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ABSTRACT

Although convolutional representation of multiscale sparse tensor demonstrated its
superior efficiency to compress the Point Cloud Geometry (PCG) through exploit-
ing cross-scale and same-scale correlations, its capacity was yet bounded. This
is because 1) the fixed receptive field of the convolution cannot best characterize
sparsely and irregularly distributed points; and 2) pretrained convolutions with
fixed weights are insufficient to capture dynamic information conditioned on the
input. This work proposes the Neighborhood Point transFormer (NPFormer) to
replace the existing solutions by taking advantage of both convolution and atten-
tion mechanism to best exploit correlations under the multiscale representation
framework for better geometry occupancy probability estimation. With this aim,
a Neighborhood Point Attention layer (NPA) is devised and stacked with Sparse
Convolution layers (SConvs) to form the NPFormer. In NPA, for each point, it
uses its k Nearest Neighbors (kNN) to construct an adaptive local neighborhood;
and then leverages the self-attention to dynamically aggregate information within
this neighborhood. Compared with the anchor using standardized G-PCC, our
method provides averaged 17% BD-Rate gains and 14% bitrate reduction for re-
spective lossy and lossless modes when compressing the LiDAR point clouds (e.g.
SemanticKITTI, Ford). There are also 20%-40% lossy BD-Rate improvement and
37%-53% lossless bitrate reduction for the compression of object point clouds (e.g.
MVUB, MPEG 8i). Compared with the state-of-the-art solution using attention op-
timized octree codec, our approach requires much less decoding runtime with about
640× speedup on average, while still presenting better compression efficiency.

1 INTRODUCTION

Efficient compression of point clouds is increasingly demanded fast market adoption of virtual reality,
augmented reality, and autonomous machinery technologies in various scenarios that require content
caching and networking for service provisioning (Schwarz et al., 2019). However, it is challenging
because it is hard to exploit inter-correlations among unstructured 3D points. To tackle it, numerous
3D representation models like uniform voxel (Wang et al., 2021c; Guarda et al., 2021; Quach et al.,
2020), octree (Meagher, 1982), multiscale sparse tensor (Wang et al., 2021b;a), etc, are developed to
explicitly specify neighborhood relations upon which rule- or learning-based approaches (Cao et al.,
2021; Quach et al., 2022) are utilized to exploit inter-dependency among points for compression.

Among them, the convolutional representation of multiscale sparse tensor, noted as
SparsePCGC (Wang et al., 2021a), has demonstrated encouraging performance on the compression
of Point Cloud Geometry (PCG). This is mainly because of the utilization of multiscale representa-
tion to effectively exploit cross-scale and same-scale correlations for accurate geometric occupancy
probability approximation, where 3D Sparse Convolution (SConv) is extensively used for neigh-
borhood information characterization and embedding. However, the compression performance of
SparsePCGC is still bounded because SConvs that come with the fixed receptive field and fixed
weights (after training) cannot deal with dynamic content efficiently.

As inspired by the studies in (Park & Kim, 2022; Pan et al., 2022; Guo et al., 2022), we suggest the
Neighborhood Point transFormer (NPFormer) to tackle the aforementioned issues. As in Fig. 1(a),
we follow (Wang et al., 2021a) to use multiscale sparse tensors to process the collection of Positively
Occupied Voxels (POVs) from one scale to another, where dyadic downscaling at all axes (e.g., x-,
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y- and z-axis) in cartesian coordinate system is used to generate multiscale representations. Such
dyadic downscaling is the same as the depth adaptation used in (Huang et al., 2020; Que et al., 2021;
Fu et al., 2022) to squeeze and build parent-child octree structure for correlation exploration.

This work devises a novel Multistage Occupancy Probability Approximation (MOPA) structure to
exploit correlations for occupancy probability estimation, where the MOPA accepts the sparse tensor
of POVs from the preceding scale (e.g., (i− 2)-th), and outputs the probability of each element of
upscaled sparse tenor at the current scale (e.g., (i− 1)-th) for encoding or decoding.

For each POV, we first apply an NPFormer for local information aggregation and embedding. The
POVs with aggregated neighborhood features are then upscaled to generate eight child nodes (octants)
in parallel. Then, the stacked NPFormer and Classifier modules stagewisely process the octants to
produce occupancy probability for compression.

