
Under review as submission to TMLR

Optimizing Model-Agnostic Random Subspace Ensembles

Anonymous authors
Paper under double-blind review

Abstract

This paper presents a model-agnostic ensemble approach for supervised learning. The pro-
posed approach is based on a parametric version of Random Subspace, in which each base
model is learned from a feature subset sampled according to a Bernoulli distribution. Pa-
rameter optimization is performed using gradient descent and is rendered tractable by using
an importance sampling approach that circumvents frequent re-training of the base models
after each gradient descent step. The degree of randomization in our parametric Random
Subspace is thus automatically tuned through the optimization of the feature selection prob-
abilities. This is an advantage over the standard Random Subspace approach, where the
degree of randomization is controlled by a hyper-parameter. Furthermore, the optimized
feature selection probabilities can be interpreted as feature importance scores. Our algo-
rithm can also easily incorporate any differentiable regularization term to impose constraints
on these importance scores.

Feature samplingFeatures
<latexit sha1_base64="ikzi6YRz8zRNydAzPBPL8udRcSs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7G6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+p5vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcRqo2r</latexit>z1

<latexit sha1_base64="39CbZgeH7idn5xafE3bLj1DQTyg=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZtYECZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEy6NrA==</latexit>z2
<latexit sha1_base64="12Jo8gJdiW7DRNkK6glxVvClPHE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF48Y5ZHAhswOA0yYnd3M9Jrghk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+ci1EZF6wHHM/ZAOlOgLRtFK90/d826x5JbdGcgy8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPil0EsNjykZ0wNuWKhpy46ezUyfkxCo90o+0LYVkpv6eSGlozDgMbGdIcWgWvan4n9dOsH/lp0LFCXLF5ov6iSQYkenfpCc0ZyjHllCmhb2VsCHVlKFNp2BD8BZfXiaNs7J3Ua7cVUrV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4AFLKNrQ==</latexit>z3

<latexit sha1_base64="l+hn7j51mPYLaeYnArUkna2dhPk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9Vj04rGi/YA2lM120i7dbMLuRqihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfqtR1Sax/LBjBP0IzqQPOSMGivdP/WqvVLZrbgzkGXi5aQMOeq90le3H7M0QmmYoFp3PDcxfkaV4UzgpNhNNSaUjegAO5ZKGqH2s9mpE3JqlT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtO0YbgLb68TJrnFe+iUr2rlmvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnBfn3fmYt644+cwR/IHz+QMWNo2u</latexit>z4
<latexit sha1_base64="BX0An3IYcXwaybL6ERwZyxxUyaw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4xyiOBDZkdGpgwO7uZmTXBDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPRzdRvPqLSPJIPZhyjH9KB5H3OqLHS/VP3vFssuWV3BrJMvIyUIEOtW/zq9CKWhCgNE1TrtufGxk+pMpwJnBQ6icaYshEdYNtSSUPUfjo7dUJOrNIj/UjZkobM1N8TKQ21HoeB7QypGepFbyr+57UT07/yUy7jxKBk80X9RBATkenfpMcVMiPGllCmuL2VsCFVlBmbTsGG4C2+vEwaZ2Xvoly5q5Sq11kceTiCYzgFDy6hCrdQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBF7qNrw==</latexit>z5

<latexit sha1_base64="ikzi6YRz8zRNydAzPBPL8udRcSs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7G6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+p5vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcRqo2r</latexit>z1
<latexit sha1_base64="39CbZgeH7idn5xafE3bLj1DQTyg=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZtYECZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEy6NrA==</latexit>z2

Random subspace 1

<latexit sha1_base64="ikzi6YRz8zRNydAzPBPL8udRcSs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7G6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+p5vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcRqo2r</latexit>z1
<latexit sha1_base64="12Jo8gJdiW7DRNkK6glxVvClPHE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF48Y5ZHAhswOA0yYnd3M9Jrghk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxGN1O/+ci1EZF6wHHM/ZAOlOgLRtFK90/d826x5JbdGcgy8TJSggy1bvGr04tYEnKFTFJj2p4bo59SjYJJPil0EsNjykZ0wNuWKhpy46ezUyfkxCo90o+0LYVkpv6eSGlozDgMbGdIcWgWvan4n9dOsH/lp0LFCXLF5ov6iSQYkenfpCc0ZyjHllCmhb2VsCHVlKFNp2BD8BZfXiaNs7J3Ua7cVUrV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4AFLKNrQ==</latexit>z3

Random subspace 2

<latexit sha1_base64="ikzi6YRz8zRNydAzPBPL8udRcSs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7G6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6f+p5vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcRqo2r</latexit>z1
<latexit sha1_base64="39CbZgeH7idn5xafE3bLj1DQTyg=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZtYECZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEy6NrA==</latexit>z2

<latexit sha1_base64="BX0An3IYcXwaybL6ERwZyxxUyaw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4xyiOBDZkdGpgwO7uZmTXBDZ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBZcG9f9dnIrq2vrG/nNwtb2zu5ecf+goaNEMayzSESqFVCNgkusG24EtmKFNAwENoPRzdRvPqLSPJIPZhyjH9KB5H3OqLHS/VP3vFssuWV3BrJMvIyUIEOtW/zq9CKWhCgNE1TrtufGxk+pMpwJnBQ6icaYshEdYNtSSUPUfjo7dUJOrNIj/UjZkobM1N8TKQ21HoeB7QypGepFbyr+57UT07/yUy7jxKBk80X9RBATkenfpMcVMiPGllCmuL2VsCFVlBmbTsGG4C2+vEwaZ2Xvoly5q5Sq11kceTiCYzgFDy6hCrdQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBF7qNrw==</latexit>z5

Random subspace 3

Model 1

Model 2

Model 3

Model-agnostic
ensemble

Prediction

LossGradient descent
<latexit sha1_base64="6bep49ohelvtTnmqsX9yEbsJyb0=">AAACPHicbVDBSiNBEO1xddXorlGPXhqD4MUwswT1KAriUdGokAmhplNjGnu6h+6aXcKQD/PiR3jbkxcPinj1bCfmoMaCph/vvaKqXpIr6SgM/wdTP6Znfs7OzVcWFn/9Xqour5w7U1iBTWGUsZcJOFRSY5MkKbzMLUKWKLxIrg+G+sVftE4afUb9HNsZXGmZSgHkqU71NE6M6rp+5r8YVN4DHitMCaw1/zifVLd4jORNGhIFnXLCMOCHnWotrIej4pMgGoMaG9dxp3oXd40oMtQkFDjXisKc2iVYkkLhoBIXDnMQ13CFLQ81ZOja5ej4Ad/wTJenxvqniY/Yjx0lZG64oHdmQD33VRuS32mtgtLddil1XhBq8T4oLRQnw4dJ8q60KEj1PQBhpd+Vix5YEOTzrvgQoq8nT4LzP/Vou944adT29sdxzLE1ts42WcR22B47YsesyQS7YffskT0Ft8FD8By8vFungnHPKvtUwesbv6WvnQ==</latexit>

↵ ↵� ⌘r↵F
Update

Feature selection
probabilities
(= feature importances)

0 1

<latexit sha1_base64="d97NymydqQ62PASvRSbcHcjKmhQ=">AAACE3icbVDLSsNAFJ3UV62vqEs3g0WoIiWRooKboiAuK9gHNKXcTCft0MmDmYkQQv7Bjb/ixoUibt2482+ctF1o9cBwD+fcy9x73IgzqSzryygsLC4trxRXS2vrG5tb5vZOS4axILRJQh6KjguSchbQpmKK004kKPgup213fJX77XsqJAuDO5VEtOfDMGAeI6C01DePriuOG/KBTHxdsAM8GsFF6rgeTrLjvDojUGmSZYd9s2xVrQnwX2LPSBnN0Oibn84gJLFPA0U4SNm1rUj1UhCKEU6zkhNLGgEZw5B2NQ3Ap7KXTm7K8IFWBtgLhX6BwhP150QKvsyX1p0+qJGc93LxP68bK++8l7IgihUNyPQjL+ZYhTgPCA+YoETxRBMgguldMRmBAKJ0jCUdgj1/8l/SOqnap9Xaba1cv5zFUUR7aB9VkI3OUB3doAZqIoIe0BN6Qa/Go/FsvBnv09aCMZvZRb9gfHwDA2GeRg==</latexit>

F (↵;y, ŷ)

<latexit sha1_base64="HaqdKKn65ktAPUjwmw9oPZlEon4=">AAACEnicbVDLSgNBEJz1GeNr1aOXwSAkIGFXgnoM8eIxgnlANiy9k0kyyeyDmVkhLvkGL/6KFw+KePXkzb9xNtmDJhY0FFXddHd5EWdSWda3sbK6tr6xmdvKb+/s7u2bB4dNGcaC0AYJeSjaHkjKWUAbiilO25Gg4Huctrzxdeq37qmQLAzu1CSiXR8GAeszAkpLrll6cEfYkczHjg9qSIAntWnRAR4NwR2VzrDTDwVwjkeuWbDK1gx4mdgZKaAMddf8cnohiX0aKMJByo5tRaqbgFCMcDrNO7GkEZAxDGhH0wB8KrvJ7KUpPtVKD+vdugKFZ+rviQR8KSe+pzvTu+Wil4r/eZ1Y9a+6CQuiWNGAzBf1Y45ViNN8cI8JShSfaAJEMH0rJkMQQJROMa9DsBdfXibN87J9Ua7cVgrVWhZHDh2jE1RENrpEVXSD6qiBCHpEz+gVvRlPxovxbnzMW1eMbOYI/YHx+QMKbZ0U</latexit>

zj ⇠ B(↵j), 8j

<latexit sha1_base64="HaqdKKn65ktAPUjwmw9oPZlEon4=">AAACEnicbVDLSgNBEJz1GeNr1aOXwSAkIGFXgnoM8eIxgnlANiy9k0kyyeyDmVkhLvkGL/6KFw+KePXkzb9xNtmDJhY0FFXddHd5EWdSWda3sbK6tr6xmdvKb+/s7u2bB4dNGcaC0AYJeSjaHkjKWUAbiilO25Gg4Huctrzxdeq37qmQLAzu1CSiXR8GAeszAkpLrll6cEfYkczHjg9qSIAntWnRAR4NwR2VzrDTDwVwjkeuWbDK1gx4mdgZKaAMddf8cnohiX0aKMJByo5tRaqbgFCMcDrNO7GkEZAxDGhH0wB8KrvJ7KUpPtVKD+vdugKFZ+rviQR8KSe+pzvTu+Wil4r/eZ1Y9a+6CQuiWNGAzBf1Y45ViNN8cI8JShSfaAJEMH0rJkMQQJROMa9DsBdfXibN87J9Ua7cVgrVWhZHDh2jE1RENrpEVXSD6qiBCHpEz+gVvRlPxovxbnzMW1eMbOYI/YHx+QMKbZ0U</latexit>

zj ⇠ B(↵j), 8j

<latexit sha1_base64="HaqdKKn65ktAPUjwmw9oPZlEon4=">AAACEnicbVDLSgNBEJz1GeNr1aOXwSAkIGFXgnoM8eIxgnlANiy9k0kyyeyDmVkhLvkGL/6KFw+KePXkzb9xNtmDJhY0FFXddHd5EWdSWda3sbK6tr6xmdvKb+/s7u2bB4dNGcaC0AYJeSjaHkjKWUAbiilO25Gg4Huctrzxdeq37qmQLAzu1CSiXR8GAeszAkpLrll6cEfYkczHjg9qSIAntWnRAR4NwR2VzrDTDwVwjkeuWbDK1gx4mdgZKaAMddf8cnohiX0aKMJByo5tRaqbgFCMcDrNO7GkEZAxDGhH0wB8KrvJ7KUpPtVKD+vdugKFZ+rviQR8KSe+pzvTu+Wil4r/eZ1Y9a+6CQuiWNGAzBf1Y45ViNN8cI8JShSfaAJEMH0rJkMQQJROMa9DsBdfXibN87J9Ua7cVgrVWhZHDh2jE1RENrpEVXSD6qiBCHpEz+gVvRlPxovxbnzMW1eMbOYI/YHx+QMKbZ0U</latexit>

zj ⇠ B(↵j), 8j

<latexit sha1_base64="g7WhyBsuq3/wYWykyEO9McFYZhQ=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkaI8FLx4r2A9oQ9lsN+3SzSbuToQQ+ie8eFDEq3/Hm//GpM1BWx8MPN6bYWaeF0lh0La/rdLG5tb2Tnm3srd/cHhUPT7pmjDWjHdYKEPd96jhUijeQYGS9yPNaeBJ3vNmt7nfe+LaiFA9YBJxN6ATJXzBKGZSfzilmCbzyqhas+v2AmSdOAWpQYH2qPo1HIcsDrhCJqkxA8eO0E2pRsEkn1eGseERZTM64YOMKhpw46aLe+fkIlPGxA91VgrJQv09kdLAmCTwss6A4tSsern4nzeI0W+6qVBRjFyx5SI/lgRDkj9PxkJzhjLJCGVaZLcSNqWaMswiykNwVl9eJ92runNdb9w3aq1mEUcZzuAcLsGBG2jBHbShAwwkPMMrvFmP1ov1bn0sW0tWMXMKf2B9/gDoz4/d</latexit>

