. A
lower P-value signifies a closer alignment between the sequential order of the reconstructed video
and the ground truth. We repeat the shuffle test 5 times under conditions with and without the CMG,
as illustrated in Figure 6. It can be observed that the P-value of EPE is significantly lower than 0.05
when CMG is applied. However, although the P-value of CLIP-pcc is significantly smaller with
CMG compared to without CMG, the P-value remains significantly greater than 0.05. To explain
this, we further repeated the shuffle test on the reconstruction results’ noise ceiling (videos generated
directly using the test set features). The results show that even for the noise ceiling, the P-value of
CLIP-pcc remains significantly greater than 0.05. This indicates that: (1) we have indeed decoded
motion information from fMRI, and (2) EPE is a more effective metric than CLIP-pcc for evaluating
the model’s ability to decode motion information.

                   (a) sub 1                                                          (b) sub 2                                                          (c) sub 3

Figure 6: The results of shuffle test on the CC2017 dataset. The experiment is repeated 5 times on 3
subjects, with the mean and std presented in subplots (a), (b), and (c), respectively. Paired t-tests with
Bonferroni correction are performed, with significance denoted as p < 0.001(∗ ∗ ∗), p < 0.01(∗∗),
p < 0.05(∗), and p > 0.05(NS) for non-significant results.

6.2 WHICH BRAIN REGIONS ARE RESPONSIBLE FOR DECODING DIFFERENT FEATURES,
RESPECTIVELY?

To investigate voxels in which brain regions are responsible for decoding different features (semantic,
structure, motion) during the fMRI-to-feature stage, we compute the voxel-wise importance maps in
the visual cortex. Specifically, for a trained decoder, we multiply the weight matrix of the linear layers,
then average the results across the feature dimension, and normalize them to estimate the importance
weights for each voxel. A higher weight indicates that the voxel plays a more significant role in
feature decoding. We project the importance maps of subject 1’s voxels from the CC2017 dataset
onto the visual cortex, as depicted in Figure 7. To obtain ROI-wise importance maps, we calculate
the average of the importance weights of voxels contained within each Region of Interest (ROI), with
the results presented in Figure 8. The results from other subjects are presented in Appendix F.
Figure 7 (a) indicates that high-level visual cortical areas (HVC, such as MT) contribute more
significantly to the decoding of semantic feature, accounting for 60.5% of the total, as shown in
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                  (a) Semantic                                                          (b) Structure                                                        (c) Motion

Figure 7: Voxel-wise importance maps projected onto the visual cortex of subject 1. The lighter the
color, the greater the weight of the voxel in the interpretation of feature.

                     (a) Semantic                                                      (b) Structure                                                        (c) Motion

Figure 8: ROI-wise importance maps in the visual cortex of subject 1.

Figure 8 (a). Figure 7 (c) and 8 (c) indicates that both LVC and HVC contribute to the decoding of
motion information, with significant weight attributed to MT and TPOJ. This observation is consistent
with previous work (Born & Bradley (2005)), which validates the function of MT and TPOJ in visual
motion perception and processing.
We also identify the following findings in Figure 8: (1) MT shows significant activation for semantic
decoding. This observation aligns with the functional segregation and interaction between the dorsal
and ventral pathways during dynamic visual input processing (Ingle et al. (1982)). Specifically,
the dorsal-dorsal pathway is associated with action control, whereas the ventral-dorsal pathway is
involved in action understanding and recognition (Rizzolatti & Matelli (2003)). This finding aligns
with the latter. (2) V1 is predominantly activated when decoding motion features, reflecting the visual
system’s parallel processing capability. Motion information in the dorsal pathway does not strictly
follow hierarchical processing (Zeki & Shipp (1988)). As noted by Nassi et al. (Nassi & Callaway
(2009)), V1 directly projects motion-related information, such as direction and speed, to MT for
further processing. For detailed neurobiological explanations, please refer to the Appendix G.

7 CONCLUSION

We introduce a video reconstruction model (Mind-Animator) that decouples semantic, structural, and
motion information from fMRI, achieving state-of-the-art performance across 3 public datasets. We
mitigate the interference of external video data on motion information decoding through a rational ex-
perimental design. The results of the shuffle test demonstrate that the motion information we decoded
indeed originates from fMRI, rather than being a spontaneity from generative model. Additionally,
the visualization of voxel-wise and ROI-wise importance maps substantiate the neurobiological
interpretability of our model.

8 ETHICS STATEMENT

The pursuit of unraveling and emulating the brain’s intricate visual processing systems has been a
cornerstone endeavor for researchers in computational neuroscience and artificial intelligence. Recent
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advancements in neural decoding and the reconstruction of visual stimuli from brain activity have
opened up numerous possibilities, fueling concerns about the potential harmful use cases of mind
reading.
We argue that these concerns can be alleviated for two main reasons: (1) Mind reading requires
brain activity recording devices with very high spatial resolution, and data acquisition systems like
fMRI, which possess high spatial resolution, are not easily portable; (2) Although there are now
several portable brain activity recording devices, achieving mind reading would require the subject to
maintain intense focus and cooperate with the data collection process.
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Animate Your Thoughts: Decoupled Reconstruction of
Dynamic Natural Vision from Slow Brain Activity
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A RELATED WORK

A.1 RECONSTRUCTING HUMAN VISION FROM BRAIN ACTIVITIES

RECONSTRUCTING IMAGES FROM BRAIN ACTIVITIES

Building on Haxby et al. (2001)’s seminal work, the field of neural decoding has seen a proliferation
of tasks with significant implications for guiding research. These tasks can be broadly classified into
three categories: stimulus classification, identification, and reconstruction, with the latter being the
most challenging and the focus of our study.
Traditional image reconstruction techniques rely on linear regression models to correlate fMRI with
manually defined image features (Kay (2008); Naselaris et al. (2009); Fujiwara et al. (2013)), yielding
blurry results and a heavy reliance on manual feature selection. However, the advent of deep learning
has revolutionized this domain. Deep neural networks (DNNs) have become increasingly prevalent for
their ability to address the scarcity of stimulus-fMRI pairs through semi-supervised learning (Chapelle
et al. (2009)), as demonstrated by Beliy et al. (2019) and Gaziv et al. (2022). Yet, these models often
fail to capture discernible semantic information. Chen et al. (2023) employed a pre-training and
fine-tuning approach on fMRI data, leveraging methods akin to Masked Autoencoder(MAE) (He
et al. (2022a)) and Latent Diffusion Models(LDM) (Rombach et al. (2022)) to improve reconstruction
quality. Ozcelik et al. (2022) and Gu et al. (2022) utilized self-supervised models for feature extraction,
followed by iterative optimization to refine the reconstruction process. The integration of semantic
information from text, facilitated by Contrastive Language-Image Pre-Training (CLIP) (Radford et al.
(2021)), has been instrumental in reconstructing complex natural images. Lin et al. (2022) and Takagi
& Nishimoto (2023) demonstrated the potential of aligning fMRI with CLIP representations and
mapping fMRI to text and image features for high-fidelity reconstruction.
While rapid advancements have been made in stimulus reconstruction, with some researchers achiev-
ing reconstructions from brain signals that closely approximate the original stimuli, the majority of
prior work has focused on static image reconstruction. This study, however, shifts the focus to the
more challenging task of video reconstruction.