The NPFormer is generally comprised of convolutional layers that use SConv, and Neighborhood
Point Attention (NPA) layers that apply the self-attention to local k Nearest Neighbors (kNN). Note
that instantaneous kNN is formulated for each POV. Together with the self-attention computation, the
NPA layers can best capture the content dynamics, which makes the information embedding more
robust and efficient (Lu et al., 2022).

Extensive experiments have reported the superior efficiency of the proposed method for compressing
various large-scale point clouds. Having the anchor using standard compliant G-PCC (Geometry
based Point Cloud Compression) (WG7, 2021), for LiDAR PCGs using SemanticKITTI and Ford,
our method shows >17% BD-Rate (Bjøntegaard Delta Rate) gain (Bjøntegaard, 2001) for lossy
compression, and > 14% compression ratio improvement in lossless modes, which can be translated
to about 10 absolute percentage points improvement over the respective gains obtained by the
SparsePCGC (Wang et al., 2021a). There is also 20%-40% lossy BD-Rate improvement and 37%-
53% bitrate reduction for compressing object PCGs from MVUB and 8i datasets.

In the meantime, compared with the state-of-the-art (SOTA) OctAttention (Fu et al., 2022) using
attention optimized octree codec, our method not only provides compression improvement, partic-
ularly at high bitrates that are more preferred by high-precision tasks in autonomous driving (e.g.,
≈7% BD-Rate gains from 6 to 16 bpp), but also enormously reduces the decoding complexity to
several orders of magnitude, e.g., less than 6 seconds of the proposed method vs. ≈1 hour of the
OctAttention when decoding SemanticKITTI sequences (about 640× speedup on average in Table 3).

Contributions of this work include: 1) We propose an NPFormer that takes advantage of both
convolution and self-attention for better information aggregation; 2) The proposed NPA dynamically
characterizes and embeds information among k nearest neighbors, and significantly reduces the
complexity, promising attractive prospects for practical applications; 3) Together with the multiscale
sparse tensor representation, the proposed method can better exploit cross-scale and same-scale
correlations with the state-of-the-art efficiency on the compression of various PCGs.

2 RELATED WORK

Explicit 3D Representation Models of PCG. The uniform voxel model (Wang et al., 2021c; Guarda
et al., 2021; Quach et al., 2020) is the most straightforward way for PCG representation, where 3D
convolutions are often utilized. The octree model is a lightweight and effective approach through the
use of parent-child tree decomposition, with which the compression efficiency is improved by carefully
exploiting parent-child dependency. Notable coding solutions using octree include standardized
G-PCC that applies rules-based contexts, and OctSqueeze (Huang et al., 2020), MuSCLE (Biswas
et al., 2020), VoxelContextNet (Que et al., 2021), OctAttention (Fu et al., 2022), etc that utilizes
neural networks like CNN (Convolutional Neural Network), MLP (Multi-Layer Perceptron), and
Transformers to improve the context modeling. Recently, a promising multiscale sparse tensor
representation using stacked sparse convolutions has emerged (Wang et al., 2021b;a) with great
flexibility to exploit cross-scale and same-scale correlations for better compression.

Sparse Convolution. Upon the sparse tensor, it is naturally to apply the SConv as specified in (Choy
et al., 2019):

fout
u =

∑
i∈N3(u,Cin)

Wif
in
u+i for u ∈ Cout, (1)
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Figure 1: Framework. (a) Multiscale Sparse Tensor Representation exploits cross-scale and same-
scale correlations using MOPA (Multistage Occupancy Probability Approximation). Estimated
probability is used to perform the entropy coding and decoding of geometric occupancy. (b) The
architecture of MOPA, each MOPA inputs the sparse tensor of Positively Occupied Voxels (POVs)
from the preceding scale, e.g., (i− 2)-th, to produce occupancy probabilities for encoding/decoding
at the current scale, e.g., (i−1)-th, where the NPFormer first aggregates neighborhood information at
(i−1)-th scale for each POV, then TSConv upscales each POV (w/ aggregated neighborhood features)
to eight child nodes (octants) in parallel and then the stacked NPFormer and Classifier stagewisely
output occupancy probability and determine the occupancy status of each octant. (c) The architecture
of NPFormer and Classifier modules. AE and AD are for Arithmetic Encoding and Decoding. SConv
is Sparse Convolution, and TSConv is Transposed Sparse Convolution.

having Cin and Cout as the coordinate sets for input and output POVs. f in
u and fout

u are input
and output feature vectors at coordinate u. N3(u,Cin) = {i|u + i ∈ Cin, i ∈ N3} defines a 3D
convolutional kernel with a predefined size like 3× 3× 3 or 5× 5× 5, covering a set of locations
centered at u with offset i in Cin. Wi denotes the corresponding kernel weight at offset i centered at
u. As seen, the neighborhood coverage for information aggregation is basically constrained by the
size of convolutional kernel; and as in (1), convolutional weights Wis are fixed after training, which
is incapable of effectively characterizing the dynamics of input unseen in training.