ŷ<latexit sha1_base64="JGjRuUVipLIERhC8TkVaroYa2W8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkaI8FLx4r2A9oQ5lsN+3SzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3M79zhNTmsfywUwT5kc4kjzkFI2Vun0UyRgH3qBccavuAmSdeDmpQI7moPzVH8Y0jZg0VKDWPc9NjJ+hMpwKNiv1U80SpBMcsZ6lEiOm/Wxx74xcWGVIwljZkoYs1N8TGUZaT6PAdkZoxnrVm4v/eb3UhHU/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmlfVb3rau2+VmnU8ziKcAbncAke3EAD7qAJLaAg4Ble4c15dF6cd+dj2Vpw8plT+APn8we0vY+7</latexit>↵1
<latexit sha1_base64="CeMVUCE+T30emaesVpTUv5Yatug=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4Kkkp2mPBi8cK9gPaUCbbTbt0s4m7G6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqKGvRWMSqG6BmgkvWMtwI1k0UwygQrBNMbud+54kpzWP5YKYJ8yMcSR5yisZK3T6KZIyD6qBUdivuAmSdeDkpQ47moPTVH8Y0jZg0VKDWPc9NjJ+hMpwKNiv2U80SpBMcsZ6lEiOm/Wxx74xcWmVIwljZkoYs1N8TGUZaT6PAdkZoxnrVm4v/eb3UhHU/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxERRuCt/ryOmlXK951pXZfKzfqeRwFOIcLuAIPbqABd9CEFlAQ8Ayv8OY8Oi/Ou/OxbN1w8pkz+APn8we2QY+8</latexit>↵2
<latexit sha1_base64="zolvWTduJs0o5rmCEtRzJakuNA8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0aI8FLx4r2FpoQ5lsN+3SzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUUdaisYhVJ0DNBJesZbgRrJMohlEg2EMwvpn5D09MaR7LezNJmB/hUPKQUzRW6vRQJCPsX/bLFbfqzkFWiZeTCuRo9stfvUFM04hJQwVq3fXcxPgZKsOpYNNSL9UsQTrGIetaKjFi2s/m907JmVUGJIyVLWnIXP09kWGk9SQKbGeEZqSXvZn4n9dNTVj3My6T1DBJF4vCVBATk9nzZMAVo0ZMLEGquL2V0BEqpMZGVLIheMsvr5L2RdW7qtbuapVGPY+jCCdwCufgwTU04Baa0AIKAp7hFd6cR+fFeXc+Fq0FJ585hj9wPn8At8WPvQ==</latexit>↵3
<latexit sha1_base64="T2Tn/q/4DRxu/UK0ZpPK6m3j8FU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkaI8FLx4r2A9oQ5lsN+3SzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3M79zhNTmsfywUwT5kc4kjzkFI2Vun0UyRgHtUG54lbdBcg68XJSgRzNQfmrP4xpGjFpqECte56bGD9DZTgVbFbqp5olSCc4Yj1LJUZM+9ni3hm5sMqQhLGyJQ1ZqL8nMoy0nkaB7YzQjPWqNxf/83qpCet+xmWSGibpclGYCmJiMn+eDLli1IipJUgVt7cSOkaF1NiISjYEb/XlddK+qnrX1dp9rdKo53EU4QzO4RI8uIEG3EETWkBBwDO8wpvz6Lw4787HsrXg5DOn8AfO5w+5SY++</latexit>↵4
<latexit sha1_base64="lrz7uxFXSpR9ddIhc9DOFtqNKQg=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMA9IltA7mU2GzM6uM7NCWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epoqxJYxGrToCaCS5Z03AjWCdRDKNAsHYwvp357SemNI/lg5kkzI9wKHnIKRordXookhH2r/rlilt15yCrxMtJBXI0+uWv3iCmacSkoQK17npuYvwMleFUsGmpl2qWIB3jkHUtlRgx7Wfze6fkzCoDEsbKljRkrv6eyDDSehIFtjNCM9LL3kz8z+umJqz5GZdJapiki0VhKoiJyex5MuCKUSMmliBV3N5K6AgVUmMjKtkQvOWXV0nroupdVy/vLyv1Wh5HEU7gFM7Bgxuowx00oAkUBDzDK7w5j86L8+58LFoLTj5zDH/gfP4Aus2Pvw==</latexit>↵5

Figure 1: Parametric Random Subspace (PRS). A model-agnostic ensemble is built, in which each
base model is learned from a feature subset sampled according to a Bernoulli distribution with parameters
α. The training procedure consists in identifying the parameters α that minimize any loss F (α; y, ŷ) (which
may include a regularization term over α). This optimization problem is solved using gradient descent and
importance sampling.

1 Introduction

In supervised learning, ensemble approaches are popular techniques to improve the performance of any learn-
ing algorithm. The most prominent ensemble methods include averaging ensembles like Bagging (Breiman,
1996b), Random Subspace (Ho, 1998), or Random Forest (Breiman, 2001), as well as boosting ensembles,
such as Adaboost (Freund & Schapire, 1997) or gradient boosting (Friedman, 2001). Both Random Forest

1

Under review as submission to TMLR

and Random Subspace aggregate the predictions of base models that are randomized through a random
feature selection mechanism (with additional sample bootstrapping, similarly as in Bagging, in the case of
Random Forest). However, while Random Subspace is a model-agnostic approach, i.e. an approach that
can be combined with any type of base models, Random Forest is designed specifically for the aggregation
of decision trees. Indeed, in Random Subspace, feature randomization occurs at the level of the base model,
before training the latter, and can thus be combined with any base model. On the other hand, the feature
randomization used in Random Forest is designed specifically for decision trees: it occurs at the level of
the tree node, where a feature subset is randomly sampled before selecting the best split. Note that while
boosting is a model-agnostic approach, it is designed to aggregate weak models, and is hence typically used
with shallow decision trees.

One advantage of decision trees is their interpretability. Their node splitting strategy is akin to an embedded
feature selection mechanism that makes them robust to irrelevant features and feature importance scores
can be furthermore easily derived from a trained tree model to quantitatively assess the selected features
(Breiman et al., 1984b). These characteristics carry over when decision trees are used as based learners
with the aforementioned ensemble methods, as importance scores can be averaged over all the trees in the
ensemble, which furthermore increases their stability. This arguably has participated to the popularity of
tree-based ensemble methods for the prediction of tabular data Grinsztajn et al. (2022). On the other hand,
this interpretability through feature selection and ranking is obviously lost when model-agnostic ensemble
methods are applied with other base learners that are not inherently interpretable.

In this paper, we propose a novel ensemble approach for supervised learning (Figure 1) that is fully model-
agnostic, i.e., makes no assumption about the nature of the base models, and naturally embeds a feature
selection mechanism and provides feature importance scores, irrespectively of the choice of the base model.
The proposed approach is based on a parametric version of Random Subspace (denoted PRS), in which each
base model is learned from a feature subset sampled according to a Bernoulli distribution. We formulate
the training procedure as an optimization problem where the goal is to identify the parameters of the
Bernoulli distribution that minimize the generalization error of the ensemble model, and we show that this
optimization problem can be solved using gradient descent even when the base models are not differentiable.
The optimization of the Bernoulli distribution is however intractable, as the computation of the exact
output of the full ensemble model would require the training of one model for each possible feature subset.
To render the parameter optimization tractable, we use Monte Carlo sampling to approximate the ensemble
model output. We further use an importance sampling approach that circumvents frequent re-training of
the base models after each update of the gradient descent.

The degree of randomization in our parametric Random Subspace is automatically tuned through the op-
timization of the feature selection probabilities. This is an advantage over the standard Random Subspace
approach, where the degree of randomization is controlled by a hyper-parameter. Furthermore, the opti-
mized feature selection probabilities can be interpreted as feature importance scores. Our algorithm can also
easily incorporate any differentiable regularization term to impose constraints on these importance scores.
We show the good performance of the proposed approach, both in terms of prediction and feature ranking,
on simulated and real-world datasets. We also show that PRS can be successfully used for the reconstruction
of gene regulatory networks.

2 Methods

We assume a standard supervised learning setting, where we have at our disposal a learning set containing
N input-output pairs {(xi, yi)}Ni=1 drawn from an unknown probability distribution. Let us denote by M
the number of input variables. The output y can be either continuous (regression problem) or discrete
(classification problem). Our goal is to train a model-agnostic predictive model, while deriving for each
input variable a score that measures its importance for the output prediction.

To achieve this goal, we build upon the Random Subspace approach (RS, Ho, 1998). RS consists in learning an
ensemble of predictive models, where each model is built from a randomly chosen subset of K input variables
(with K < M), sampled according to a uniform distribution. Here, instead of using a uniform distribution,
we adopt a parametric distribution for the selection of the input features, and feature importance scores

2

Under review as submission to TMLR

are derived through the identification of the distribution parameters that yield the lowest generalization
error. In the following, after introducing the parametric RS model (Section 2.1), we show how this model
can be trained in a tractable way (Section 2.2) and we discuss our approach with respect to related works
(Section 2.3).

2.1 The Parametric Random Subspace approach (PRS)

Let us denote by z = (z1, . . . , zM)> ∈ {0, 1}M a binary vector of length M encoding a subset of selected
input variables: zj = 1 if the j-th variable is selected and zj = 0 otherwise, ∀j ∈ {1, . . . ,M}. In the proposed
PRS approach, each indicator variable zj is assumed to follow a Bernoulli distribution with parameter αj .
The probability mass function for z is then given by:

p(z|α) =
M∏
j=1

α
zj

j (1− αj)(1−zj), (1)

where αj ∈ [0, 1] is the probability of selecting the j-th variable and α = (α1, . . . , αM)>. Let Z =
{z1, z2, . . . , z|Z|} be the set of all the possible feature subsets, where |Z| = 2M is the cardinality of Z.

We assume an ensemble method that consists in averaging base models trained independently of each other
using subsets of features drawn from p(z|α). Let us denote by F some functional space corresponding to a
given learning algorithm and by Fz ⊆ F the subset of functions from F that only depend on the variables
indicated by z. Let fzt ∈ Fzt be the base model learned by this learning algorithm from the feature subset
zt (∀t ∈ {1, . . . , |Z|}). Asymptotically, the prediction of the ensemble model for a given input x is given by:

E[fz(x)]p(z|α) =
|Z|∑
t=1

p(zt|α)fzt(x). (2)

For a fixed α, a practical approximation of E[fz(x)]p(z|α) can be obtained by Monte-Carlo sampling, i.e.
by drawing T feature subsets from p(z|α) and then training a model from each of these subsets, using the
chosen learning algorithm (Figure 1). If all the αj ’s are equal, the resulting ensemble method is very close
to the standard RS approach, the only difference being that the number of selected features will be slightly
randomized from one model to the next. In this work, we would like however to identify the parameters α
that yield the most accurate expected predictions E[fz(x)]p(z|α) over our training set. Given a loss function
L, the corresponding optimization problem can be formulated as follows:

min
α∈[0,1]M

F (α),

where F (α) = 1
N

N∑
i=1

L
(
yi,E[fz(xi)]p(z|α)

)
.

(3)

A nice advantage is that the selection probabilities α after optimization can be interpreted as measures
of variable importances: useless variables are expected to get low selection probabilities, while the most
important ones are expected to get selection probabilities close to 1.

2.2 Training the PRS model

We propose to solve the optimization problem in Eq (3) using gradient descent. More specifically, since αj
must be between 0 and 1, ∀j, we use the projected gradient descent technique, where α is projected into
the space [0, 1]M after each step of the gradient descent. In the following, we first derive the analytical
formulation of the gradient of the objective function. We then explain how to estimate this gradient by
using Monte Carlo sampling and show how to incrementally update this gradient estimate using importance
sampling. Precise pseudo-code of the algorithm is given in Appendix A and our Python implementation is
available in the supplementary material1.

1Our Python code and the datasets used in this paper will be available on GitHub, should the paper be accepted.

3

Under review as submission to TMLR

2.2.1 Computing the gradient

Assuming that the loss function L is differentiable, the gradient of the objective function F (α) w.r.t. α is:

∇αF (α) = 1
N

N∑
i=1

dL
dE[fz(xi)]p(z|α)

∇αE[fz(xi)]p(z|α). (4)

To compute the gradient ∇αE[fz(xi)]p(z|α), we resort to the score function approach (Rubinstein & Shapiro,
1993), also known as the REINFORCE method (Williams, 1992) or the likelihood-ratio method (Glynn,
1990), which allows us to express the gradient of an expectation as an expectation itself (see Appendix B):

∇αE[fz(xi)]p(z|α) = E [fz(xi)∇α log p(z|α)]p(z|α) . (5)

A major advantage of the score function approach is that, in order to compute the gradient in Eq. (5), only
the distribution p(z|α) needs to be differentiable, and not the base model fz. By using the score function
method with the Bernoulli distribution in Eq. (1), the j-th component of the gradient is given by (see
Appendix B):

∂E[fz(xi)]p(z|α)

∂αj
= fα

j,1(xi)− fα
j,0(xi) (6)

where, for the simplicity of notations, we have defined:

fα
j,0(xi) = E[fz(xi)|zj = 0]p(z−j |α−j), (7)
fα
j,1(xi) = E[fz(xi)|zj = 1]p(z−j |α−j), (8)

with z−j = z\zj , α−j = α\αj . fα
j,0 (resp. fα

j,1) is thus the expected output of a model that does not take
(resp. takes) as input the j-th variable. We thus finally have:

∂F

∂αj
= 1
N

N∑
i=1

dL
dE[fz(xi)]p(z|α)

(
fα
j,1(xi)− fα

j,0(xi)
)
. (9)

The above derivative can be easily interpreted in the context of a gradient descent approach. For example,
when dL

dE[fz(xi)]p(z|α)
is positive, the loss L decreases with a lower model prediction E[fz(xi)]p(z|α). This

means that if fα
j,0(xi) < fα

j,1(xi), the model without variable j will give a lower loss than the model with
variable j. In that case, the derivative ∂F

∂αj
is positive and a gradient descent step (i.e. αj ← αj − η ∂F∂αj

,
where η is the learning rate) will decrease the value of αj .

