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Abstract

The weighted controlled direct effect (WCDE) generalizes the standard controlled
direct effect (CDE) by averaging over the mediator distribution, providing a ro-
bust estimate when treatment effects vary across mediator levels. This makes the
WCDE especially relevant in fairness analysis, where it isolates the direct effect
of an exposure on an outcome, independent of mediating pathways. This work
establishes three fundamental advances for WCDE in observational studies: First,
we establish necessary and sufficient conditions for the identifiability of the WCDE,
clarifying when it diverges from the CDE. Next, we consider nonparametric esti-
mation of the WCDE and derive its influence function, focusing on the class of
regular and asymptotically linear estimators. Lastly, we characterize the optimal
covariate adjustment set that minimizes the asymptotic variance, demonstrating
how mediator-confounder interactions introduce distinct requirements compared to
average treatment effect (ATE) estimation. Using synthetic and real-world data,
we validate our theory numerically, showing that the proposed optimal valid adjust-
ment set yields the lowest variance at practical sample sizes. Our results offer a
principled framework for efficient estimation of direct effects in complex causal
systems, with practical applications in fairness and mediation analysis.

1 Introduction

The controlled direct effect quantifies the effect of an exposure when intervening to set the mediator to
a fixed level, which may differ from its natural observed value [36, 39, 40]. While CDE has tradition-
ally been used to analyze mediation effects, in this work, we employ the weighted controlled direct
effect to detect the presence of a direct effect between treatment A and outcome Y given observed
variables [31]. Specifically, we intervene on all observed mediators rather than an arbitrary subset.
This approach is motivated by both pragmatic and theoretical considerations: e.g., from a fairness
perspective, we seek to determine whether direct discrimination exists [31], while methodologically,
1) the identifiability of CDE becomes unnecessarily complex when some mediators are non-fixed [58],
2) CDE values can vary unreliably across mediator levels [53, 61], and 3) CDE estimates frequently
vary across subpopulations defined by baseline covariates [23], complicating generalization.

Unlike natural direct effects (NDE) that require untestable cross-world independence assumptions
(i.e., the potential outcome under one treatment level is independent of the potential mediator under
another treatment level) [1, 2, 41], the CDE, and by extension WCDE, relies only on experimentally
verifiable interventions (where the mediator is set to specific values through intervention)—a crucial
advantage noted by [38] and [57]. The WCDE averages CDEs over the mediator distribution, yielding
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a robust effect measure that automatically accounts for mediation interaction while maintaining the
CDE’s avoidance of cross-world assumptions. This provides critical insights into direct pathways
across diverse domains, from evaluating medical treatments in epidemiology [11, 57] to assessing
fairness [31, 62] and informing policy decisions [22].

WCDE raises two key statistical challenges in observational studies that should be resolved for
valid inference: (1) What are the necessary and sufficient conditions on the adjustment set such that
WCDE is uniquely identifiable from observed data? (2) Among all valid adjustment sets satisfying
identifiability, which achieves the asymptotic efficiency bound for WCDE estimation? While optimal
adjustment sets for ATEs are well-characterized [16, 34, 45], understanding WCDE introduces unique
challenges due to the mediator’s potential role as both a collider (between the exposure and the
confounder) and an effect modifier (between the confounder and the outcome):

* Standard CDE adjustment criteria [36] only ensure identification at fixed mediator levels and fail to
address the integration required for WCDE (Example B.1).

» ATE adjustment theory ignores the efficiency implications of mediator-confounder dependencies,
which critically affect WCDE estimation variance through the weighting scheme.

This gap leads to potentially inefficient estimators and makes it unclear whether WCDE provides any
theoretical advantages over conventional CDE in practice.

Contributions We study the identification and nonparametric estimation of WCDE given a known
directed acyclic graph (DAG). Our contributions are fourfold. First, we establish necessary and suffi-
cient conditions for valid adjustment sets (VASs) that guarantee WCDE’s identifiability (Lemma 2.6),
a prerequisite for meaningful estimation. Second, we derive the influence function (IF) for WCDE
(Theorem 3.4). Third, we prove that its optimal adjustment set—defined as the covariate collection
that minimizes asymptotic variance among all regular and asymptotically linear (RAL) estimates—
necessarily differs from ATE adjustment sets due to the required integration over mediator distribu-
tions, and typically includes all parents of the outcome variable excluding the treatment (Theorem 4.3).
These theoretical advances enable more precise direct effect estimation in settings with mediator-
confounder dependence. Lastly, we provide an efficient estimator, augmented inverse probability
weighting (AIPW), for WCDE, and numerically validate our theoretical results.

Outline Section 2 introduces notation, defines WCDE, and presents criteria for VASs. Section 3
reviews nonparametric estimation and RAL estimators, and derives the IF of WCDE. The asymptotic
variance of any RAL estimator is then determined by the variance of its IF, which depends explicitly
on the choice of the VAS. Section 4 presents the optimal VAS for WCDE. Section 5 contains AIPW
for WCDE and numerical results. Section 6 discusses connections to the unknown-graph setting.

Related Works Causal effect estimation from observational data typically relies on covariate ad-
justment, with prior work examining variable selection through simulations [6, 28] and analyzing
the minimum asymptotic variance [13, 43, 44]. Complete and sound graphical criteria for valid
adjustment sets identifying total causal effects are well established [34, 37, 50], with later work
optimizing asymptotic efficiency for ATEs under linear [16] and nonparametric [45] settings. Recent
work has extended to individualized treatment rules and models with hidden variables [52]; establish-
ing necessary and sufficient conditions for globally optimal adjustment sets [46]; and developing a
polynomial-time algorithm for finding minimum-cost adjustment sets [51].

Beyond graphical criteria, data-driven methods for selecting sufficient adjustment sets include:
1) CovSel [8], which identifies minimal sets via conditional independence under correct model
specification, 2) Outcome-adaptive lasso [48], which selects variables predictive of the outcome to
improve efficiency, 3) Double selection [4], which combines variables selected from both treatment
and outcome models to ensure robustness in high dimensions. Estimator-driven approaches, such as
Change-in-Estimate [12] and Focused Confounder Selection [60], aim to minimize MSE but require
parametric assumptions. These methods offer flexible and scalable alternatives when the causal
structure is partially unknown, but their validity often hinges on model assumptions and sample size.

However, existing approaches remain centered on ATE and overlook key challenges posed by the
WCDE. The mediator’s dual role as a collider and effect modifier introduces unique obstacles to both
identifiability and efficiency. While standard CDE-based criteria [59] do not guarantee identifiability
of WCDE, ATE-oriented strategies treat mediators as forbidden variables [16, 45], precluding their
integration as required by WCDE. We fill this gap by deriving graphical criteria and asymptotic
efficiency results tailored to the mediator-weighted structure of the WCDE.



2 Problem Setup and Valid Adjustment Sets for WCDE

To formally define valid adjustment sets for the WCDE, we first introduce notation for graphical
models. We then present the inferential framework and associated notation required to specify the
estimation problem. Lastly, we classify variable types with respect to the exposure and outcome and
provide a formal definition of VASs.

Structural Causal Model (SCM) An SCM is represented by a DAG, G = (V, E), a graph with
directed edges and no directed cycles, where vertices V = { X}, ..., X4} represent random variables
and edges E encode direct causal relationships. An SCM is equipped with a probability distribution
P over V. The parent set of a vertex X, denoted Pa(X), consists of all vertices X; for which
X; — X € E, representing direct causes. The children Ch(X;) are vertices X; with X; — X; € E,
representing direct effects. Ancestors An(X ;) comprise all vertices connected to X; via directed
paths (Def. A.2), while descendants De(X;) are all vertices reachable from X; via directed paths.

The d-separation (Def. A.1) criterion formally characterizes conditional independence relationships
implied by the graph structure. Under the assumption of causal sufficiency (no unmeasured confound-
ing), d-separation perfectly captures the conditional independencies in the joint distribution through
the Markov property: if Z d-separates X from Y in G (i.e., X Ll g Y | Z),then X Il Y | Z in all
distributions that are Markov with respect to G. This Markov property implies two key consequences.
First, the joint distribution factorizes as: P(Xy,...,X4) = H?:l P(X; | Pa(X;)) where each
component represents the conditional distribution of a variable given its direct causes. Second, it
yields the local Markov property that each variable is conditionally independent of its non-descendant
non-parents given its parents:

X; 1L ND(X;) \ Pa(Xj) | Pa(Xj),

where ND(X;) denotes the non-descendants of X ;. These properties form the foundation for deriving
identifiability conditions for causal effects in the presence of mediator-confounder relationships.

Weighted Controlled Direct Effect Consider a DAG G = (V, E) representing a structural causal
model. We focus on estimating WCDE of a binary treatment variable A € V with values {a,a*}
(treatment vs. control) on an outcome ¥ € V.

Let Ml C V be the set of all observed mediators between A and Y, defined through ancestral relations
as M := De(A)NAn(Y)\ A,Y. The CDE measures the expected change in outcome as the exposure
changes when mediators IM are uniformly fixed to a constant value m through intervention:

Definition 2.1 (CDE, Pearl [35]). CDE(m) := E[Y | do(a,m)] —E[Y | do(a*, m)].

We provide the identifiability condition of CDE in Def. A.3. When mediator-exposure interactions
are present, CDE becomes mediator-dependent, taking different values across M [35]. To obtain an
unique population-level measure that admits valid adjustment, we define WCDE using the subset of
mediators that are also direct parents of Y, ensuring that all mediator paths (Def. A.2) are blocked:

Definition 2.2 (WCDE, [31, 34]). Given a DAG G, let M’ := M N Pa(Y) and let M’ be the set of
all possible joint values of the mediators in M'. The WCDE can be expressed using do-probabilities
as:

WCDE= Y (E[Y |do(a,m)]—E[Y |do(a*,m)])p(m’). 2.1)

m’eM’

Definition 2.2 builds upon prior work by Pearl [34, 35],! who established that fixing only the mediators
that are parents of Y is sufficient for identifying direct effects.> As M’ is uniquely determined given
G, for any given SCM, Eq. (2.1) admits an unique value assuming CDE’s identifiability.

Remark 2.3 (WCDE definition). Let C be the set of confounders between A andY . In defining WCDE,
we preserve the conceptual distinction between mediators and confounders, rather than treating
mediators as additional confounders through joint conditioning. We weight the marginal distribution
P(m’) rather than the conditional P(m’|C) because the CDE(m’) in Eq. (2.1) is already causally

'In the first edition of Causality [34, Chapter 4.5.4, p. 131], Pearl defined the average direct effect as
2 pay\x (E[Y [ do(z), do(Pay \ X)] — E[Y | do(z"),do(Pay \ X)]) P(Pay \ X). Subsequent work [35]
clarified that only mediators need to be fixed. Accordingly, we can replace Pay \ X with M’ := M N Pa(Y).

*In this work, we do not assume that all mediators are observed. Rather, a nonzero WCDE value indicates
that a direct effect between A and Y exists when accounting for all observed mediators.



standardized over confounders C through the do-operator, representing the population-average direct
effect at mediator level m'. Weighting by P(m’|C) would inappropriately treat the mediator as a
confounder by reintroducing the mediator-confounder relationship after causal standardization. This
creates conceptual redundancy by effectively conditioning twice on C, yielding stratum-specific effects
conditional on C rather than a coherent population-level measure.

The alternative factorization of the joint distribution, P(C|m')P(m’), requires standardizing effects
using P(C|m’"), contradicting CDE’s identification (Def. A.3). By using P(m’), we maintain philo-
sophical clarity by respecting the distinct roles of confounders (adjusted for in causal standardization)
and mediators (the pathway of interest). This provides a clear population-level interpretation: the
average direct effect under natural mediator variation.

While Def. 2.2 ensures WCDE identifiability, it does not specify how to compute it from observational
data. We now characterize valid adjustment sets that recover the specific WCDE value in Eq. (2.1).
While complete criteria exist for ATE adjustment sets [49, 50], no analogous solution currently exists
for WCDE, a gap we now resolve. We define VAS for WCDE in Def. 2.4, and provide a set of
adjustment criteria in Condition 2.5. We establish their sufficiency and necessity in Lemma 2.6.

Definition 2.4 (Valid Adjustment Set for WCDE). Let .# be an SCM that induces causal DAG G
with pairwise disjoint node sets A, Y, and M, representing the treatment, outcome, and the set of all
mediators (Tab. A.1), respectively. Let Zy = ZNM, Zy = Z\ M, and

WCDEz = Bz, {Ez, [E[Y | A=a,Z1,Z5)]} —Egz, {Ez, [E[Y | A=a",Z1,Z:]]}. (22)

Ta(2) Tox(Z)

We say that Z is a valid adjustment set for identifying the WCDE with respect to (A,Y") if and only if
WCDEgz equals the interventional WCDE defined in Def. 2.2 when both are applied to the population
defined by M .

Condition 2.5 (WCDE Adjustment Criteria). Given the notation and SCM from Definition 2.4, a
candidate adjustment set Z satisfies the adjustment criterion relative to (A,Y") for WCDE in G if:

C1 All mediator paths (Def. A.2) for { A, Y} are blocked by Z;

C2 The subset Zy satisfies the sufficient and necessary graphical conditions for identifying the CDE
with mediator Z+, which we further discuss in Appendix A.1;

C3 (M'\Z1} Ug A {Pa(Y)\ (M' U{A})} | Z1, ensuring an unique weighting scheme across
mediator levels (illustrated in Fig. B.3, Example B.1).

Lemma 2.6 (Sufficiency and Necessity of the Adjustment Criterion). Let Z be any set that satisfies
Condition 2.5 for WCDE with respect to (A,Y) in G. Then Z is a VAS (Def. 2.4). Conversely, any
adjustment set Z that identifies the WCDE in Eq. (2.1) must necessarily satisfy Condition 2.5.

Lemma 2.6 establishes that the WCDE, which is uniquely defined by Def. 2.2, can be identified
through any VAS satisfying Condition 2.5, with the same population value regardless of which valid
set is chosen. However, in finite samples, estimates can vary across sets due to differences in statistical
properties like bias and variance. A proof is provided in Appendix B.1, with a sketch below.

Necessity. We focus on the necessity of C3, as C1 is inherent to the definition of WCDE, and C2
follows from CDE’s identification. For a given DAG G and a adjustment set Z, suppose that Z
satisfies C1 and C2, but violates C3, we show that there exists a joint distribution over the vertices
V in G so that WCDEg defined in Eq. (2.2) does not match the WCDE in (2.1). Specifically, let
W = M’'\ Zy,and C = Pa(Y) \ (M’ U A). Because C3 is violated, W [ g A, C | Z;. This
conditional dependence results in a discrepancy between (2.2) and (2.1) due to a bias term involving
p(w | z1) — p(w | 21, a, ¢), which is non-zero whenever W L g A, C | Z; (see Example B.1).

Sufficiency. We show that if an adjustment set Z satisfies all three criteria in Condition 2.5, then
Eq. (2.2) identifies the WCDE. We first decompose Z into mediators Z; and non-mediators Zs, and
then replace Zs with C, which continues to identify the CDE and therefore preserves the expectation.
Next add W = M’ \ Z; to Z;, which likewise leaves the expectation unchanged. After removing
non-parent variables, the remaining expectations are taken over C and M’. Substituting Z, = C and
Z; = M’ into Eq. (2.2), and noting that C identifies the CDE for the mediator set M’, we obtain the
WCDE expression in Eq. (2.1).

Given the identification of all VASs, a natural question arises: when multiple such sets are available,
which one should we choose? In this work, we address this question by comparing VASs through



the lens of asymptotic variance. Specifically, we characterize how the choice of VAS affects the
asymptotic variance across a general class of estimators. Our objective is to identify the optimal VAS
that minimizes asymptotic variance for any estimator within this class.

3 RAL Estimators and Influence Function of WCDE

To identify the optimal VAS, we begin by introducing regular and asymptotically linear estimators—a
class of estimators with well-characterized asymptotic variance through their influence functions.
These estimators provide the foundation for our optimality analysis, which we develop fully in
Section 4 through a constructive variance-minimization procedure. We then specialize this framework
to WCDE estimation, presenting concrete examples of RAL estimators. Theorem 3.4 establishes the
explicit form of the WCDE influence function as a function of the chosen VAS.

RAL Estimators We begin by introducing RAL estimators in a general statistical framework. Given
n ii.d. observations Oy, ..., O, drawn from an unknown distribution P on a sample space €2. Our
goal is to estimate a real-valued target parameter, 7'(P) , based on these observations. For example,
in WCDE , for a given valid adjustment set Z, the target parameter is given by Eq. (2.2). We consider
a fully nonparametric model class M, i.e., P € M, which contains all candidate distributions
defined on a measurable space (2, F) dominated by a common o-finite measure v. Let p denote the
corresponding density of P with respect to v.

We first introduce the notion of regularity, which connects estimators to their stability under small
model perturbations (Def. 3.1). Next, we define asymptotic linearity (Def. 3.2).

Definition 3.1 (Regular estimator, van der Vaart [56]). Let T(P) : M — R4 be a target parameter
of interest. An estimator T, is said to be regular in M at P if its convergence to T (P) is locally
uniform in a neighborhood of P in M.

Definition 3.2 (Asymptotically linear estimator, van der Vaart [56]). Given Oy, ...,0O, E~ P and
target parameter T (P), an estimator T,, = T,,(O1,...,0,) of T(P) is said to be asymptotically
linear at P if there exists a function 1p € LY(P) such that \/n(T,, — T(P)) = ﬁ S vp(0:) +
0,(1), where LY(P) is the set of all mean-zero, square-integrable functions under P, i.e., LY(P) :=

{f :Ep[f(0)?] < o0, Ep[f(0)] =0}

Common RAL estimators include the ordinary least squares estimator [33], inverse probability
weighting [42], AIPW estimator [10], doubly robust estimators [3, 9] , targeted maximum likelihood
estimator [55], and double machine learning [7].

Influence Function The function ¢ p in Definition 3.2 above is known as the influence function (IF)
of T;, at P. By the Central Limit Theorem, we have:

Vi(T, = T(P)) % N (0, Varp [ (0))) . (3.1)

In fully nonparametric models, this IF is unique for all RAL estimators and coincides with the
influence function of the target parameter 7'(P). At a high level, IF of the target parameter T'(P)
measures the sensitivity of 7'(P) under small perturbations of the distribution P [54]. We provide a
formal definition in Appendix B.3.