RECONSTRUCTING VIDEOS FROM BRAIN ACTIVITIES

Compared to image reconstruction, the challenge in video reconstruction lies in the significant
discrepancy between the temporal resolution of fMRI (0.5Hz) and the frame rate of the stimulus
video (30Hz), which presents a substantial challenge in modeling the mapping between fMRI signals
and video content. To overcome the challenge, Nishimoto et al. (2011) transformed the video
reconstruction task into a identification problem, employing the Motion-Energy model (Adelson
& Bergen (1985)) and Bayesian inference to reconstruct videos from a predefined video library.
Subsequently, Han et al. (2019) and Wen et al. (2018) mapped brain responses to the feature spaces of
DNN to reconstruct down-sampled (with the frame rate reduced to 1Hz) video stimuli. Specifically,
Han et al. mapped fMRI data to a VAEKingma & Welling (2014) pretrained on the ImageNet
ILSVRC2012 Russakovsky et al. (2015) dataset to reconstruct a single frame, while Wen et al.
mapped fMRI data to the feature space of AlexNetKrizhevsky et al. (2012) and used a deconvolutional
neural networkZeiler et al. (2010) to reconstruct a single frame. The aforementioned studies have
preliminarily validated the feasibility of reconstructing video frames from fMRI. Wang et al. (2022)
developed an f-CVGAN that learns temporal and spatial information in fMRI through separate
discriminators (Goodfellow et al. (2020)). To mitigate the scarcity of fMRI-video data, Kupershmidt
et al. (2022) utilized self-supervised learning (Kingma & Welling (2014)) to incorporate a large
amount of unpaired video data. These efforts have validated the feasibility of video reconstruction
from fMRI, albeit with a lack of explicit semantic information in the results. Chen et al. (2024) utilized
contrastive learning to map fMRI to the CLIP representation space and fine-tuned inflated Stable
Diffusion (Rombach et al. (2022); Wu et al. (2023)) on a video-text dataset as a video generation
model, successfully reconstructing coherent videos with clear semantic information for the first time.
However, Chen did not consider structure information such as color and position, and it was uncertain
whether the motion information in the reconstructed videos originated from the fMRI or the video
generation model.

A.2 DIFFUSION MODELS

Diffusion models (Wijmans & Baker (1995); Ho et al. (2020)), a class of probabilistic generative
models, have increasingly rivaled or surpassed the performance of Generative Adversarial Networks
(GAN) (Goodfellow et al. (2020)) in specific tasks within the field of computer vision. Diffusion
models encompass a forward diffusion process and a reverse denoising process, each exhibiting
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Markovian behavior. The forward process incrementally introduces Gaussian noise into the original
image, culminating in a transition to standard Gaussian noise. The forward diffusion process can be
represented as q(xt|xt−1) = N(xt;

√
αtxt−1, (1−αt)I), where t denotes the time step of each noise

addition. The reverse denoising process employs the U-Net (Ronneberger et al. (2015)) architecture
to accurately model the noise distribution at each timestep t. The image synthesis is achieved through
a sequential denoising and sampling procedure, initiated from standard Gaussian noise.
In the context of image generation tasks, the conventional diffusion model executes two Markov
processes in a large pixel space, resulting in substantial computational resource utilization. To
address this issue, Latent Diffusion Models (LDM) (Rombach et al. (2022)) employs a VQ-VAE (Van
Den Oord et al. (2017)) encoder to transform the pixel space into a low-dimensional latent space.
Subsequently, the diffusion model’s training and generation are performed in the latent space, with
the final generated image obtained by utilizing the VQ-VAE decoder. This approach significantly
reduces computational resource requirements and inference time while preserving the quality of
generated images.

A.3 DIFFUSION MODELS FOR VIDEO GENERATION

After achieving significant progress in text-to-image (T2I) generation tasks, diffusion models have
piqued the interest of researchers in exploring their potential for text-to-video (T2V) generation. The
pioneering work by Ho et al. (2022b) , introducing the 3D diffusion U-Net, marked significant progress
in applying Diffusion Models to video generation. This was followed by further advancements by Ho
et al. (2022a) , who utilized a cascaded sampling framework and super-resolution method to generate
high-resolution videos. Subsequent contributions have expanded upon this work, notably with the
incorporation of a temporal attention mechanism over frames by Singer et al. (2022) in Make-A-
Video. Zhou et al. (2022) with MagicVideo, and He et al. (2022b) with LVDM, have integrated
this mechanism into latent Diffusion Models, significantly enhancing video generation capabilities.
However, due to the scarcity of paired text-video datasets and the high memory requirements for
training 3D U-Nets, alternative approaches are being explored. These involve refining pre-trained
T2I models to directly undertake T2V tasks. Khachatryan et al. (2023) introduced two enhancements
to enable zero-shot adaptation of T2I models to T2V tasks: (1) the implementation of cross-frame
attention, ensuring that the generation of each current frame in a video considers information from
preceding frames; and (2) the consideration of inter-frame correlations during noise sampling, rather
than random sampling for each frame independently. Wu et al. (2023) also employed cross-frame
attention and achieved one-shot video editing by fine-tuning partial model parameters on individual
videos.
In this work, tasked with video reconstruction from fMRI, we eschewed the use of pre-trained T2V
models to mitigate the interference of external video data with the decoding of motion information
from fMRI. Inspired by the cross-frame attention mechanism, we adapted a T2I model through
network inflation techniques, enabling it to generate multi-frame videos. Consequently, the generative
model employed in our study has never been exposed to video data, ensuring that the motion
information in the reconstructed videos is solely derived from the fMRI decoding process.

B DATA PREPROCESSING

For the stimulus videos of the three datasets described below, we segmented them into 2-second clips,
down-sampled the frame rate to 4Hz (i.e. evenly extracting 8 frames), then centrally cropped each
frame, and resized each to a shape of 512×512. Following the approach of Chen et al. (2024), we
employed BLIP2 (Li et al. (2023)) to obtain textual descriptions for each video clip, with lengths not
exceeding 20 words.

B.1 VIDEO CAPTIONING WITH BLIP2
Due to the absence of open-source video captioning models at the time of experimentation, we utilize
the image captioning model BLIP2 to obtain text descriptions corresponding to each video clip. Two
considerations are paramount in the design of the video captioning process: (1) the length of the
text descriptions should not be excessively long, and (2) the text descriptions must reflect the scene
transitions within the video segments. To achieve the first objective, we employ the following prompt:
’Question: What does this image describe? Answer in 20 words or less. Answer:’. Regarding the
second point, we extracte 1st and 6th frames from every set of 8 frames, inputting them into BLIP2
to obtain their text descriptions. Subsequently, we calculate the CLIP similarity between each of
the two text descriptions and 3rd frame. If the difference is no more than 0.05, it indicates minimal
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scene change, leading to the random selection of one text description from either 1st or 6th frame
to represent the video clip. Otherwise, indicating a scene transition, we concatenate the two text
descriptions with ’, then’ to provide a comprehensive textual description of the video clip. PyTorch
code for the video captioning process is depicted in Algorithm 1.

Algorithm 1 PyTorch code for the video captioning process

import torch
import clip
import random
import numpy as np
from PIL import Image
from lavis.models import load_model_and_preprocess

device = torch.device(’cuda:5’)
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device)
model,vis_processors,_=load_model_and_preprocess(name="blip2_t5",
model_type="pretrain_flant5xxl", is_eval=True, device=device)
prompt = "Question: What does this image describe? Answer in 20 words or less. Answer:"

def Video_Captioning(Train_video_path_root):
Train_Captions = []
for i in tqdm(range(18)):

for j in tqdm(range(240)):
frames_root = Train_video_path_root + ’seg{}_{}/’.format(i+1, j+1)
frame1 = Image.open(frames_root + ’0000000.jpg’).convert("RGB")
frame1 = vis_processors["eval"](frame1).unsqueeze(0).to(device)
frame2 = Image.open(frames_root + ’0000056.jpg’).convert("RGB")
frame2 = vis_processors["eval"](frame2).unsqueeze(0).to(device)
frame_mid = Image.open(frames_root + ’0000024.jpg’).convert("RGB")
clip_image = clip_preprocess(frame_mid).unsqueeze(0).to(device)

caption1 = model.generate({"image": frame1, "prompt": prompt})
caption2 = model.generate({"image": frame2, "prompt": prompt})

text1 = clip.tokenize(caption1).to(device)
text2 = clip.tokenize(caption2).to(device)

with torch.no_grad():
image_features3 = clip_model.encode_image(clip_image)
text_features1 = clip_model.encode_text(text1)
text_features2 = clip_model.encode_text(text2)

cos_sim1 = torch.cosine_similarity(image_features3, text_features1)
cos_sim2 = torch.cosine_similarity(image_features3, text_features2)

if abs(cos_sim1 - cos_sim2) <= 0.05:
number = random.random()
if number >= 0.5:

caption = caption1[0]
else:

caption = caption2[0]
else:

caption = caption1[0] + ’, and then ’ + caption2[0]
Train_Captions.append(caption)