2.2.2 Estimating the gradient

Given the current selection probabilities α, the exact computation of the expectation in Eq. (5) is obviously
intractable as it requires training |Z| models. An unbiased estimation can be obtained by Monte Carlo
sampling, i.e. by averaging over T subsets of features z(t) sampled from p(z|α):

E [fz(xi)∇α log p(z|α)]p(z|α) '
1
T

T∑
t=1

fz(t)(xi)∇α log p(z(t)|α), (10)

where fz(t) is the model trained using only as inputs the features in the subset z(t).

It remains to be explained on which data the models fz(t) are trained. Using the same N samples as the ones
used to compute the gradient in Eq. (4) would lead to biased predictions fz(xi) and hence to overfitting.
We thus use a batch gradient descent approach, in which a subset of the training dataset (e.g. 10% of the
samples) are used for computing the gradient, while the remaining samples are used for training the base
models. Note that in the case where z(t) is the empty set, which can happen when all the αj parameters are
very low, we set fz(t) to a constant model that always returns the mean value of the output in the training
set (for regression problems) or the majority class (for classification problems).

4

Under review as submission to TMLR

Although the gradient estimator in Eq. (10) is unbiased, it is known to suffer from high variance, which can
make the gradient descent optimization very unstable. One common solution to reduce this variance is to
use the fact that, for any constant b, we have (see Appendix C.1):

E [fz(xi)∇α log p(z|α)]p(z|α) = E [(fz(xi)− b)∇α log p(z|α)]p(z|α) . (11)

The constant b is called a baseline and its value will affect the variance of the estimator. In our approach,
we use the optimal value of b, i.e. the value that minimizes the variance, which is (see Appendix C.2):

b =
E[(∇α log p(z|α))2fz(xi)]p(z|α)

E[(∇α log p(z|α))2]p(z|α)
'
∑T
t=1(∇α log p(z(t)|α))2fz(t)(xi)∑T

t=1(∇α log p(z(t)|α))2
. (12)

Table S7 shows, on simulated problems, the merits of applying this variance reduction approach, as it typically
results in a better performance (in particular for the regression problems), both in terms of prediction and
feature ranking quality, and smaller feature subsets.

2.2.3 Updating the gradient

The above procedure allows us to estimate the gradient and to perform one gradient descent step. After this
step, the distribution parameters α are updated to β = α− η∇F and we must hence compute the gradient
∇βE[fz(xi)]p(z|β) in order to do the next step. To be able to compute the approximation in Eq (10), new
models {fz(t)}Tt=1 must thus in principle be learned by sampling each z(t) from the new distribution p(z|β).
This would result in a very computationally expensive algorithm where new models are learned after each
parameter update.

In order to estimate the effect of a change in the feature selection probabilities α without learning new
models, we use the importance sampling approximation of the expectation. Given a new vector of feature
selection probabilities β 6= α, any expectation under p(z|β) can be approximated through p(z|α). We have,
for any input xi:

E[(fz(xi)− b)∇β log p(z|β)]p(z|β) =
|Z|∑
t=1

p(z|β)
p(z|α)p(z|α)(fzt(xi)− b)∇β log p(z|β) (13)

= E
[
p(z|β)
p(z|α) (fz(xi)− b)∇β log p(z|β)

]
p(z|α)

(14)

' 1
T

T∑
t=1

p(z(t)|β)
p(z(t)|α) (fz(t)(xi)− b)∇β log p(z(t)|β), (15)

where the feature subsets {z(t)}Tt=1 in Eq (15) have been sampled from p(z|α). This approximation can thus
be computed for any β by using the models {fz(t)}Tt=1 obtained when the z(t) were sampled from p(z|α).

As shown by Eq.(15), the importance sampling approximation consists of a weighted average over T feature
subsets z(t), using weights wt = p(z(t)|β)

p(z(t)|α) . When β becomes very different from α, some of the feature subsets
will be hardly used in the average because they will have a very low weight wt. The effective number of used
feature subsets can be computed as (Doucet et al., 2001):

Teff =

(∑T
t=1 wt

)2

∑T
t=1 w

2
t

. (16)

With imbalanced weights, the importance sampling approximation is equivalent to averaging over Teff
feature subsets. When Teff is too low, the gradient estimation thus becomes unreliable. When this happens,
we train T new models fz(t) by sampling the feature subsets z(t) from the current distribution p(z|β). In
practice, new models are trained as soon as Teff drops below 0.9T .

5

Under review as submission to TMLR

2.3 Discussion

The PRS algorithm has the advantage of being model-agnostic in that any supervised learning method can be
used to fit the fz(t) models. Despite the use of gradient descent, no hypothesis of differentiability is required
for the model family. The framework can also be easily adapted to any differentiable loss and regularization
term.

Computational complexity Once the models are trained, the computation of the gradient is linear with
respect to the number N of samples, the number M of features and the number T of base models in the
ensemble. The costliest step of the algorithm is the construction of the base models. The complexity of
the construction of the models depends on the type of model, but note that each model is grown only from
a potentially small subset of features. Figure S4 in the appendix shows the computing times of PRS on
simulated problems, for different values of N and M .

Regularization While we have not used any regularization term in (3), incorporating one is straight-
forward. A natural regularization term to enforce sparsity could be simply the sum

∑M
j=1 αj , which can

be nicely interpreted as E[||z||0]p(z|α), i.e., the average size of the subsets drawn from p(z|α). Adding this
term to (3) with a regularization coefficient λ would simply consists in adding λ to the gradient in (4).
We did not systematically include such regularization in our experiments below to reduce the number of
hyper-parameters. Despite the lack of regularization, PRS has a natural propensity for selecting few fea-
tures. Incorporating a useless feature j will indeed often deteriorate the quality of the predictions and lead
to a decrease of the corresponding αj . Note however that the sparsity of the resulting selection weights
will depend on the robustness of the learning algorithm to the presence of irrelevant features. This will be
illustrated in our experiments. Besides sparsity, we will also exploit more sophisticated regularization terms,
for MNIST (where we will use a regularization term that enforces spatial smoothness) and the inference of
gene regulatory networks (where we will enforce modular networks).

Related works Our method has direct connections with the Random Subspace (RS) ensemble method
(Ho, 1998). In addition to providing a feature ranking, it has the obvious added flexibility w.r.t. RS that
the feature sampling distribution (and thus also the subspace size) is automatically adapted to improve
performance. Another close work is the RaSE method (Tian & Feng, 2021), which iteratively samples a
large population of feature subsets, trains models from them and selects the T best ones according to a
chosen criterion (e.g., the cross-validation prediction performance). The selection probability αj of each
feature is then updated as the proportion of times it appears in the T best feature subsets. RaSE and PRS
are thus similar in the sense that they both iteratively sample feature subsets from an explicit probability
distribution with parameters α (although the sampling distribution is different between the two approaches)
and update the latter. One major difference is that RaSE implicitly minimizes the expected value of the loss
function:

min
α

E

[
1
N

N∑
i=1

L(yi, fz(xi))
]
p(z|α)

, (17)

while we are trying to minimize the loss of the ensemble model E[fz(x)]p(z|α) (see Eq.(3)). Both approaches
also greatly differ in the optimization technique: RaSE iteratively updates the parameters α from the best
feature subsets in the current population, while PRS is based on gradient descent and importance sampling.
Furthermore, as explained above, PRS allows the direct regularization of the parameters α, while such
regularization is not possible in RaSE. Finally, RaSE samples the size of each feature subset from a uniform
distribution whose upper bound is a hyper-parameter set by the user, while the subspace size is automatically
adapted in our approach. Both approaches will be empirically compared in Section 3.

Our optimization procedure has also some links with variational optimization (VO, Staines & Barber, 2013).
VO is a general technique for minimizing a function G(z) that is non-differentiable or combinatorial. It is
based on the bound:

min
z∈Z

G(z) ≤ E[G(z)]p(z|α) = F (α), (18)

6

Under review as submission to TMLR

Instead of minimizing G with respect to z, one can thus minimize the upper bound F with respect to α.
Replacing G in Eq. (18) with the loss of an individual model fz yields:

min
z∈Z

1
N

N∑
i=1

L(yi, fz(xi)) ≤ E
[

1
N

N∑
i=1

L(yi, fz(xi))
]
p(z|α)

, (19)

where the left-hand term is the definition of the global feature selection problem, which is combinatorial over
the discrete values of z. Instead of directly solving the feature selection problem, one can thus minimize an
upper bound of it, by minimizing the expected value of the loss over the continuous α, e.g. using gradient
descent. Like in VO, the formulation in (3) allows us to use gradient descent optimization despite the fact
that the models fz are not necessarily differentiable. Note however that our goal is not to solve the feature
selection problem, but to train an ensemble and thus the function F (α) in Eq. (3), which is the loss of the
ensemble, is exactly what we want to minimize (and not an upper bound).

Several works have used gradient descent to solve the feature selection problem in the left-hand term of
Eq. (19), by using a continuous relaxation of the discrete variables z (Sheth & Fusi, 2020; Yamada et al.,
2020; Donà & Gallinari, 2021; Balin et al., 2019; Yang et al., 2022). However, these methods are designed to
be used with differentiable models (neural networks, polynomial models), so that both the feature selection
and the model parameters can be updated in a single gradient descent step, while PRS is model-agnostic.

Note that while PRS is a model-agnostic ensemble method, it is not an explanation (or post-hoc) method,
such as LIME (Ribeiro et al., 2016) or SHAP (Lundberg & Lee, 2017) for example. Methods such as LIME
or SHAP are designed to highlight the features that a pre-trained black-box model uses to produce its
predictions (locally or globally). They do not affect the predictive performance of the models they try to
explain. PRS, on the other hand, produces an ensemble with hopefully improved predictive performance
and interpretability with respect to (and whatever) the base learning algorithm it is combined with.

3 Results

We compare below PRS against several baselines and state-of-the-art methods on simulated (Section 3.1) and
real (Section 3.2) problems. We then conduct two additional experiments, on MNIST (Section 3.3) and gene
network inference (Section 3.4), to highlight the benefit of incorporating a problem-specific regularization
term.

As base model fz, we used either a CART decision tree (Breiman et al., 1984a), a k-nearest neighbors (kNN)
model (Altman, 1992) with k = 5 or a support vector machine (SVM, Boser et al., 1992) with a radial basis
function kernel. All the hyper-parameters of these base models were set to the default values used in the
scikit-learn library (Pedregosa et al., 2011)

We report the predictive performance with the R2 score for regression problems and the accuracy for clas-
sification problems. For PRS a ranking of features can be obtained by sorting them by decreasing value of
importances α. If the relevant variables are known, the feature ranking can be evaluated using the area
under the precision-recall curve (AUPR). A perfect ranking (i.e. all the relevant features have a higher
importance than the irrelevant ones) yields an AUPR of 1, while a random ranking has an AUPR close to
the proportion of relevant features.

We compare PRS to the following methods: the standard Random Subspace (RS), Random Forest (RF),
Gradient Boosting with Decision Trees (GBDT), and RaSE. Implementation details for all the methods are
provided in Appendix D.

3.1 Simulated Problems

We simulated four problems, for which the relevant features are known (see Appendix E.1 for the detailed
simulation protocol). Compared to single base models and RS, PRS yields higher prediction scores for all
the base models (Figure 2). The improvement of performance over RS is larger in the case of kNN and
SVM, compared to decision trees. This can be explained by the fact a decision tree, contrary to kNN and

7

Under review as submission to TMLR

tree kNN SVM

1.5

1.0

0.5

0.0

0.5
R

2 t
es

t s
co

re
Checkerboard

Type

Single
RS
PRS

tree kNN SVM

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
2 t

es
t s

co
re

Friedman

tree kNN SVM
0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y

Hypercube

tree kNN SVM

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Linear

Figure 2: Predictive performance for single models versus RS and PRS ensembles. Performance
values are R2 scores for the Checkerboard and Friedman problems, and accuracies for the Hypercube and
Linear problems. The boxplots summarize the values over 10 datasets.