Remark 3.3 (Influence Functions of WCDEz). We emphasize that Eq. (2.2) defines distinct target
parameters for each adjustment set Z.. While these parameters coincide in value at the true distribution
P (yielding an unique causal estimand), different choices of the adjustment set Z would affect the
sensitivity of the corresponding target parameter WCDEg to local distributional perturbations (see
concrete definitions of local distributional perturbation in Appendix B.3). Intuitively, WCDEy is
sensitive to perturbations in variables within Z, so the choice of Z directly affects its sensitivity to
different perturbations. This leads to distinct influence functions for WCDEy, across different Z. We
formalize this argument in Appendix B.3.

Application to WCDE Given a valid adjustment set Z, let Z; = ZNM and Zo = Z \ M. We
first provide the IF corresponding to the first component of WCDE defined in Eq. (2.2), denoted by
To(Z) . The IF of T, (Z) can be similarly obtained by replacing a with a* in the expression.

3Here, we denote O as a generic random variable drawn from the distribution P.



Group Description

@ @ X4 Confounders and their proxies.
X Colliders and their proxies.
6 Q X3 Mediators and their proxies.

X4 Non-descendants of Y where X, 1l A
and Xy 1 A|Y.
X5 Instruments and their proxies.
@ X Descendants of Y with A-Y paths me-
diated by Y.
Figure 1: The partition visualization follows  X- Descendants of A.
Maasch et al. [32], with directed squiggly Xg Nodes with no active paths to A or Y.

edges indicating the presence of a directed
causal path (not necessarily direct parent- Table 1: Exhaustive and Mutually Exclusive Causal
child relationships). The dashed edge rep- Partitions [32]. Detailed definitions are included in
resents potential parent-child relationships. ~ Appendix A.2.

Theorem 3.4 (IF of WCDEz). Given any VAS Z, the influence function of T,(Z) is given by
1,(A)p(Z1)p(Z2)
W (Y. A, 21, Zg; P) = Y —EBy[Y|A=0a,Z,,Z
,(/) ( ! 2 ) p(217Z23a) Y[ | ¢ ! 2]

+Egz, [Ey[Y|A =a,Z1, Zz]} + Egz, []Ey[Y|A =a,”Z, Zz]} —2T,(Z).

Here, I{-} denotes the indicator function, and T, (Z) is evaluated at P.

The proof of Theorem 3.4 begins by substituting this functional T}, (Z) into the definition of pathwise
differentiability (see Appendix B.4 for details). Leveraging the fact that the influence function is
unique in a fully nonparametric model, we directly obtain an unique influence function associated
with each valid adjustment set.

4 Optimal Valid Adjustment Sets for WCDE

Given that distinct valid adjustment sets typically yield different IFs (and thus different asymptotic
variances), we now leverage the adjustment criterion from Section 2 and the IF derived in Section 3
to identify the optimal VAS—the one minimizing asymptotic variance for all RAL estimators.

To facilitate the presentation of our results, we adopt the causal-partition taxonomy in Table 1 [32].
Given a causal DAG G, let (A,Y) C V be an exposure-outcome pair, where Y is a nondescendant
of A. This local taxonomy decomposes the rest variables in the DAG, X = V \ {A,Y}, into
eight exhaustive and mutually exclusive subsets, each defined by the types of causal paths that it
can share with A and Y. When the union of multiple partitions is needed, we write, for example,
X1,3 := Xy U X3. Moreover, for any k € {1,...,8}, we denote by X;.cpy(y) := X NPa(Y) the
subset of X}, that also belongs to the set of parents of Y.

Under the causal partition taxonomy, we construct the set O as the union of all parents of Y belonging
to relevant partition groups in Definition 4.1.

Definition 4.1 (O-set). Ler O(A,Y, G) denote the set of all non-treatment parents of Y in G. For-
mally, under the causal partition taxonomy, these parents fall into three groups: confounders (X1),
mediators (X3), and informative non-descendants (X4):

O(A,Y,G) := Xicpav) U Xsepa(v) U Xuecpa(y)-

Intuitively, O(A, Y, G) is constructed to maximize information on Y, while minimizing information
on A and preserving validity. Next, we formally define the notion of optimal VAS in Definition 4.2.
Theorem 4.3 establishes the optimality of O(A,Y, G).

Definition 4.2 (Optimal VAS). Given a DAG G = (V,E) and an exposure—outcome pair (A,Y") C
V, let Z denote the collection of all VASs for identifying the WCDE of Aon'Y. We say that O* € Z is
an optimal valid adjustment set if, for every Z € Z, 05,(P) — 0. (P) > 0, where 0% (P) denotes the
asymptotic variance of any RAL estimator of WCDEz based on adjustment set Z under distribution
P, as characterized by Equation (3.1).
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Figure 2: A DAG illustrating Lemmas 4.4, 4.6. ~ Figure 3: A DAG illustrating Lemmas 4.5, 4.7.

Theorem 4.3 (O-set is Optimal). Given a DAG G = (V,E), and the exposure-outcome pair
(A,Y) CV, the set O(A,Y, G) in Definition 4.1 is the optimal valid adjustment set for the WCDE
(2.1), satisfying Condition 2.5 and producing minimal asymptotic variance for all RAL estimators.

Below, we sketch the main proof idea (full proof in Appendix C). Starting from an arbitrary VAS Z
with Z; = ZNM and Zy = Z\ M, we iteratively transform it into O (A, Y, G) through four variance-
reducing operations: (1) adding non-mediating parents of Y, (2) including mediating parents of Y,
(3) removing redundant backdoor variables that do not contribute to Y, and (4) pruning mediators that
offer no further gain. Each step preserves the validity of the adjustment set and reduces the asymptotic
variance, ultimately converging to the same optimal set O regardless of the starting VAS. While this
sequence of variance-reducing operations resembles the pruning procedure proposed by [16] and the
graphical criteria introduced by [45], our work extends these ideas to a new functional that involves
mediator-confounder interactions, introducing additional structural complexity.

Step 1: Augmenting Z, with Non-mediating Parents of Y. Lemma 4.4 (proof in Appendix C.1)
establishes that including additional backdoor variables satisfying conditional independence with the
treatment can reduce variance without losing validity, i.e., if we add X cpy(y) and Xyepy(y) t0 Za:

2 2
(2, Z2UX 1 epa(y)UXsepa(y)) (P) = 9(21,2) (P>

Lemma 4.4 (Supplement of backdoor variables). Given a DAG G = (V,E), and the exposure-
outcome pair (A,Y) C 'V, suppose (G1,B2) C V\ {A, Y} is a VAS, with G disjoint from both
G and By, satisfying G 1Lg A, Gy | Ba. Then (G1, Ga, Bs) is also a VAS, and for all P € M,

0lc, ) (P) = 0la, aupy)(P) = 0.

Proof Sketch of Lemma 4.4. Figure 2 illustrates the conditions stated in Lemma 4.4. For clarity,
we focus on the first component of the WCDE in Eq. (2.2), and let o ,,(P) denote its asymptotic
variance. The extension to the full WCDE is direct. We begin by decomposing the variance:

02 (@B (P) = Varp [a(Y, A, G1,By; P)] = Varp [¢4(Y, A, G1, Ga, By; P)]
+ Varp [, (Y, A,G1,Ba; P) — ¢, (Y, A, G1, G2, By; P)]
+2 Covp (Ya(Y, A, G1, G2, Ba; P),va (Y, A, G1,Ba; P) — 9u(Y, A, G1, G2, Bo; P)) .
To analyze the covariance term, consider the difference in IFs evaluated at (Y, A, G1, G3, Bs):
VoY, A, G1,Bo; P) — ¢,(Y, A, G1, Go,By; P).

We construct a parametric submodel that perturbs only the conditional law P(A4, G; | G2, B3),
while leaving all other components unchanged. Under the assumption G2 1Lg A, G; | By, the
above difference is orthogonal to the IF of the larger adjustment set:

Ep [0 (Y, A, G1,G2,B2; P) - (¥a(Y, A, G1,B2; P) — (Y, A, G1, Ga, Ba; P))] = 0.
Hence, the covariance term vanishes. Substituting this result back into the law of total variance yields:
Var[1), (Y, A, G1,Ba; P)] = Var[t), (Y, A, G1, G2, Ba; P)]
+ Var[ta (Y, A, G1,B2; P) — ¢ha(Y, A, G1, G2, Ba; P,
where the second term is nonnegative. This establishes 0(217 (G1.By) (L) = 057 (G1,Ga,B,) (P); showing
that including G+ either improves or preserves estimation efficiency.

Step 2: Augmenting Z, with Mediating Parents of Y. Next, Lemma 4.5 (proof in Appendix C.3)
states that including mediators that are also parents of Y leads to improved efficiency. Therefore, we
augment Z; with X3epy(y):

2 2
T(Z1UX3epa(v) Z2UX1 era(y) UXaera(v)) (P) < T(Z1, Z2UX 1 cpagyy UXacra(vy) (P)



Lemma 4.5 (Supplement of mediator variables). Given a DAG G = (V,E), and the exposure-
outcome pair (A,Y) C 'V, suppose (B1,Gz) C V\{A,Y} is a VAS, with G, disjoint from both
B, and G, satisfying Gy g A, Gs | By. Then (G1,B1, Gs) is also a VAS, and for all P € M,
U?BI,GQ)(P) — U(2G1,B1,G2)(P) > 0.

Figure 3 provides a simplified illustration of the conditions stated in Lemma 4.5. The proof proceeds
analogously to that of Lemma 4.4, with G playing the same role as G.

Step 3: Pruning Redundant Backdoor Variables from Z,. Lemma 4.6 (proof in Appendix C.2)
implies that unnecessary variables in Zz (those not in X epa(y) or X4epa(y)) can be removed without
increasing variance:

2 2
0(Z1UXscpu(y) Xiera(y)UXaer(v)) (P) < T(Z1UX3epa(v)» Z2UX1 epacy) UXacra(y)) (P)

Lemma 4.6 (Deletion of overadjustment backdoor variables). Given a DAG G = (V,E), and the

exposure-outcome pair (A,Y) C 'V, and suppose (G1,G2 UBg) C V\{A4,Y} is a VAS, with G

and B disjoint, and suppose Y 1Lg By | G1,Ga, A. Then (G1, Ga) is also a VAS, and for all
2 2

PeM, o(g, g, B.,)P) — (g, a,) ) =0.

Proof Sketch of Lemma 4.6. Figure 2 provides a simplified illustration of the conditions stated in
Lemma 4.6. Again, we focus on comparing the asymptotic variance of T;,(Z). We begin by applying
the law of total variance to decompose the variance under the larger adjustment set (G1, Ga, Ba):
Varwa(Y, A, Gl, G27 BQ; P)] = Var[E[wu(Y, A, Gl, Gg, Bg; P) ‘ A, }/, G17 GQH
+E[Var[yy, (Y, A,G1,G2,B2; P) | A,Y, Gy, Gaol].
Now, under the conditional independence assumption Y 1lg By | G, Ga, A, the IF based
on the adjustment set (Gi, Go,Bs) satisfies Ep[¢, (Y, A, G1,G2,Bo; P) | AY,G1,Ga] =
Ya(Y, A, G1, Go; P). Substituting this into the variance decomposition yields:
Var[z/)a(Y, A, Gl, GQ, BQ; P)]
:Var[wu(Y, A, Gl, GQ; P)] =+ E [Var[zpa(Y, A, Gl, G27 BQ; P) | A, Y, Gl, GQH .

Since the conditional variance term is nonnegative, we conclude that o2 (G1,Gs Bz)(P) >
ng(Gh Gs) (P), implying that B can be safely excluded without increasing the asymptotic variance.
Step 4: Pruning Redundant Mediating Variables from Z;. Finally, Lemma 4.7 (proof in
Appendix C.4) shows that variables in Z; \ X3epa(y) can be removed:
2 2
U(XBepa(Y>~,Xlepa(y)UX4epa(Y))(P) =< U(ZlUX?,epa(y),Xlepa(y)UX4epa(y))(P)'

Therefore, the final adjustment set minimizing the asymptotic variance is given by

O := Xiepa(y) U Xaepay) U Xaepa(y)-

Lemma 4.7 (Deletion of overadjustment mediator variables). Given a DAG G = (V,E), and the

exposure-outcome pair (A,Y) C 'V, suppose (G1 UB1,Ga) C V\{A4,Y} is a VAS with G and B

disjoint, and suppose Y 1Lg By | G1,Ga, A. Then (G, Gs) is also a VAS, and for all P € M,
2 2

O’(Gl,Bl,GQ)(P) - J(Gl,G2)<P) 2 0.

Figure 3 provides a simplified illustration of the conditions stated in Lemma 4.7. The proof follows
the same argument as Lemma 4.6, with B; playing the same role as Bs.

5 Experiments

To evaluate the robustness of our method under finite-sample conditions, we conduct synthetic
experiments to verify Lemmas 4.4-4.7, corresponding to Figures 2 and 3, and further demonstrate the
practical stability of the O-set using real-world data.*

*Code available at https://github. com/Lin-Ruiyang/WCDE-Simulation


https://github.com/Lin-Ruiyang/WCDE-Simulation

AIPW Estimator In our experiments, we implemented the AIPW estimator, constructed using the
plug-in components of the influence function:

n

WODE = Qi Z { I{A; =a}-p(Z1;) - p(Za;) (Vi — fi(a, Zoy, Zo)) +Zﬂ(a’zli’z2) - p(z2)

n D(Z1i, Zo;, )

=1 Zo
IPW term at level a

Marginal over Z at a

n

n Zﬂ(le’ Zos) - plz1) } s Z { {A; = a*} - p(Z1i) - p(Z2i) (Y — ji(a*, Zoi, Zoos))

P(Zni, Lo, a*)

IPW term at level a*

zy

Marginal over Z1 at a

+ Zﬂ(a*, Zyi,22) - p(z2) + Z a(a*,zy,Zs;) - p(z1) } (5.1

Zz2 z

Marginal over Z at a* Marginal over Z; at a*

To estimate the conditional expectations fi(a,Z1,Zs), we fit linear regressions with spline-
transformed features (degree 5, 10 knots) for continuous outcomes, and use multinomial logistic
regression for discrete outcomes. The treatment probabilities p(A = a | Z1, Z5) are obtained from
logistic regressions. The marginal and joint densities are estimated nonparametrically, using empirical
frequencies for discrete variables and Gaussian kernel density estimation for continuous ones.

Synthetic Experiments Under Figures 2 and 3, data are generated from a nonlinear structural
equation model with random edge coefficients, nonlinear transformations, and additive Gaussian
noise. Appendix D.1 contains full details of the data-generating process and estimator implementation.
For each adjustment set, we report average variance and average MSE across 50 replications. Table 2
top and bottom respectively illustrate the results associated with Lemmas 4.4 and 4.6, and Lemmas 4.5
and 4.7. Our proposed O-set {G1, G2} consistently achieves the lowest variance and MSE across all
sample sizes, ranging from n = 250 to n = 2000, demonstrating its finite-sample robustness despite
our theoretical guarantees being asymptotic.

Table 2: Average Variance and MSE for Figures 2 and 3. Optimal VAS are highlighted in bold.
n = 250 n = 500 n = 1000 n = 2000
Figure Adjust. Set Var MSE Var MSE Var MSE Var MSE

G1,G2 0.0029  0.0030 0.0016 0.0016 0.0009 0.0009 0.0006 0.0006
Fig2 G1,B> 0.0102 0.0103 0.0110 0.0112 0.0101 0.0102 0.0075 0.0076
G1,G2,By  0.0050 0.0051 0.0028 0.0029 0.0021 0.0022 0.0016 0.0016

G1,G2 0.0027 0.0028 0.0015 0.0015 0.0010 0.0010 0.0006 0.0006
Fig 3 B1,Gs 0.0100 0.0101 0.0072 0.0073 0.0066 0.0067 0.0050 0.0050
G1,B1,Go  0.0059 0.0059 0.0040 0.0041 0.0040 0.0040 0.0029 0.0029

Table 3: Variance and MSE of WCDE estimates on the ASIA network under different sample sizes.
Variable names are abbreviated as follows: b: bronc, s: smoke, I: lung.

n = 250 n = 500 n = 1000 n = 4000 n = 10000

Adj. Set Var MSE Var MSE Var MSE Var MSE Var MSE

[b] 0.0143 0.0158 0.0049  0.0052  0.00266 0.00292 0.00062 0.00067 0.00027 0.00029
[s] 0.0210 0.0238 0.00862 0.00911 0.00408 0.00454 0.00101 0.00104 0.00046 0.00054
[b, s] 0.0176  0.0229 0.00628 0.00728 0.00419 0.00480 0.00087 0.00091 0.00044 0.00054
[b,1, s] 0.0296 0.0528 0.0174  0.0231 0.0141 0.0153  0.00333 0.00335 0.00177 0.00194
[b, 1] 0.0360 0.0540 0.0207 0.0248  0.0133  0.0139 0.00340 0.00342 0.00170 0.00183
[1] 0.0532 0.0624  0.0205 0.0215 0.0133  0.0137 0.00346 0.00347 0.00184 0.00193
[1, s] 0.0458 0.0613 0.0218 0.0240 0.0151 0.0157  0.00367 0.00368 0.00189 0.00204

Real-World Experiments We evaluate our method on three widely used semi-synthetic Bayesian
networks from bnlearn: ASIA, SIGNALING, and MILDEW, which serve as standard benchmarks
for causal inference due to their realistic structures and domain relevance [24, 27, 47]. For each
dataset, we validated our theoretical results through a five-step process: (1) selecting a treatment
and outcome variable (for multi-valued treatments, the two most frequent levels are used to define a
binary treatment); (2) identifying all valid adjustment sets for small/medium DAGs and a sufficiently
large and representative subset for large DAGs; (3) estimating the WCDE via the AIPW estimator



(Eq. (5.1)); (4) simulating data from the underlying causal model across sample sizes n = 250, 500,
1000, 4000, and 10000; and (5) computing the empirical variance and MSE for each adjustment set.