Train_Captions = np.array(Train_Captions)
return Train_Captions

B.2 CC2017

CC2017 (Wen et al. (2018)) dataset was first used in the work of Wen et al. (2018) This dataset
include fMRI data from 3 subjects who view a variety of movie clips (23°×23°) with a central
fixation cross (0.8°×0.8°). Clips are divided into 18 training movies and 5 testing movies, each eight
minutes long, presented 2 and 10 times to each subject, respectively. MRI (T1 and T2-weighted) and
fMRI data (2-second temporal resolution) are acquired using a 3-T system. The fMRI volumes are
processed for artifact removal, motion correction (6 DOF), registered to MNI space, and projected
onto cortical surfaces coregistered to a template.
To extract voxels in the activated visual areas, we calculate the correlation of the time series for each
voxel’s activation across 2 trials within the training set. Subsequently, we apply Fisher’s z-transform
to the computed correlations, average the results across 18 sessions, and identify the most significant
4500 voxels using a paired t-test to form a mask. This mask is computed separately for each of the
3 subjects on their respective training sets and then applied to both training and test set data, with
the selected voxels averaged across trials. Following the work of Nishimoto et al. (2011) and Han
et al. (2019) , we utilize BOLD signals with a 4-second lag to represent the movie stimulus responses,
thereby accounting for the hemodynamic response delay.
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B.3 HCP
This dataset is part of the Human Connectome Project (HCP) (Marcus et al. (2011)), encompassing
BOLD (blood-oxygen-level dependent) responses from 158 subjects. For the subsequent experiments,
three subjects (100610, 102816, and 104416) are randomly selected from this dataset. Data acquisition
is performed using a 7T MRI scanner with a spatial resolution of 1.6 millimeters and a repetition
time (TR) of 1 second. The utilized BOLD signals undergo standard HCP preprocessing procedures,
which include correction for head motion and distortion, high-pass filtering, and removal of temporal
artifacts via independent component analysis (ICA). The preprocessed BOLD responses are then
registered to the MNI standard space.
Due to the difficulty in directly acquiring fMRI data from multiple trials, we directly utilize the
parcellation of the human cerebral cortex proposed by Glasser et al. (2016) to extract voxels within
the activated visual cortex. The resulting ROIs we extract include: V1, V2, V3, hV4, PPA, FFA, LO,
PHC, MT, MST, and TPOJ, totaling 5820 voxels. Following the work of Nishimoto et al. (2011)
and Han et al. (2019) , we utilize BOLD signals with a 4-second lag to represent the movie stimulus
responses, thereby accounting for the hemodynamic response delay. Given that no prior work has
conducted video reconstruction experiments on these three subjects from the HCP dataset, except
for Wang et al. (2022), we randomly shuffle all video segments and allocate 90% for the training set,
with the remaining 10% reserved for the test set.

B.4 ALGONAUTS2021
This dataset is publicly released for the 2021 Algonauts Challenge (Cichy et al. (2021)). During data
acquisition, 10 participants passively view 1100 silent videos of everyday events, each approximately
3 seconds in duration, presented three times. The participants’ fMRI is recorded using a 3T Trio
Siemens scanner with a spatial resolution of 2.5 millimeters and a repetition time (TR) of 1.75 seconds.
The fMRI preprocessing involves steps such as slice-timing correction, realignment, coregistration,
and normalization to the MNI space. Additionally, the fMRI data are interpolated to a TR of 2
seconds.
The dataset has been officially preprocessed, allowing us to extract brain responses from nine regions
of interest (ROIs) within the visual cortex, including four primary and intermediate visual cortical
areas V1, V2, V3, and V4, as well as five higher visual cortical areas: the Extrastriate Body Area
(EBA), Fusiform Face Area (FFA), Superior Temporal Sulcus (STS), Lateral Occipital Cortex (LOC),
and Parahippocampal Place Area (PPA). These areas selectively respond to body, face, biological
motion and facial information, objects, and scene information, respectively. In the experiment, the
average neural response across three stimulus repetitions is taken for brain activity. As the test set
data are not yet public, we utilize the first 900 sets of data for training and the 900-1000 sets for
testing.

B.5 DATA ACQUISITION

The open-source datasets used in this paper can be accessed via the following links:

(1) CC2017: https://purr.purdue.edu/publications/2809/1

(2) HCP: https://www.humanconnectome.org/

(3) Algonauts2021: http://algonauts.csail.mit.edu/2021/index.html

C IMPLEMENTATION DETAILS

C.1 HYPERPARAMETER SETTINGS

For all three datasets employed in the experiments, during the training of the Semantic Decoder,
we set α to 0.5, λ1 to 0.01, and λ2 to 0.5. The batch size is set to 64, and the learning rate is set to
2e-4, with training conducted 100 epochs. Given the critical role of data volume and augmentation
methods in the training of contrastive learning models, and the scarcity of video-fMRI paired data, we
implement specific data augmentation techniques to prevent overfitting. For fMRI data, we randomly
select 20% of the voxels during each iteration, zero out 50% of their values. For image data, we
randomly crop one frame from eight video frames to a size of 400x400 pixels, and then resize it
to 224x224. When extracting the CLIP image features v for each video, we input each frame into
the CLIP visual encoder and then compute the average across all frames. For text data, due to the
presence of similar video clips in the training set (derived from a complete video segment), BLIP2
often provide identical textual descriptions, which leads to overfitting. To mitigate this, we apply
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more aggressive augmentation techniques. For an input sentence, we perform Synonym Replacement
with a 50% probability and Random Insertion, Random Swap, and Random Deletion with a 20%
probability each.
During the training of the Structural Decoder, we set the batch size to 64 and the learning rate to
1e-6. To stabilize the learning process, we conduct the training process for 100 epochs with a 50-step
warmup.
When training the Consistency Motion Generator, we set the patch size to 64 and the mask ratio of
the Sparse Causal mask to 0.6 during the training phase, with a batch size of 64 and a learning rate of
4e-5. Similarly, for stability, we implement a 50-step warmup followed by 300 epochs of training.
Taking three subjects from the CC2017 dataset as an example, we utilize the first 4000 data points as
the training set and the subsequent 320 data points as the validation set. Following this, we retrain
the model on the entire training set, which comprises 4320 data points. The loss curve is depicted in
Figure 9 .

Epoch

Loss

Figure 9: The training and validation loss curves for subject 1 in the CC2017 dataset.

According to Figure 9, in the inference phase, we utilize model parameters saved at the 30th, 75th,
and 70th epochs for the Semantic Decoder, Structural Decoder, and Consistency Motion Generator,
respectively. For the generative model, we employ inflated Stable Diffusion V1-5. Given that Stable
Diffusion operates on Gaussian-distributed latent space inputs (i.e., ZT ) for Text-to-Image task, and
the distribution of decoded structural information does not align with this, we apply 250 steps of
Gaussian smoothing to it, which includes 50 steps of ddim inversion. All experiments are conducted
on an A100 80G GPU, with the training phase taking 8 hours and the inference phase taking 12 hours
for each dataset.

C.2 EVALUATION METRIC IMPLEMENTATION

SEMANTIC-LEVEL

This algorithm performs the N-trial n-way top-1 classification test. We describe our evaluation method
in Algorithm 2. For the image-based scenario, we utilize a Vision Transformer (ViT) (Dosovitskiy
et al. (2021)) pre-trained on ImageNet as the classifier. For video-based scenario, a pre-trained
VideoMAE (Tong et al. (2022)) is employed as the classifier.

SPATIOTEMPORAL-LEVEL

Considering the input to the video reconstruction task contains substantial noise, there are instances
where every pixel of each reconstructed video frame is either zero or noise, which would artificially
inflate the CLIP score if used directly. Therefore, we calculate the CLIP score only when the
VIFI-CLIP value exceeds the average level; otherwise, we assign a score of 0.