SVM, has an inner feature selection mechanism and is hence able to maintain a good performance even in
the presence of irrelevant features. Therefore, for a given irrelevant feature j, the difference between fβ

j,0 and
fβ
j,1 (Eqs (7) and (8), respectively) will be lower in the case of trees, which can prevent the corresponding
αj to decrease towards zero during the gradient descent.

Note also that RS greatly improves over the single model only in the case of decision trees. The decision
tree being a model that is prone to high variance, its prediction performance is indeed usually improved by
using ensemble methods (Breiman, 1996a; 2001; Geurts et al., 2006). On the other hand, since kNN and
SVM have a sufficiently low variance, their performance is not improved with a standard ensemble.

While the degree of randomization is controlled by the parameter K (i.e. the number of randomly sampled
features for each base model) in RS, it has the advantage to be automatically tuned in PRS. Table 1 indicates
the sum

∑M
j=1 αj , which is equivalent to E[||z||0]p(z|α), i.e. the average number of selected variables per base

model. By comparing this average number to the optimal value of K for RS, we can see that PRS effectively
selects a much lower number of features, while no explicit constraint on sparsity is used during model training.
The average number of selected variables remains however slightly higher than the actual number of relevant
features, indicating that a certain degree of randomization is introduced during model construction.

Overall, PRS outperforms RF and GBDT both in terms of predictive performance and feature ranking (Table
2), the best performance being obtained with kNN and SVM. For some problems (e.g. Checkerboard), PRS
is particularly better than RF and GBDT in the presence of a high number of irrelevant features (Figures S5
and S6).

Compared to RaSE, PRS yields an equivalent performance, with equivalent feature subset sizes (Table S8),
while being much less computationally expensive. Indeed, T×B×10 = 500, 000 base models must be trained
at each iteration of RaSE (see Appendix D.4), while in PRS the highest number of trained base models is
320,000 for the whole run of the algorithm (Table S9).

8

Under review as submission to TMLR

Table 1: Number of features used per base model, i.e. for RS: the number K of randomly sampled
features (optimized on the validation set), and for PRS: the sum

∑M
j=1 αj . Values are mean and standard

deviation over 10 datasets.
Model Checkerboard Friedman Hypercube Linear

tree RS 53.50 ± 52.13 132.00 ± 24.49 133.20 ± 63.76 145.60 ± 63.17
PRS 7.29 ± 1.32 7.82 ± 0.75 12.10 ± 3.04 12.68 ± 2.95

kNN RS 97.10 ± 86.99 90.60 ± 28.15 61.70 ± 47.24 99.10 ± 80.20
PRS 6.49 ± 1.91 5.49 ± 0.47 6.83 ± 1.20 10.12 ± 2.30

SVM RS 111.00 ± 126.96 305.00 ± 0.00 131.80 ± 95.29 227.30 ± 84.00
PRS 4.85 ± 0.55 7.28 ± 1.31 13.54 ± 3.01 19.97 ± 1.90

Table 2: Comparison to RF and GBDT. We report here the prediction score on the test set (R2 score
or accuracy) and the feature ranking quality (AUPR). Values are mean and standard deviation over 10
datasets. Highest scores are indicated in bold type.

RF GBDT PRS - tree PRS - kNN PRS - SVM
Checkerboard R2 -0.03 ± 0.05 -0.09 ± 0.10 0.29 ± 0.14 0.60 ± 0.06 0.62 ± 0.07

AUPR 0.44 ± 0.22 0.40 ± 0.24 0.60 ± 0.23 0.92 ± 0.14 0.98 ± 0.06
Friedman R2 0.73 ± 0.04 0.86 ± 0.03 0.83 ± 0.03 0.88 ± 0.03 0.90 ± 0.05

AUPR 0.68 ± 0.03 0.87 ± 0.04 0.95 ± 0.04 1.00 ± 0.00 0.98 ± 0.05
Hypercube Accuracy 0.85 ± 0.07 0.86 ± 0.06 0.88 ± 0.04 0.90 ± 0.06 0.88 ± 0.05

AUPR 0.92 ± 0.12 0.90 ± 0.10 0.97 ± 0.06 0.94 ± 0.09 0.90 ± 0.14
Linear Accuracy 0.77 ± 0.06 0.85 ± 0.04 0.78 ± 0.03 0.88 ± 0.03 0.92 ± 0.03

AUPR 0.68 ± 0.13 0.70 ± 0.15 0.67 ± 0.13 0.73 ± 0.12 0.80 ± 0.10

Finally, the efficiency of the importance sampling approach can be observed in Table S10. This table shows
the performance and training times of PRS-SVM, for different thresholds on the effective number of models
Teff as defined in Eq. (16). We recall that in PRS, new base models are trained only when Teff drops below
the chosen threshold. Setting the threshold to T corresponds to the case where we do not use the importance
sampling approach and new models are trained at each epoch. This significantly increases the computing
time, with no improvement in terms of prediction score and AUPR, compared to our default threshold
0.9T . Lowering the threshold allows to decrease the training time, and there is a strong degradation of the
performance only for small threshold values (0.3T and 0.5T).

3.2 Real-world problems

We compared the different approaches on benchmarks containing real-world datasets:

• The tabular benchmark of Grinsztajn et al. (2022). This benchmark contains 55 tabular datasets
from various domains, split into four groups (regression or classification, with or without categorical
features). Dataset sizes are indicated in Tables S11 and S12. For each dataset, we randomly choose
3,000 samples, that we split to compose the training, validation and test sets (1,000 samples each).
The results of the different approaches are then averaged over 10 such random samplings.

• Biological, classification datasets from the scikit-feature repository (Li et al., 2018). These datasets
(also tabular) have the particularity to have very few (∼ 100) samples for several thousands features.
Among the biological datasets available in the repository, we filtered out datasets and classes in order
to have only datasets with at least 30 samples per class. The final dataset sizes are indicated in
Table S12. Given the small dataset sizes, we estimate the prediction accuracies on these datasets
with 5-fold cross-validation, and for each fold we use 80% of the training set to train the models and
the remaining 20% as validation set. Given the very high number of features in these datasets, we
add in the objective function of PRS a regularization term that enforces sparsity (see Section 2.3),

9

Under review as submission to TMLR

Table 3: Normalized prediction scores on the real benchmarks. To aggregate the performance
across the datasets of each benchmark, we first normalize the performance score (R2 or accuracy) between
0 and 1 via an affine renormalization between the worse- and top-performing methods for each dataset. The
normalized scores are then averaged over the different datasets and 10 data subsamplings (for the tabular
datasets) or 5 cross-validation folds (for the scikit-feature datasets). For each benchmark, the highest
performance is indicated in bold type.

Tabular Tabular Scikit-feature
Model Regression Classification Classification

tree Single 0.36 ± 0.41 0.17 ± 0.22 0.19 ± 0.25
RS 0.82 ± 0.18 0.69 ± 0.22 0.67 ± 0.26
RaSE 0.83 ± 0.18 0.70 ± 0.25 0.60 ± 0.23
PRS 0.92 ± 0.11 0.80 ± 0.16 0.64 ± 0.28

kNN Single 0.50 ± 0.33 0.15 ± 0.20 0.38 ± 0.29
RS 0.65 ± 0.26 0.52 ± 0.21 0.35 ± 0.26
RaSE 0.92 ± 0.09 0.67 ± 0.24 0.71 ± 0.26
PRS 0.95 ± 0.08 0.79 ± 0.20 0.67 ± 0.27

SVM Single 0.48 ± 0.37 0.52 ± 0.24 0.53 ± 0.26
RS 0.49 ± 0.38 0.54 ± 0.23 0.49 ± 0.26
RaSE 0.72 ± 0.30 0.63 ± 0.25 0.67 ± 0.29
PRS 0.77 ± 0.26 0.56 ± 0.28 0.79 ± 0.26
RF 0.93 ± 0.09 0.84 ± 0.20 0.61 ± 0.28
GBDT 0.96 ± 0.09 0.83 ± 0.21 0.60 ± 0.22

and we select the value of the regularization coefficient λ (among {0.0001, 0.001, 0.01, 0.1}) that
maximizes the accuracy on the validation set.

To aggregate the prediction performance across multiple datasets, we first normalize the performance score
(R2 or accuracy) between 0 and 1 via an affine renormalization between the worse- and top-performing
methods for each dataset. The normalized scores are then averaged over the different datasets and the 10
data subsamplings (for the tabular datasets) or 5 cross-validation folds (for the scikit-feature datasets).

Table 3 shows the aggregated prediction scores, while the raw scores for each dataset can be found in Ta-
bles S13-S16. PRS always improves over RS, except on the scikit-feature benchmark with decision trees, and
is also usually better than RaSE. PRS-SVM yields the highest performance on the scikit-feature benchmark,
but RF and GBDT remain the best performers on the tabular benchmarks, with an equivalent performance
of PRS-kNN on the regression datasets.

Overall, PRS and RaSE ensembles are sparser than RS, when comparing the (expected) number of selected
features per base model (Tables S17-S19). In particular, RaSE returns very sparse models on the scikit-
feature benchmark, as for these datasets the maximum feature subspace size is explicitly set to

√
N (see

Appendix D.4), where the number N of samples is very small (between 100 and 200).

3.3 MNIST

We applied our method to classify images of handwritten digits 5’s and 6’s. The images were taken from the
MNIST dataset (LeCun et al., 1998) and random noise was added to them to make the task more challenging
(Figure 3). We treated the image pixels as individual features and we used the following objective function
within PRS:

F (α) = 1
N

N∑
i=1

L
(
yi,E[fz(xi)]p(z|α)

)
+λ1

W∑
j=1

H∑
k=1

αj,k+λ2

 H∑
j=2
|αj,k − αj−1,k|+

W∑
k=2
|αj,k − αj,k−1|

 , (20)

10

Under review as submission to TMLR

1 =
 0

2 = 0

1 =
 0

.0
1

2 = 0.001 2 = 0.01
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 3: PRS-kNN feature selection probabilities on MNIST. The first row shows three exemples
of (noisy) images from the dataset. The second and third rows show the values of the parameters α for
different values of the regularization coefficients λ1 and λ2. Increasing λ1 enforces sparsity, while increasing
λ2 enforces spatial smoothness.

Table 4: Test accuracies on MNIST. The right-hand part of the table indicates the accuracies of PRS
when the hyper-parameters λ1 and λ2 are optimized on the validation set.

Without regularization With regularization
RF GBDT PRS-tree PRS-kNN PRS-SVM PRS-tree PRS-kNN PRS-SVM
0.969 0.982 0.976 0.938 0.954 0.982 0.955 0.959

where W and H are respectively the width and height of the image, and αj,k is the selection probability for
the pixel in the j-row and k-th column. The second term is a regularization term that enforces sparsity, while
the last term penalizes large differences between the αj,k parameters corresponding to neighbouring pixels
(Figure 3). Such regularization is known as the fused lasso (Tibshirani et al., 2005) and allows to account
for the spatial structure of the features. Without any regularization (λ1 = 0, λ2 = 0), the pixels with strictly
positive feature selection probabilities tend to be spread over the whole digit (Figure 3). As regularization is
increased, they cluster around the bottom-left of the digit (as expected since this is where 5’s and 6’s differ
in the images) and the prediction performance is improved (Table 4). The highest accuracies are obtained
with PRS-tree and GBDT.

3.4 Gene network inference

An open problem in computational biology is the reconstruction of gene regulatory networks, which attempt
to explain the joint variability in the expression levels of a group of genes through a sparse pattern of
interactions. One approach to gene network reconstruction is the application of a feature selection approach
that identifies the regulators of each target gene. Such approach is used by GENIE3, one of the current
state-of-the-art network inference algorithms (Huynh-Thu et al., 2010). This method learns for each target
gene a RF model predicting its expression from the expressions of all the candidate regulators, and identifies
the regulators of that target gene through the RF-based feature importance scores. The PRS and RaSE
approaches can be used in the same way for gene network inference, with however the advantage that
the base models are not restricted to decision trees. Furthermore, while in GENIE3 the different models,

11

Under review as submission to TMLR

Table 5: AUPRs obtained on the DREAM4 networks. The highest AUPR is indicated in bold type
for each network. Random indicates the AUPR of an approach that randomly ranks all the possible edges.
The table also indicates the average subspace size for RaSE and PRS, i.e. for RaSE: the average subspace
size over the T ×G models, and for PRS: the sum

∑M
j=1 αj,g, averaged over the G genes.

AUPR Subspace size
Net1 Net2 Net3 Net4 Net5 Net1 Net2 Net3 Net4 Net5

Random 0.02 0.02 0.02 0.02 0.02 — — — — —
GENIE3 RF 0.17 0.15 0.25 0.23 0.22 — — — — —
RaSE tree 0.08 0.07 0.16 0.15 0.12 5.93 5.90 6.19 6.12 5.98

kNN 0.09 0.07 0.15 0.13 0.13 6.07 6.18 6.06 6.22 6.21
SVM 0.08 0.07 0.13 0.11 0.10 5.34 5.82 5.00 5.38 5.57

PRS tree 0.14 0.09 0.19 0.15 0.15 4.63 4.71 5.19 5.13 4.96
λ = 0 kNN 0.15 0.11 0.21 0.19 0.21 5.14 4.68 5.84 5.39 5.11

SVM 0.13 0.10 0.18 0.16 0.19 5.64 4.74 5.86 5.77 5.45
PRS tree 0.09 0.11 0.17 0.18 0.11 0.28 0.27 0.45 0.41 0.33
λ > 0 kNN 0.16 0.19 0.25 0.24 0.21 0.30 0.30 5.84 5.39 0.54

SVM 0.18 0.16 0.27 0.19 0.24 0.50 0.51 1.60 1.13 0.93

corresponding to the different target genes, are learned independently of each other, PRS can be extended
to introduce a global constraint on the topology of the network.