Self-attention & Transformer. Recently, attention mechanism and Transformer are migrated quickly
to process point clouds, showing encouraging results for the different tasks including segmentation,
classification, compression, etc (Guo et al., 2021; Zhao et al., 2021; Engel et al., 2021; Fu et al.,
2022). However, existing solutions often demand huge computational costs and memory consumption
that grows quadratically with the sequence length of underlying tokens. This complexity issue is
of particular importance for practical applications. This work proposes the Neighborhood Point
transFormer (NPFormer) taking advantage of both sparse convolution and Neighborhood Point
Attention (NPA), where NPA not only pursues the local processing for lightweight complexity but
also leverages self-attention weighting for dynamic information embedding.

3 METHOD

Figure 1(a) illustrates the compression framework using multiscale sparse tensor with the proposed
MOPA to accurately estimate the occupancy probability for encoding and decoding. As aforemen-
tioned, dyadic downscaling is enforced to derive multiscale sparse tensors where scale-wise sparse
tensors can be easily mapped to depth-wise octree-structured representation as well. Different from
those octree coding approaches (Huang et al., 2020; Fu et al., 2022) that exploit correlations following
the parent-child tree structure, we leverage cross-scale and same-scale correlations through the use of
MOPA for compression.
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3.1 MOPA - MULTISTAGE OCCUPANCY PROBABILITY APPROXIMATION

Figure 1(b) details the MOPA used in this work. Assuming the input sparse tensor at the (i− 2)-th
scale as the Si−2, the proposed MOPA processes all POVs in it to generate the occupancy probability
of each element of its upscaled sparse tensor S̃i−1 at the (i − 1)-th scale. Note that Si−2 ⊂ S̃i−1

because the elements in S̃i include both POVs and non-POVs. Whether this element is a POV or
non-POV is fully known in encoder for encoding, while the status of POV or non-POV in decoder
is determined by parsing the bitstream, through the use of occupancy probability respectively. The
arithmetic coder is guided by estimated occupancy probablity output by MOPA. The closer the
estimated probability is to the ground truth, the less the compression bitrate according to Shannon’s
theory (Shannon, 1948).

The MOPA includes three major steps. As for the processing from the (i− 2)-th to the (i− 1)-th
scale,

• First, it stacks the NPFormer to aggregate neighborhood information at the (i− 2)-th scale.
The detail of NPFormer will be discussed later.

• Then, each POV with aggregated neighborhood features in Si−2 is upscaled using transposed
SConv, e.g., “TSConv K13, S23”, with convolutional kernel at a size of 1×1×1 and upscaling
stride of 2 at three axis dimensions, and added corresponding offset to generate eight child
nodes (red cubic with number mark); Such operation can be executed in parallel for all
POVs from the (i− 2) scale.

• Third, cascading NPFormer and Classifier modules are devised to stagewisely estimate
the occupancy probability for each child node, where the probability approximation of
succeeding child node (e.g., node “2” red cubic) also includes the occupancy status of
proceeding child node (e.g., node “1” as POV in dark grey cubic). And it is also worth it to
point out that this stage-wise operation is made concurrently for same-group child nodes at
the (i− 1)-th scale that are labeled with the same number but upscaled from different POVs
from the (i− 2)-th scale.

3.2 NPFORMER - NEIGHBORHOOD POINT TRANSFORMER

One advantage of the Transformer is that it can model long-range dependencies, but it incurs
unbearable complexity at the same time. Recent studies (Park & Kim, 2022; Liu et al., 2021; Lu
et al., 2022) have shown that 1) the introduction of inductive bias is beneficial for model training
and convergence; 2) self-attention and convolution are complementary to each other to capture
the full-spectrum information of the underlying signal; 3) The characteristic of self-attention that
dynamically constructs weights conditioned on the input helps to build content-adaptive compression.