SHUFFLE TEST

Since not every test sample is accurately reconstructed, some fail to be reconstructed in terms of
semantics, structure, or motion information, and some reconstruction results are entirely noise (failed
samples are detailed in Appendix E.6.3). Therefore, it is meaningless to perform the shuffle test on
the entire test set; we only conduct the shuffle test on the samples that are successfully reconstructed.
For details, please refer to the open-source code.
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Algorithm 2 N-trial n-way top-1 classification test
1: Input pre-trained classifiers Cimage(·), Cvideo(·), video pair (Generated Video x, Corresponding

GT Video x̂), mode(video-based or image-based)
2: Output success rate r ∈ [0, 1]
3: if mode=’video-based’ then
4: for N trials do
5: ŷ ← Cvideo(x̂) get the ground-truth class
6: {p0, ..., p399} ← Cvideo(x) get the output probabilities
7: {pŷ, py1

, ..., pyn−1
} ← pick n-1 random classes

8: success if argmax
y
{pŷ, py1

, ..., pyn−1
} = ŷ

9: end for
10: r = number of success / N
11: else
12: for 8 frames do
13: for N trials do
14: ŷi ← Cimage(x̂i) get the ground-truth class
15: {p0, ..., p999} ← Cimage(xi) get the output probabilities
16: {pŷi , pyi,1 , ..., pyi,n−1} ← pick n-1 random classes
17: success if argmax

yi

{pŷi , pyi,1 , ..., pyi,n−1} = ŷi

18: end for
19: ri = number of success / N
20: end for
21: r =

∑8
i=1 ri/8

22: end if

D MODEL ARCHITECTURE

D.1 DEFINITION OF FREQUENTLY USED SYMBOLS

The symbols frequently used in this work are defined in Table 7.

D.2 CONSISTENCY MOTION GENERATOR

Figure 4 illustrates the Consistency Motion Generator, which is primarily composed of two modules:
the Temporal Module and the Spatial Module.
The Temporal Module is tasked with learning the temporal dynamics from the visible frames. Given
the severe information redundancy between video frame tokens, we specifically design a Sparse
Causal mask. As shown in Figure 4 on the top, during training, the mask is divided into fixed
and random components. The fixed mask ensures that each frame cannot access information from
subsequent frames, while the random mask maintains sparsity among visible frames, preventing the
model from taking shortcuts (Tong et al. (2022)) and accelerating training. During inference, we
eliminate the random mask to allow full utilization of information from all preceding frames for
predicting future frames.
Since a single fMRI frame captures information from several video frames, we design a cross attention
mechanism within the Spatial Module to extract the necessary temporal and spatial information for
predicting the next frame token from the fMRI data.

D.3 TEXT-TO-IMAGE NETWORK INFLATION

To leverage pre-trained weights from large-scale image datasets, such as ImageNet, for the pre-training
of massive video understanding models, Carreira & Zisserman (2017) pioneered the expansion of
filters and pooling kernels in 2D ConvNets into the third dimension to create 3D filters and pooling
kernels. This process transforms N×N filters used for images into N×N×N 3D filters, providing a
beneficial starting point for 3D video understanding models by utilizing spatial features learned from
large-scale image datasets.
In the field of generative model, several attempts have been made to extend generative image models
to video models. A key technique employed in this work involves augmenting the Query, Key, and
Value of the attention module, as illustrated below:

Q = WQ · zvi , K = WK · [zv0 , zvi−1 ], V = WV · [zv0 , zvi−1 ], (9)
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Table 7: Definition of frequently used symbols

Symbol Definition
X Voxel space
Y Pixel space

Z(k) Feature space, k ∈ {semantic, structure,motion}
D(k) Feature decoder, k ∈ {semantic, structure,motion}
Φ(·) Encoder of pretrained VQ-VAE

MLP (·) Trainable multilayer perceptron
Emb(·) Linear embedding layer

n Number of voxels
xi i-th fMRI activity pattern, xi ∈ R1×n

vi,j Frames of i-th video , vi,j ∈ R1×3×512×512, j ∈ [1, 8]
ci i-th text condition of Stable Diffusion, ci ∈ R1×20×768

fi i-th fMRI embedding, fi ∈ R1×512

vi i-th video embedding in CLIP space, vi ∈ R1×512

ti i-th text embedding in CLIP space, ti ∈ R1×512

WQ,WK ,WV Projection matrices of attention mechanisms
τ Learned temperature parameter

α, λ1, λ2 Hyperparameters of semantic loss function
L Number of CMG blocks

dtoken Dimension of frame tokens
B Batch size
∥ · ∥2 L2-norm operator
s(·, ·) Cosine similarity

where zvi denotes the latent of the i-th frame during the generation process.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 THE IMPACT OF DIFFERENT SPATIAL-TEMPORAL ARCHITECTURE DESIGNS.
Due to computational resource constraints, we adopted a design in the CMG architecture that separates
temporal and spatial attention modules. To capture motion information between video frames from
fMRI, we designed distinct interactions between the temporal and spatial information of fMRI and
video data.
For feature interaction, we primarily adopt two strategies:

(1) Cross-attention: As shown in Eq. (10), we treat video representations as Queries and fMRI
representations as Keys and Values, using cross-attention to extract useful spatial and temporal
information from fMRI.

zl =CrossAttention(Q,K,V), l = 1, 2, . . . , L

Q =WQ
l · zl, K = WK

l · Emb(f), V = WV
l · Emb(f). (10)

(2) Adaptive layer normalization: Inspired by the success of space-time self-attention in video
modeling, we modulate the spatial and temporal information of video representations using fMRI
representations, as shown in Eq. (11).

adaLN(zl, f) = Emb(f)scaleLayerNorm(zl) + Emb(f)shift. (11)

As shown in Figure 10, we designed four different architectures for the Spatial-Temporal Fusion
Layer (STFL). Under the same hyperparameters used in Section C, the training/validation loss curves
for these architectures are presented in Figure 11.
As shown in Figure 11, regardless of whether cross-attention or adaptive layer normalization is
used, any interaction between fMRI representations and temporal information in the video leads
to extreme instability in training and difficulty in convergence. We hypothesize that this is due to
the significantly lower temporal resolution of fMRI compared to video stimuli, making it difficult
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Figure 10: Variants of the Spatial-Temporal Fusion Layer.

(a) Loss curve for STFL-1 (b) Loss curve for STFL-2 (c) Loss curve for STFL-3 (d) Loss curve for STFL-4

Figure 11: Loss curves for variants of the Spatial-Temporal Fusion Layer.
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to explicitly extract useful temporal information from fMRI. Therefore, in the design of the CMG,
we only allow interaction between fMRI representations and spatial information in the video. For
temporal information, we use a sparse causal random mask to implicitly learn motion information
between frames.

E.2 A DETAILED PARAMETER SENSITIVITY ANALYSIS ON PATCH SIZE.

Table 8: Parameter sensitivity analysis on Patch size.

Patch size
Semantic-level ↑ Pixel-level ↑ ST-level

2-way-I 2-way-V VIFI-score SSIM PSNR Hue-pcc CLIP-pcc↑ EPE↓
4 0.704 0.792 0.495 0.214 10.257 0.756 0.072 8.473
8 0.698 0.794 0.477 0.148 9.744 0.720 0.043 9.935

16 0.675 0.778 0.481 0.139 9.773 0.761 0.049 7.625
32 0.718 0.798 0.503 0.176 9.330 0.751 0.094 7.671
64 0.812 0.841 0.602 0.321 9.124 0.774 0.425 5.580

We conducted detailed experiments to investigate the sensitivity of video reconstruction to patch size.
As shown in Table 8, setting a smaller patch size hinders the model’s learning. This is because a
smaller patch size results in a larger number of patches, forcing fine-grained patch-level interactions
between fMRI and video representations. However, the low signal-to-noise ratio of fMRI does not
support such fine-grained interactions, and the excessive noise may even degrade the quality of the
video representations.

E.3 A DETAILED PARAMETER SENSITIVITY ANALYSIS ON λ1 AND λ2 .

(�) �1 = 0 (�) �2 = 0

Figure 12: Loss curves for variants of λ1 and λ2.