The empirical validation across three distinct networks consistently affirms the efficacy of our
identification criterion. In the ASIA network (an 8-node 8-edge Bayesian network for medical
diagnosis), our criterion identified bronc as the optimal set (O-set) for estimating the effect of a single
composite variable—indicating the presence of either tuberculosis or lung cancer—on dysp (shortness
of breath). As shown in Table 3, bronc attains the lowest variance and MSE across all sample sizes,
consistent with our asymptotic theory and demonstrating robust finite-sample performance. In
the SIGNALING network (a 11-node 17-edge DAG on protein signaling cascades), our criterion
identifies {PKA, Erk} as the O-set for estimating the effect of PKC on Akt. Table 4 illustrates a
nuanced bias-variance trade-off. For larger sample sizes (n > 1000), our O-set achieved the smallest
variance among all adjustment sets, though its MSE was not the absolute lowest. When the sample
size was 500 or smaller, the O-set, while not achieving the very lowest variance or MSE, delivered
performance that was highly comparable to the best-performing sets, demonstrating its practical
utility and robustness even in finite-sample regimes where strict optimality is not guaranteed. Similar
to the ASIA network, in MILDEW (a 35-node 46-edge DAG on crop disease management), the
identified O-set ({meldug_3, middel_3, mikro_3} for estimating the effect of mikro_1 on meldug_4)
achieves the smallest variance and MSE when n > 500, and remains among the best-performing sets
for smaller samples (Tables D.2 and D.3 in Appendix D.2).

Table 4: Variance and MSE of WCDE estimates on the SIGNALING network under different sample
sizes. Variable names are abbreviated as follows: e: Erk, p: PKA, m: Mek, r: Raf.

n = 250 n = 500 n = 1000 n = 4000 n = 10000

Adj. Set Var MSE Var MSE Var MSE Var MSE Var MSE

[e, p] 0.00491 0.00618 0.00269 0.00328 0.00125 0.00134 0.00033 0.00036 0.00012 0.00012
[e,p, 7] 0.00483 0.00569 0.00293 0.00344 0.00156 0.00164 0.00041 0.00044 0.00019 0.00019
[e, m, p] 0.00429  0.00476  0.00238 0.00260 0.00142 0.00146 0.00062 0.00064 0.00020 0.00020
[e, m, p, 7] 0.00456  0.00490 0.00272 0.00289 0.00159 0.00160 0.00065 0.00067 0.00020 0.00020
[m, p, 7] 0.00843 0.01024 0.00486 0.00586 0.00383 0.00407 0.00205 0.00217 0.00105 0.00105
[m, p] 0.00752  0.00941 0.00408 0.00534 0.00351 0.00386 0.00201 0.00213 0.00108 0.00108

6 Discussion

We provide the first comprehensive framework for identifying and estimating the WCDE in obser-
vational settings, where all observed mediators are fixed. We leave the analysis of more complex
WCDE parameters, where only a subset of mediators is fixed, to future work. WCDE introduces
unique challenges stemming from the integration over mediator distributions and the dual role of
mediators as both colliders and effect modifiers. To address these challenges, we first establish a
graphical criterion that characterizes VASs for WCDE. Second, we derive the unique IF of WCDE
under nonparametric models, enabling principled comparison of valid adjustment strategies. Third,
we identify the optimal VAS that minimizes asymptotic variance, showing that it systematically
differs from those used for ATE estimation due to mediator—confounder interactions. Together, our
identification results and efficiency analysis lay the foundation for extending WCDE estimation to
more complex settings where careful handling of mediator—confounder structure is essential.

While we assume that the underlying DAG is known and accurate, in practice, the DAG must often
be learned from data, a challenge actively studied in the causal discovery literature. Global discovery
algorithms can, in principle, recover DAGs from observational data, but they often suffer from poor
finite-sample performance or exponential runtime in the worst case [15, 25]. As a computationally
efficient alternative, local discovery algorithms focus on the relative relationships between exposure
and outcome, bypassing the need to recover the full DAG [31, 32]. Maasch et al. [31] proposes a local
discovery method tailored for WCDE estimation under suitable assumptions, showing polynomial
runtime while allowing for unobserved confounders that do not directly affect the outcome. Our
results further establish that the set returned by their procedure is asymptotically optimal in their
problem setting. Another promising approach is to assume an additive noise model, under which
global discovery algorithms are provably consistent in polynomial time [18-20], potentially enabling
the efficient identification of adjustment sets. While these alternatives offer practical avenues for
learning the O-set from data, a key open challenge is to understand how errors from causal discovery
propagate into WCDE estimation. Developing robust frameworks that integrate structure learning
with optimal adjustment set selection remains an important direction for future work.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the simulation code and scripts for reproducing all results
in the supplementary material and a public repository. The full simulation setup (DAGs,
coefficient sampling, nonlinear transforms, estimators, and seeds) is described in Section 5
and Appendix D.1.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All simulation parameters, including sample sizes, nonlinear functions, random
seeds, and estimator specifications, are provided in Section 5 and Appendix D.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Not applicable. We already report the variance and MSE of the estimates,
which quantify the uncertainty of our results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All simulations were executed on AWS EC2 c7a.24xlarge instances (96
vCPUs, 192 GB RAM) using Ray for parallelization with deterministic single-thread workers.
Each reported setting uses 50 coefficient sets (n_coeff_sets=50) and 100 replications per set
(n_rep=100) at sample size n=2000. Implementation details are provided in Section 5 and
Appendix D.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research adheres to the NeurIPS Code of Ethics. No data collection,
human subjects, or potentially harmful technology is involved.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Our paper is purely theoretical, and we do not believe there is a societal impact
to be discussed. We do not see a direct path to negative applications.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release any models or data that pose a risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No existing code, datasets, or models are reused in this paper. Only literature
is cited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new datasets, models, or tools are released in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing or human subject research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve any human participants, so IRB approval is not
applicable.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No large language models were used for core methodology. LLMs were
used only for grammar refinement and formatting, which does not require disclosure under
NeurIPS policy.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Definition, Notation and Graph Terminology

Definition A.1 (d-separation). For disjoint vertex sets X, Y, and Z, we say Z d-separates X from Y
if every path between X and Y is blocked by Z. A path is blocked by Z if it contains either:

(1) A chain X; — Z, — X or fork X; < Z;, — X; with Zy, € Z, or

(2) A collider X; — Zy, < X; where Zj, ¢ 7 and none of its descendants are in Z, i.e.,

De(Zk) NZ=0.

Definition A.2 (Path types). To ensure consistency with the standard causal inference literature
[34, 37], we define seven types of paths in a directed acyclic graph (DAG) G = (V, E) connecting
treatment A and outcome Y :

(1) Directed path: A path in which all arrows point in the same direction, from the starting
node to the end node. Example: A — B — C — Y.

(2) Backdoor path: Any undirected path between A and 'Y that starts with an arrow pointing
into A. Example: A+ Z =Y.

(3) Mediator path: Any directed path from A to Y that passes through at least one mediator
variable M € M. Example: A — M — Y.

(4) Causal path: A path from A to'Y in which all arrows are oriented away from A and toward
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(5) Proper causal path and causal nodes: A causal path is proper (with respect to A) if only its
first node lies in A. The set of all nodes lying on proper causal paths from A toY, excluding
A itself, is called the set of causal nodes and denoted by cn(A,Y, G).

(6) Non-causal path: Any path between A and Y that is not causal, i.e., that starts with an
arrow pointing into A.

Intuitively, directed and causal paths transmit causal influence from A to'Y, whereas backdoor and
other non-causal paths represent spurious associations that must be blocked for unbiased causal
estimation.

Definition A.3 (Identification of the controlled direct effect). Following the notation of VanderWeele
and Vansteelandt [59], let Y (a, m) denote the potential outcome that would have been observed had
the treatment been set to A = a and the mediator to M = m. Let C denote a (possibly multivariate)
set of pre-exposure covariates. ldentification of the CDE relies on the following counterfactual
independence assumptions:

(1) No unmeasured confounding of the treatment—outcome relationship:
Y(a,m) 1L A|C,
(2) No unmeasured confounding of the mediator—outcome relationship:
Y(a,m) 1L M | A,C.
Under these assumptions, the controlled direct effect of changing A from a to a* while holding M
fixed at m is identified as

CDE(a,a*;m) = E[Y(a,m) — Y (a*,m)]

: /@WwA=mAkﬂmO:d—EW|A=wazmkaDM%@.
(A1)

A.1 Sufficient and Necessary Conditions for CDE identification C2

To characterize the identification of the controlled direct effect (CDE), we first revisit the general
conditions under which a post-intervention density involving the do-operator can be expressed as a
function of observable conditional densities. These general graphical concepts—including adjustment
sets, forbidden sets, and the adjustment criterion—provide the foundational framework for identifying
causal effects such as the CDE.

A.1.1 Necessary and Sufficient Adjustment Criteria for Identifying do-probability

Following Pearl [34] and Perkovi¢ et al. [37], we recall the key definitions and the associated
soundness and completeness theorem.
Definition A.4 (Adjustment set [34, 37, Def. 54]). Let X, Y, and Z be pairwise disjoint node sets in
a causal DAG G. Then Z is an adjustment set relative to (X,Y) in G if, for any density | consistent
with G,

fly %), ifZ =10,

f do(x)) =
(y | do(x)) /f(y | x,2) f(z)dz, otherwise.

Definition A.5 (Forbidden set [37]). Let X and Y be disjoint node sets in a causal DAG G = (V, E).
The forbidden set relative to (X,Y) is defined as

Forb(X,Y,G) = {W' €V : W’ € De(W,G) for some W € en(X,Y,G) }.

That is, Forb(X,Y,G) contains all descendants of nodes that lie on proper causal paths from X
to Y. Variables in this set must not be adjusted for, since conditioning on them may introduce
post-treatment bias.

Definition A.6 (Adjustment criterion [37, Def. 55]). Let X, Y, and Z be pairwise disjoint node sets
in a DAG G. Let Forb(X, Y, G) denote the set of all descendants in G of any W ¢ X that lies on a
proper causal path from X to Y. Then Z satisfies the adjustment criterion relative to (X,Y) in G if
the following two conditions hold:
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(Al) Forbidden set condition: Z N Forb(X,Y,G) = 0;
(A2) Blocking condition: all proper non-causal paths from X toY in G are blocked by Z.

These two conditions together ensure that adjusting for Z yields an unbiased estimate of the causal
effectof Xon'Y.

Theorem A.7 (Soundness and completeness of the adjustment criterion [37, Thm. 56]). Let X, Y,
and Z be pairwise disjoint node sets in a causal DAG G = (V, E). Then Z satisfies the adjustment
criterion (Definition A.6) if and only if Z is an adjustment set (Definition A.4).

These definitions and Theorem A.7 jointly provide a complete graphical characterization for when a
post-intervention quantity such as f(y | do(x)) can be expressed through integration over observed
densities. That is, the adjustment criterion is both necessary and sufficient for identifying a single
interventional distribution in a causal DAG.

A.1.2 CDE Adjustment Criteria

In the context of the controlled direct effect, this criterion (Def. A.6) remains sufficient for identifica-
tion. Specifically, by letting X in Definition A.4 denote the union of the treatment and mediator sets,
X = (A, M), and by choosing Z that satisfies the conditions in Definition A.6, we can, according to
Theorem A.7, identify the post-intervention distribution

£(y | do(a,m)) = / f(y | a,m,2) f(z) d,

where the integration is performed over the adjustment variables Z. Hence, each compo-
nent E[Y (a,m)] = [y f(y | do(a,m))dy is identifiable, and consequently, the difference
E[Y (a, m)] — E[Y (¢*, m)] that defines the CDE is also identifiable.

Nevertheless, it is important to note that the CDE involves the difference between two interventional
expectations, E[Y (a,m)] — E[Y (a*, m)]. Because of this differencing structure, the adjustment
criterion serves as a sufficient but not necessary condition: in certain causal graphs, neither f(y |
do(a,m)) nor f(y | do(a*,m)) is individually identifiable, yet their difference—the CDE—can
still be identified because non-identifiable components cancel out when taking the contrast. We will
illustrate such cases in Figures A.1 and A.2.

In parallel, VanderWeele [58] proposed another set of sufficient conditions specifically tailored to the
identification of the CDE. Unlike the adjustment criterion, which applies to arbitrary causal effects
defined by a single do-operator, these conditions explicitly target the treatment—mediator—outcome
structure and are formulated in terms of conditional independence among potential outcomes:

(B1) The potential outcomes Y (a, m) are conditionally independent of A given Z:

Y(a,m) L A|Z, foralla,m;

(B2) The potential outcomes Y (a, m) are conditionally independent of M given (A, Z):
Y(a,m) L M | A,Z, foralla,m.

These conditions ensure that the CDE, defined as E[Y (a,m)] — E[Y (a*, m)], can be consistently
estimated from observed data. Nevertheless, similar to the adjustment criterion, they only guarantee
sufficiency rather than necessity.

Counterexamples to Necessity. Next, we provide counterexamples to illustrate that Condi-
tions (Al), (A2), and (B2) are all not necessary for CDE’s identification. Consider the DAGs
in Figure A.1 and Figure A.2. In the first DAG, the empty set ) identifies CDE(m) even though it
does not contain X1, which lies on a backdoor path between M and Y, thus violating Conditions (A2)
and (B2). Since there is no direct arrow from A to Y, the controlled direct effect is zero, i.e.,
CDE(m) = 0. When the adjustment set is empty, Equation A.1 reduces to

EY|A=am)—EY|A=a",m)=EY |m)—EY |m)=0,
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which exactly matches the true value of CDE(m). Hence, the empty set is sufficient to identify
CDE(m) in this graph.

In the second DAG, the set { X} identifies CDE(m) even though X, € Forb(A4,Y,G), violating
Condition (A1). Since there is again no direct arrow from A to Y, the controlled direct effect equals
zero, i.e., CDE(m) = 0. When adjusting for X5, Equation A.1 becomes

E(Y | A= a,m,Xg) - E(Y | A= a*7m7X2) = E(Y | m,Xg) - E(Y | m,Xg) = O7
which coincides with the true value of CDE(m). Therefore, the set { X5} is also sufficient to identify
CDE(m) in this graph.

Figure A.1: Example illustrating Condition (A2)  Figure A.2: Example illustrating Condition (A1)
and (B2) is not necessary for CDE identification.  is not necessary for CDE identification.

e

These examples demonstrate that both frameworks—the adjustment criterion for the do-operator
and VanderWeele’s conditions for the CDE—are sufficient but not necessary. A complete graphical
characterization that is both necessary and sufficient for CDE identification has yet to be established.
Given that our primary focus is on the WCDE, we leave this theoretical development for future work.

A.2 Definitions of Causal Partition Introduced by Maasch et al. [32]

A complete description of the eight causal partitions is included in Table A.1.

EXHAUSTIVE AND MUTUALLY EXCLUSIVE PARTITIONS

X1 Confounders and their proxies: Non-descendants of X that
lie on an active backdoor path between A and Y (Definition
A.2), and their proxies (Definition A.8).

Xy Colliders and their proxies: Non-ancestors of { A, Y} with at
least one active path to X not mediated by Y and at least one
active path to Y not mediated by A.

X3 Mediators and their proxies: Descendants of A that are ances-
tors of Y, and their proxies (Definition A.8).

X4 Non-descendants of Y that are marginally dependent on Y
but marginally independent of A (Definition A.9).

X5 Instruments and their proxies: Non-descendants of A whose
causal effect on Y is fully mediated by A, and that share no
confounders with Y (Definition A.10).

X Descendants of Y where all active paths shared with A are
mediated by Y.

X7 Descendants of A where all active paths shared with Y are
mediated by A.

Xg All nodes that share no active paths with A nor Y.

Table A.1: Partitions are formally defined by the path combinations enumerated in Table 3 of Maasch
et al. [32].

Definition A.8 (Proxy variables in X, X5, and X3, Maasch et al. 32). A proxy variable for X1, Xa,
or X3 is a member of these partitions that is an ancestor or descendant of another member of its
respective partition, such that the proxy is not strictly a confounder, mediator, or collider, but still
satisfies the allowable path types for its respective partition (as defined in Maasch et al. [32, Table
3]). This includes X3 that are descended from X3 that lie on mediator chains, X4 that are ancestral
to X1 on backdoor paths, etc. ([32, Figure B.3]).
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Definition A.9 (Partition X4, Maasch et al. 32). Partition X4 encompasses all non-descendants
of Y that are marginally dependent on'Y but marginally independent of A (Table A.1). Given this
definition, we observe that any X, participates in a v-structure A--- =Y < --- Xy4. This implies
the following:
1. A cannot share active paths with any X 4. Thus, A can share no common causes with any
Xy.
2. X4 is conditionally dependent on A given Y. This implicitly requires that A and Y are
marginally dependent, though they may not be directly adjacent in G.
Definition A.10 (Instrumental variable, Lousdal [30]). Any instrument X5 meets the following
criteria:

1. Relevance assumption: X3 is causal for exposure A.
2. Exclusion restriction: The effect of instrument X5 on outcome Y is fully mediated by A.
3. Exchangeability assumption: X5 and 'Y do not share a common cause.

B Proofs and Extended Discussions for Sections 2 and 3

In this section, we provide the technical details and proofs omitted from Sections 2 and 3 of the
main text. We begin by establishing the sufficiency and necessity of the graphical adjustment
criteria for identifying the WCDE, as formalized in Lemma 2.6. We then proceed to elaborate
on semiparametric foundations, including regular submodels, score functions, tangent spaces, and
pathwise differentiability, which lay the groundwork for deriving the influence function of WCDE.
The section concludes with a detailed proof of Theorem 3.4, which characterizes the influence
function of WCDE in terms of its identifying functional.

B.1 Proof of Lemma 2.6

Proof of Lemma 2.6. Sufficiency of the Graphical Criteria. We demonstrate that any valid ad-
justment set Z satisfying Condition 2.5 identifies the same WCDE (Equation (2.1)) through two
expectation-preserving transformations. The key insight is that the conditional independence in
Criteria 2.5 allows us to safely incorporate the target mediators M’ into the adjustment set without
changing the identified effect. Let Z1 = ZNM,Zs = Z\ M, C =Pa(Y) \ (M’ U {A}).