As seen in Fig. 1(c), the NPFormer is mainly comprised of the Local Embedding Unit, the NPA layer,
the Layer Normalization layer and the Linear layer.

Local Embedding Unit aims to model neighborhood point contexts from low-level to high-level
semantic primitives through stacked convolutional layers for subsequent NPA. It consists of two
SConv layers and a residual connection (He et al., 2016). Simple ReLU is applied for activation.

Neighborhood Point Attention (NPA). The overall architecture of NPA is shown in Fig. 2. Assuming
the input of a NPA layer is a sparse tensor consisting of din-dimensional features Fin ∈ RN×din and
3-dimensional coordinates Cin ∈ RN×3. We then conduct the kNN search for each element in input
sparse tensor, yielding dynamic kNN tensor

{
CkNN ∈ RN×k×3, FkNN ∈ RN×k×din

}
.

Unconstrained displacement of points allows us to accurately and flexibly represent 3D space. We
propose to concatenate the relative position with corresponding features, e.g.,

Fe = concat(FkNN, CkNN − Cin), Fe ∈ RN×k×(din+3), (2)

with which we can best retain the spatial coherency for information characterization in local neigh-
borhood.

As in Fig. 2, let Q, KkNN and VkNN be the query, key, and value vectors respectively. Q ∈ RN×de

is computed through a linear transformation of Fin; KkNN ∈ RN×k×de and VkNN ∈ RN×k×de are
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computed by two separate linear transformations of Fe:

Q = Fin ·WQ, KkNN = Fe ·WK , VkNN = Fe ·WV , (3)

having linear transformations WQ ∈ Rdin×de and WK ,WV ∈ R(din+3)×de . Here, din is the
dimension of input feature Fin and de is the dimension of Q, KkNN and VkNN. Then the NPA can be
calculated using:

NPA(Q,KkNN, VkNN) = softmax(
QKT

kNN√
de

)VkNN. (4)

The dot product of Q and KkNN is divided by
√
de and then passed through the softmax function

to derive the Attention Map, then the dot product of Attention Map and VkNN is denoted as Fo. The
output of NPA comprises of Fo and Cin.
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Figure 2: Neighborhood Point Attention Architecture.

Multihead NPA. To best capture cor-
relations from different representation
subspaces, we extend the aforemen-
tioned single-head NPA to multihead
NPA. We use several different linear
projections upon the query, key, and
value vectors, and then feed them
into multiple NPA modules in parallel.
The outputs of parallel NPAs are con-
catenated together and passed through
a linear transformation. We generally
adapt the number of attention heads (#ah) in Multihead NPA, e.g., #ah at 1, 2 . . . 4, and enforce the
product of #ah and associated channels per head #cph fixed to 32 to have the fixed total dimensions
for lightweight processing. As reported in Table 4, the result shows that having #ah = 4 and #cph = 8
is a balanced option.

Complexity Analysis. Having NPA computation on the local neighborhood with k elements avoids
the quadratic increase of computation and memory cost with respect to the number of points contrast
with methods using Global Self-Attention. Here, for simplicity, we use the single-head NPA as
an example for discussion. Multihead NPA can be easily extended. Assuming the total amount of
points is N , the number of neighbors in the local neighborhood is k, and the dimensional size of
the feature is C. Note that we often have k << N and C << N in practical settings (e.g., k = 16,
C = 32 in our examples for LiDAR PCGs but N is typically hundreds or tens of thousand). Thus,
the computation complexity of NPA and Global Self-Attention can be approximated as:

Ω(GlobalSelfAttention) = 3NC2 + 2N2C +N2 ∝ O(N2), (5)

Ω(NPA) = NC2 + 2NkC2 + 8NkC +Nk ∝ O(N). (6)

As we can see, our NPA greatly reduces the complexity for attention computation, making our
solution attractive in practices.

4 RESULTS

4.1 DATASET

Object Point Cloud. Following the OctAttention (Fu et al., 2022), we use Soldier10 and Longdress10
sequences in MPEG 8i (d’Eon et al., May 2016), Andrew10, David10, and Sarah10 sequences in
MVUB (Charles et al., May 2016) for training. Other point clouds in MPEG 8i (d’Eon et al., May
2016) including Thaidancer, Boxer, Redandblack, and Loot are selected for testing. In addition to
9-bit or 10-bit point clouds mentioned above, we also select some 12-bit precision samples to further
evidence the efficiency of our method, including Head12 and Frog12 in G-PCC CTC (WG7, 2021)
(Common Test Conditions) for training, and Boxer12 and Solider12 for testing.