More specifically, we use a joint regularizer that enforces modular networks, a property often encountered in
real gene regulatory networks. Let G be the number of genes, among which there areM candidate regulators,
and let xi ∈ RM and yi ∈ RG be respectively the expression levels of the candidate regulators and of the G
target genes in the i-th sample (i = 1, . . . , N). Our goal is to identify a M ×G matrix α, where αj,g is the
weight of the regulatory link directed from the j-th candidate regulator to the g-th gene. In the context of
PRS, we seek to identify the matrix α that minimizes the following objective function:

1
G

1
N

G∑
g=1

N∑
i=1

(
yi,g − E[fz(xi)]p(z|α.,g)

)2 + λ

M∑
j=1

√√√√ G∑
g=1

α2
j,g, (21)

where yi,g is the expression of the g-th gene in the i-th sample and α.,g denotes the g-th column of the matrix
α. The second term in the above objective function is a joint regularizer (with a coefficient λ) that enforces
structured sparsity, by enforcing the selection of as few rows as possible in α (Jenatton et al., 2011). Using
this joint regularizer will result in modular networks where only a few regulators control the expressions of
the different genes.

We evaluate the ability of PRS to reconstruct the five 100-gene networks of the DREAM4 Multifactorial
Network challenge (Marbach et al., 2010; 2012), for which GENIE3 was deemed the best performer. The
DREAM4 networks are artificial networks for which the true regulatory links are known and an AUPR
can thus be computed given a predicted ranking of links. To reconstruct each network, a simulated gene
expression dataset with 100 samples was made available to the challenge participants.

The regularization coefficient λ determines the number of used candidate regulators (Figure S7), and we
selected the value of λ that yields the lowest prediction error on the validation set. Adding the regularization
term sometimes deteriorates the AUPR of PRS-tree, but it can greatly help PRS-kNN and PRS-SVM
(Table 5). The two latter methods yield the highest AUPRs, while RaSE is the worse performer. The bad
performance of RaSE compared to PRS could be explained by the lack of regularization, which leads to a
higher number of used candidate regulators per base model (Table 5).

4 Conclusions

We proposed a model-agnostic ensemble method that aggregates base models independently trained on
feature subsets sampled from a Bernoulli distribution. We show that the parameters of the latter distribution

12

Under review as submission to TMLR

can be trained using gradient descent even if the base models are not differentiable. The required iterative
gradient computations can furthermore be performed efficiently by exploiting importance sampling. The
resulting approach uniquely combines several interesting features: it is fully model-agnostic, it can use any
combination of differentiable loss function and regularization term, and it provides variable importance scores.
Experiments show that PRS almost always improves over standard RS and is competitive with respect to
RF, GBDT and RaSE, both in terms of predictive performance and feature ranking quality. We also showed
that an appropriate regularization strategy allows PRS to outperform the state-of-the-art GENIE3 in the
inference of gene regulatory networks.

While we adopted an ensemble strategy, the same optimization technique, combining gradient descent and
importance sampling, can be used to solve the feature selection problem as defined in (17) and addressed
also by RaSE. It would be interesting to investigate this approach and compare it with the ensemble version
explored in this paper. Note however that it would require to exploit a stronger learning algorithm, because it
would not benefit from the ensemble averaging effect. Applying this technique, and its associated derivation
of feature importance scores, on top of modern deep learning models would be also highly desirable given the
challenge to explain these models. This would require however to develop specific strategies to reduce the non
negligible computational burden that would arise when training multiple ensembles of deep, complex models.
Finally, exploiting more complex feature subset distributions, beyond independent Bernoulli distributions,
would be also very interesting but adapting the optimization strategy might not be trivial.

References
N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The American
Statistician, 46(3):175–185, 1992.

Muhammed Fatih Balin, Abubakar Abid, and James Zou. Concrete autoencoders: Differentiable feature
selection and reconstruction. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 444–453. PMLR, 2019.

Bernhard E. Boser, Isabelle Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp.
144–152. ACM Press, 1992.

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996a.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. H. Friedman, R. A. Olsen, and C. J. Stone. Classification and Regression Trees. Wadsworth
International (California), 1984a.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996b.

Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classification and Regression Trees.
Chapman and Hall/CRC, 1984b.

Jérémie Donà and Patrick Gallinari. Differentiable feature selection, a reparameterization approach. In Nuria
Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read, and Jose A. Lozano (eds.), Machine Learning
and Knowledge Discovery in Databases. Research Track, pp. 414–429. Springer International Publishing,
2021.

A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice. Springer, New York,
2001.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

J. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1–67, 1991.

13

Under review as submission to TMLR

J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29
(5):1189–1232, 2001.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine Learning, 36(1):3–42, 2006.

Peter W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Commun. ACM, 33(10):75?84,
1990.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? In Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks, 2022.

Tin Kam Ho. The random subspace method for constructing decision forests. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(8):832–844, 1998.

V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts. Inferring regulatory networks from expression
data using tree-based methods. PLoS ONE, 5(9):e12776, 2010.

R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms.
Journal of Machine Learning Research, 12:2777–2824, 2011.

Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998.

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan Liu.
Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6):94, 2018.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and G. Stolovitzky. Revealing strengths
and weaknesses of methods for gene network inference. Proceedings of the National Academy of Sciences,
107(14):6286–6291, 2010.

D. Marbach, J. C. Costello, R. Küffner, N. Vega, R. J. Prill, D. M. Camacho, K. R. Allison, the DREAM5
Consortium, M. Kellis, J. J. Collins, and G. Stolovitzky. Wisdom of crowds for robust gene network
inference. Nature Methods, 9(8):796–804, 2012.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I trust you?": Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pp. 1135–1144, New York, NY, USA, 2016. Association
for Computing Machinery.

Reuven Y. Rubinstein and Alexander Shapiro. Discrete event systems: sensitivity analysis and stochastic
optimization by the score function method. Wiley, 1993.

Rishit Sheth and Nicoló Fusi. Differentiable feature selection by discrete relaxation. In Silvia Chiappa and
Roberto Calandra (eds.), Proceedings of the Twenty Third International Conference on Artificial Intel-
ligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pp. 1564–1572. PMLR,
2020.

J. Staines and D. Barber. Optimization by variational bounding. In Proceedings of the 2013 European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN
2013), pp. 473–478, 2013.

14

http://yann.lecun.com/exdb/mnist/

Under review as submission to TMLR

Ye Tian and Yang Feng. RaSE: Random Subspace Ensemble Classification. Journal of Machine Learning
Research, 22(45):1–93, 2021.

Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Sparsity and smoothness
via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(1):
91–108, 2005.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8(3):229–256, 1992.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using stochastic
gates. In Hal Daumé and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 10648–10659. PMLR, 2020.

Junchen Yang, Ofir Lindenbaum, and Yuval Kluger. Locally sparse neural networks for tabular biomedical
data. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato
(eds.), International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning Research, pp. 25123–25153. PMLR, 2022.

Ruoqing Zhu, Donglin Zeng, and Michael R. Kosorok. Reinforcement learning trees. Journal of the American
Statistical Association, 110(512):1770–1784, 2015.

15

Under review as submission to TMLR

A Pseudo-code

Algorithm S1 PRS training
1: Input: dataset D = {(xi, yi)}Ni=1, number of models T , batch size Nb, number of epochs nepochs.
2: Output: Feature selection probabilities α = [α1, α2, . . . , αM]>, whereM is the number of input features,

and a trained ensemble model.
3: for j = 1 to M do
4: αj ← 5/T
5: end for
6: for each batch Db = {(x(i), y(i))}Nb

i=1 ⊂ D do
7: for t = 1 to T do
8: Draw a feature subset z(t) from p(z|α)
9: Learn a model fz(t) from z(t) and D\Db
10: end for
11: end for
12: β ← α, k ← 0
13: repeat
14: for each batch Db = {(x(i), y(i))}Nb

i=1 ⊂ D do
15: for i = 1 to Nb do
16: baseline =

∑T

t=1
(∇β log p(z(t)|β))2fz(t) (x(i))∑T

t=1
(∇β log p(z(t)|β))2

17: ∇βE[fz(x(i))]p(z|β) ← 1
T

∑T
t=1

p(z(t)|β)
p(z(t)|α) (fz(t)(x(i))− baseline)∇β log p(z(t)|β)

18: end for
19: ∇βF ← 1

Nb

∑Nb

i=1
dL

dE[fz(x(i))]p(z|β)
∇βE[fz(x(i))]p(z|β)

20: β ← proj(β − η∇βF, [0, 1])
21: end for
22: for t = 1 to T do
23: wt ← p(z(t)|β)

p(z(t)|α)
24: end for
25: Teff ←

(∑T

t=1
wt

)2∑T

t=1
w2

t

26: if Teff < 0.9T then
27: α← β
28: for each batch Db = {(x(i), y(i))}Nb

i=1 ⊂ D do
29: for t = 1 to T do
30: Draw a feature subset z(t) from p(z|α)
31: Learn a model fz(t) from z(t) and D\Db
32: end for
33: end for
34: end if
35: k ← k + 1
36: until k = nepochs
37: α← β
38: for t = 1 to T do
39: Draw z(t) from p(z|α)
40: Learn a model fz(t) from D and z(t)

41: end for
42: return α and {fz(t)}Tt=1

16

Under review as submission to TMLR

Algorithm S1 shows the pseudo-code for training a PRS model. Feature selection probabilities α are first
initialized to 5

T (lines 3-5). Given a batch Db, an ensemble of base models fz(t) are trained from D\Db, by
drawing feature subsets from p(z|α) (lines 7-10). The batch Db is then used to estimate the gradient, using
importance sampling approximation (lines 15-19), and the values of the feature selection probabilities are
updated using projected gradient descent (line 20). When the effective number of feature subsets (Teff)
becomes too low, new models are trained (lines 26-34). Once the parameters α are optimized, a final
ensemble model is learned (lines 38-41).

B Computing the gradient

The score function method allows us to express the gradient of an expectation as an expectation itself. We
have:

∇αE[fz(x)]p(z|α) = ∇α

∑
z
p(z|α)fz(x) (22)

=
∑

z
fz(x)∇αp(z|α) (23)

=
∑

z
fz(x)p(z|α)∇α log p(z|α) (24)

= E [fz(x)∇α log p(z|α)]p(z|α) (25)

where to obtain Eq. (24), we used the equality ∇αp(z|α) = p(z|α)∇α log p(z|α).

In the case of a Bernoulli distribution, we have:

p(z|α) =
M∏
j=1

α
zj

j (1− αj)(1−zj),

log p(z|α) =
M∑
j=1

zj logαj + (1− zj) log(1− αj).

By using Eq.(25), the j-th component of the gradient is given by:

∂E [fz(x)]p(z|α)

∂αj
= E

[
fz(x) ∂

∂αj
log p(z|α)

]
p(z|α)

(26)

= E
[
fz(x)

(
zj
αj
− 1− zj

1− αj

)]
p(z|α)

(27)

=
∑

z:zj=1
fz(x)p(z|α)

αj
−
∑

z:zj=0
fz(x)p(z|α)

1− αj
(28)

=
∑

z:zj=1
fz(x)p(z−j |α−j)−

∑
z:zj=0

fz(x)p(z−j |α−j) (29)

= E [fz(x)|zj = 1]p(z−j |α−j) − E [fz(x)|zj = 0]p(z−j |α−j) , (30)

where z−j = z\zj and α−j = α\αj .

C Estimating the gradient

C.1 Estimation with baseline b

We have:

E [∇α log p(z|α)]p(z|α) =
∑

z
p(z|α)∇α log p(z|α) =

∑
z
∇αp(z|α) = ∇α

∑
z
p(z|α) = ∇α1 = 0. (31)

17

Under review as submission to TMLR

Therefore, for any constant b, we have:

E [(fz(x)− b)∇α log p(z|α)]p(z|α) = E [fz(x)∇α log p(z|α)]p(z|α) − bE [∇α log p(z|α)]p(z|α) (32)
= E [fz(x)∇α log p(z|α)]p(z|α) . (33)

C.2 Optimal value of the baseline b

For readability, let us drop the subscript p(z|α) in the expectations, i.e. E[·] = E[·]p(z|α), and let us define
hz(α) = ∇α log p(z|α), with E[hz(α)] = 0. The gradient estimator is hence:

E [(fz(x)− b)hz(α))] , (34)
and its variance is given by:

V = var [(fz(x)− b)hz(α))] = var[hz(α)fz(x)] + b2var[hz(α)]− 2b cov[hz(α)fz(x), hz(α)]. (35)

The optimal value of the baseline b is the one that minimizes the variance V , which is given by:

dV

db
= 0 (36)

⇔ 2b var[hz(α)]− 2cov[hz(α)fz(x), hz(α)] = 0 (37)

⇔ b = cov[hz(α)fz(x), hz(α)]
var[hz(α)] (38)

⇔ b = E[h2
z(α)fz(x)]− E[hz(α)fz(x)]E[hz(α)]

E[h2
z(α)]− E[hz(α)]2 (39)

⇔ b = E[h2
z(α)fz(x)]
E[h2

z(α)] , (40)

where we used the equality E[hz(α)] = 0 to obtain Eq. (40).