Table 9: Parameter sensitivity analysis for variants of λ1 and λ2 on subject 1 of CC2017 dataset.
100 repetitions are conducted on the metrics 2-way-I and 2-way-V, while 1 trial is performed on
other metrics, with the results being averaged across all samples in test set and trials. Colors reflect
statistical significance (paired t-test) compared to our model. p < 0.0001 (purple); p < 0.01 (pink); p < 0.05
(yellow); p > 0.05 (green).

Model Semantic-level↑ Pixel-level↑ ST-level
2-way-I 2-way-V VIFI-score SSIM PSNR Hue-pcc CLIP-pcc↑ EPE↓

λ1 = 0.01, λ2 = 0.25 0.765 0.825 0.581 0.318 10.199 0.780 0.396 6.025
λ1 = 0.005, λ2 = 0.5 0.786 0.824 0.591 0.320 9.109 0.776 0.407 5.898

λ1 = 0.01, λ2 = 0.5 (Ours) 0.812 0.839 0.604 0.319 9.116 0.778 0.413 5.572

We conducted a sensitivity analysis on the selection of λ1 and λ2 using sub1 from the CC2017 dataset.
As shown in Figure 12, when either λ1 or λ2 is set to 0, the semantic decider fails to converge,
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indicating that both the contrastive loss and projection loss play crucial roles in decoding semantic
information. In Table 9, we set λ1 = 0.01 and λ2 = 0.5 to ensure that both loss terms are balanced
during optimization. When either λ1 or λ2 is adjusted, breaking this balance does not affect the
structural level metrics of the reconstruction results, but it does impact the semantic and ST level
metrics.

E.4 A DETAILED PARAMETER SENSITIVITY ANALYSIS ON α AND MASK RATIO.

Table 10: Parameter sensitivity analy-
sis on contrastive learning on subject 1 of
CC2017 dataset. Colors reflect statistical
significance (paired t-test with Bonferroni
correction) compared to Our Model. p <
0.0001 (purple); p < 0.01 (pink); p < 0.05 (yellow);
p > 0.05 (green).

Semantic-level↑
2-way-I 2-way-V VIFI-score

α=0
(w/o fMRI-T) 0.794 0.833 0.594

α=0.25 0.792 0.823 0.593
α=0.5

(Our Model) 0.812 0.839 0.604
α=0.75 0.791 0.832 0.594
α=1.0

(w/o fMRI-V) 0.787 0.812 0.584

Table 11: Parameter sensitivity analysis on sparse
causal mask ratio on subject 1 of CC2017 dataset.
Colors reflect statistical significance (paired t-test with
Bonferroni correction) compared to Our Model. p <
0.0001 (purple); p < 0.01 (pink); p < 0.05 (yellow); p > 0.05
(green).

Models
Pixel-level ↑ ST-level

SSIM PSNR Hue-pcc CLIP-pcc↑ EPE↓
Ratio=0 0.297 9.037 0.758 0.397 5.896

Ratio=0.2 0.276 8.847 0.767 0.382 5.311
Ratio=0.4 0.285 9.045 0.768 0.404 5.375
Ratio=0.6

(Our Model)
0.319 9.116 0.778 0.413 5.572

Ratio=0.8 0.296 9.057 0.767 0.409 5.733

During the training of Semantic Decoder, we control the weighting of the contrastive learning
loss between fMRI-text ( LBiInfoNCE(f, t) ) and fMRI-video ( LBiInfoNCE(f, v) ) through the
hyperparameter α. We set different values for α (0, 0.25, 0.5, 0.75, 1.0), where α=0 signifies the
exclusion of LBiInfoNCE(f, t), and α=1 signifies the exclusion of LBiInfoNCE(f, v). Table 10
indicates that despite achieving optimal results for the three semantic-level metrics when α is set to
0.5, variations in α do not significantly affect the results, except when α is 1, suggesting that the
contrastive learning loss of fMRI-video predominates. During the training of CMG, we set multiple
values for the mask ratio (0, 0.2, 0.4, 0.6, 0.8) and calculate the results on pixel-level and ST-level
metrics, as shown in Table 11. The results indicate that setting a moderate mask ratio (0.6) can
prevent the model from taking shortcuts during training and effectively capture the temporal features
between frames.

E.5 SUPPLEMENTARY ABLATION STUDIES ON SUBJECTS 2 AND 3 OF THE CC2017 DATASET

Figure 13: Loss curves for CMG with or without fMRI guidance.

We also analyze the impact of different decoders on video reconstruction performance on subjects 2
and 3 of the CC2017 dataset, as shown in Tables 12 and 13. It is evident from the aforementioned
tables that the removal of semantic decoder leads to a significant decline in all metrics, whereas
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Table 12: Ablation study on subject 2 of CC2017 dataset. 100 repetitions are conducted on the
metrics 2-way-I and 2-way-V, while 5 trial is performed on other metrics, with the results being
averaged across all samples in test set and trials. Colors reflect statistical significance (paired t-test)
compared to the Full Model. p < 0.0001 (purple); p < 0.01 (pink); p < 0.05 (yellow); p > 0.05 (green).

Model Semantic-level↑ Pixel-level↑ ST-level
2-way-I 2-way-V VIFI-score SSIM PSNR Hue-pcc CLIP-pcc↑ EPE↓

w/o Semantic 0.675 0.769 0.519 0.081 7.944 0.739 0.131 8.457
w/o Structure 0.806 0.826 0.566 0.167 8.700 0.801 0.302 8.011
w/o Motion 0.810 0.829 0.523 0.265 9.080 0.780 0.326 7.431

w/o fMRI guidance 0.788 0.832 0.583 0.290 10.132 0.797 0.343 7.571

Full Model 0.811 0.827 0.609 0.292 9.250 0.790 0.423 5.329

Table 13: Ablation study on subject 3 of CC2017 dataset. 100 repetitions are conducted on the
metrics 2-way-I and 2-way-V, while 5 trial is performed on other metrics, with the results being
averaged across all samples in test set and trials. Colors reflect statistical significance (paired t-test)
compared to the Full Model. p < 0.0001 (purple); p < 0.01 (pink); p < 0.05 (yellow); p > 0.05 (green).

Model Semantic-level↑ Pixel-level↑ ST-level
2-way-I 2-way-V VIFI-score SSIM PSNR Hue-pcc CLIP-pcc↑ EPE↓

w/o Semantic 0.673 0.778 0.523 0.084 8.109 0.738 0.136 7.891
w/o Structure 0.810 0.831 0.566 0.186 8.619 0.794 0.299 7.415
w/o Motion 0.808 0.826 0.583 0.272 8.953 0.779 0.366 6.588

Full Model 0.792 0.823 0.607 0.348 9.287 0.791 0.419 5.356

the removal of the other two decoders does not significantly affect the semantic metrics, thereby
highlighting the crucial role of the semantic decoder in video reconstruction.

E.6 FURTHER RESULTS ON THE CC2017 DATASET

E.6.1 THE RESULTS OF FINE-TUNING STABLE DIFFUSION ON THE VIDEO DATASET USED IN
OUR MODEL.

Table 14: The effect of fine-tuning Stable Diffusion on the video dataset for video reconstruction.
The term "SD-video-finetuning" refers to the fine-tuning of Stable Diffusion on video segments from
the CC2017 dataset, similar to the approach taken by Chen et al. (Chen et al. (2024))

Models Training data
Semantic-level ↑ Pixel-level ↑ ST-level

2-way-I 2-way-V VIFI SSIM PSNR Hue-pcc CLIP↑ EPE↓
SD-video-finetuning CC2017 0.813 0.851 0.599 0.325 9.467 0.774 0.413 5.520

Ours CC2017 0.805 0.830 0.608 0.321 9.220 0.786 0.425 5.422

It is noteworthy that Kupershmidt et al. (2022) incorporated an additional video dataset during model
training, while Chen et al. (2024) fine-tuned Stable Diffusion on video segments from the CC2017
dataset, which contributed to the enhanced performance of their model. To enable a fair comparison
with them, we further fine-tuned the image diffusion model using videos from the CC2017 dataset
(SD-video-finetuning). As shown in Table 14, fine-tuning on video data enhances the reconstruction
of semantic and structural features, resulting in more vivid and fluid videos. However, the motion
priors from the external video data interfere with the motion information decoded from fMRI, leading
to a decrease in spatiotemporal consistency (e.g., EPE) between the reconstructed and original videos.
This highlights the rationale behind our design choice to generate each frame of the video using an
inflated image generation model.