LiDAR Point Cloud. We select SemanticKITTI (Behley et al., 2019) and Ford sequences (mpe)
provided by the MPEG committee as typical LiDAR data for evaluation. SemanticKITTI is a publicly-
accessible large-scale LiDAR point clouds dataset which includes 43,552 raw scans (frames) with
4.5 billions points collected from a Velodyne HDL-64E sensor. They are quantized to 1mm unit
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precision, Then we use sequences from #00 to #10 (23,201 scans in total) for training, and the
remaining sequences from #11 to #21 (20,351 scans) for testing, following the official training/testing
split as suggested. Ford is dynamically acquired for MPEG point cloud compression standardization.
It contains 3 sequences, e.g., Ford01, Ford02, and Ford03, each of which includes 1500 frames at
1mm precision (or 18 bits per geometry component). We take all of them as our testing sequence.

4.2 EXPERIMENTS

Baselines include both rules- and learning-based PCG coding solutions for comparative studies:

• G-PCC (tmc) uses the latest reference model TMC13v14 with rules-based octree codec to
generate anchor following the common test conditions (CTC) defined in (WG7, 2021).

• SparsePCGC (Wang et al., 2021a) represents the solution that applies stacked SConvs only
to process multiscale sparse tensors;

• OctAttention (Fu et al., 2022), VoxelContextNet (Que et al., 2021) & OctSqueeze (Huang
et al., 2020) are learned octree codecs.

Training. As aforementioned, our MOPA works across the adjacent scales. Having the native
resolution of training samples, e.g., scaling factor S = 1, we downscale them to lower scales to form
a set of multiscale PCGs, e.g., (1/2, 1/4), (1/8, 1/16) etc, for model training.

For Object PCGs, the model is trained with S from 1 to 1
8 and the number of neighbors k is set to 64.

For LiDAR PCGs, concerning about its wider geometry precision range, we train two models (1 to 1
8

and 1
16 to 1

128 ) for LiDAR PCGs to adapt different distributions cross scales, and corresponding k is
set to 16.

Learned models are trained with binary cross entropy loss by (7) in a supervised end-to-end means,
e.g.,

LBCE =
1

N

∑
i
−(xi log(pi) + (1− xi) log(1− pi)), (7)

where xi is the voxel label that is either truly occupied (1) or empty (0), and pi is the probability of
voxel-being-occupied, which is activated by the sigmoid function.

Testing. We strictly follow the test conditions in other approaches or directly quote results from their
publications. For example, when comparing with the anchor like G-PCC or SparsePCGC (Wang
et al., 2021a), we scale input LiDAR PCGs with S from 1 to 1

512 to obtain proper bitrates according
to CTC (WG7, 2021).

When comparing with prevalent learned octree coding approaches, e.g., OctAttention (Fu et al., 2022),
VoxelContextNet (Que et al., 2021), and OctSqueeze (Huang et al., 2020), testing LiDAR PCGs P
are quantized from 8 to 12 bits per geometry component through the use of equation 8 defined in (Fu
et al., 2022), e.g.,

PQ = round((P − offset)/qs), qs = 2/(2D − 1), offset = min(Px, Py, Pz), (8)

P is the normalized PCGs in [−1, 1], D is the max depth of octree from 8 to 12. Px, Py and Pz

represent coordinate level in a given PCG.

Evaluation Metrics. We closely follow the G-PCC CTC (WG7, 2021) to measure the bit rate using
bpp (bit per input point), and quantitatively measure the distortion using PSNR (Peak Signal-to-Noise
Ratio) of both point to point error (D1) and point to plane error (D2). Note that compression ratio
gain measured by bpp is for lossless mode while the BD-Rate (Bjontegaard, 2001) evaluates the lossy
compression.

When comparing with G-PCC and SparsePCGC (Wang et al., 2021a), the PSNR peak values are
set according to CTC (WG7, 2021); When comparing with the OctAttention (Fu et al., 2022),
VoxelContextNet (Que et al., 2021), and OctSqueeze (Huang et al., 2020), we normalize the points to
the range of (−1, 1) and set PSNR peak value to 1 following their rules.