D Implementation details

D.1 Data pre-processing

Prior to training, we apply a one-hot encoding to the categorical features and all the features are then
normalized to have zero mean and unit variance.

D.2 PRS

In all our experiments, we use ensembles of T = 100 models and we initialize each αj to 0.05, so that each
feature is expected to be selected five times over the ensemble. We noticed that using lower initial αj values
prevents several features to be selected in the first iterations of the algorithm, hence resulting in convergence
issues, while higher values result in larger computing times, as each base model must be trained using a
larger number of features. The algorithm is run over 3,000 epochs with the Adam optimizer, and we select
as optimal vector α the one that yields the lowest value of the objective function on the validation set. For
regression problems we use the mean square error as loss function, while for classification problems we use
the cross-entropy. For the simulated, scikit-feature and DREAM4 datasets, the batch size is set to 10% of
the samples of the training set, while the remaining 90% are used for training the base models. For the
MNIST dataset, which is much larger, we use 50% of the samples as batch size and the remaining 50% for
training. For the scikit-feature, MNIST and DREAM4 datasets, a grid-search strategy is used for tuning the
value(s) of the regularization coefficient(s), by selecting the coefficient λ (or the pair (λ1, λ2)) that minimizes
the prediction error on the validation set. The tested values are the following:

• For scikit-feature: λ = {0.0001, 0.001, 0.01, 0.1}.

18

Under review as submission to TMLR

• For MNIST: λ1, λ2 = {0, 0.0001, 0.001, 0.01}.

• For DREAM4: λ = {0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01}.

Regarding the predictions on a test set, the output of the PRS ensemble is computed as the average of the
predictions of the different base models for regression problems, and as the majority class for classification
problems.

D.3 RS, RF and GBDT

Like for PRS, standard Random Subspace (RS), Random Forest (RF) and Gradient Boosting Decision Trees
(GBDT) are all run with T = 100 models per ensemble. GivenM the total number of features, the following
hyper-parameters are optimized on the validation set:

• For RS: the number K of randomly sampled features for each base model. Tested values are {1, M
100 ,

M
50 ,

M
20 ,

M
10 ,

M
5 , M3 , M2 ,

√
M , M}.

• For RF: the number K of randomly sampled features at each tree node. Tested values are {1, M
100 ,

M
50 ,

M
20 ,

M
10 ,

M
5 , M3 , M2 ,

√
M , M}.

• For GBDT: the maximum tree depth d. Tested values are {1, . . ., 10}.

All the remaining hyper-parameters are set to the default values used in the scikit-learn library (Pedregosa
et al., 2011). The feature rankings of RF and GBDT are computed using the standard Mean Decrease
Impurity importance measure (Breiman et al., 1984a).

D.4 RaSE

The RaSE approach (Tian & Feng, 2021) consists in iteratively sampling and evaluating a population of
feature subsets. At each iteration, a probability distribution is identified from the best feature subsets
and this distribution is used to sample new feature subsets. More specifically, given the current feature
importances α, each iteration of RaSE consists of the following steps:

1. Sample T ×B feature subsets: for t from 1 to T and for b from 1 to B:

• Sample the feature subset size d from a uniform distribution U(1, D).
• Sample the feature subset zt,b of size d from a multinomial distribution with parameters d and α̃,

where the selection probability α̃j of the j-th feature is set as α̃j = αj1(αj > C0
logM)+ C0

M 1(αj ≤
C0

logM).

2. Evaluate each feature subset zt,b by estimating, using 10-fold cross-validation, the prediction error
of a model learned from this feature subset.

3. For t from 1 to T , select the best subset zt,∗ among {zt,b}Bb=1, as the one with the lowest prediction
error.

4. Set αj as the fraction of these T subsets where zt,∗j = 1.

In all our experiments, we use T = 100, B = 500 and C0 = 0.1. As done in (Tian & Feng, 2021), the
maximum subset size is set as D = min(M, [

√
N]), where M is the number of features, N is the number of

samples in the training dataset and [x] denotes the largest integer not larger than x. Like in PRS, each αj is
initialized to 0.05. We then run the algorithm over 10 iterations and we select as optimal vector α the one
that yields the lowest prediction error on the validation set. Note that the chosen number of iterations is
very small because of the high computational complexity of RaSE (Tian & Feng, 2021 actually show results
for at most 3 iterations).

19

Under review as submission to TMLR

E Simulated problems

E.1 Simulation protocol

Table S6: Simulated problems. M is the total number of features and Mrel is the number of relevant
ones.

Problem Type M Mrel

Checkerboard Regression 304 4
Friedman Regression 305 5
Hypercube Classification 305 5
Linear Classification 310 10

We simulate four problems, where 300 irrelevant features are added to the relevant features. Let M be the
total number of features.

• Checkerboard: Checkerboard-like regression problem with strong correlation between features (Zhu
et al., 2015). x ∼ N (0M ,ΣM×M), where Σi,j = 0.9|i−j|. y = 2x1x2 + 2x3x4 +N (0, 1).

• Friedman: Non-linear regression problem (Friedman, 1991). y = 10sin(πx1x2) + 20(x3 − 0.5)2 +
10x4 + 5x5 + 0.1N (0, 1). Like for the Checkerboard problem, we introduce a strong correlation
between the features: x ∼ N (0M ,ΣM×M), where Σi,j = s20.9|i−j|. We use s = 0.5

3 , so that ∼ 99%
of the samples have values between 0 and 1.

• Hypercube: Non-linear, binary classification problem with 5 relevant features, generated with the
make_classification function of the scikit-learn library (Pedregosa et al., 2011). In this problem,
each class is associated with two vertices of a hypercube of dimension 5 and samples are generated
in the neighbourhood of each vertex by using a normal distribution centred on the vertex (with
Σ = I). Irrelevant features are each sampled from N (0, 1).

• Linear: Linear, binary classification problem with 10 relevant features, generated by first simulating
a linear regression problem with the make_regression function of the scikit-learn library and thresh-
olding the output variable so that the two classes are balanced. The output before thresholding is:
y =

∑10
k=1 wkxk, where wk ∼ U(0, 100), k = 1, . . . , 10 and xk ∼ N (0, 1), k = 1, . . . ,M .

For each problem, we generate 10 datasets, each with 300 training samples, 100 validation samples and 100
test samples.

20

Under review as submission to TMLR

E.2 Additional results

Table S7: Performance of PRS with and without using the variance reduction technique. The
optimal value b∗ of the baseline is given by Eq. (12). Setting b = 0 amounts to removing the variance
reduction method. We report here the prediction score on the test set (R2 or accuracy), the feature ranking
quality (AUPR) and the number of features used per base model (subspace size), i.e. the sum

∑M
j=1 αj .

Values are mean and standard deviation over 10 datasets.
tree kNN SVM

b = b∗ b = 0 b = b∗ b = 0 b = b∗ b = 0
Checkerboard R2 0.29 ± 0.14 0.19 ± 0.15 0.60 ± 0.06 0.41 ± 0.05 0.62 ± 0.07 0.41 ± 0.05

AUPR 0.60 ± 0.23 0.54 ± 0.29 0.92 ± 0.14 0.71 ± 0.21 0.98 ± 0.06 0.49 ± 0.18
Subspace size 7.29 ± 1.32 13.71 ± 1.61 6.49 ± 1.91 31.49 ± 2.87 4.85 ± 0.55 24.73 ± 2.16

Friedman R2 0.83 ± 0.03 0.77 ± 0.04 0.88 ± 0.03 0.72 ± 0.03 0.90 ± 0.05 0.78 ± 0.05
AUPR 0.95 ± 0.04 0.81 ± 0.07 1.00 ± 0.00 0.71 ± 0.08 0.98 ± 0.05 0.86 ± 0.09
Subspace size 7.82 ± 0.75 31.39 ± 3.50 5.49 ± 0.47 34.23 ± 4.02 7.28 ± 1.31 33.26 ± 3.61

Hypercube Accuracy 0.88 ± 0.04 0.88 ± 0.05 0.90 ± 0.06 0.89 ± 0.04 0.88 ± 0.05 0.85 ± 0.06
AUPR 0.97 ± 0.06 0.96 ± 0.07 0.94 ± 0.09 0.96 ± 0.07 0.90 ± 0.14 0.86 ± 0.15
Subspace size 12.10 ± 3.04 22.90 ± 2.75 6.83 ± 1.20 20.14 ± 2.36 13.54 ± 3.01 23.49 ± 5.07

Linear Accuracy 0.78 ± 0.03 0.78 ± 0.04 0.88 ± 0.03 0.88 ± 0.03 0.92 ± 0.03 0.93 ± 0.03
AUPR 0.67 ± 0.13 0.69 ± 0.12 0.73 ± 0.12 0.73 ± 0.11 0.80 ± 0.10 0.82 ± 0.11
Subspace size 12.68 ± 2.95 23.05 ± 2.32 10.12 ± 2.30 22.81 ± 1.55 19.97 ± 1.90 33.37 ± 4.01

21

Under review as submission to TMLR

200 400 600 800 1000
N

0

20

40

60

80

Ti
m

e
(m

in
.)

Checkerboard
PRS-tree
PRS-kNN
PRS-SVM

0 200 400 600 800 1000
M

0

50

100

Ti
m

e
(m

in
.)

Checkerboard

200 400 600 800 1000
N

0

20

40

60

80

Ti
m

e
(m

in
.)

Friedman

0 200 400 600 800 1000
M

0

20

40

60

Ti
m

e
(m

in
.)

Friedman

200 400 600 800 1000
N

10

20

30

40

Ti
m

e
(m

in
.)

Hypercube

0 200 400 600 800 1000
M

0

25

50

75

100

Ti
m

e
(m

in
.)

Hypercube

200 400 600 800 1000
N

0

50

100

Ti
m

e
(m

in
.)

Linear

0 200 400 600 800 1000
M

0

20

40

60

Ti
m

e
(m

in
.)

Linear

Figure S4: Computing times of PRS (for training + testing). Plain lines and shaded areas respectively
indicate the mean and standard deviations over 10 datasets. The left-hand plots show the computing times
for different training set sizes (N), with the number of irrelevant features set to 300. The right-hand plots
show the computing times for different values of the number M of features (we kept fixed the number of
relevant features and increased the number of irrelevant features), with N = 300. The computing times were
measured on AMD Epyc Rome CPUs at 2.9 GHz and 256GB of RAM.

22

Under review as submission to TMLR

200 400 600 800 1000
No. irrelevant features

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Te
st

 R
2

Checkerboard

200 400 600 800 1000
No. irrelevant features

0.6

0.7

0.8

0.9

Te
st

 R
2

Friedman

200 400 600 800 1000
No. irrelevant features

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Hypercube

RF
GBDT
PRS-SVM

200 400 600 800 1000
No. irrelevant features

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 a
cc

ur
ac

y

Linear

Figure S5: Prediction score for an increasing number of irrelevant features. Plain lines and shaded
areas respectively indicate the mean and standard deviations over 10 datasets.

200 400 600 800 1000
No. irrelevant features

0.0

0.2

0.4

0.6

0.8

1.0

AU
PR

Checkerboard

200 400 600 800 1000
No. irrelevant features

0.6

0.7

0.8

0.9

1.0

AU
PR

Friedman

200 400 600 800 1000
No. irrelevant features

0.2

0.4

0.6

0.8

1.0

AU
PR

Hypercube

RF
GBDT
PRS-SVM

200 400 600 800 1000
No. irrelevant features

0.5

0.6

0.7

0.8

0.9

AU
PR

Linear

Figure S6: Feature ranking AUPR for an increasing number of irrelevant features. Plain lines
and shaded areas respectively indicate the mean and standard deviations over 10 datasets.