E.6.2 COMPREHENSIVE QUANTITATIVE COMPARISON RESULTS ON THE CC2017 DATASET.
The individual quantitative comparison results on the CC2017 dataset for the three subjects are
displayed in Table 15.
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Table 15: Quantitative comparison of reconstruction results on three subjects.

Sub ID Models
Semantic-level ↑ Pixel-level ↑ ST-level

2-way-I 2-way-V VIFI-score SSIM PSNR Hue-pcc CLIP-pcc↑ EPE↓

sub 01

Nishimoto (Nishimoto et al. (2011)) 0.727 —— —— 0.116 8.012 0.753 —— ——
Wen (Wen et al. (2018)) 0.758 —— —— 0.114 7.646 0.647 —— ——

Kupershmidt (Kupershmidt et al. (2022)) 0.764 0.771 0.585 0.135 8.761 0.606 0.386 ——
f-CVGAN (Wang et al. (2022)) 0.713 0.773 0.596 0.118 11.432 0.589 0.402 6.348
Mind-video (Chen et al. (2024)) 0.792 0.853 0.587 0.171 8.662 0.760 0.408 6.119

Ours 0.812 0.841 0.602 0.321 9.124 0.774 0.425 5.580

sub 02

Nishimoto (Nishimoto et al. (2011)) 0.787 —— —— 0.112 8.592 0.713 —— ——
Wen (Wen et al. (2018)) 0.783 —— —— 0.145 8.415 0.626 —— ——

Kupershmidt (Kupershmidt et al. (2022)) 0.776 0.766 0.591 0.157 11.914 0.601 0.382 ——
f-CVGAN (Wang et al. (2022)) 0.727 0.779 0.596 0.107 10.940 0.589 0.404 6.277
Mind-video (Chen et al. (2024)) 0.789 0.842 0.595 0.172 8.929 0.773 0.409 6.062

Ours 0.811 0.827 0.615 0.292 9.250 0.791 0.429 5.329

sub 03

Nishimoto (Nishimoto et al. (2011)) 0.712 —— —— 0.128 8.546 0.746 —— ——
Wen (Wen et al. (2018)) —— —— —— —— —— —— —— ——

Kupershmidt (Kupershmidt et al. (2022)) 0.767 0.766 0.597 0.128 11.237 0.641 0.377 ——
f-CVGAN (Wang et al. (2022)) 0.722 0.778 0.584 0.098 10.758 0.572 0.392 6.408
Mind-video (Chen et al. (2024)) 0.811 0.848 0.597 0.187 9.013 0.771 0.410 6.193

Ours 0.792 0.823 0.607 0.349 9.287 0.794 0.421 5.356

GT

Sub1

Sub2

Sub3

Figure 14: The reconstruction results on three subjects from the CC2017 dataset.
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E.6.3 MORE RECONSTRUCTION RESULTS ON MULTIPLE SUBJECTS

Due to the anatomical and functional connectivity differences among subjects, even when presented
with the same stimulus video, different brain signals are elicited. Consequently, we train the Mind-
Animator on three subjects from the CC2017 dataset separately, with the reconstruction results shown
in Figure 14. It can be observed that, despite training and applying the model directly to the three
subjects without additional modifications, the reconstruction outcomes are largely consistent, which
substantiates the effectiveness of our model.
However, as it is challenging to obtain a large volume of brain signals from the same subject, the
direct extension of a model trained on one subject to others, or the direct training using data from
multiple subjects, represents a future research direction that requires further investigation.

Figure 15: More reconstruction results on the CC2017 dataset.

In Figure 15, we present additional reconstruction results from the CC2017 dataset, demonstrating
that our model does not overfit despite the limited data volume. It is capable of decoding a rich
array of video clips, such as two people conversing, an airplane in flight, and a dog turning its head,
among others. These video clips encompass a wide range of natural scenarios found in everyday life,
including human activities, animal behaviors, and natural landscapes.
Additionally, to provide a comprehensive and objective assessment of our model, we also include
some reconstruction failure cases in Figure 16. The primary reasons for these failures are twofold.
Firstly, the inherent data acquisition paradigm leads to abrupt transitions in content at the junction of
video clips, which are evenly segmented from complete videos watched by the subjects during data
collection. As illustrated in the first row of Figure 16, the model often struggles to recognize such
abrupt changes, resulting in the reconstruction of only the scene prior to the transition. Secondly,
errors in feature decoding occur, as shown in the second row of Figure 16. Although the model
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GT

Failed 

results

GT

Failed 

results

Figure 16: Reconstruction failure cases.

successfully decodes an ocean scene, structural decoding errors led to the appearance of numerous
fish in the reconstructed frames.

E.7 FURTHER RESULTS ON THE HCP DATASET

To validate the broad effectiveness of our proposed model across different datasets, we also conduct
experiments on the HCP dataset. The selection of three subjects (100610, 102816, and 104416) aligns
with that of Wang et al. (2022), and the parameter settings for Mind-Animator during both training
and testing are identical to those used on the CC2017 dataset. We replicate Nishimoto et al. (2011) ’s
model on HCP, utilizing video clips from the training sets of both CC2017 and HCP as video priors.
Wang only reports SSIM and PSNR metrics on the HCP dataset. Visual comparisons are presented
in Figure 17, while quantitative comparisons are detailed in Table 16. The results indicate that our
model still performs well across multiple subjects in the HCP dataset.

GT

sub1

GT

sub2

GT

sub3

Figure 17: The reconstruction results on three subjects from the HCP dataset.

E.8 FURTHER RESULTS ON THE ALGONAUTS2021 DATASET

We conduct experiments on the Algonauts2021 competition dataset with 10 subjects, employing the
same parameter settings for Mind-Animator during both training and testing as those used on the
CC2017 dataset. Since no video reconstruction results has previously been published on this dataset,
we replicate Nishimoto et al.’s model as a baseline and utilize video clips from the training sets of
both CC2017 and HCP as video priors. Visual comparisons and quantitative assessments across
various metrics are depicted in Figure 18 and detailed in Table 17, respectively. Although Table 17
indicates that our model outperforms the earlier baseline in nearly all metrics across the 10 subjects,
the reconstructed results presented in Figure 18 are not entirely satisfactory, with some video frames
semantically misaligned with the stimulus video. We attribute this to the scarcity of training data,
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Table 16: Quantitative comparison of reconstruction results on HCP dataset.

Sub ID Models
Semantic-level ↑ Pixel-level ↑ ST-level

2-way-I 2-way-V VIFI-score SSIM PSNR Hue-pcc CLIP-pcc↑ EPE↓

sub 01

Nishimoto (Nishimoto et al. (2011)) 0.658 —— —— 0.307 11.711 0.649 —— ——
Wen (Wen et al. (2018)) 0.728 —— —— 0.052 10.805 0.751 —— ——

f-CVGAN (Wang et al. (2022)) —— —— —— 0.154 13.200 —— —— ——
Mind-video (Chen et al. (2024)) 0.798 0.752 0.605 0.123 9.302 0.774 0.486 12.746

Ours 0.819 0.783 0.613 0.325 10.757 0.820 0.476 7.825

sub 02

Nishimoto (Nishimoto et al. (2011)) 0.661 —— —— 0.338 11.249 0.643 —— ——
Wen (Wen et al. (2018)) 0.688 —— —— 0.055 10.475 0.720 —— ——

f-CVGAN (Wang et al. (2022)) —— —— —— 0.178 13.700 —— —— ——
Mind-video (Chen et al. (2024)) 0.761 0.777 0.611 0.115 9.414 0.804 0.483 7.358

Ours 0.756 0.759 0.609 0.371 11.894 0.834 0.485 6.624

sub 03

Nishimoto (Nishimoto et al. (2011)) 0.657 —— —— 0.319 10.988 0.645 —— ——
Wen (Wen et al. (2018)) 0.691 —— —— 0.067 9.312 0.710 —— ——

f-CVGAN (Wang et al. (2022)) —— —— —— 0.147 12.200 —— —— ——
Mind-video (Chen et al. (2024)) 0.779 0.778 0.612 0.118 9.109 0.803 0.529 7.767

Ours 0.781 0.793 0.634 0.336 11.018 0.834 0.573 6.792

GT

sub2

GT

sub5

GT

sub8

GT

sub9

Figure 18: The reconstruction results on four subjects from the Algonauts2021 dataset.

which renders the video reconstruction task on this dataset challenging, given that the data volume
per subject is approximately one-fifth of that in the CC2017 dataset.
Based on the experimental results across multiple datasets, we can draw the following conclusions:
(1) The volume of training data from a single subject significantly influences the performance of
current video reconstruction models, with greater sample size and data diversity leading to better
reconstruction performance. (2) There is an urgent need to develop a new model using incremental
learning or cross-subject learning methods that can be trained using data collected from different
subjects, which we consider as a direction for future research.
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Table 17: Quantitative comparison of reconstruction results on Algonauts2021 dataset.