Step 1: Replacing Z, with C Including Non-Mediating Parents of Y Since C satisfies the
graphical conditions for identifying the CDE with mediator Z; (Definition A.3), yielding:

Ez {Ez,[Ey (Y | A=a,Z1,Z3)}} —Ez {Ez,[Ev (Y | A=a",Z1,Z5)]}

— Bz, (E[Y | do(A = a,Z,)] ~ EIY | do(4 = o, Z1)) )

=Ez {EcEy (Y| A=0a,Z,,C)} —Ez {Ec[Ey (Y | A=a",Z,,C)]}.
Step 2: Incorporating Mediators in M’ Define Z) = Z; U M’. We now show that augmenting

the conditioning set with M’ \ Z; does not change the outer expectation over Z;. Let W = M’ \ Z;.
so we have:

Ez, {Ec[Ey (Y | A=a,Z,,C)]} — Bz, {Ec[Ey (Y | A=a*,Z,,C)]}

=Ec{Ez (Ey(Y | A=a,Z1,C))} —Ec{Ez,(Ey(Y | A=a",Z;,C))}

=Ec{Ez, [Ew|z,.c,a(Ey (Y | A=a,Z1,W,C))]} — Ec{Ez, [Ewz, c.a(By (Y | A=0a*Z;,W,C))]}
=Ec{Ez, [Ew|z,(By (Y | A=0a,Z1,W,C))|} — Ec{Ez, [Ew|z,(Ey (Y | A=a*,Z;,W,C))] }
=Ec{Ez, wEy(Y | A=0a,Z1,W,C)]} —Ec{Ez, wEy (Y | A=a*,Z;,W,C)]}

=Ez, w{Ec[Ey (Y | A=0a,Z1,W,C)]} — Ez, w{Ec[Ey (Y | A=a",Z;,W,C)]}

= Bz {Ec[By (Y | A= a,Z}, C)]} — Bz, {Ec[Ey (Y | A =a", Z}, C)]}.

The third equality follows from W L g (C, A) | Z; in Criterion C3 of Condition 2.5, which implies
p(w | Z1,C, A) = p(w | Z;); the fourth uses the tower property, and the last merges Z; and W
intoZ) =Z; UW.
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Step 3: Simplification to WCDE Then we remove elements in Z that are not in Pa(Y") and show
that it is equal to Equation (2.1).

Ez, {Ec [Ev(Y | A=a,Z},C)]} — Ez {Ec [Evy (Y | A=a",Z},C)]}

= Ec{Ez,om [Ey (Y | A =a,Z, UM, C)]} — Ec {Ez,om [Ev (Y | A = a*, Z, UM, C)]}
— Ec {Ez,om [Ey (Y | A=a,M,C)]} — Ec {Ez,on [Ey (Y | A= a*, M/, C)]}
=Ec{Em [Ey(Y | A=0a,M,C)]} —Ec{Em [Ey(Y | A=a",M',C)]}

= Enp {Ec [Ey (Y | A = a,M, C)]} — Eny {Ec [Ey (Y | A = a*, M, C)]}

= En(E[Y | do(4 = a,M)] — E[Y | do(4 = a*,M')] )

= Y (E[Y|do(a,m’)] —E[Y |do(a",m)])p(m’)

m’'eM’
= WCDE

The first equality expands the conditioning sets to include M’; the second removes non-parent
variables in Z without changing the expectation (all parents of Y are already conditioned on); the
third marginalizes out Z; the fourth swaps the order of integration over C and M’ ; and the fifth uses
the CDE identification with mediator M': since C satisfies the graphical conditions for identifying
the CDE with mediator M’. This yields the WCDE in Equation (2.1).

Necessity of the Graphical Criteria We now show that the adjustment criteria are not only
sufficient but also necessary. By definition, The necessity of Condition C1 follows directly from the
definition of the CDE, which requires blocking all mediator paths between A and Y. By definition,
Condition C2 is necessary (we discuss specific conditions that could lead to necessary and sufficient
VAS for CDE in Section A.1). We therefore focus on demonstrating that the third adjustment
criterion is also necessary for a given set Z to qualify as a valid adjustment set for the WCDE.

Assume we have an adjustment set Z that satisfies the first three criteria, but violates the third criterion
with respect to (A, Y") in graph G. Define the following subsets:

Z,=ZNM, Z,=Z\M, W=M\Z;, C=PaY)\ (M U{A}).

Note that Pa(Y") \ {A} is a valid adjustment set for identifying WCDE. We compare WCDEp,(y)\ 4
with WCDEyz and consider their difference:

WCDEpq(y)\4 — WCDEz = (T (Pa(Y) \ A) = T,(Z)) — (T (Pa(Y) \ A) — T, (Z)).
We first analyze the term Ty, (Pa(Y) \ {4}) — To(Z):

To(Pa(Y) \ A) — To(Z)

= Em {Epay)\ovrua) {By (Y | A= a, M',Pa(Y) \ (MU A))}}

—Ez {Ez, {Ev (Y | A=0a,Z1,Z5)}}

= Em {Epay)\omrua) {By (Y | A= a, M',Pa(Y) \ (M'U A))}}

— Ez, {Epay)\mvua) {Ey (Y | A=a,Z;,Pa(Y) \ (M'UA))}}

= Emvoz, {Epayy\mrua)y {Ey (Y | A =a,M'UZ;,Pa(Y) \ (M'U A))}}
— Ez, {Epay)\omrua) {By (Y | A= a,Z1,Pa(Y) \ (M'U A))}}

The second equality holds because both Pa(Y") \ (M’ U {A}) and Z satisfy the graphical conditions
for identifying the CDE with mediator M. The third equality follows from the fact that all parents of
Y are already included in the conditioning set; thus, adding elements from Z; does not affect the
conditional expectation of Y.
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To simplify further, we translate these expectations into integrals:
Enozy {Epay\mruay {Ey (Y | A = ¢, M'UZy,Pa(Y) \ (M'U A))}}
— Ezy {Epayy\mrua) {Ey (Y | A =a,Zy,Pa(Y) \ (M'U A))}}

B //w </c (/ yply|A=a.cw.z) dy) p(c)dc) p(w | 21)p(za)dwdz:
(L for14-com) wo)r
L1 i) ) s i
W ATAI T
- / </ </y (/ (W] A=a,c,wz)p(w]|z) —p(w| A= a,c,zl)}dw> dy> p(c)dc) p(z:)dzs
-/ / (/ (/ ply | A=a,cw,z)p(w| ) —p(w| A= a,zl,cnp(c)p(zl)dw) dc> dz1dy

The first equality expands the nested expectations using the law of total expectation, with integration
over p(w|z1)p(z1) and p(c). The second applies Fubini’s theorem to switch the order of integration.
The third rewrites the inner integral to highlight the difference. Similarly,

T, (Pa(Y) \ A) — T (2)
/ / </ (/ (] A=a"c,w,z)lp <w|zl>p<w|Aa*,zl,cnp(c)p(zl)dw) dc>dz1dy

Subtracting the two:
WCDEpy(yy\a — WCDEz = (To(Pa(Y) \ A) — To(Z)) — (Tu=(Pa(Y) \ A) — To+(Z))

/ /21 (/ (/ Pyl A=a,c,w,z1)[p(w|z1) —p(w| A= avzl’c)]p(C)p(zl)dw> dc) dz,dy
/ / (/ (/ ply | A=a" e, w,21)[p(w | 21) — p(w | A:a*,zhcnp(c)p(zl)dw) dc) dz1dy

We can view [p(y | A = a,c,w,z;)dwdcdz; and [p(y | A = a*, ¢, w,z;) dwdcdz; as two
operators that map probability distributions over (C, W, Z1) onto probability distributions over Y.
Arrange p(y | A = a,c,w,z1) and p(y | A = a*, ¢, w, z1) so that this mapping is one-to-one. Then,
to ensure equivalence between the induced distributions, we would require

p(w | z1)p(c)p(z1) = p(w | A =a,z1,¢)p(c)p(z1) = p(w | A= a”,2z1,c)p(c)p(z1)

to hold for all models consistently with G. However, this equality generally fails because W U g
(A, C) | Z; when the third adjustment criterion is violated. Consequently, the integrand does not
vanish in general, and the resulting functional WCDE ; deviates from the true WCDE. We therefore
conclude that the third adjustment criterion is necessary for a given Z to qualify as a valid adjustment
set.

O

B.2 Illustration of Criterion C3

Example B.1 (Illustration of Criterion C3). In Figure B.3, M = {G1, B1},Pa(Y) = {A,G1,G2},
and M' = {G1}. One can verify that the sets {G1, G2} and {G1, B, G2} both satisfy Condition 2.5,
and are therefore valid adjustment sets.

In contrast, the set Z = {B1, Gs} satisfies Criteria CI1-C2, but violates the Criterion C3. In this
case, Zy = {B1}, Zy = {G2}, M'\ Z; = {G1}, and Pa(Y') \ M’ = {A, G2}. In Figure B.3, we
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W)=

Figure B.3: A DAG illustrating Condition 2.5.

observe that when conditioned on G1, B is dependent on G5 due to the direct edge between them;
similarly for A. Thus G1 lLg Ga, A | By, violating Criterion C3. One could further verify that
WCDE(g, ¢,y # WCDE" = WCDE(q, ¢,y as defined by Equation (2.2). To see this, we compare
the difference between the first term in WCDE( g, q,) and that in WCDE g, .-

T.({B1,Gz2}) — Ta({G1, G2})

Because G1 UL.g Go, A | By, there exists a data generating process under which p(gi|b1, g2,a) #
p(g1|b1) the integrand does not necessarily vanish (detailed construction in proof of Lemma 2.6),
and the resulting functional based on {B1, G2} may differ from the true WCDE as defined. A
similar argument can be made on the difference of the second term T+ ({B1, G2}) — Ty« ({G1, G2 }).
Therefore, the WCDE cannot be identified using Z = { By, G }.

B.3 Discussions on Influence Functions

For a more detailed review of influence functions and their role in causal inference, we refer the
reader to Hines et al. [17], Kennedy [26], and Tsiatis [54]. Here, we focus on definitions relevant to
our derivations in Section 3.

To formally introduce nonparametric estimation, we begin by considering a general statistical model
M, which is a collection of candidate distributions defined on a measurable space (€2, F). Each
element P € M admits a Radon—-Nikodym derivative p = dP/dv with respect to a dominating
o-finite measure v, satisfying p > 0 v-a.e. and fQ pdv = 1. With slight abuse of notation, we use P
and p interchangeably to refer to the distribution and its density.

To prepare for the proof of Theorem 3.4, we begin by recalling several foundational concepts from
semiparametric theory, including regular parametric submodels, score functions, tangent spaces, and
pathwise differentiability. These concepts provide a principled framework for defining and deriving
influence functions. To rigorously understand and formalize the sensitivity discussed in Remark 3.3,
we also introduce the definition of influence functions via local distributional perturbations. This
alternative characterization is particularly useful for interpreting the robustness and local sensitivity
of statistical functionals to contamination at individual points.

Tangent Space, Pathwise Differentiability, and Influence Function.

We now introduce key concepts from the local geometry of the model M that play a central role
in semiparametric estimation theory. We proceed step-by-step, starting with the notion of regular
parametric submodels, which formalize how a nonparametric distribution can be locally perturbed in
a smooth manner.

Definition B.2 (Regular One-dimensional Submodel, Bickel et al. 5). Let M be a nonparametric
model. A regular one-dimensional submodel {P;};c(—.,.) C M passing through P att = 0 is
a smooth parametric path such that Py = P and the corresponding density p; with respect to a
dominating measure v is differentiable in t at t = 0, with the derivative satisfying

0
e log p+(O) - € Ly(P).

The derivative of the log-density along a submodel is referred to as the score function and represents
the direction of infinitesimal perturbation in the model:
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Definition B.3 (Score Function, van der Vaart 56). For a regular one-dimensional submodel { P;}
with density py, the score function at P is defined as

0
S(0) = =1 0 ,
(0) = 5, logp:(0) -
which describes the direction of local perturbation of P along the submodel.

A commonly used example of a regular submodel is constructed by directly specifying a score
function S and perturbing the baseline density p as follows:

pe(0) = (1 +15(0))p(0),
where the score function satisfies | S(0) p(0) dv(o) = 0 and [ S?(0) p(0) dv(0) < oco. One can
verify that this path satisfies Py = P and that its score function is

0

= —log(1+tS(0)) = S(o0).

=0 Ot t=0

Such submodels are particularly useful for constructing influence functions and deriving efficiency
bounds in semiparametric models.

0
9t log p¢ (o)

The set of all such score functions defines the tangent space, which describes the directions in which
the model M can be perturbed:

Definition B.4 (Tangent Space, van der Vaart 56). The tangent space at P is the closed linear
subspace of Lo(P) spanned by all score functions S(O) generated by regular one-dimensional
submodels through P. It characterizes the set of directions in which the distribution P can be locally
perturbed.

We now turn to a central concept in semiparametric theory: pathwise differentiability. This notion
formalizes when a parameter of interest can be linearly approximated along such perturbations, and
leads directly to the definition of the influence function:

Definition B.5 (Pathwise Differentiability and Influence Function, Tsiatis 54). A parameter T is said
to be pathwise differentiable ar P if there exists a function Yp € Lo(P) with Ep[yp(O)] = 0 such
that, for every regular submodel { P,} with score function S(O),

%T(Pt) =Eplyp(0) - S(0)] (B.1)
t=0

Any such function 1 p is called an influence function (IF) of T at P.

Equation B.1 provides a constructive method for deriving influence functions, which we elaborate
upon in the next subsection.

In addition to submodel-based definitions, influence functions can be equivalently understood via
local distributional perturbations. This perspective, which originates in robust statistics, is often more
intuitive:
Definition B.6 (Influence Function via Local Distributional Perturbations, Hampel 14, Huber and
Ronchetti 21). Let d, denote the Dirac measure at observation o, and consider a perturbed distribu-
tion

P.=(1—¢)P + &0d,.
Then the influence function of a statistical functional T at P evaluated at o is defined as

IF(o; T, P) := iT(Pg)

de =0

This definition captures the first-order sensitivity of 7' to contamination at point o, and naturally
connects to the notions of robustness and sensitivity analysis. It corroborates our observation in
Remark 3.3 that WCDEy is sensitive to perturbations in variables within Z, implying that the choice
of Z directly impacts the sensitivity of the functional.

A fundamental result in semiparametric theory links these definitions to statistical estimation. Specif-
ically, if T is an asymptotically linear estimator of 7'(P) at P with influence function ¢ p, then T
is regular at P in model M if and only if T'(P) is pathwise differentiable and 1) p is the influence
function of T'. See Theorem 2.2 of Newey [33]. This explains why the influence function defined in
Definition 3.2 coincides with the influence function of the target parameter 7'(P).
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B.4 Proof of Theorem 3.4

Lemma B.7. [29] Let O = (01,04, ...,04) be a random vector with joint density p;(o) under a
smooth parametric submodel { P;}. Assume the density factorizes as

d
pi(o) = Hpoi,t(Oi | 6i-1),
i=1

where 6;_1 = (01,...,0,—1), and po, +(0; | 0i—1) = po,(0; | 6;—1) at t = 0. Then, the pathwise

derivative of each conditional density satisfies:

+:00,,t(0i | 0-1)
ot t=0 t=0

Define the conditional score function So,(0;) as the derivative of the log-density:

_ 0 _
:pO,;(Oi | Oi—l) : ot longi,t(Oi | Oi—l)

0
So,(0:) = alogpo,;,t(oi | 0i—1) -
Then:
2 o001 3:-1)
8tp0i,t 7 i—1

= 50,(0i)po, (0 | 0;-1).
t=0
Moreover, under the chain rule for scores, this can be written in terms of the full-data score function

S(O) as:

%poi,t(oi | 0i—-1) o (E[S(O) | Oi = 6] = E[S(O) | Oi-1 = 0i-1]) po, (0i | 6i-1).

This lemma allows for expressing the derivative of a marginal or conditional density in terms of
conditional expectations of the full-data score function and is essential for decomposing pathwise
derivatives in IF calculations.

Proof. (Proof of Theorem 3.4)
For the WCDE functional:
Tu(Z) = Eg, {Ez, [E[Y | A = a,Z,, Z,]]}
Recall the definition of the pathwise derivative:
0
= /1/1(0; P)S(o)p(o)do.
t=0

=T ()
where the score function S (o) is defined as

ot
S(0) = = logp:(0)
= g o8Pt

t=0
for any smooth parametric submodel {P; }.

We start by expressing T, (P;) as:
To () = /ypt(y | a, 21, 22)pi(21)pi(22)dydzadz,

_ /ypt(yazlaZQ,a)pt(zl)pt(ZQ)ddeZdzl

pt(z17 Zo, a/)
Taking the derivative w.r.t. ¢ at ¢ = 0, and applying the product and chain rules, we get:
oT, (Py)
ot |,

_ p(z1)p(2z2) O p(y,a,21,22) p(z1) O

= /y{ p(a,21,72) 8tpt (y,a,21,22) t:0+ b (0,21, 72) atpt (z2) Y
(i) first term (ii) second term

p(yaG'levZQ)p(ZQ) 0 p(yvavzlaZQ)p(Zl)p(ZQ) 0 }
+ —p (z — —p (a,21,2 dv(y) dv(zs) dv(z
p(a,z1,22) ot ¢ (1) t=0 p(aaz27zl)2 ot (0772) =0 () vtz dv)

(iii) third term (iv) fourth term
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Each term is handled individually. For the first term:
/ { (a zl,z2) 6tpt (y,a,21,22) tzo}dl/(y)dy(zQ)dl/(Zl)

plaap (o (.20
1 d d d
= [y PRI ) Do (1,021, 2)| ly)v()v()

/ { Zla Z1 z2)( ) S(0)}dv(y)dv(z2)dv (z1)
/ { Zla ZLZZ)( )[( "S(0)}dv(y)dv(z2)dv(z, )dv(a')

p(z2)y
S dv(o
= [P EIY 5 01,0 a0
In the third equahty, we extend the integration from the conditional domain over (y, z1,z2) to the
full domain o = (y, a’, z1, z2). To preserve the original conditioning on A = a, we introduce the
indicator function I, (a’) := H{a/:a}, where a denotes the fixed treatment level of interest, and a’
serves as the input variable to the function, which may vary throughout the integration.