23

Under review as submission to TMLR

Table S8: Comparison of PRS and RaSE. We report here the prediction score on the test set (R2 or
accuracy), the feature ranking quality (AUPR) and the number of features used per base model (subspace
size), i.e. for PRS: the sum

∑M
j=1 αj , and for RaSE: the average feature subset size among the T trained

base models. Values are mean and standard deviation over 10 datasets.
tree kNN SVM

PRS RaSE PRS RaSE PRS RaSE
Checkerboard R2 0.29 ± 0.14 0.25 ± 0.15 0.60 ± 0.06 0.61 ± 0.05 0.62 ± 0.07 0.62 ± 0.07

AUPR 0.60 ± 0.23 0.77 ± 0.24 0.92 ± 0.14 1.00 ± 0.00 0.98 ± 0.06 1.00 ± 0.00
Subspace size 7.29 ± 1.32 10.23 ± 1.18 6.49 ± 1.91 4.96 ± 0.76 4.85 ± 0.55 4.51 ± 0.59

Friedman R2 0.83 ± 0.03 0.77 ± 0.03 0.88 ± 0.03 0.87 ± 0.03 0.90 ± 0.05 0.90 ± 0.05
AUPR 0.95 ± 0.04 0.79 ± 0.14 1.00 ± 0.00 0.97 ± 0.06 0.98 ± 0.05 0.98 ± 0.05
Subspace size 7.82 ± 0.75 10.40 ± 2.87 5.49 ± 0.47 5.67 ± 0.51 7.28 ± 1.31 6.51 ± 0.97

Hypercube Accuracy 0.88 ± 0.04 0.86 ± 0.07 0.90 ± 0.06 0.92 ± 0.04 0.88 ± 0.05 0.90 ± 0.05
AUPR 0.97 ± 0.06 0.89 ± 0.13 0.94 ± 0.09 0.94 ± 0.09 0.90 ± 0.14 0.92 ± 0.12
Subspace size 12.10 ± 3.04 12.43 ± 0.83 6.83 ± 1.20 5.28 ± 0.66 13.54 ± 3.01 10.23 ± 2.32

Linear Accuracy 0.78 ± 0.03 0.77 ± 0.05 0.88 ± 0.03 0.88 ± 0.04 0.92 ± 0.03 0.91 ± 0.02
AUPR 0.67 ± 0.13 0.54 ± 0.12 0.73 ± 0.12 0.67 ± 0.12 0.80 ± 0.10 0.75 ± 0.10
Subspace size 12.68 ± 2.95 12.66 ± 0.42 10.12 ± 2.30 10.85 ± 1.92 19.97 ± 1.90 15.06 ± 0.47

Table S9: Number of trained base models during the PRS training (with 3000 epochs). Values
are mean and standard deviation over 10 datasets.

tree kNN SVM
Checkerboard 308700 ± 20095 119700 ± 24661 76000 ± 7238
Friedman 323200 ± 27282 107000 ± 18066 130800 ± 23949
Hypercube 162600 ± 24381 112700 ± 13535 170900 ± 41234
Linear 214400 ± 70949 172300 ± 37534 248700 ± 42159

24

Under review as submission to TMLR

Table S10: Performance of PRS-SVM for varying thresholds on Teff . The threshold T corresponds
to the case where new base models are trained at each epoch (no importance sampling). Values are mean
and standard deviation over 10 datasets.
Problem Teff threshold No. trained models Training time (min.) R2/Accuracy AUPR
Checkerboard T 3001000 ± 0 223.17 ± 2.98 0.62 ± 0.07 0.98 ± 0.06

0.9T 76000 ± 7238 6.89 ± 0.63 0.62 ± 0.07 0.98 ± 0.06
0.7T 42300 ± 2193 4.24 ± 0.18 0.62 ± 0.07 0.98 ± 0.06
0.5T 31800 ± 1989 3.49 ± 0.26 0.62 ± 0.08 0.96 ± 0.08
0.3T 23400 ± 1200 2.88 ± 0.14 0.61 ± 0.07 0.96 ± 0.08

Friedman T 3001000 ± 0 260.85 ± 9.57 0.90 ± 0.05 0.98 ± 0.05
0.9T 130800 ± 23949 12.32 ± 2.25 0.90 ± 0.05 0.98 ± 0.05
0.7T 72400 ± 8236 7.57 ± 1.01 0.90 ± 0.05 0.98 ± 0.05
0.5T 53200 ± 6720 5.87 ± 0.76 0.90 ± 0.05 0.95 ± 0.09
0.3T 43000 ± 6066 5.15 ± 0.73 0.89 ± 0.05 0.89 ± 0.14

Hypercube T 3001000 ± 0 210.56 ± 41.64 0.88 ± 0.05 0.92 ± 0.13
0.9T 170900 ± 41234 13.17 ± 3.15 0.88 ± 0.05 0.90 ± 0.14
0.7T 66400 ± 20967 9.16 ± 1.60 0.87 ± 0.05 0.83 ± 0.14
0.5T 42200 ± 11989 9.12 ± 1.19 0.86 ± 0.05 0.76 ± 0.26
0.3T 18500 ± 4944 9.36 ± 1.82 0.83 ± 0.09 0.59 ± 0.24

Linear T 3001000 ± 0 230.52 ± 23.52 0.92 ± 0.02 0.80 ± 0.11
0.9T 248700 ± 42159 20.14 ± 4.01 0.92 ± 0.03 0.80 ± 0.10
0.7T 108600 ± 34325 12.07 ± 1.42 0.92 ± 0.04 0.76 ± 0.08
0.5T 65900 ± 27351 10.64 ± 1.31 0.90 ± 0.03 0.74 ± 0.11
0.3T 21600 ± 4247 11.85 ± 2.26 0.84 ± 0.06 0.54 ± 0.20

25

Under review as submission to TMLR

F Real-world datasets

Table S11: Sizes of regression datasets. For datasets with categorical features, the last column indicates
the total number of features after one-hot encoding.

tabular benchmark, regression, with only numerical features
Dataset Samples Features
cpu_act 8192 21
pol 15000 26
elevators 16599 16
isolet 7797 613
wine_quality 6497 11
Ailerons 13750 33
houses 20640 8
house_16H 22784 16
diamonds 53940 6
Brazilian_houses 10692 8
Bike_Sharing_Demand 17379 6
nyc-taxi-green-dec-2016 581835 9
house_sales 21613 15
sulfur 10081 6
medical_charges 163065 3
MiamiHousing2016 13932 13
superconduct 21263 79
california 20640 8
fifa 18063 5
year 515345 90
tabular benchmark, regression, with both numerical and categorical features
Dataset Samples Features
yprop_4_1 8885 82
analcatdata_supreme 4052 12
visualizing_soil 8641 5
black_friday 166821 23
diamonds 53940 26
Mercedes_Benz_Greener_Manufacturing 4209 735
Brazilian_houses 10692 17
Bike_Sharing_Demand 17379 20
OnlineNewsPopularity 39644 73
nyc-taxi-green-dec-2016 581835 31
house_sales 21613 19
particulate-matter-ukair-2017 394299 26
SGEMM_GPU_kernel_performance 241600 15

26

Under review as submission to TMLR

Table S12: Sizes of classification datasets. For datasets with categorical features, the last column
indicates the total number of features after one-hot encoding.

tabular benchmark, classification, with only numerical features
Dataset Classes Samples Features
credit 2 16714 (8357 / 8357) 10
california 2 20634 (10317 / 10317) 8
wine 2 2554 (1277 / 1277) 11
electricity 2 38474 (19237 / 19237) 7
covertype 2 566602 (283301 / 283301) 10
pol 2 10082 (5041 / 5041) 26
house_16H 2 13488 (6744 / 6744) 16
kdd_ipums_la_97-small 2 5188 (2594 / 2594) 20
MagicTelescope 2 13376 (6688 / 6688) 10
bank-marketing 2 10578 (5289 / 5289) 7
phoneme 2 3172 (1586 / 1586) 5
MiniBooNE 2 72998 (36499 / 36499) 50
Higgs 2 940160 (470080 / 470080) 24
eye_movements 2 7608 (3804 / 3804) 20
jannis 2 57580 (28790 / 28790) 54
tabular benchmark, classification, with both numerical and categorical features
Dataset Classes Samples Features
electricity 2 38474 (19237 / 19237) 14
eye_movements 2 7608 (3804 / 3804) 26
covertype 2 423680 (211840 / 211840) 93
rl 2 4970 (2485 / 2485) 38
road-safety 2 111762 (55881 / 55881) 35
compass 2 16644 (8322 / 8322) 59
KDDCup09_upselling 2 5128 (2564 / 2564) 104
scikit-feature benchmark, classification, with only numerical features
Dataset Classes Samples Features
arcene 2 200 (112 / 88) 10000
CLL_SUB_111 2 100 (49 / 51) 11340
Prostate_GE 2 102 (50 / 52) 5966
SMK_CAN_187 2 187 (90 / 97) 19993
TOX_171 4 171 (45 / 45 / 39 / 42) 5748

27

Under review as submission to TMLR

Table S13: Prediction performance of single models, RS, PRS, and RaSE, when the base model
is the decision tree. Values are R2 scores for regression problems and accuracies for classification problems,
averaged over 10 random data subsamplings for the tabular datasets and over 5 cross-validation folds for the
scikit-feature datasets. For each dataset, the highest performance is indicated in bold type.

Single tree RS-tree PRS-tree RaSE-tree
tabular benchmark, regression, with only numerical features
cpu_act 0.95 ± 0.00 0.96 ± 0.00 0.98 ± 0.00 0.97 ± 0.00
pol 0.89 ± 0.02 0.91 ± 0.02 0.94 ± 0.01 0.94 ± 0.01
elevators 0.38 ± 0.05 0.60 ± 0.04 0.71 ± 0.02 0.70 ± 0.02
isolet 0.32 ± 0.04 0.74 ± 0.02 0.76 ± 0.02 0.75 ± 0.02
wine_quality -0.27 ± 0.11 0.35 ± 0.02 0.34 ± 0.02 0.16 ± 0.02
Ailerons 0.60 ± 0.04 0.71 ± 0.02 0.78 ± 0.02 0.73 ± 0.03
houses 0.50 ± 0.07 0.68 ± 0.02 0.74 ± 0.03 0.67 ± 0.02
house_16H 0.05 ± 0.30 0.48 ± 0.10 0.46 ± 0.07 0.41 ± 0.18
diamonds 0.89 ± 0.01 0.93 ± 0.00 0.93 ± 0.01 0.93 ± 0.00
Brazilian_houses 0.97 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02
Bike_Sharing_Demand 0.33 ± 0.05 0.51 ± 0.02 0.59 ± 0.02 0.50 ± 0.04
nyc-taxi-green-dec-2016 -0.10 ± 0.14 0.29 ± 0.04 0.44 ± 0.05 0.39 ± 0.08
house_sales 0.64 ± 0.02 0.79 ± 0.01 0.83 ± 0.01 0.77 ± 0.02
sulfur 0.56 ± 0.13 0.64 ± 0.08 0.68 ± 0.08 0.67 ± 0.09
medical_charges 0.96 ± 0.01 0.96 ± 0.00 0.97 ± 0.00 0.97 ± 0.01
MiamiHousing2016 0.70 ± 0.03 0.85 ± 0.01 0.87 ± 0.01 0.83 ± 0.01
superconduct 0.69 ± 0.03 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01
california 0.48 ± 0.07 0.71 ± 0.03 0.78 ± 0.02 0.71 ± 0.04
fifa 0.29 ± 0.06 0.44 ± 0.03 0.56 ± 0.03 0.43 ± 0.05
year -0.73 ± 0.09 0.13 ± 0.03 0.14 ± 0.04 0.15 ± 0.02
tabular benchmark, regression, with both numerical and categorical features
yprop_4_1 -0.90 ± 0.18 0.03 ± 0.02 0.02 ± 0.01 0.02 ± 0.01
analcatdata_supreme 0.96 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
visualizing_soil 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
black_friday 0.12 ± 0.09 0.44 ± 0.04 0.57 ± 0.03 0.56 ± 0.03
diamonds 0.95 ± 0.01 0.96 ± 0.00 0.97 ± 0.00 0.98 ± 0.00
Mercedes_Benz_Greener_Manufacturing 0.10 ± 0.13 0.44 ± 0.07 0.55 ± 0.05 0.56 ± 0.05
Brazilian_houses 0.97 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02
Bike_Sharing_Demand 0.68 ± 0.05 0.73 ± 0.03 0.88 ± 0.02 0.86 ± 0.02
OnlineNewsPopularity -0.87 ± 0.08 0.08 ± 0.02 0.08 ± 0.03 0.04 ± 0.03
nyc-taxi-green-dec-2016 -0.10 ± 0.15 0.31 ± 0.04 0.45 ± 0.05 0.41 ± 0.08
house_sales 0.65 ± 0.02 0.79 ± 0.02 0.84 ± 0.01 0.78 ± 0.03
particulate-matter-ukair-2017 0.28 ± 0.06 0.49 ± 0.02 0.56 ± 0.02 0.49 ± 0.03
SGEMM_GPU_kernel_performance 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
tabular benchmark, classification, with only numerical features
credit 0.69 ± 0.01 0.74 ± 0.02 0.75 ± 0.01 0.74 ± 0.01
california 0.78 ± 0.02 0.85 ± 0.01 0.86 ± 0.01 0.85 ± 0.02
wine 0.72 ± 0.02 0.78 ± 0.02 0.78 ± 0.02 0.75 ± 0.02
electricity 0.73 ± 0.02 0.77 ± 0.01 0.78 ± 0.01 0.77 ± 0.01
covertype 0.69 ± 0.02 0.72 ± 0.02 0.74 ± 0.02 0.73 ± 0.02
pol 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
house_16H 0.78 ± 0.01 0.86 ± 0.01 0.85 ± 0.02 0.82 ± 0.02
kdd_ipums_la_97-small 0.84 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01
MagicTelescope 0.76 ± 0.02 0.81 ± 0.01 0.80 ± 0.01 0.79 ± 0.02
bank-marketing 0.70 ± 0.02 0.74 ± 0.01 0.75 ± 0.02 0.72 ± 0.02
phoneme 0.80 ± 0.02 0.80 ± 0.01 0.84 ± 0.01 0.82 ± 0.02
MiniBooNE 0.82 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.89 ± 0.01
Higgs 0.58 ± 0.02 0.65 ± 0.01 0.65 ± 0.02 0.62 ± 0.02
eye_movements 0.53 ± 0.02 0.57 ± 0.01 0.63 ± 0.02 0.66 ± 0.02
jannis 0.65 ± 0.02 0.73 ± 0.02 0.73 ± 0.02 0.72 ± 0.01
tabular benchmark, classification, with both numerical and categorical features
electricity 0.73 ± 0.02 0.78 ± 0.01 0.78 ± 0.01 0.78 ± 0.02
eye_movements 0.52 ± 0.02 0.57 ± 0.01 0.63 ± 0.01 0.66 ± 0.02
covertype 0.70 ± 0.02 0.76 ± 0.01 0.75 ± 0.02 0.75 ± 0.02
rl 0.64 ± 0.02 0.71 ± 0.01 0.77 ± 0.01 0.76 ± 0.02
road-safety 0.65 ± 0.01 0.71 ± 0.02 0.71 ± 0.02 0.71 ± 0.01
compass 0.60 ± 0.02 0.67 ± 0.02 0.67 ± 0.02 0.66 ± 0.02
KDDCup09_upselling 0.75 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 0.79 ± 0.01
scikit-feature benchmark, classification, with only numerical features
arcene 0.67 ± 0.05 0.80 ± 0.09 0.81 ± 0.05 0.82 ± 0.06
CLL_SUB_111 0.62 ± 0.10 0.73 ± 0.08 0.70 ± 0.09 0.59 ± 0.11
Prostate_GE 0.75 ± 0.09 0.88 ± 0.08 0.88 ± 0.11 0.87 ± 0.08
SMK_CAN_187 0.57 ± 0.08 0.66 ± 0.06 0.64 ± 0.07 0.66 ± 0.06
TOX_171 0.56 ± 0.13 0.80 ± 0.06 0.75 ± 0.05 0.76 ± 0.08