Sub ID Models
Semantic-level ↑ Pixel-level ↑ ST-level

2-way-I 2-way-V VIFI-score SSIM PSNR Hue-pcc CLIP-pcc↑ EPE↓

sub 01

Nishimoto (Nishimoto et al. (2011)) 0.688 —— —— 0.446 9.626 0.672 —— ——

Wen (Wen et al. (2018)) 0.653 —— —— 0.147 9.802 0.653 —— ——

Mind-video (Chen et al. (2024)) 0.702 0.761 0.568 0.135 8.642 0.794 0.277 8.368

Ours 0.722 0.790 0.599 0.401 10.088 0.824 0.439 4.420

sub 02

Nishimoto (Nishimoto et al. (2011)) 0.682 —— —— 0.443 9.553 0.676 —— ——

Wen (Wen et al. (2018)) 0.626 —— —— 0.231 8.456 0.677 —— ——

Mind-video (Chen et al. (2024)) 0.698 0.769 0.573 0.132 9.004 0.773 0.265 7.458

Ours 0.734 0.765 0.596 0.465 10.932 0.796 0.425 3.806

sub 03

Nishimoto (Nishimoto et al. (2011)) 0.679 —— —— 0.441 9.576 0.682 —— ——

Wen (Wen et al. (2018)) 0.647 —— —— 0.172 8.973 0.611 —— ——

Mind-video (Chen et al. (2024)) 0.701 0.729 0.564 0.117 8.796 0.806 0.271 7.659

Ours 0.679 0.794 0.591 0.466 11.089 0.863 0.397 3.406

sub 04

Nishimoto (Nishimoto et al. (2011)) 0.702 —— —— 0.446 9.537 0.665 —— ——

Wen (Wen et al. (2018)) 0.592 —— —— 0.087 8.473 0.534 —— ——

Mind-video (Chen et al. (2024)) 0.665 0.785 0.556 0.126 8.439 0.811 0.254 8.011

Ours 0.673 0.810 0.587 0.479 11.410 0.848 0.381 3.089

sub 05

Nishimoto (Nishimoto et al. (2011)) 0.676 —— —— 0.442 9.498 0.650 —— ——

Wen (Wen et al. (2018)) 0.651 —— —— 0.136 7.599 0.589 —— ——

Mind-video (Chen et al. (2024)) 0.664 0.757 0.529 0.140 8.597 0.792 0.263 8.124

Ours 0.689 0.810 0.592 0.458 10.814 0.807 0.406 3.237

sub 06

Nishimoto (Nishimoto et al. (2011)) 0.694 —— —— 0.444 9.526 0.665 —— ——

Wen (Wen et al. (2018)) 0.642 —— —— 0.131 9.675 0.690 —— ——

Mind-video (Chen et al. (2024)) 0.690 0.751 0.549 0.137 9.011 0.795 0.266 7.431

Ours 0.709 0.783 0.597 0.489 11.337 0.834 0.446 3.399

sub 07

Nishimoto (Nishimoto et al. (2011)) 0.674 —— —— 0.446 9.630 0.672 —— ——

Wen (Wen et al. (2018)) 0.628 —— —— 0.215 8.578 0.648 —— ——

Mind-video (Chen et al. (2024)) 0.687 0.721 0.574 0.109 8.409 0.783 0.209 7.652

Ours 0.681 0.802 0.578 0.458 10.889 0.857 0.329 3.845

sub 08

Nishimoto (Nishimoto et al. (2011)) 0.696 —— —— 0.444 9.664 0.662 —— ——

Wen (Wen et al. (2018)) 0.596 —— —— 0.205 9.431 0.610 —— ——

Mind-video (Chen et al. (2024)) 0.658 0.764 0.590 0.114 8.251 0.817 0.204 6.597

Ours 0.709 0.802 0.592 0.467 10.893 0.820 0.376 3.757

sub 09

Nishimoto (Nishimoto et al. (2011)) 0.673 —— —— 0.445 9.573 0.661 —— ——

Wen (Wen et al. (2018)) 0.574 —— —— 0.135 8.675 0.614 —— ——

Mind-video (Chen et al. (2024)) 0.679 0.780 0.609 0.117 8.673 0.784 0.267 8.102

Ours 0.731 0.788 0.594 0.502 11.310 0.820 0.400 3.551

sub 10

Nishimoto (Nishimoto et al. (2011)) 0.685 —— —— 0.441 9.598 0.662 —— ——

Wen (Wen et al. (2018)) 0.638 —— —— 0.265 8.565 0.644 —— ——

Mind-video (Chen et al. (2024)) 0.663 0.770 0.563 0.108 8.912 0.809 0.185 7.524

Ours 0.684 0.777 0.590 0.465 11.128 0.858 0.408 3.533
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F FURTHER RESULTS ON INTERPRETABILITY ANALYSIS

F.1 WHY UTILIZE CONTRASTIVE LEARNING?
It is noted that there has been an increasing body of work utilizing contrastive learning for neural
decoding (Chen et al. (2024); Scotti et al. (2024); Benchetrit et al. (2024)). To explore whether
decoders trained with contrastive learning loss demonstrate advantages over those trained with mean
squared error (MSE) loss in accuracy and generalization, we conduct the retrieval task and employ
t-distributed stochastic neighbor embedding (t-SNE) for visualization.
The retrieval task involves identifying which specific visual stimulus has evoked a given fMRI
response from a predefined set. This task differs from the classification task, which only recognizes
the category of the visual stimulus that evoked the fMRI response. In contrast, the retrieval task
demands a finer level of detail, requiring not just the correct classification but also the precise
identification of the particular visual stimulus. During the training process of the semantic decoder,
we align the fMRI representation to the pre-trained CLIP representational space via a tri-model
contrastive learning loss. This design enables the semantic decoder to be not only applicable to video
reconstruction task but also extends its utility to retrieval task.
To the best of our knowledge, no prior work has been reported on conducting retrieval task using
the CC2017 dataset. Therefore, we train a simple linear regression model and a three-layer MLP as
our baselines. We employ top-10 accuracy1 and top-100 accuracy as evaluation metrics. To validate
the model’s generalization capability, we not only conduct the retrieval task on the CC2017 test set,
comprising 1200 samples and termed the ’small test set’, but also expand the stimulus set to enhance
its scope. Specifically, we integrate 3040 video clips from the HCP dataset into our collection,
creating an extended stimulus set totaling 4,240 samples, which we label as the ’large test set’.

Table 18: Results of retrieval task on CC2017 dataset. For the ’small test set’, the chance-level
accuracies for top-10 and top-100 accuracy are 0.83% and 8.3%, respectively. For the ’large test set’,
the chance-level accuracies for top-10 and top-100 accuracy are 0.24% and 2.4%, respectively.