For the second term, we apply Lemma B.7. This result allows us to express the influence of the
perturbation in p(z2) on the target parameter through a conditional expectation of the score function.

[o{rlemmne) 8y g b))

p (aa Zy, ZQ)

t=0

= [ {“y’“’zl’“)p(“) (E[S(0)]za] - E[S(O)])p(22)} do(y)do(z2)dv (21)

p (CL, Z17Z2)

We now expand the conditional expectations explicitly. The first term inside the integrand is rewritten
using the definition of conditional expectation and the joint density, while the second term represents
the overall mean of the score function. By computing the expectation of Y given (A = a, Z1,Z2)
and rearranging the integration order, we ultimately express the entire term as an inner product of
the score function S(o) with a centered function depending on Z; and Z5, which contributes to the
influence function.

[ ot mIn ) (55(0)0s) - Bl (O)) o)} atyivtaa vt

p(a,z1,22)
= P(Y:0,21,22) p (21) p(22) o) a,z1|2z9)dv v(a)dv(z
[ u{ Pl eI @R ([ sy, 0.0 ) (1) (a) ()

/s )}du( )d(22)dv (21

~ [ @)y (V0,2 2)) ( [ Sv.a.mz)dvly)v(a)dv(a)
/S )du( 2)dv(z1)
— [ By (Va2 [ SOpn0.21, 200 b b 1) ) dvlz)iv(a)
- [ TuP)sEpo)r(o)
— /{IE)Z1 [Ey[Y|A =a,Z1,Z5]]} (/ S(o)p(y,a,zl,z2)d1/(y)du(a)d1/(z1)> dv(zs)
- [ TuP)sEpo)v(o)
= [ (B, v 1¥14 = 020,200} (SOpl0)) (o) — [ Tu(P)S(o)plo)iv o)
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For the third term, we apply Lemma B.7. This result allows us to express the influence of the
perturbation in p(z;) on the target parameter through a conditional expectation of the score function.

} dv(y)dv(z1)dv(za)

p(G‘levZQ) ot =0

/y{p(y,a,ZuZQ)p(Zz)apt (21)

- [ {p(y’“’zl’”’p(“) (E[S(0)]za] - E[S(O)})p(zn} do(y)do (1 )do (2)

p ((1, Zl,ZQ)

The rest of the computation follows by evaluating the conditional expectation of Y given A =
a,Z1,Zs and expressing the result in terms of an inner product between the score function and an
identifying function.

/y {p 0:2,22,22) P (22) gy 0y 5] E[S(O)Dp(zl)} dv(y)dv(z2)dv(z:)

p(a,z1,22)
= p(Y:0,21,22) p (21) p(22) o) a, 25|z, )dv v(a)dv(z
[ u{ Pl @R ([ 06y, 0,20} ) (3) (o) (a2

_ / S(o)p(o)du(o)) } () (22)dv (21

= [ ety (Viaarza)} ([ Sly.a,mla)ar(s)ar(a)ar(e)
—/S(o)p(o)du(o)) dv(z2)dv(z1)

— /{p(ZQ)EY(Y|CL,Z1,Z2)} (/ S(o)p(y,a,zl,zz)dv(y)du(a)du(22)> dv(z2)dv(z1)
- [ TuP)sEpo)r(o)

— [ V14 = 0. 20,201 ([ S0t 020,220 )vl)iv(a2) ) doa)
- [ TuP)sEpo)r(o)

— [ ([ 1Y1A = 0.2 Za]}} (S©)pl0)) (o) — [ T.(P)S(O)p(0)dv(o)

For the fourth term, we begin by applying Lemma B.7 to express the derivative of the joint probability
pt(a, 21, 22) in terms of the score function S(O).

(a, Zy, ZQ)

/y{p(y,a,zl,zamzl)p(z?) )

o, Pt
p(a,ZhZQ)Q ot

} dv(y)dv(z2)dv(z,)

t=0

= [ {p‘y’“’;@zzpf);)p(“) (E[S(0)]a, 21, 72] — E[s<0>1>p<a,zl,Z2>} () v (z2)dv ()

Next, we expand the conditional expectations as integrals over the relevant conditional distributions.
The term E[S(O)|a, z1, z2] becomes an integral over p(y|a, z1, z2), while E[S(O)] integrates over
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the full joint distribution p(0). We then factor out the conditional expectation of Y given (a, z1, 22).

p (G7Z1, 22)2

= [ {“y’“’z“zﬁp(zﬁp(z” (E[S(0)]a, 21, 72] — E[S(omp(a,zm)} dv(y)dv (2)dv(2,)

_ /y{p(y’a’ ;1(’52255)1) 72) (/S pyla, 21, 22)dv(y /s )}dy( Ydu(22)dv (z1)
/{p 21)p(22)Ey (Yla, 21, 22) (/S p(yla,z1,22)dv(y /S >dV(Z1)dV(Z2)
/{p (z1)p(2z2)Ey (Yla,z1,22)} (/S y&azjj’zz)ﬂdv(y)) dv(z1)dv(z2) — /Ta(P)S(o)p(o)dV(o)

Finally, we introduce the indicator function I,(a’) and combine all integrals into a single expectation
with respect to p(o).

[ sty (Vom0 ( | S(o)p(y’“wdu(y)) (22 )dv(z2) - / T, (P)S (o)p(o)dv(0)

(CL Zy, Z2)

:/{ ((a ;1,(22))EY(Y|0L 21,2 } (/s )du 21)dv(2s) /Ta (0)d(0)

- [ty zl,zg}sw)p(o)du( Vv (1) () v (a”) / T, (P)S(0)p(o)dv (o)

(a Z1,Z 2)
:/{I()()(ZQ) (Y|a,z1,zQ)}S(o)p(o)du(o)—/Ta(P)S(o)p(o)dV(o)

(Cl Z, ZQ)

Summing all terms together, we obtain:

aTa (Pf)
CLZ P
_ /{[]a(a’)p (Zl)p (;Z)l <zz/2_z11E)Y(Y|a’ Zy, Z2>) + Ez1 [Ey[Y‘A =a,z2, Zl]]

+Egz, [Ey[Y|A = a,z1,22]] — 2T,(P)]S(0)p(o) }dv(o)
/wa 0; P)S(0)p(0)dv(o)
with

Yo (Y, A, Z1,Zy; P) :Ia(A)p(Zﬂp(Zz)

p(zl7 Z27 a)

—|—Ez2 |:Ey[Y ‘ A = a,Zl,ZQ]] +EZ1 [Ey[y | A = CL,Zl,ZQ]:| — 2Ta(P)

. <Y—]Ey[y | A= a/,Zl7Z2]>

as required. O

C Proofs of Results in Section 4

Theorem 4.3 follows from the four lemmas presented in Section 4. Accordingly, we first provide the
proofs of Lemmas 4.4, 4.6, 4.5, and 4.7 individually, and then proceed to prove the theorem.

C.1 Proof of Lemma 4.4

Proof. (Proof of Lemma 4.4: Supplement of backdoor variables)

We begin by showing that the set (G1, G2, B2) remains a VAS. We can verify this by comparing
the identified WCDE functionals. Recall that for any adjustment set Z = (Z1, Zs), the WCDE is
identified as

WCDEZ = Ezl{]Ez2[IE(Y | A=a,Zy,%,)] — Eg,[E(Y | A =a",Zy,Zy)] }
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Figure C.4: A DAG illustrating Lemmas 4.4, 4.6.  Figure C.5: A DAG illustrating Lemmas 4.5, 4.7.

For (G1, Ga, B2), consider the term corresponding to a:
T.(G1,Ga, By) = Egl{EGLBJE(Y | A=a,G1,Go, Bz)]]
Under the conditional independence
Gy 1lg A,G; | By (C.1)

we have p(Ga,B2) = p(G2 | B2)p(B2) = p(G2 | A = a,G1,Bs)p(B2), and by the law of
iterated expectations,

]EG2|B2 [E(Y | A = a, Gl, Gg, Bg)] = E(Y | A = a, Gl,BQ).
Substituting this gives

T,(G1,G2,By) = ]EG1|:]EB2 [Eg,B,[E(Y | A=a,G1,G2,By)] H

~Eq,[Es, [E(Y | A=0,Gi1,By)]| = Tu(G1,Ba),

and the same equality holds for a¢*. Hence,

WCDE g, ,g,,B,) = WCDE g, B.)-
By the uniqueness of the identified WCDE functional, any adjustment set that yields the same
functional as a VAS must itself be a VAS. Therefore, (G1, G2, B2) is also a VAS.

We now compare the asymptotic variances of two VASs, (G1, Bs) and (G, Ga, Bs). For clarity,
we first focus on the first component of the WCDE in Equation (2.2), and let 2 ,(P) denote its
asymptotic variance. The extension to the full WCDE is straightforward. We begin by decomposing
the variance:

02 (1B (P) = Varp [a(Y, A, G1,By; P)] = Varp [¢(Y, A, G1, Ga, By; P)]
+ Varp [, (Y, A,G1,Ba; P) — ¢, (Y, A, G1, G2, Ba; P)]
+2 Covp (Ya(Y, A, G1, Gz, By; P),va(Y, A, G1,B2; P) — (Y, A, G1, Go,Ba; P)).
To analyze the covariance term, consider the difference in IFs evaluated at (Y, 4, G1, G3, Bs):
Ya(Y, A, G1,Ba; P) — ¢, (Y, A, G1, G2, Bs; P)
_ 1a(A)p(G1)p(B2)
~ p(G1,By,a)

. (Y—]Ey[y ‘ A = a,G1,B2]>

+EB2 |:Ey[y | A= a,Gth]:l +EG1 |:]Ey[Y | A= a,G1,B2]:|

~ 1a(A)p(G1)p(Gs, By)
p(G1,G2,B2,a)

. (Y —]EY[Y ‘ A= 0,7G1,G2,B2]>

— IE(;%B2 |:]Ey[y ‘ A= a,Gl, GQ,BQ]:| — EGl |:]Ey[Y ‘ A= a,Gl, GQ,BQ]:|

_ L(4)-p(G1) - p(By)
p(A=a,G1,Bs)

. <]EY[Y | A=0a,G1,G2,By] —Ey[Y | A=aq, G1732}>
+EB2 |:Ey[y | A= a,Gl,Bg]} +EG1 |:]Ey[Y | A= a,G1,B2]:|

—Eg,.B, [EY[Y | A= a>G17G27Bz]] - Eg, []EY[Y | A= G,G17G27B2]}
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The second equality above holds under the conditional independence assumption C.1, from which it
follows that

p(G2 | B2) = p(G2 | G1,B2, A = a),
which implies:

P(G2,Bo)p(G1) p(B2)p(G1) p(Gz2 | By) _ _ p(B2)p(Gy1)
p(G11G27B27A:a) p(G17B27A:a) p(GQ |B27G17A:a) p(A:a/aGhBQ).

Therefore, the first terms in the two influence functions cancel out. To simplify the final term, note
that:

]EGmBz |:EY[Y | A= a, le G27B2]:| = ]EBz |:EG2B2 |:EY [Y | A= a, G17 G2a B2}:|:|

=Epg, |:EG2|G1,B2,Aa {EY[Y | A=a,Gi,Go, B2}” =Epg, [EY[Y | A=a,G, B2}]

this equality follows from the conditional independence assumption C.1 and the law of iterated
expectations. Substituting back, the difference simplifies to:

1,(A) - p(G1) - p(B2)
p(A = a, Gl,Bg)

. (Ey[y | A= G,G17G2,B2] —Ey[y | A= a,Gl,B2]>
+EB2 |:EY[Y | A= a7G17B2]:| +EG1 |:]EY[Y | A= a7G17B2}:|

— IEG,Q’B2 |:]Ey[Y ‘ A = a,Gl,GQ,BQ]] 7EG1 |:]Ey[Y ‘ A = a,G1,G27B2]:|

_ 1a(A) -p(G1) - p(B2) _ _
T T p(A=a,G1,By) Ey[Y | A=a,G1,G2,Bs] —Ey[Y | A=a,G1,B;]

+Eg, |:EY[Y | A= aaGlaB2]:| — Eg, |:EY[Y | A= G,GLG%Bg]}

Therefore, we arrive at the simplified expression for their difference.

We then construct a parametric submodel that perturbs only the conditional law P(A, G; | Ga, B2),
while keeping all other components of the distribution fixed. We show that under the conditional
independence assumption C.1, the difference between the two IFs is orthogonal to the influence
function of the larger adjustment set:

Ep [¥a(Y, A, G1,G2,B2; P) - (¥a(Y, A, G1,B2; P) — 9a (Y, A, G1, G2, Ba; P))] = 0.
Hence, the covariance term vanishes. Substituting this into the variance decomposition yields:
Varp[’(/Ja(K A, Gl, BQ; P)}
- VaI"P[wa(Y’ A7 Gl) G2a B27 P)} + Varp[z/}a(}/a A» Gla B27 P) - Tba(Y, Aa G17 GQ; B27 P)]7

where the second term is nonnegative. To formalize this orthogonality, we appeal to two key results
from semiparametric theory [54]:

1. If P, is a smooth parametric submodel with Py = P and score function g, then the influence
function 1), satisfies:

d
—Ta(P)|  =Ep[ta-g].
dt =0
2. In a nonparametric model, any function g such that
Ep[g(A, G1,G2,Bs) | G2,By] =0

is a valid score function for the conditional law P(A, G1 | Gz, Ba2).
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Let us now consider any distribution P and define the function
g(A7 Gla G27 B2) = wa(Y7 A7 G17 BQ, P) - ¢a(Y7 A7 Gl) G2a B27 P)a

which satisfies the second condition above. Using this function, we define the following submodel
for sufficiently small ¢ > 0:

P(Y,A,G1,G2,B2) :=P(Y | A,G1,G2,B2) - P(A,G; | G2,B3) - P(G2,B2),
where
Pt(A7G1 ‘ G27B2) = P<A7G1 | G27B2)(1 +t'g(A7G17G27B2))'

This submodel perturbs only the conditional law of (A, G1) given (Gg, B), leaving the remaining
components of the joint distribution fixed. The score function of this model at ¢ = 0 is

0 0
510gpt(Y’A7G17G27B2) = 710g{1+tg(A7G1aG27B2)} :g(AaGhGQ»BQ)'
t =0 Ot t=0
Applying result (1), we obtain:
d
—To (P, =Ep[th, - g].
GTe(P)|_ =Erlba-d

Now consider the functional:
To(P) = Z Z [ElY | a, G1, G2, Ba]] p(G2, B2)p(G1).

G1 G2,B2

This functional depends only on the joint distribution of (G, B2), G1, and the conditional distribu-
tion P(Y | A, G1, Gz, By). If the function g satisfies

]EPLC](Aa Gla G27 B2) | G27B2] = 0 and ]EP[Q(A, Gl» G27 BQ) | Gl} - 07 (C2)

then perturbations in P;(Y, A, G1, G2, Bs) do not affect those distributions. That is, the submodel is
locally ancillary for the functional 77, and therefore:

d
%Ta(Pt) . =0.
Combining with the earlier result gives:
Ep[tag] =0
Then we obtain the orthogonality:
Ep [%a(Y, A, G1,Ge, Ba; P)g(A, G1,G2,B2)] =0

We now verify that this function g(A, G1, Go, Bs) satisfies the two orthogonality conditions in
Condition C.2. First, consider the conditional expectation given Go, Bs:

Ep[ta(Y, A, G1,Bg; P) — (Y, A, G1,Ga, Ba; P) | G, By
- {Ia(A) - p(Bs) - p(G1)
=Ep

p(A=a,Gi.By) (EY[Y A= 0 GL G Bl T A= a’Gl’BQ])

+EG1 |:]Ey[Y ‘ A = a,G1,B2]:| — EGl l:Ey[Y | A = a,G17G’2,B2]:| ‘ GQ,BQ}

_ Ep{p(G%Bﬂ p(G1)

(Ey[Y | A=a,G1,Gs,By] —Ey[Y | A=a,Gyi,B
S B (Bl .G, By - Ey[Y | 1B

+EG1 [Ey[y ‘ A= a7G1,B2]:| — EGl |:Ey[y | A= a,Gl,GQ,BQ]:| ‘ GQ,BQ}

= Ep{p(G2vB2) -p(G1)

. E Y A:a,G,G,B —]E Y A:(LG,B G’B
p(G1, G2, Bs) (Y[ | 1, Go, Bo] = Ey [V | 1 2]) 2 2}

+Eg, [EY[Y | A= G7G1,BQ]} —Eg, |:EY[Y | A= G,GMGQ,BQ]}
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In the second equality, we integrate over A conditional on (G2, Bs). Note that the last two expectation
terms are fixed once (G, B2) are given, so we can move them outside the outer expectation
accordingly.

We now rewrite the first expectation as an integral over G; conditional on (G2, Bo):

]Ep{p(Gz, Bs) - p(G1)

oG G By (EY[Y | A=a,G1,Go,Bs] —Ey[Y | A=a, G1,32}> ’GQ,BQ}

Gs.By) -
:/p( 2,B2) - ple1) (Ey[Y | A=a,g1,G2,B2] —Ey[Y | A= a,g1,B2]) p(g1 | G2, B2) dg:

p(g1, G2, B2)

= / (Ey[Y | A=a,g81,G2,By] —Ey[Y | A=a,gi,Bs])p(g1) dg:

= EGl |:Ey[y | A = a,Gl,Gg,Bg]:| _EGl |:Ey[y | A = a,Gl,BQ]

Substituting this expression back into the original conditional expectation, we obtain:

EP[wa(K AlevBQ;P) _wa(Y7A7G17G27B2;P) | G27B2}

= EGl |:Ey[Y | A = a, Gl,Gg,Bg]:| _EGl |:Ey[Y | A = a,G1,B2]:|

+ Eg, [EY[Y | A= a7G1,Bz]} —Eg, {EY[Y | A= a,Gth,Bz]}
~0

This establishes that the function g(A, G1, G2, Bs) satisfies the first orthogonality condition in
Condition C2, Ep [g(A, Gl, (-}27 BQ) | GQ, BQ} =0

To verify that it satisfies the second orthogonality condition, we proceed similarly by conditioning on
Gli

]EPWa(YaA, GlaBQ;P) 7¢G(Y7A7GlaG23B2;P) | Gl}

e {zam) p(G1) - p(B2)
P p(A = a,GhBQ)

(B Y 14 = 0,61, Ga,Ba] — By[Y | 4~ 0,G1. B

+EG1 |:Ey[Y | A = a,G1,B2]:| 7EG1 [Ey[y | A =a, Gl,GQ,BQ]:| | Gl}

&, {p<G1> (G2, By)

(Ey[Y | A=a,G1,G0,By] ~Ey[Y | A=0,G,,B
p(Glan,Bg) ( Y[ | @, 1 25 2] Y[ ‘ a, 1, 2])

+]EG1 |:Ey[Y | A= a,G17B2]:| _EGl [Ey[y | A= a, Gl,GQ,BQ]:l | Gl}
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In the second equality, we integrate over A conditional on G;. We now rewrite the first term as an
integral over (Go, B2) with respect to P(Go, Bs | G1), and then simplify.