For complexity measurement, we report the encoding and decoding runtime for reference. Tests are
examined on a computer with an Intel Xeon 6226R CPU and an Nvidia GeForce RTX 3090 GPU.
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Table 1: Compression Performance Evaluation Using Object PCGs for both Lossless and Lossy
Modes. Anchor is standardized G-PCC (TMC13v14). SparsePCGC & OctAttention are also provided.

Object PCGs
Losslesss Lossy

G-PCC SparsePCGC OctAttention Ours SparsePCGC Ours
Bpp Bpp Gain over G-PCC Bpp Gain over G-PCC Bpp Gain over G-PCC D1-BD-Rate D2-BD-Rate D1-BD-Rate D2-BD-Rate

Boxer12 3.58 2.15 -39.94% - - 1.48 -58.66% -15.71% -16.60% -19.15% -19.99%
Solider12 3.86 2.62 -32.12% - - 2.00 -48.19% -16.07% -17.07% -19.79% -20.70%

Thaidancer10 0.99 0.65 -34.34% 0.65 -34.34% 0.62 -37.37% -24.04% -25.25% -28.86% -30.06%
Boxer10 0.94 0.60 -36.17% 0.59 -37.23% 0.58 -38.30% -27.01% -27.88% -32.86% -33.77%
Loot10 0.97 0.63 -35.05% 0.63 -35.06% 0.61 -37.11% -24.90% -26.02% -28.92% -30.06%

Redandblack10 1.10 0.72 -34.55% 0.74 -32.73% 0.70 -36.36% -29.98% -30.31% -33.63% -34.16%
Thaidancer9 0.99 0.64 -35.35% 0.64 -35.35% 0.60 -39.39% -36.37% -36.39% -39.44% -39.45%

Boxer9 0.96 0.60 -37.50% 0.59 -38.54% 0.56 -41.67% -38.20% -38.24% -42.48% -42.51%
Ave. (12-bit) 3.72 2.38 -36.03% - - 1.74 -53.22% -15.89% -16.83% -19.47% -20.34%
Ave. (10-bit) 1.00 0.65 -35.00% 0.65 -35.00% 0.63 -37.00% -26.48% -27.36% -31.07% -32.01%
Ave. (9-bit) 0.98 0.62 -36.73% 0.62 -36.73% 0.58 -40.82% -37.28% -37.31% -40.96% -40.98%

Table 2: Compression Performance Evaluation Using LiDAR PCGs for both Lossless and Lossy
Scenarios. Anchor is standardized G-PCC using TMC13v14, and SparsePCGC is also provided.

LiDAR PCGs
Lossless Lossy

G-PCC SparsePCGC Ours SparsePCGC Ours
Bpp Bpp Gain over G-PCC Bpp Gain over G-PCC D1-BD-Rate D2-BD-Rate D1-BD-Rate D2-BD-Rate

KITTI_vox2cm 7.62 7.06 -7.35% 6.18 -18.90% -10.22% -8.40% -18.01% -17.96%
Ford_vox2cm 9.95 9.69 -2.61% 8.53 -14.27% -10.18% -9.18% -18.53% -18.53%

KITTI_vox1mm 20.17 19.73 -2.18% 16.62 -17.60% -6.80% -6.24% -18.14% -18.11%
Ford_vox1mm 22.31 22.27 -0.18% 19.86 -10.98% -6.12% -5.51% -16.08% -16.07%

Average 15.01 14.69 -2.13% 12.80 -14.72% -8.33% -7.33% -17.69% -17.67%

Quantitative Efficiency. The results of lossless and lossy compression for Object PCGs are detailed
in Table 1. It shows that our method achieves superior performance compared with previous methods
including the G-PCC, SparsePCGC (Wang et al., 2021a), and OctAttention (Fu et al., 2022). Our
method achieves 20%-40% BD-Rate improvement and 37%-53% bitrate reduction over G-PCC on
average when using 12-, 10- and 9-bit Object PCGs.

As shown in Table 2, for LiDAR PCGs, the proposed method offers more than 14% and 17% gains
(on average) over the G-PCC anchor for respective lossless and lossy scenarios across a variety of
test sequences at different precisions (1mm and 2cm). Performance improvements for lossy mode
are also confirmed by sample rate-distortion (R-D) plots in Fig. 3 where we can observe consistent
improvements across a wide range of bitrates.