Dataset CC2017
Subjet1 Subjet2 Subjet3 Average

Model Test set top-10 top-100 top-10 top-100 top-10 top-100 top-10 top-100
Linear + MSE Small 2.25 16.92 3.17 22.25 2.75 19.75 2.72 19.64

3-layer MLP + MSE Small 1.00 9.42 1.42 11.75 0.92 9.50 1.11 10.22
3-layer MLP + Contrast (Ours) Small 3.08 22.58 4.75 26.90 4.50 24.67 4.11 24.72

Linear + MSE Large 1.08 7.83 1.92 10.75 1.92 9.92 1.64 9.50
3-layer MLP + MSE Large 0.42 3.58 0.75 6.83 0.25 1.08 0.47 3.83

3-layer MLP + Contrast (Ours) Large 2.17 12.50 2.25 17.00 2.75 16.42 2.39 15.31

The experimental results of the retrieval task on the CC2017 dataset across three subjects are depicted
in Figure 19 and Table 18. As demonstrated in Table 18, our model outperforms the baseline models
under both ’small test set’ and ’large test set’ conditions. Notably, when the stimulus set is expanded
to nearly four times its original size, the performance of our model does not experience a sharp
decline. This suggests that aligning the model’s latent space to the CLIP representational space
through contrastive learning loss is beneficial for enhancing the model’s generalization capability.
As illustrated in Figure 20, we utilize t-SNE to visualize the predicted CLIP representations of the
models. The visualization results indicate that the linear regression model exhibits the weakest
generalization when performing neural decoding tasks. Increasing the number of layers in the
linear model can improve its generalization ability to some extent. However, model trained with a
contrastive learning loss demonstrate superior generalization performance.

1Top-k accuracy is the percentage of queries where the correct item is among the top k results returned by a
retrieval model.
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True video

Retrieved video

    top-1             top-2            top-3           top-4           top-5             top-6            top-7            top-8            top-9           top-10    

Figure 19: The retrieval performance of our model (trained with contrastive learning loss) on the
CC2017 dataset. This figure showcases the top ten video stimuli retrieved based on fMRI. Owing to
space limitations, a single frame is randomly selected for display from each of the video stimuli.

F.2 WHICH BRAIN REGIONS ARE RESPONSIBLE FOR DECODING DIFFERENT FEATURES,
RESPECTIVELY?

To supplement the bar chart in Figure 8, we normalized the importance values of each ROI in decoding
the three features (semantic, structure, motion) and visualized them in Figure 21. In this figure, darker
colors represent higher contributions of a given ROI during decoding. A horizontal comparison for
each feature reveals the following:
(1) Motion Decoding: V1, V2, MT, and TPOJ regions contribute more significantly to motion
decoding. Notably, MT and TPOJ are regions in the dorsal pathway responsible for processing
motion information. Meanwhile, V1 and V2 transmit motion-related attributes such as speed and
direction directly to MT when processing motion. This finding aligns well with prior results in
neuroscience (Zeki & Shipp (1988); Nassi & Callaway (2009)).
(2) Structure Decoding: Lower-level regions like V1, V2, and V3 show greater contributions to
structure decoding, while higher-level regions such as MT contribute less.
(3) Semantic Decoding: Mid-to-high-level regions, including V4, MT, and MST, play a more
significant role in semantic decoding, while lower-level regions such as V1 and V2 contribute
less. Interestingly, MT, typically a dorsal pathway region for motion processing, shows the highest
contribution to semantic decoding. This phenomenon may be explained by the interplay between the
dorsal and ventral pathways in processing dynamic visual input (Ingle et al. (1982)). Specifically, the
dorsal-dorsal pathway is concerned with the control of action, whereas the ventral-dorsal pathway is
involved in action understanding and recognition (Rizzolatti & Matelli (2003)).
The visualization of voxel-wise and ROI-wise importance maps on Subject 2 and 3 is depicted in the
aforementioned Figures.
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Figure 20: t-SNE visualization presents a comparative analysis of the representations predicted by
three decoders on 1200 samples from the CC2017 test set: a simple linear regression model trained
with MSE loss, our semantic decoder trained with MSE loss, and our semantic decoder trained with
contrastive learning loss. The red dots represent the real CLIP representations, while the blue dots
denote the representations predicted by the decoders. The absolute Pearson correlation coefficient
(i.e. r) between the real and predicted representations is displayed above each subfigure.

Figure 21: Supplementary ROI-wise importance map on subject 1.
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Figure 22: Voxel-wise importance maps projected onto the visual cortex of subject 2. The lighter the
color, the greater the weight of the voxel in the interpretation of feature.

(a) Semantic                                                                   (b) Structure                                 (c) Motion

Figure 23: ROI-wise importance maps in the visual cortex of subject 2.
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Figure 24: Voxel-wise importance maps projected onto the visual cortex of subject 3. The lighter the
color, the greater the weight of the voxel in the interpretation of feature.

(a) Semantic                                                                   (b) Structure                                 (c) Motion

Figure 25: ROI-wise importance maps in the visual cortex of subject 2.
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G SUPPLEMENTARY KNOWLEDGE ON THE MECHANISMS OF DYNAMIC
VISUAL INFORMATION PROCESSING IN THE VISUAL CORTEX.

(a) Parallel visual pathways in humans. The image
is cited from Yamasaki & Tobimatsu (2011).

(b) Multiple input streams to MT. The image is
cited from Nassi & Callaway (2009).

Figure 26: LGN, lateral geniculate nucleus; V1, 2, 3, 4 and 6 are the primary, secondary, tertiary,
quaternary and senary visual cortices, respectively; V5/MT, quinary visual cortex/middle temporal
area; MST, medial superior temporal area; IPL, inferior parietal lobule, SPL, superior parietal lobule;
and IT, inferior temporal cortex; d-d pathway, dorso-dorsal pathway; v-d pathway, ventro-dorsal
pathway.

This study focuses on reconstructing dynamic visual information from brain responses. To validate
the interpretability of our model, we employed cortical projection techniques for visualization. To
facilitate readers’ understanding of the mechanisms underlying how the human brain’s visual cortex
processes motion information, we provide additional explanations in this section.
As shown in Figure 26a, light signals are converted into electrical signals by photoreceptors. The
electrical signals are transmitted through bipolar cells and modulated by horizontal cells and amacrine
cells, reaching the final station of the retina—the retinal ganglion cells (RGCs). The RGCs organize
and compress the stimulus information before forwarding it to the lateral geniculate nucleus (LGN).
Upon receiving signals from the LGN, the visual areas of the cerebral cortex initially process the
information in the V1 region. Subsequently, the signals are divided into two parallel pathways: the
dorsal pathway and the ventral pathway. The dorsal pathway primarily handles motion perception
and spatial vision, while the ventral pathway is mainly responsible for object recognition (Gilbert
& Li (2013)). Although the dorsal and ventral streams clearly make up two relatively separate
circuits, the anatomical segregation between the two streams is by no means absolute (Nassi &
Callaway (2009); Andersen et al. (1990); Blatt et al. (1990); Maunsell & van Essen (1983)). Recently,
the dorsal stream was shown to be divided into two functional streams in primates to mediate different
behavioural goals: the dorsal-dorsal and ventral-dorsal streams (Rizzolatti & Matelli (2003)). The
dorsal-dorsal pathway concerned with the control of action ‘online’ (while the action is ongoing)
and the ventral-dorsal pathway concerned with space perception and ‘action understanding’ (the
recognition of actions made by others).
The ventral pathway exhibits a hierarchical information extraction process (Markov et al.
(2014)). From V1, V2, V4 to the inferior temporal (IT) cortex, neurons progressively encode
information, transitioning from basic visual features (such as orientation and color) to intermediate
shape characteristics, and finally to high-level visual semantics (such as faces, limbs, and scenes). In
contrast, the dorsal pathway does not typically follow a hierarchical information extraction
process but rather adopts a parallel processing approach (Callaway (2005)). As shown in Figure
26b, there are multiple input streams from the LGN to the MT area. The major ascending input to
MT traverses the magnocellular layers of the LGN (yellow) and proceeds through layers 4Cα and
4B of the V1 (Shipp & Zeki (1989); Nassi & Callaway (2009)). Experimental evidence suggests that
the direct pathway from V1 to MT primarily conveys information about motion speed and direction,
while the indirect pathway is responsible for transmitting disparity information (Ponce et al. (2008)).
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