Ep p(G1) - p(Gz, By)
p(G1,G2,Bs)

. <Ey[Y ‘ A = a7G1,G2,B2] 7Ey[Y | A = a, Gl,B2}>

_ /p(Gl) -p(G2,B2)
p(G1,82,b2)

(EY[Y | A= Q,thg,bg] - EY[Y | A= a’leabQDP(gQabQ | Gl)dgz db?
+EP{EG1 |:Ey[y | A= a7G1,B2]:| _EGl |:Ey[Y | A= a,G1,G2,B2]:| ‘ Gl}
— [ bleabe) (B [Y | A= 0,Guga,ba] ~ By[Y | A= a,Gr,ba) dgadbs

+EP{]EG1 |:EY[Y | A= athBQ]:l _EG1 |:EY[Y | A= a’G17G27B2]:| ‘ Gl}

Next, we cancel the two components of the expression by invoking the conditional independence
assumption C.1.

/p(gmbz) (Ey[Y | A=a,G1,g2,bo] —Ey[Y | A=a,Gy,by]) dgz dbs
+IEP{IEG1 {EY[Y | A—a,Gl,Bg]} ~Eg, {EY[Y | A—a,Gl,GQ,BQ]} ‘Gl}
= /(EY[Y | A=a,G1,82,b2] —Ey[Y | A=a,Gi,bs])p(g2 | ba, A = a,G1)p(b2) dgz db,

—HEP{IEGI [EY[Y | A=a, Gl,Bg]} ~Eg, [EY[Y |A=a,G, GQ,BQ]} ‘ Gl}

= EP{]EGl |:Ey[y | A = a,G17B2]:| _EGl [Ey[y | A = a, G’l,GQ,BQ]:| ’Gl}

The second equality holds because we have the conditional independence assumption C.1, so:

p(g2,b2) = p(g2 | b2) - p(b2) = p(g2 | b2, A = a, G1)p(ba),
which justifies replacing the joint density in the integral. Furthermore, by the law of iterated
expectations,

/EY[Y | A=a,G1,82,b2] - p(g2 | b2, A =a,G1)dg = Ey[Y | A= a,Gy,by].

As aresult, the two integrals cancel out, yielding the final equality. To simplify this expression, we
compute both terms as iterated integrals.

IEP{EG1 |:EY[Y | A= G,Gl,Bg]} — Eg, |:EY[Y | A= G,G17G2»Bg]} | Gl}

— [[[ vty 4= a1, b2)) dynte) dis - pibz | Go) b
- ////y [p(y | A =a,g1,82,b2)] dyp(g1) dg1 - p(g2, b2 | G1) dg2 dba
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Based on Condition C.1, we can simplify the second expression through the following derivation.
First, we apply Condition C.1 (p(g2 | b2) = p(g2 | A = a, G1, b)) to expand the conditioning set:

////y Py | A=a,g1,82,b2)] dyp(g1)dg: - (g2, b2 | G1) dga dby
= ////y p(y | A=a,g1,82,b2) dyp(g1)dg: - p(g2 | b2)dgs - p(bs | G1)dbs

= ////y ply| A=a,g1,82,b2) dyp(gi)dg: - p(g2 | A= a,g1,bs)dgs - p(ba | G1)dby

Next, we express the integrand as a joint probability distribution over y and gs:

- ////y p(y, 82| A=a,g1,bs)dydgs p(g1)dg: - p(bz | G1)db,

Using the chain rule of probability, we factorize the joint probability:

= ////y p(g2 | ¥, A=a,g1,b2)p(y | A= a,g1,bs)dgadyp(g1)dg: - p(ba | G1)dbs

Finally, we marginalize over g, by integrating it out (since [ p(gs | y, A = a,g1,b2)dgs = 1),
yielding the simplified expression:

- / / / y-p(y | A= a,g1,ba) dyp(g.)dg: - p(bs | Gy)dby

This shows that the second term equals the first one. Thus, we conclude:
EP{EG1 {EY[Y | A= aleaBQ]:| —Eg, {EY[Y | A= G,Gth,BQ]} | G1} =0

So far we have shown that the function g(A, G1, G2, B») satisfies Condition C.2, so we obtain the
orthogonality:

Ep [¥a(Y, A, G1,Ge,Ba; P) - (¥a(Y, A, G1,Ba; P) — 1a (Y, A, G1, G2, Ba; P))] = 0.
Therefore, we conclude that the variance decomposes as:
02}(G17B2)(P) =varp [¢,(Y, A, G1,Bg; P)]
=varp [ (Y, A, G1,G2,Ba; P)| 4+ varp [, (Y, A, G1,B2; P) — (Y, A, G1, G2, Bs; P)]
z 057(G1,G2,B2)(P)
Now extend this to the vectorized WCDE. Define: ¢ = (¢4)aca, Q = (Qu)aca Where
Qo =Ya(Y, A, G1,Ba; P) — 9a(Y, A, G1, G2, Bo; P)

For any Z, define ¥(Y, A, Z; P) = (¢a(Y, A, Z; P))aca. Then, writing > 1 ca®a(Y, A, Z; P) =
c'(Y, A, Z; P) We notice that:
EP[Q I G27B2] = Oa

Er[Q|Gi] =0,
Then we obtain the orthogonality:

Ep [QT9(Y,4,G1,G2,By; P)| =0
Therefore, we conclude that the variance decomposes as:
U(2G11B2)(P) = varp [csz(Y, A, G1,Bg; P)]
=varp [c" (Y, A,G1,G2,Bo; P)] + varp [¢' Q] = 0(G,.GsB)(P) + ¢ varp(Q)c
ZU(Qc:l,c;z,BQ)(P)

This completes the proof. O
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C.2 Proof of Lemma 4.6

Proof. (Proof of Lemma 4.6: Deletion of overadjustment backdoor variables)

We begin by showing that the set (G1, G2) remains a VAS. We can verify this by comparing the
identified WCDE functionals. Recall that for any adjustment set Z = (Z,,Z5), the WCDE is
identified as

WCDEZ = Ezl{]EZ2[IE(Y | A=a,Z,%)] — Eg,[E(Y | A =a*,Zy, Zy)] }
For (G1, G2, B2), consider the term corresponding to a:
T,(G1,Gs,By) = EGI{EG%BQ[E(Y | A=a,G1,Go, Bg)]]

Under the conditional independence
Y g By | G1, Ga, 4, (C.3)
the inner expectation simplifies as
EY | A=a,G1,G2,Bs] =E[Y | A=40a,G1,G3],

Substituting this gives
T.(G1, Gz, By) = Eq, [Ea,m[E(Y | 4 = 0,G1,Go)]|
= EGl[EGz[E(Y | A=a,Gq, Gz)” =T,(G1, G2),

and the same equality holds for a*. Hence,
WCDE(Gl ,G2 ,B2) - WCDE(Gl ,GQ) .

By the uniqueness of the identified WCDE functional, any adjustment set that yields the same
functional as a VAS must itself be a VAS. Therefore, (G1, G2) is also a VAS.

We now compare the asymptotic variances of two VASs, (G1, G2) and (G1, Go, Bs). For clarity,
we first focus on the first component of the WCDE in Equation (2.2), and let 02, z(P) denote its
asymptotic variance. The extension to the full WCDE is straightforward.

We begin by applying the law of total variance to decompose the variance under the larger adjustment
set (Gl, Go, BQ)Z

Var[t), (Y, A, G1, Ga,Bo; P)] = Var[E[¢, (Y, 4, G1,G2,B2; P) | A,Y, G, Ga]
+E[Var[t(Y, A, G1,G2,B2; P) | A,Y,G1, Gy

Next, we will show that under the conditional independence assumption C.3 the IF based on the
adjustment set (G1, G2, B2) satisfies

EP[¢&(Y7AaG17G27B2;P) | AaKGlaGQ] = wa(YvAaGhGQ;P)-

This equality allows us to relate the variances of the two IFs via the law of total variance. We now
compute the conditional expectation of 1, (Y, A, G1, G2, Ba; P):

EP [77&0(}/7 A7G17G2aB2;P) | A7Y7G17G2] =

p(G1) - p(Gz, By)
p(A = a7G13G27B2)

(i) first term

Ia<A) {Y - ]Ey[Y | A= CL,Gl, GQ]} . Ep

AZG,KG]_,G'Q

+Ep [EG27B2 [EY[Y | A= a, le GQv BQH | Gl]

(ii) second term

+EP [E(;l [Ey[y | A= a, Gl, GQ,BQH |G2} —QTa(P)

(iii) third term
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This equality holds because, given the conditional independence relation C.3, it implies the key
simplification:
]Ey(Y | A= a, G17G2,B2) = Ey(Y ‘ A= a,Gl, Gz)

For the first conditional expectation term, we perform the detailed computation:

E [P(G2>B2) p(Gl)
p(A? G17 G27 BQ)

’AZ%KGth}

— Ep [ p(G1) - p(G2, Bo)
p(Ba2 | A=a,G1,Gz2) - p(A=a,G1,Gs
_ 1 E [ p(G1) - p(Gz, By)
p(A:a,Gl,Gg) p(B2 ‘ A:a,Gl,Gg
1 . { p(G1) - p(Ge,B2)
p(A=0a,G,Gy) T |pBa|A=a, Gy, G,
1 p(G1) - p(Gz, ba)
T p(A=0,G1,Gy) /b by [ A=a, Gy, Gy) PP2 1A= 0T, G, Go)dbs
(b2 | A=1a,Y,G1,G2)
p(by | A=a,G1,G2)

)'A—a,Y,Gl,GQ}

)‘A:a,Y,Gl,GQ}

)‘A:a,Y,Gl,GQ}

1

p
p(A = a,Gl,Gg) /pr( 1) p( 2 2)

dbs

In the last line above, we expand the conditional expectation as an integral over B,. Now, under the
conditional independence assumption C.2, it follows that

p(bg | A = a,Y,Gl,GQ) :p(bg | A = G,Gl,Gg).

Substituting this into the integrand, the ratio simplifies to 1:

1 p(by | A=a,Y,G1,Go)
), PGz 2) (G db
p(A=a,G1,G2) /pr( 2,b2) - p(G1) by [ A= 0 Gr.Gy) ,
1
T p(A=a,Gy,Gy) /b p(Gz,b2) - p(G1) dby
1

~ p(A=4a,Gy,Gy) /b (G [ b2) - p(G1) - p(G2) dby

- SRS [ piba G,
p(G1) - p(G2)
p(4A =a,G1,G2)
Since Ey (Y | A=a,G1,G2,Bs) =Ey (Y | A =a,G1,Ga), the second and third terms simplify
as follows:

Ep |:EG27]32 [Ey[y | A= a, G13G27B2H | G1:|
= ]Ep |:E‘C;27]32 [EY[Y | A= a, le GQH ‘ G1:|

= ]EG2 l:Ey[Y | A= a, Gl, GQ]:|

Ep {Egl [Ey[Y | A= a,G1,Ga, Byl | G2]
=Ep |:EG1[Ey[Y | A=a, GlaGQH | G2:|

= EGl |:Ey[y | A =a, (}17 GQ]:|
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Combining these results, we obtain:
]EP [wa(Y7 Aa le G27 B27 P) ‘ A? K G17 G2]

+Eg, |[Ey[Y | A= a,Gl,Gz]} + Eg, [Ey[y | A =a, G17G2]:| —2T,(P)
:wa(KA7G17G2;P)

That is, the conditional expectation of the influence function under the larger adjustment set equals
the influence function under the smaller set.

Finally, applying the law of total variance, we establish the variance dominance relationship:

To (@1.GaBy) (P) = varp [Ya(Y, A, G1, Ga, By; P)]
=varp [V, (Y, A, G1,Go; P)] + Ep [varp [0, (Y, A, G1,G2,B2; P) | A,Y, G1, Go]]
2 Gi,(Gl,Gg)(P)

The inequality follows because the conditional variance term is non-negative.

Now for the full WCDE estimator, define: ¢ = (¢4)qca, for any Z, define ¥(Y, A, Z; P) =
(¥a(Y, A, Z; P))aca- Then, writing ZaeA catha(Y, A, Z; P) = cT (Y, A, Z; P)

note that:
Ep [c"9(Y, A, G1,G2,Bo; P) | A,Y,G1,Go] =c'9(Y, 4, G1, Go; P)
So again by variance decomposition:
U(2G1,G2,B2)(P) = varp [ch,ZJ(Y, A, G1,G2,By; P)]
=varp[Ep [¢ (Y, 4, G1,G2,Ba; P) | A,Y,G1,G2]| + Ep [varp [¢"9(Y, 4, G1,G2,B2; P) | A,Y,G1,Go] ]
=varp [c (Y, A,G1,Go; P)] +c"Ep [varp [4(Y, A, G1,G2,Bo; P) | A,Y,Gq,Gol
= 0{g,.an(P) + ¢ Ep[varp [h(Y, A,G1,Ga,By; P) | A,Y, Gy, Gyl c
> U(2G1,G2)(P)

This completes the proof.

C.3 Proof of Lemma 4.5

Proof. (Proof of Lemma 4.5: Supplement of mediator variables)

We begin by showing that the set (G1,B1, G2) remains a VAS. We can verify this by comparing
the identified WCDE functionals. Recall that for any adjustment set Z = (Z;, Z5), the WCDE is
identified as

WCDEz = EZI{EZQ[E(Y | A=a,Z1,Z5)] —Eg,[E(Y | A= a*,Z1,Z,)] }

For (G1,B1, G2), consider the a-term:

T.(G1,B1,Gs) = Eg, B,

EG2[E[Y | A=a,G1,B, GQ]H

_ ]EBI[]EG”Bl[EGZ[E[Y | A=a,G1, B, GQ]M :

By the conditional independence assumption:

G; lg A Gy | B, (C4)
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we have p(G1,B1) = p(G1 | B1)p(B1) = p(G1 | A = a, Gz, B1)p(B1). Applying the law of
iterated expectations

EGl‘Bl{E%[E[Y | A=a,G1,B, GQ]H - EG2[EG1|BI[IE(Y | A=a,Gi,By,Gy)]

= Ec.[Eq,(B,.cai=aE(Y | 4= a,G1,B1, Go)l |

= EGZ [E(Y | A =a, Bl, Gg)] .
Therefore
T.(G1,B1, Go) = Eg,[EG,[E(Y | A = a,B1, Go)] | = Tu(B1, Ga),

and the same equality holds for a¢*. Hence,

WCDE g, B,,g,) = WCDE g, a.)-
By the uniqueness of the identified WCDE functional, any adjustment set that yields the same
functional as a VAS must itself be a VAS. Therefore, (G1, B1, G2) is also a VAS.

We now compare the asymptotic variances of two VASs, (B1, G2) and (G1,B1, Gs). For clarity,
we first focus on the first component of the WCDE in Equation (2.2), and let 02 ,(P) denote its
asymptotic variance. The extension to the full WCDE is straightforward. We begin by decomposing
the variance:

03’(B17G2)(P) = Varp [, (Y, A, By, Go; P)] = Varp [, (Y, A, G1, By, Go; P)]
+ Varp [, (Y, A,B1, Ga; P) — ¥4 (Y, A, G1, By, Go; P)]
+2 Covp (Vo (Y, A, G1,B1,Ga; P), ¥, (Y, A, B1,Go; P) — ¢, (Y, A, G1,B1,Go; P)) .
To analyze the covariance term, consider the difference in IFs evaluated at (Y, A, G1,B1, G2):
Ya(Y, 4,B1,Go; P) — ¥a(Y, A, G1,B1, Go; P)
1,(A)p(B1)p(G2)

frng . Y—E Y A:CLB,G
p(B1, G2, a) ( vV ! 2])

+EG2 Ey[y | A= a7B17G2]:| +EB1 |:]Ey[Y | A= a,Bl,Gg]]

I,(A)p(G1,B1)p(G2) ( >
— Y -Ey[]Y | A= 7G ,B , G
p(G1,B1,Ga,a) y[Y | a,G1,B1, G,

— ]Ec;,2 Ey[Y | A= a,Gl,Bl,Gg}] — EG17B1 |:]Ey[Y ‘ A= a,Gl,Bl,Gg]}

_ 1(A) -p(By) - p(Ga)
p(A = a, Bla GQ)

. (Ey[y ‘ A= a,Gl,Bl,GQ] —Ey[y | A= a,Bl,G2}>

+EG2 Ey[Y | A= a,B17G2]:| +EB1 |:]Ey[Y | A= CL7B1,G2}:|

— EG2 Ey[Y | A= a,Gl,Bl,GQ}] — IE(;MB1 |:]Ey[y ‘ A= a,Gl,Bl,Gg]:|

The second equality above holds under the conditional independence assumptionC.4, from which it
follows that

p(G1|B1) =p(G1 [ By, G2, A = a),
which implies:

P(G1,B1)p(G2)  p(Byp(G2) p(G1 | By) __ p(B1)p(Gy)
p(G1,B1,G2,A=0a) p(B1,Go,A=0a) p(Gi|B1,Ge,A=0a) p(A=a,Bi,Ga)
Therefore, the first terms in the two influence functions cancel out. To simplify the final term, note

that:

Eg, B, |:EY[Y | A=a,G1,By, G2]} =Eg, |:EG1B1 |:EY[Y | A=a, Gl,Bth}”

= Ep, |:EG1|B1,G2,A_a l:EY[Y | A=a,Gq,By, Gz}” = [Ep, []EY[Y | A=a,By, Gz}]
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this equality follows from the conditional independence assumption C.4 and the law of iterated
expectations. Substituting back, the difference simplifies to:

I,(A) - p(B1) - p(G2)
p(A =a,B1,Go)

. (Ey[y | A = a,Gl,Bl,Gg] 7Ey[Y | A = CL,Bl,GQ])

+EG2 Ey[Y | A= a,Bl,Gg]:l —|—EB1 |:]Ey[y | A= a,Bl,GQ}]

—Eq, |Ey[Y | A= G,Gl,BLGﬂ] - Eg,,c¢, [EY[Y | A= a,Gl,Bth]}

_ L(4) - p(By) - p(Gy)
p(A =a, B1, GQ)

. (Ey[y ‘ A = a,Gl,Bl,Gz] —Ey[y | A = a,B1,G2}>

+Eg, |[Ey[Y | A= aaBlaGQ]:| —Eg, {EY[Y | A= a,Gl,Bl,GQ]}

Therefore, we arrive at the simplified expression for their difference.