Having the same G-PCC anchor, our method offers >10 absolute percentage points increasement for
both lossy and lossless compression of LiDAR PCGs in comparison to the SparsePCGC (see Table 2
and Fig. 3). Given that our method uses the same multiscale sparse tensor as the SparsePCGC, the
performance improvement reports the superior efficiency of NPFormer by resolving the limitations
of stacked SConvs used in (Wang et al., 2021a) for better occupancy probability approximation. As
for Object PCGs, lossy BD-Rate improvement and lossless bitrate reduction (except losslessly-coded
12-bit samples) are about 2 to 5 absolute percentage points when comparing the proposed method to
SparsePCGC. This is because denser point distribution in Object PCGs can be already modelled very
well using SConvs to some extent. One exception observed for losslessly-compressed 12-bit samples,
17 absolute percentage points reduction is reported which might come from the sparser distribution
of content that can be well characterized using NPFormer.

Comparisons are also conducted with other octree coding approaches as shown in Fig. 4. In the
relatively lower bitrate range used by OctAttention, VoxelContextNet, and OctSqueeze, our method
shows almost the same R-D behavior of OctAttention with overlapped R-D curves in Fig. 4. When
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Figure 3: R-D comparison on SemanticKITTI and Ford samples across a wide range of bitrates.
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Figure 4: R-D comparison at lower bitrates

6 7 8 9 10 11 12 13 14 15
Bpp

84
86
88
90
92
94
96
98

100
102

D
1 

PS
N

R
 (d

B
)

Bitrate v. D1 PSNR (KITTI)

OctAttention
Ours

6 7 8 9 10 11 12 13 14 15
Bpp

88
90
92
94
96
98

100
102
104
106

D
2 

PS
N

R
 (d

B
)

Bitrate v. D2 PSNR (KITTI)

OctAttention
Ours

Figure 5: R-D comparison at higher bitrates

we extend the bitrates to higher bitrate range, our method shows gains over the SOTA OctAttention,
e.g., ≈ 7% BD-Rate improvement on average in Fig. 5

Note that we produce the high birate results of OctAttention by re-adapting its model to enable the
max depth of octree from 13 to 16. Unfortunately, we could not provide R-D performance at higher
bitrates for VoxelContextNet and OctSqueeze because of the lack of their source codes for high bitrate
model training. However, since the OctAttention offers the SOTA efficiency, it is indeed a convincing
representative of learned octree coding approaches.

Complexity. Comparisons of complexity are performed among representative methods including the
G-PCC, OctAttention, SparsePCGC, and our method. We first compare the encoding and decoding
time respectively at different bitrates with results shown in Table 3.

Our method shows comparable complexity for encoding and decoding, e.g., less than 6 seconds
on average. Although there is still a gap compared with the traditional method of G-PCC, it is
about 640× speedup of decoding when compared with the OctAttention, and about 2× speedup of
SparsePCGC.

Model size measures the space complexity. The consumption for OctAttention, SparePCGC, and ours
are 16.13, 3.95 and 8.96 Mbytes respectively. As seen, our method requires about a half of model
size of the OctAttention, while it doubles the size as compared to that of the SparsePCGC.

Qualitative Visualization. Here, we offer additional qualitative visualizations of error map in Fig. 6
to further demonstrate the efficiency of our method. As we can clearly observe, our method provides
the least reconstruction error at close bitrates for both SemanticKITTI and Ford test samples, e.g.,
as for the #000000 frame in SemanticKITTI #11 sequence, the Bpp of our method is 4.78 and the
corresponding PSNR of the point-to-point (D1) error is 73.45 dB, while SparsePCGC Wang et al.
(2021a) and G-PCC present lower PSNR at respective 71.99 dB & 70.22 dB and cost more bits, e.g.,
4.90 Bpp & 4.86 Bpp. The similar observation happens for other testing frames.

4.3 ABLATION STUDIES

This section examines the impact of neighborhood size k and number of attention heads #ah to get
more insights on the proposed NPA.

Number of Attention Heads #ah. We adapt #ah at different bitrates to understand its impact on
compression efficiency. To this aim, we adjust the scaling factor S from 1 (lossless) to 1/256 to reach

Table 3: Comparisons of encoding and decoding time measured in seconds. Various octree depths Ds
are evaluated and SemanticKITTI sequences are exemplified. Time is measured for each sequence.

Encoding Time
Methods D=8 D=9 D=10 D=11 D=12 D=13 D=14 D=15 D=16 Ave.
G-PCC 0.50 0.62 0.82 1.07 1.61 2.05 2.53 2.78 3.02 1.67

OctAttention 0.40 0.49 0.54 0.44 0.66 1.51 1.91 2.22 2.58 1.19
SparsePCGC 2.08 2.91 4.36 7.11 10.58 14.70 18.68 22.79 20.88 11.57

Ours 1.18 1.38 1.79 2.62 4.11 5.35 8.05 10.65 13.34 5.39

Decoding Time
Methods D=8 D=9 D=10 D=11 D=12 D=13 D=14 D=15 D=16 Ave.
G-PCC 0.05 0.09 0.16 0.31 0.54 0.72 1.02 1.19 1.29 0.60

OctAttention 79.17 227.79 633.66 782.11 1569.79 6066.57 6865.55 6628.52 8914.32 3529.72
SparsePCGC 2.88 3.54 4.76 6.97 11.19 14.51 18.28 22.43 21.39 11.77

Ours 1.56 1.89 2.21 2.93 3.85 5.87 7.47 11.68 12.48 5.55
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Figure 6: Qualitative visualization of LiDAR PCG reconstructions at typical bit rates. Color map is
placed to reflect the reconstruction error distribution.

Table 4: Impact of using various number of attention heads #ah and nearest neighbors k on Bpp using
KITTI sequences. Various scaling factors Ss means different precision of PCGs, the larger the value
of S, the higher the precision of PCGs.

#ah Bpp
S=1/256 S=1/128 S=1/64 S=1/32 S=1/16 S=1/8 S=1/4 S=1/2 S=1

1 0.52 1.21 2.48 4.34 6.71 9.23 11.92 14.74 17.57
2 0.52 1.22 2.51 4.37 6.68 9.06 11.55 14.24 16.78
4 0.53 1.23 2.52 4.38 6.70 9.04 11.47 14.12 16.62

k Bpp
S=1/256 S=1/128 S=1/64 S=1/32 S=1/16 S=1/8 S=1/4 S=1/2 S=1

8 0.54 1.25 2.59 4.56 6.95 9.36 11.85 14.55 17.05
16 0.53 1.23 2.52 4.38 6.70 9.04 11.47 14.12 16.62
24 0.53 1.23 2.53 4.41 6.73 9.09 11.56 14.24 16.67
32 0.53 1.24 2.55 4.45 6.76 9.14 11.63 14.32 16.89

different bitrate points. Since the distortion is the same for different #ah at the same S, we only
present the bpp in Table 4. to report the performance, i.e., the smaller bpp the better compression
efficiency. In the end, we choose #ah = 4 in this work. Although the setting of #ah = 4 provides
marginal loss at lower bitrates (e.g., ≈ 1% BD-Rate loss when S is from 1/256 to 1/32), it improves
the coding efficiency noticeably at higher bitrates, e.g., 5.41% bpp reduction when S = 1 (lossless
mode), and > 2.5% BD-Rate improvement when S is from 1/16 to 1/2.

Number of Nearest Neighbors k. Table 4 gives averaged Bpps at different Ss when adapting
the k in proposed NPFormer for the compression of LiDAR PCGs. Similarly, the smaller Bpp
the better coding efficiency (for the same distortion at a given S). As seen, k = 16 gives the best
compression performance. Having a k smaller than 16, performance is deteriorated because of
insufficient neighbors used for information aggregation; while having a larger k may include more
irrelevant (or uncorrelated) neighbors, making the attentive weighting compromised. Also, larger k
expects extra computation overhead potentially. Recalling the comparison with the OctAttention in
Fig. 4 and 5, a small scale of local neighborhood context may be already sufficient in compression.

5 DISCUSSION

This paper suggested the use of Multistage Occupancy Probability Approximation (MOPA) for
exploiting cross-scale and same-scale correlations under a multiscale representation framework.
The MOPA is driven by a novel NPFormer taking advantage of both sparse convolution and self-
attention to effectively aggregate local neighbors for better occupancy probability estimation. Such
NPA adaptively weighs the contributions from k nearest neighbors that are constructed dynamically
conditioned on the input point for effective information aggregation and embedding, fundamentally
resolving the limitations of pretrained convolutions (e.g., fixed receptive field, and fixed kernels),
Extensive experiments on Object PCG and LiDAR PCG demonstrate the effectiveness and superiority
of the proposed method, reporting state-of-the-art efficiency in both lossy and lossless compression
modes against the latest models including the G-PCC, SparsePCGC, and OctAttention.
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