We then construct a parametric submodel that perturbs only the conditional law P(A4, G5 | G1,B1),
while keeping all other components of the distribution fixed. We show that under the assumption C.4,
the difference between the two IFs is orthogonal to the influence function of the larger adjustment set:

Ep [¢a(Y, A, G1,B1,Go; P) - (1o (Y, A,B1,Ga; P) — ¢, (Y, A, G1,B1,Go; P))] = 0.
Hence, the covariance term vanishes. Substituting this into the variance decomposition yields:
Varp[1,(Y, A, By, Ga; P)]
= Varp[o(Y, A, G1,B1, Go; P)] + Varp[1), (Y, A,B1, Ga; P) — ¢, (Y, A, G1,B1, Go; P)],
where the second term is nonnegative. To formalize this orthogonality, we appeal to two key results

from semiparametric theory [54]:

1. If P, is a smooth parametric submodel with Py = P and score function g, then the influence
function 1), satisfies:

d

%TLAPIE) o = EPW(L : g]'

2. In a nonparametric model, any function g such that
Ep[g(A,G1,B1,G2) | G1,B1] =0

is a valid score function for the conditional law P(A, G2 | G1,B5).

Let us now consider any distribution P and define the function
g(A7 Gla B17 GQ) = wa(Y> A7 Bla G27 P) - wa(}/u A7 G17 B17 G'27 P>7

which satisfies the second condition above. Using this function, we define the following submodel
for sufficiently small ¢ > 0:

Pt(Y7A,G1,B1,G2) = P(Y | A,GhBl,Gg) . Pt(A, G2 ‘ Gl,Bl) . P(G1,B1),

where
Pt(A, GQ ‘ Gl,Bl) = P(A,GQ | Gl,Bl)(l +t . g(A, Gl,Bl, Gg))

This submodel perturbs only the conditional law of (A4, G2) given (G1, B1), leaving the remaining
components of the joint distribution fixed. The score function of this model at ¢ = 0 is

0 0
glogpt(Y,Ale,Bl,Gz) = o log{l+1t-g(4,G1,B1,G2)} = g(4,G1,B1, Ga).
t =0 Ot t=0
Applying result (1), we obtain:
1) =Eplbe-g
dta tt:()_ PWa " 9|
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Now consider the functional:
To(P) = Z Z [E[Y | a, G1,B1, Go]] p(G2)p(G1, By).
Gl,Bl G2

This functional depends only on the joint distribution of (G1, B1), G, and the conditional distribu-
tion P(Y | A, G1,B1, G2). If the function g satisfies

]Ep[g(A,Gl,Bl,GQ) | Gl,Bl] =0 and EP[Q(A,Gl,Bl,GQ) | G’Q} = O7 (CS)

then perturbations in P;(Y, A, G1, B1, G2) do not affect those distributions. That is, the submodel is
locally ancillary for the functional 77, and therefore:

d
—T.(P =0.
g T (F) o
Combining with the earlier result gives:
Ep[tag] =0

Then we obtain the orthogonality:

EP[1/)G(Y7 A7 Gla Bla GZ? P)g(Aa le B17 G2)] =0
We now verify that this function g(A, G1,B1, G2) satisfies the two orthogonality conditions in
Condition C.5. First, consider the conditional expectation given G1, B1:

]EP[wa(YvAvBlaGQ;P) _wa(yaAaleBlvGQ;P) | leBl}

B 1,(A) - p(Go) - p(B1) _ -
_EP{ p(A:a7B17G2) Ey[Y|A—a,G17B17G2] Ey[Y|A—a,B1,G2]

+EG2 [Ey[y ‘ A= a,Bl,GQ]} —EG2 |:]Ey[Y | A= a,Gl,Bl,GQ]} ‘ Gl,Bl}

= Ep{p(Gl»Bl) p(Gz)

DG B Gy (EY[Y |A=a,G1,B;,Go] —Ey[Y | A= aaBlaGQ])

+EG2 |:Ey[Y ‘ A = a,B17G2]:| —EG2 |:]Ey[Y | A = a,G17B17G2]:| ‘ Gl,Bl}

_ EP{p(GhBl) - p(G2)

e (EY[Y | A=a,Gi,B1,Ga] — Ey[V | A= a,Bl,GQ]) | Bl,Gl}

+EG2 |:Ey[y ‘ A= a,Bl,GQ]} 7EG2 |:Ey[Y | A= a,Gl,Bl,Gg]}

In the second equality, we integrate over A conditional on (G1, B1). Note that the last two expectation
terms are fixed once (G1,B;) are given, so we can move them outside the outer expectation
accordingly.

We now rewrite the first expectation as an integral over G conditional on (G, B;):

Ep { p(G1,B1) - p(G2)
p(G1,B1,G2)

. (Ey[Y | A = Q,G17B17G2] —Ey[Y | A = a,Bl,G2]> ‘ Gl,Bl}

p(G1,B1) - p(g2)
- Ey[Y|A = a,G. By, g5] — Ey[Y|A = a,B,, G,.By)d
/ 2(G1.Br.g) (Exv[Y] 1,B1,82] — Ey[Y| 1,82]) p(g2|G1,B1) dg2
— [(Ey[Y |4 =0,Gu.Br gl - By [Y | 4= a B ga]) plee) deo

= EGZ I:EY[Y | A= a7G1,B1,G2}] _]EGZ [Ey[y | A= a7Bl7Gg]
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Substituting this expression back into the original conditional expectation, we obtain:

EPW{L(Y, A7B17G2;P) 7wa(Y7A7G17B17G2;P) | leBﬂ

= EGQ |:Ey[y | A = a, Gl,Bl,GQ]:| _EGZ |:Ey[y | A = a,Bl,GQ]]

+ Eg, [Ey[Y | A = a7B17GQ]} — Eq, {Ey[Y | A= a,Gl,B17G2]:|
=0

This establishes that the function g(A, G1,B1, Go) satisfies the first orthogonality condition in
Condition C.2, EP[Q(A, G{,B, GQ) | Gy, Bl} =0.

To verify that it satisfies the second orthogonality condition, we proceed similarly by conditioning on
GQI

EP[’(/JG(KA,Bl,GQ;P) - ’ll}a(Y,A,G17B17G2;P) | GQ]

_ I.(A) - p(G2) - p(B1) B -
_EP{ p(A=a,By,G,) Eyv[Y|A=0a,G1,B1,G2] —Ey[Y | A=a,B;, Gy

+EG2 |:Ey[y | A= a,B17G2]:| —EG2 [Ey[y | A= a, G’l,Bl,GQ]:| | GQ}

p(GhBl) p(Gg) ( )
~E (Ey[Y | A=0a,G1,B),Go] —Ey[Y | A=0q,B),G
P{ p(G1,B1, Go) v[Y| 1, By, Gol y[Y | 1, G2

+EG2 |:Ey[Y | A= G,B17G2]:| —EG2 [Ey[y | A= a, Gl,Bl,GQ]:| | GQ}

In the second equality, we integrate over A conditional on G. We now rewrite the first term as an
integral over (G1, B1) with respect to P(G1,B1 | G2), and then simplify.

p(GlaBl) p(Gg) ( )
E N Ey[Y | A=0a,G1,B1,Gs]| —Ey|Y |A=0a,B;,G
P{ p(G1, By, G2) vl 1,B1, Go] — Ey[V| 1, Ga

+EG2 |:Ey[Y | A= a,Bl,Gg]:| 7EG2 |:]Ey[Y ‘ A= CL,Gl,Bl,GQ]:| | GQ}

by) - p(G
= /p(§(1g1 11[31 pcng) (Ey[Y | A=a,g1,b1,Ga] — Ey[Y | A= a,b1,Gz]) p(g1,b1 | G2) db; dg:

+EP{EG2 |:Ey[Y | A= a,Bl,GQ]:| —EG2 |:Ey[y | A= a,Gl,Bl,Gg]} ‘GQ}
= /p(b17g1) (EY[Y | A= a7g17b13G2] _]EY[Y | A= a7b1aG2]) dbl dgl

+EP{EG2 {EY[Y | A= a,Bl,Gz]} —Eg, {EY[Y | A= G,leBlsz]} ‘ Gz}
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Next, we cancel the two components of the expression by invoking the conditional independence
assumption C.4.

/P(gl,bl) (Ey[Y | A=a,g1,b1,G2] —Ey[Y | A=a,b;,G;]) db; dg;
—I—EP{EG2 |:]Ey[y | A= a,Bl,Gg]} — Eq, |:Ey[y | A= G,G17B17G2]:| ‘ G2}
= /(EY[Y | A=a,81,b1,G2] —Ey[Y | A=a,bi,G:])p(g1 | b1, A = a,G2)p(b1) dg: db;

+EP{EG2 |:Ey[Y | A= a,Bl,Gg]:| —EG2 |:Ey[Y | A= CL,Gl,Bl,GQ]:| ‘ GZ}

_ IEP{]EG2 {EY[Y | A=a,B, Gg]} ~Eg, [EY[Y | A=a,G1, B, GQ]} ( Gg}

The second equality holds because we have the conditional independence assumption C.4, so:
p(g1,b1) = p(g1 | b1) - p(b1) = p(g1 | b1, A = a, G2)p(by),

which justifies replacing the joint density in the integral. Furthermore, by the law of iterated

expectations,

/EY[Y | A=a,g1,b1,G2] p(g1 | b1,A=0a,Gz)dgs = Ey[Y | A= a,by,Gs].

As aresult, the two integrals cancel out, yielding the final equality. To simplify this expression, we
compute both terms as iterated integrals.

EP{EG2 [EY[Y | A= aaBlvGQ}] _]EG2 [EY[Y | A= a7G15B15G’2]:| ‘GQ}

= ///y [p(y | A= a,b1,82)] dyp(ge)dgs - p(b1 | G2) dby
- ////y [p(y | A= a,g1,b1,82)] dyp(g2) dgs - p(g1,b1 | G2) dgidby

Based on Condition C.4, we can simplify the second expression through the following derivation.
First, we apply Condition C.4 (p(g1 | b1) = p(g1 | A = a, b1, G2)) to expand the conditioning set:

////y Py | A= a,g1,b1,82)] dyp(g2) dgs - p(g1,b1 | G2) dg1db,
= ////y-p(y | A=a,g1,b1,g2) dyp(g2)dgs - p(g1 | b1)dg: - p(b1 | G2)db,

= ////y ply | A=a,g1,b1,82) dyp(g2)dgs - p(g1 | A= a,bi,g2)dg: - p(by | G2)dby

Next, we express the integrand as a joint probability distribution over y and go:

= ////y-p(y,gd | A= a,by,g2)dydg: p(g2)dgs - p(b1 | G2)dby

Using the chain rule of probability, we factorize the joint probability:

= ////y p(g1 |y, A=a,b1,82)p(y | A=a,bi,82)dgi1dy p(g2)dgs - p(b1 | G2)db,

Finally, we marginalize over g; by integrating it out (since [ p(g1 | y,A = a,b1,g2)dg1 = 1),
yielding the simplified expression:

= ///y p(y | A=a,bi,g2)dyp(g)dgs - p(b1 | G2)db,
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This shows that the second term equals the first one. Thus, we conclude:
EP{EG2 {EY[Y | A=a,B, GQ]] ~Eg, [EY[Y | A=a,Gy,B, GQ]] ’ GQ} —0

So far we have shown that the function g(4, G1, B1, G2) satisfies Condition C.5, so we obtain the
orthogonality:

Ep [$a(Y; A, G1,B1, Go; P) - (¥a(Y, A, By, Go; P) — ¢a (Y, A, G1, By, Go; P))] = 0.
Therefore, we conclude that the variance decomposes as:
05 (B1.Go)(P) = varp [Ya(Y, A, By, Ga; P)]
=varp [, (Y, A, G1,B1,Go; P)| + varp [, (Y, A, G1,B1; P) — (Y, A, G1, By, Gg; P)]
> UZ,(Gl,Bl,GQ)(P)
Now extend this to the vectorized WCDE. Define: ¢ = (¢4)aeca, Q = (Q4)aca Where
Qu = ¥a(Y, A, By, Go; P) — 9o (Y, A, G1, By, Go; P)

For any Z, define ¥(Y, A, Z; P) = (¢a(Y, A, Z; P))aca. Then, writing > 1 ca®a(Y, A, Z; P) =
c'(Y, A, Z; P) We notice that:
Ep[Q| Gi,Bi] =0,

Ep[Q| Gz] =0,

Then we obtain the orthogonality:
Ep[QT¢(Y,A,G1,B1,G2; P)] =0
Therefore, we conclude that the variance decomposes as:
(B, .Gy (P) = varp [¢ (Y, A, By, Gy; P)]
=varp [c" (Y, A, G1,B1,Go; P)] + varp [¢' Q] = U(2G17B1,G2)(P) +cvarp(Q)c
200G, B1.Ga)(P)

This completes the proof.

C.4 Proof of Lemma 4.7

Proof. (Proof of Lemma 4.7: Deletion of overadjustment mediator variables)

We begin by showing that the set (G, G2) remains a valid adjustment set (VAS). We can verify this
by comparing the identified WCDE functionals. For any adjustment set Z = (Z1, Zs), the WCDE is
identified as

WCDEZ = Ezl{]Ezz[]E(Y | A=a,21,2Z)] — Bz,[E(Y | A= a*,Z,Z)] }
For (G1,B1, G2), consider the a-term:
T,(G1, By, Gs) = EGLBI[EGZ[E(Y | A=a,G1,B, Gg)]]
From the conditional independence

Y lg By | Gy, G, A, (C.6)

it follows that
E[Y | A= a, Gl,Bl,GQ] = E[Y | A= a, G17G2:|7

Substituting this gives
T,(G1, By, Go) = EGMBI[EGQ[]E(Y | A=a,G, GQ)}]

= EGl[EG2[E(Y | A= a, Gl, GQ):I:| = Ta(Gl,GQ),
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and the same equality holds for a*. Therefore
WCDE(Gl 7B1 ’G2) - \A/Y(_‘JD]'E(G1 7G‘2) .

By the uniqueness of the identified WCDE functional, any adjustment set that yields the same
functional as a VAS must itself be a VAS. Hence (G1, G2) is a VAS.

We now compare the asymptotic variances of two VASs, (G1, G2) and (G1,B1, Gs). For clarity,
we first focus on the first component of the WCDE in Equation (2.2), and let agﬁz(P) denote its
asymptotic variance. The extension to the full WCDE is straightforward.

We begin by applying the law of total variance to decompose the variance under the larger adjustment
set (Gl, Bl, GQ)I
Var[ihq (Y, A, G1, B1, Gao; P)] = Var[E[¢), (Y, 4, G1,B1,Gz; P) | A,Y, G1, G2]|
+E[Var[yy, (Y, A,G1,B1,Go; P) | A,Y, Gy, G|

Next, we will show that under the conditional independence assumption C.6 , the IF based on the
adjustment set (G, B1, G2) satisfies

Ep[t)a(Y,A,G1,B1,G2; P) | AY,G1,Gs] = ¥a(Y, A, G1, Ga; P).

This equality allows us to relate the variances of the two IFs via the law of total variance. We now
compute the conditional expectation of ¥, (Y, A, G1,B1, Go; P):

Ep [¢a(Y,A,G1,B1,G2; P) | A,Y, Gy, Go] =
p(G2) - p(G1,By)

A=aY,G,G
p(A = a,Gl,Bl,Gg) ! 2

L(A){Y —Ey[Y | A=a,G1,Go]} - Ep

(i) first term

+EP [EGz [EY[Y | A = a, GlaBlaG2H |G1aB1]

(ii) second term

+Ep [EGl,Bl [Ey[y | A=aGq,By, GQ]] | G2] —2Ta(P)

(iii) third term

This equality holds because, given the conditional independence relation C.6, it implies the key
simplification:
]Ey(y | A= a, G17B17G2) = Ey(y ‘ A= a,Gl, Gg)

For the first conditional expectation term, we perform the detailed computation:

B A [ A= 0 Y.6.6

- [p(Bl | A= af(élllzlz)).- p((ii a,G1, Gy) ‘ A=aX.G, GQ}

T A= a,lc;l,c;g) Ep { (13(1Gl,11B_1)a c;bGQ [A=ay, Gl,GQ}

B P<A:a71G1,Gz> o { (Js(f;lA&)a cﬁc [4=a YGl’Gz}

~ (A= a71G1’G2) / p(bE(Ti:lbzl)a, G(f,v(;g) p(b1 [ A=a,Y,Gi1,Gz2)dbs

1 pby | A=a,Y,Gyi,Go)
= M G’ 7b * G’ *
p(A=a,Gq,Gy) /blp( 1 b1) - p(Ge) p(bi1 | A=10a,G1,G2)

db,

In the last line above, we expand the conditional expectation as an integral over B;. Now, under the
conditional independence assumption C.6, it follows that

p(b1 | A=0a,Y,Gi,G2) =p(b1 | A=a,Gi,Gs).
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Substituting this into the integrand, the ratio simplifies to 1:

L p(bi | A=a,Y,Gy,Gy)
+ [ P(G2) - p(G, b)) db
p(A=a,G1,G2) /blp( 2)-p(G1,by) p(by | A=a,G,Gy) 1
1
T (A=a,G1,Gy) /b P(Gz) - p(G1,by) dby
1

~ p(A=4a,Gy,Gy) '/b p(b1 | G1) - p(G1) - p(Gz) dby

p(G1) -p(Ga2) /
= . b; | G1)db
p(A=a,G1,G) blp( 1| Gi1)dby
p(G1) - p(G2)
p(A = a, le GQ)
Since Ey (Y | A = a,G1,B1,G2) = Ey (Y | A = a,G1, G2), so the second and third terms
simplify as follows:

Ep [EGZ[EY[Y | A=a,G1,B1, Gl | GhBl}
= [Fo.lBrlY | 4= 0,61, Gl | G

= EG2 |:EY[Y ‘ A= Cl,Gl, GZ]:l

Ep |:EB1,G1 [EyY |A=a,G,B1,Gs]] | G2:|
= EP |:EB1,G1 [Ey[y | A= a, (}17 GQ]] ‘ G2:|

= ]E(;l |:Ey[Y | A = a7G1, G‘Q]:|

Combining these results, we obtain:
Ep [¢a(Y,A,G1,B1,G2; P) | A,Y, G, Gy]

+EG2 |:Ey[Y | A= a,Gl,Gz]:| +EG1 |:Ey[Y | A= a, Gl,Gg]:| — QTG(P)

=1q(Y, A, G1,Gy; P)

That is, the conditional expectation of the influence function under the larger adjustment set equals
the influence function under the smaller set.

Finally, applying the law of total variance, we establish the variance dominance relationship:
Uz,(Gl,Bl,Gg)(P) =varp [{a(Y, A, G1, By, Gy; P)]
=varp [V, (Y, A, G1,Go; P)] + Ep [varp [0, (Y, A, G1,B1,G2; P) | A,Y, G1, Go]]
2 Ji,(Gl,Gg)(P)
The inequality follows because the conditional variance term is non-negative.

Now for the full WCDE estimator, define: ¢ = (cq)qea, for any Z, define ¥(Y, A, Z; P) =
(Va(Y, A, Z; P))gea. Then, writing >, 4 catha(Y, A, Z; P) = c"(Y, A, Z; P)

note that:

Ep [c"(Y,A,G1,B1,Go; P) | A,Y,G1,Gs] =c'9(Y, 4,G1,Gy; P)
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So again by variance decomposition:

(G, By .Gy (P) = varp [cT (Y, A, Gy, By, Go; P)]

=varp[Ep [¢ (Y, 4, G1,B1,Ga; P) | A,Y,G1,G2]] + Ep [varp [¢ (Y, 4,G1,B1,Ga; P) | A,Y,G1,Go] ]
=varp [c" (Y, A,G1,G2; P)] +c"Ep [varp [4(Y,A,G1,B1,G2; P) | A,Y,Gq, Go]l

= 0{g,.an(P) +c'Ep[varp [9(Y, A,G1,B1,Ga; P) | A,Y, Gy, Gyl c

> U(2G1,G2)(P)

This completes the proof. O

C.5 Proof of Theorem 4.3
Proof. (Proof of Theorem 4.3)

Let Z = (Z1, Z5) be a valid adjustment set, where Z; = Z N M contains mediating variables and
Z, = 7\ Z; contains non-mediators (typically backdoor covariates).

We aim to construct an adjustment set that minimizes the asymptotic variance of the WCDE estimator
by augmenting and pruning Z, and Zs based on conditional independencies in the DAG.

We prove the result through a sequence of variance-reducing steps.

Step 1: Augmenting Z, with Non-mediating Parents of Y

According to Condition C1 and Condition C2, all backdoor paths for { A, Y} and {Z;, Y} are blocked
by Zs, so we have the conditional independence:

(X epay) U Xyepay) \ Z2) Lg A, Zy | Zs.
Then by Lemma 4.4, augmenting Zz with X cpy(yy and X4epy(y) reduces the variance:

2 2
J(ZlvZ2UX1€pa(y>UX4epa<y>)(P) = J(Z1$Z2)(P)'
Step 2: Augmenting Z; with Mediating Parents of Y

According to Condition C3, {M’ \ Z;1} 1l g {Pa(Y) \ M’} | Z1, so we have the conditional
independence:

(Xaepav) \ Z1) dLg A, Zo U X cpyvy U Xyepayy | Z1-
Then by Lemma 4.5, adding X3¢p,(y) further reduces variance:

2 2
O(ZIUXSEPa(Y)7Z2UX16P1|(Y)UX4EP3(Y))(P) = U(ZhZQUX1epu(y)UX4ePa(Y))(P>'
Step 3: Pruning Redundant Backdoor Variables from Z-

Since Xepayy U Xyepa(y)> Z1 U Xaepa(y), and A together form the full set of parents of Y,
according to the local Markov property, Y is conditionally independent of all non-descendant
non-parent variables given its parents. Therefore, we have the following conditional independence:

Y g Za \ (Xiepa(y) YU Xuerav)) | Xiera(y) U Xuepa(y), Z1 U Xaepa(y), A
Then by Lemma 4.6, removing extraneous elements of Zs does not increase variance:
2 2
9(Z1 UXsepavys Xiera(v)UXaer(v)) (P) < T(Z1UXgepy(yys Z2UX1 era(y ) UXaera(v)) (P)
Step 4: Pruning Redundant Mediating Variables from Z,

Note that X1 epy(y) U Xyepa(y), together with Zy U X3cp,(y) and A, constitute the full set of parents
of Y. According to the local Markov property, Y is conditionally independent of all non-descendant
non-parent variables given its parents, so we have the conditional independence:

Y Alg Z1 \ Xaepay) | Xiepay) U Xaepa(y), Xsepa(y), 4-
Then by Lemma 4.7, variables in Z; outside X3cp,(y) can be excluded:

2 < 2
U(Xgepa(y>~,Xlepa(y)UX4epa(y))(P) = U(Zlngepa(y),X1epa(y)UX4ePa(y))(P)'
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Conclusion

Through these steps, we reduce the adjustment set to the minimal form that preserves validity and
achieves minimal asymptotic variance. The final optimal adjustment set is:

O := Xiepa(y) U Xaepay) U Xaepa(y)-

D Experimental Details

D.1 Synthetic Experiments Data-Generating Process

Edge coefficients. For each DAG edge, coefficients are sampled independently: with 50% probability
from Uniform[—1.5, —0.5], otherwise from Uniform[0.5, 1.5], ensuring non-negligible effects.

Structural equations. Each variable X; in the DAG is generated recursively according to a structural
equation model:
X = Z wyi [;(X;) + &,
j€Pa(i)
where wj; is the sampled edge coefficient from parent j to . The function f;(-) is applied in-
dependently to each parent variable X; before combination and is selected uniformly at random
from:
Identity: f(z) =z, Sine: f(x) =sin(x), Cosine: f(z) = cos(z).

Noise. The additive noise term ¢; is sampled independently from N(0,1/4) for each node with
parents. Root nodes (i.e., nodes with no parents) are sampled from N (0, 1).

Outcome transformation. For each simulation run, we randomly select one of the three nonlinear
functions f to transform the outcome. The final outcome Y is generated by applying the chosen f to
its parent variables.

Replications. We repeat this process for 50 randomly generated coefficient sets to assess the
robustness of WCDE estimation. For each fixed DAG, adjustment set, and sample size, we additionally
perform a Monte Carlo experiment with size 100 to estimate the empirical variance of the estimator
across independent replications.

D.2 MILDEW Network

Table D.2: Variance and MSE of WCDE estimates on the MILDEW network (5 representative
VASs) under different sample sizes. Variable names are abbreviated as follows: m;: meldug_3, ms:
middel_3, k: mikro_3, ko: mikro_2, [1: lai_1, l5: lai_2, I3: lai_3.

n = 250 n = 500 n = 1000 n = 4000 n = 10000

Adj. Set Var MSE Var MSE Var MSE Var MSE Var MSE

[my, my, k] 0.00466  0.00470  0.00269 0.00269 0.00104 0.00106 0.00020 0.00021 0.00010 0.00011
[la,l3,m1, ma, k] 0.00512  0.00513 0.00301 0.00302 0.00114 0.00114 0.00027 0.00028 0.00012 0.00012
[ly, la, I3, m, my, ma, ko, k] 0.00609 0.00609 0.00422 0.00422 0.00248 0.00255 0.00057 0.00058 0.00026 0.00026
[ma, k] 0.01445 0.01521 0.00810 0.00810 0.00451 0.00455 0.00084 0.00084 0.00042 0.00042
[la,m4] 0.01292  0.01400 0.00873  0.00873  0.00450 0.00460 0.00082 0.00083 0.00046 0.00046
[l3,m4] 0.01409 0.01527 0.00888 0.00888 0.00463 0.00472 0.00081 0.00081 0.00047 0.00047

The MILDEW network exhibits a highly complex structure with a large number of nodes and edges,
resulting in an enormous space of potential valid adjustment sets. To maintain both interpretability
and representativeness, we adopted the following construction strategy. First, we identified all
nodes that appear on the mediator paths between the treatment variable mikro_1 and the outcome
variable meldug_4. We note that this particular treatment outcome pair admits no backdoor path on
MILDEW network (potentially explaining the close performance of top performing VASs.) Next, we
selected relevant nodes from the parents of both the treatment and outcome. We then systematically
enumerated all possible combinations of these nodes and filtered them using the adjustment criterion
to ensure validity. This process yielded a total of 122 valid adjustment sets.

53



Table D.3: Variance and MSE of WCDE estimates on the MILDEW network (top-50 VAS ranked by
n = 10000). Abbreviations: k& (mikro_3), ko (mikro_2), [ (lai_1), I3 (1ai_2), 3 (1ai_3), my
(meldug_3), my (middel_3), m (meldug_2).

n = 250 n = 500 n = 1000 n = 4000 n = 10000

Adj. Set Var MSE Var MSE Var MSE Var MSE Var MSE

[mq, ma, k] 0.00466  0.00470  0.00269 0.00269 0.00104 0.00106 0.00020 0.00021 0.00010 0.00011
[la, my, ma, ka, k] 0.00465 0.00465 0.00275 0.00276 0.00125 0.00125 0.00026 0.00026 0.00011 0.00011
[l3, ma, ma, ka, k] 0.00470  0.00471 0.00270 0.00271 0.00123 0.00124 0.00025 0.00025 0.00011 0.00011
[l2, m1, ma, k] 0.00534 0.00534 0.00301 0.00302 0.00112 0.00112 0.00026 0.00027 0.00011 0.00012
[l3, m1, ma, k] 0.00518  0.00520 0.00300 0.00301 0.00119 0.00119 0.00024 0.00024 0.00011 0.00012
[la, I3, ma, ma, ko, k] 0.00436  0.00436 0.00272 0.00272 0.00120 0.00120 0.00027 0.00027 0.00011 0.00012
[mq, ma, ko, k] 0.00443  0.00453 0.00244 0.00245 0.00117 0.00121 0.00023 0.00023 0.00012 0.00012
[l2, m, my, ma, k] 0.00616 0.00622 0.00319 0.00320 0.00121 0.00121 0.00026 0.00027 0.00012 0.00012
[la, I3, my, ma, k] 0.00512  0.00513 0.00301 0.00302 0.00114 0.00114 0.00027 0.00028 0.00012 0.00012
[l3, m, my, ma, k] 0.00578  0.00587 0.00299 0.00299 0.00131 0.00131 0.00027 0.00028 0.00012 0.00012
[m, my, ma, k] 0.00603 0.00608 0.00270 0.00271 0.00121 0.00121 0.00025 0.00027 0.00012 0.00013
[la, I3, m, my, ma, k] 0.00555 0.00563 0.00307 0.00308 0.00134 0.00134 0.00028 0.00029 0.00012 0.00013
[l3, m, my, ma, ko, k] 0.00476  0.00484 0.00285 0.00285 0.00143 0.00143 0.00026 0.00026 0.00012 0.00013
[la, I3, m, my, ma, ko, k] 0.00446  0.00449 0.00272 0.00273 0.00133 0.00134 0.00027 0.00027 0.00012 0.00013
[m, my, ma, ko, k] 0.00531 0.00548 0.00269 0.00271 0.00130 0.00130 0.00027 0.00028 0.00012 0.00013
[la, m, my, ma, ko, k] 0.00469 0.00474 0.00282 0.00282 0.00132 0.00132 0.00025 0.00026 0.00013 0.00013
[l1, m1, ma, k] 0.00554  0.00555 0.00306 0.00307 0.00118 0.00119 0.00030 0.00030 0.00013 0.00013
[la, ma, ma, kol 0.00518 0.00523 0.00325 0.00326 0.00155 0.00159 0.00031 0.00031 0.00013 0.00013
[l2, I3, my, ma, k2] 0.00548 0.00552 0.00319 0.00321 0.00152 0.00154 0.00030 0.00030 0.00013 0.00013
[l3, m1, m2] 0.00534 0.00540 0.00303 0.00304 0.00135 0.00138 0.00030 0.00030 0.00013 0.00013
[l2, I3, m1, m2] 0.00548 0.00550 0.00322 0.00322 0.00147 0.00149 0.00032 0.00032 0.00013 0.00014
[la, my, m2] 0.00524 0.00525 0.00330 0.00330 0.00148 0.00151 0.00031 0.00031 0.00014 0.00014
[l3, m1, ma, k2] 0.00558 0.00566 0.00302 0.00305 0.00142 0.00145 0.00029 0.00029 0.00014 0.00014
[ly, m1, ma, ko, k] 0.00537 0.00538 0.00272 0.00275 0.00129 0.00131 0.00029 0.00029 0.00014 0.00014
[ly, m, my, ma, ko, k] 0.00558 0.00559 0.00275 0.00276 0.00128 0.00128 0.00029 0.00031 0.00014 0.00015
[l3, m, mqy, ma] 0.00693 0.00705 0.00335 0.00335 0.00165 0.00165 0.00033 0.00033 0.00015 0.00015
[l1, m, my, ma, k] 0.00640  0.00640 0.00314 0.00314 0.00115 0.00117 0.00031 0.00033 0.00015 0.00016
[l2, m, my, ma] 0.00655 0.00667 0.00342 0.00343 0.00163 0.00163 0.00031 0.00032 0.00015 0.00015
[l2, I3, m, my, ma] 0.00630 0.00642 0.00318 0.00319 0.00166 0.00166 0.00031 0.00032 0.00015 0.00016
[l3, m, mq, ma, ko] 0.00550  0.00566 0.00309 0.00309 0.00162 0.00163 0.00033 0.00034 0.00015 0.00016
[l2, m, my, ma, ko] 0.00528 0.00543 0.00329 0.00329 0.00169 0.00169 0.00031 0.00031 0.00016 0.00016
[la, I3, m, my, ma, ko] 0.00526  0.00538 0.00309 0.00309 0.00163 0.00163 0.00031 0.00032 0.00016 0.00016
(11, I3, m, my, ma, k] 0.00648 0.00649 0.00385 0.00385 0.00184 0.00190 0.00041 0.00042 0.00018 0.00018
[ly, I3, m, my, ma, ko, k] 0.00585 0.00585 0.00332 0.00332 0.00203 0.00207 0.00040 0.00041 0.00018 0.00018
[ly, lo, ma, ma, ko, k] 0.00884 0.00885 0.00423 0.00425 0.00267 0.00275 0.00055 0.00056 0.00020 0.00020
[l1, I3, m1, mo, k] 0.00767 0.00767 0.00367 0.00368 0.00183 0.00190 0.00038 0.00038 0.00020  0.00020
[l1, I3, m1, ma, ko, k] 0.00694 0.00694 0.00335 0.00335 0.00187 0.00194 0.00038 0.00039 0.00020 0.00020
[ly, lo, my, ma, k] 0.00955 0.00955 0.00634 0.00640 0.00258 0.00267 0.00052 0.00053 0.00020 0.00020
(11, la, I3, my, ma, ko, k] 0.00867 0.00870 0.00427 0.00428 0.00243 0.00255 0.00057 0.00057 0.00021 0.00021
[l1, 12, I3, M1, Mo, k] 0.01021  0.01021 0.00593  0.00597 0.00251 0.00265 0.00054 0.00054 0.00023  0.00023
[ly, I3, m, my, ma, ko] 0.00765 0.00766 0.00447 0.00448 0.00248 0.00249 0.00053 0.00054 0.00024  0.00025
(11, I3, mq, ma, k2] 0.00749 0.00751 0.00425 0.00425 0.00273 0.00275 0.00046 0.00046 0.00024 0.00024
[l1, I3, m, my, ma] 0.00940 0.00940 0.00454 0.00455 0.00308 0.00310 0.00051 0.00052 0.00025 0.00026
[ly, la, m, my, ma, ko, k] 0.00686 0.00686 0.00443 0.00444 0.00262 0.00269 0.00055 0.00057 0.00025 0.00025
[ly, la, I3, m, my, ma, ko, k] 0.00609 0.00609 0.00422 0.00422 0.00248 0.00255 0.00057 0.00058 0.00026 0.00026
(11, I3, my, mo] 0.00943  0.00944 0.00407 0.00409 0.00302 0.00304 0.00046 0.00046 0.00026 0.00026
[ly, la, I3, m, my, ma, k] 0.00755 0.00757 0.00520 0.00520 0.00270 0.00276 0.00057 0.00058 0.00026 0.00027
[ly, lo, my, my, ma, k] 0.00799 0.00799 0.00548 0.00548 0.00322 0.00335 0.00053 0.00055 0.00027 0.00027
(11, la, ma, ma, k2] 0.01119 0.01125 0.00732 0.00739 0.00443 0.00446 0.00068 0.00069 0.00027 0.00027
[l1, 12, I3, mq, ma, ko] 0.01017  0.01036  0.00659 0.00660 0.00397 0.00401 0.00064 0.00066 0.00028 0.00028
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