28

Under review as submission to TMLR

Table S14: Prediction performance of single models, RS, PRS, and RaSE, when the base model
is the kNN. Values are R2 scores for regression problems and accuracies for classification problems, averaged
over 10 random data subsamplings for the tabular datasets and over 5 cross-validation folds for the scikit-
feature datasets. For each dataset, the highest performance is indicated in bold type.

Single kNN RS-kNN PRS-kNN RaSE-kNN
tabular benchmark, regression, with only numerical features
cpu_act 0.87 ± 0.03 0.87 ± 0.03 0.97 ± 0.00 0.96 ± 0.01
pol 0.87 ± 0.02 0.87 ± 0.02 0.94 ± 0.01 0.94 ± 0.01
elevators 0.54 ± 0.03 0.55 ± 0.03 0.73 ± 0.02 0.73 ± 0.02
isolet 0.68 ± 0.03 0.70 ± 0.03 0.85 ± 0.02 0.82 ± 0.02
wine_quality 0.25 ± 0.04 0.34 ± 0.02 0.34 ± 0.02 0.32 ± 0.04
Ailerons 0.64 ± 0.03 0.65 ± 0.03 0.80 ± 0.01 0.80 ± 0.01
houses 0.63 ± 0.02 0.63 ± 0.02 0.76 ± 0.02 0.73 ± 0.03
house_16H 0.41 ± 0.09 0.43 ± 0.10 0.42 ± 0.10 0.44 ± 0.10
diamonds 0.93 ± 0.01 0.94 ± 0.00 0.94 ± 0.01 0.93 ± 0.00
Brazilian_houses 0.95 ± 0.01 0.95 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
Bike_Sharing_Demand 0.44 ± 0.05 0.51 ± 0.02 0.63 ± 0.02 0.59 ± 0.04
nyc-taxi-green-dec-2016 0.21 ± 0.03 0.24 ± 0.02 0.46 ± 0.03 0.44 ± 0.03
house_sales 0.73 ± 0.01 0.75 ± 0.01 0.83 ± 0.01 0.83 ± 0.01
sulfur 0.59 ± 0.10 0.59 ± 0.10 0.69 ± 0.10 0.68 ± 0.12
medical_charges 0.96 ± 0.01 0.96 ± 0.01 0.98 ± 0.00 0.97 ± 0.00
MiamiHousing2016 0.80 ± 0.01 0.81 ± 0.01 0.86 ± 0.01 0.85 ± 0.01
superconduct 0.77 ± 0.01 0.80 ± 0.01 0.82 ± 0.01 0.81 ± 0.01
california 0.67 ± 0.02 0.67 ± 0.02 0.77 ± 0.02 0.73 ± 0.03
fifa 0.36 ± 0.02 0.45 ± 0.02 0.61 ± 0.02 0.58 ± 0.02
year 0.03 ± 0.04 0.13 ± 0.02 0.18 ± 0.02 0.19 ± 0.02
tabular benchmark, regression, with both numerical and categorical features
yprop_4_1 -0.10 ± 0.04 0.04 ± 0.01 0.05 ± 0.01 0.05 ± 0.01
analcatdata_supreme 0.90 ± 0.02 0.90 ± 0.02 0.98 ± 0.01 0.98 ± 0.01
visualizing_soil 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
black_friday -0.04 ± 0.04 0.21 ± 0.02 0.55 ± 0.03 0.55 ± 0.03
diamonds 0.77 ± 0.01 0.91 ± 0.01 0.96 ± 0.01 0.97 ± 0.00
Mercedes_Benz_Greener_Manufacturing 0.32 ± 0.05 0.41 ± 0.05 0.54 ± 0.05 0.55 ± 0.05
Brazilian_houses 0.89 ± 0.02 0.93 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
Bike_Sharing_Demand 0.39 ± 0.04 0.54 ± 0.03 0.86 ± 0.02 0.86 ± 0.01
OnlineNewsPopularity -0.10 ± 0.02 0.07 ± 0.02 0.10 ± 0.03 0.07 ± 0.03
nyc-taxi-green-dec-2016 0.16 ± 0.03 0.24 ± 0.03 0.48 ± 0.03 0.47 ± 0.03
house_sales 0.72 ± 0.01 0.73 ± 0.02 0.84 ± 0.00 0.83 ± 0.00
particulate-matter-ukair-2017 0.17 ± 0.04 0.39 ± 0.03 0.62 ± 0.02 0.62 ± 0.01
SGEMM_GPU_kernel_performance 0.87 ± 0.01 0.97 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
tabular benchmark, classification, with only numerical features
credit 0.62 ± 0.04 0.75 ± 0.02 0.76 ± 0.01 0.75 ± 0.01
california 0.81 ± 0.01 0.83 ± 0.01 0.86 ± 0.01 0.84 ± 0.02
wine 0.73 ± 0.02 0.77 ± 0.02 0.77 ± 0.02 0.75 ± 0.02
electricity 0.73 ± 0.01 0.75 ± 0.02 0.77 ± 0.01 0.76 ± 0.01
covertype 0.70 ± 0.02 0.72 ± 0.02 0.76 ± 0.02 0.76 ± 0.02
pol 0.91 ± 0.01 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
house_16H 0.81 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.83 ± 0.01
kdd_ipums_la_97-small 0.81 ± 0.01 0.85 ± 0.01 0.87 ± 0.01 0.88 ± 0.01
MagicTelescope 0.78 ± 0.01 0.79 ± 0.01 0.81 ± 0.02 0.80 ± 0.02
bank-marketing 0.75 ± 0.01 0.77 ± 0.01 0.78 ± 0.01 0.76 ± 0.02
phoneme 0.83 ± 0.01 0.83 ± 0.01 0.84 ± 0.01 0.83 ± 0.01
MiniBooNE 0.84 ± 0.01 0.88 ± 0.01 0.89 ± 0.01 0.88 ± 0.02
Higgs 0.55 ± 0.01 0.62 ± 0.02 0.67 ± 0.01 0.66 ± 0.01
eye_movements 0.53 ± 0.02 0.55 ± 0.02 0.57 ± 0.02 0.55 ± 0.02
jannis 0.66 ± 0.02 0.70 ± 0.02 0.74 ± 0.01 0.73 ± 0.01
tabular benchmark, classification, with both numerical and categorical features
electricity 0.71 ± 0.02 0.76 ± 0.02 0.77 ± 0.02 0.77 ± 0.02
eye_movements 0.53 ± 0.02 0.56 ± 0.02 0.57 ± 0.02 0.55 ± 0.03
covertype 0.72 ± 0.02 0.74 ± 0.02 0.78 ± 0.02 0.78 ± 0.02
rl 0.60 ± 0.01 0.65 ± 0.02 0.73 ± 0.02 0.72 ± 0.02
road-safety 0.66 ± 0.01 0.70 ± 0.01 0.72 ± 0.01 0.71 ± 0.01
compass 0.60 ± 0.02 0.66 ± 0.01 0.68 ± 0.02 0.68 ± 0.02
KDDCup09_upselling 0.63 ± 0.02 0.68 ± 0.02 0.77 ± 0.01 0.79 ± 0.01
scikit-feature benchmark, classification, with only numerical features
arcene 0.80 ± 0.04 0.77 ± 0.02 0.81 ± 0.05 0.82 ± 0.06
CLL_SUB_111 0.50 ± 0.09 0.48 ± 0.12 0.55 ± 0.16 0.72 ± 0.10
Prostate_GE 0.78 ± 0.04 0.79 ± 0.04 0.89 ± 0.07 0.91 ± 0.06
SMK_CAN_187 0.63 ± 0.05 0.63 ± 0.05 0.66 ± 0.04 0.64 ± 0.09
TOX_171 0.68 ± 0.12 0.71 ± 0.09 0.88 ± 0.06 0.79 ± 0.05

29

Under review as submission to TMLR

Table S15: Prediction performance of single models, RS, PRS, and RaSE, when the base model
is the SVM. Values areR2 scores for regression problems and accuracies for classification problems, averaged
over 10 random data subsamplings for the tabular datasets and over 5 cross-validation folds for the scikit-
feature datasets. For each dataset, the highest performance is indicated in bold type.

Single SVM RS-SVM PRS-SVM RaSE-SVM
tabular benchmark, regression, with only numerical features
cpu_act 0.38 ± 0.03 0.38 ± 0.03 0.74 ± 0.04 0.73 ± 0.04
pol 0.41 ± 0.09 0.41 ± 0.09 0.45 ± 0.21 0.76 ± 0.03
elevators -6.97 ± 1.86 -6.97 ± 1.86 -0.00 ± 0.00 -6.97 ± 1.86
isolet 0.47 ± 0.03 0.47 ± 0.03 0.71 ± 0.01 0.70 ± 0.02
wine_quality 0.34 ± 0.02 0.34 ± 0.02 0.35 ± 0.02 0.34 ± 0.02
Ailerons -4.33 ± 1.97 -4.33 ± 1.97 -0.00 ± 0.00 -4.33 ± 1.97
houses 0.73 ± 0.02 0.73 ± 0.02 0.74 ± 0.02 0.74 ± 0.03
house_16H 0.46 ± 0.12 0.46 ± 0.12 0.46 ± 0.11 0.46 ± 0.11
diamonds 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00 0.94 ± 0.00
Brazilian_houses 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
Bike_Sharing_Demand 0.16 ± 0.03 0.16 ± 0.03 0.24 ± 0.04 0.24 ± 0.03
nyc-taxi-green-dec-2016 0.34 ± 0.04 0.34 ± 0.04 0.38 ± 0.04 0.39 ± 0.04
house_sales 0.77 ± 0.02 0.77 ± 0.01 0.83 ± 0.01 0.82 ± 0.01
sulfur -0.22 ± 0.40 -0.17 ± 0.34 0.15 ± 0.05 -0.02 ± 0.31
medical_charges 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.00
MiamiHousing2016 0.86 ± 0.01 0.86 ± 0.01 0.87 ± 0.01 0.87 ± 0.01
superconduct 0.59 ± 0.03 0.59 ± 0.03 0.68 ± 0.02 0.69 ± 0.02
california 0.75 ± 0.02 0.75 ± 0.02 0.76 ± 0.02 0.76 ± 0.02
fifa 0.53 ± 0.02 0.53 ± 0.02 0.61 ± 0.02 0.60 ± 0.02
year 0.06 ± 0.03 0.06 ± 0.03 0.16 ± 0.04 0.16 ± 0.04
tabular benchmark, regression, with both numerical and categorical features
yprop_4_1 -0.19 ± 0.33 -0.07 ± 0.06 -0.04 ± 0.07 -0.07 ± 0.06
analcatdata_supreme 0.75 ± 0.01 0.75 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
visualizing_soil 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
black_friday 0.12 ± 0.04 0.14 ± 0.03 0.48 ± 0.02 0.49 ± 0.02
diamonds 0.97 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.98 ± 0.00
Mercedes_Benz_Greener_Manufacturing 0.34 ± 0.03 0.35 ± 0.04 0.53 ± 0.05 0.53 ± 0.05
Brazilian_houses 0.95 ± 0.02 0.95 ± 0.02 0.97 ± 0.01 0.97 ± 0.01
Bike_Sharing_Demand 0.08 ± 0.02 0.08 ± 0.02 0.24 ± 0.03 0.24 ± 0.03
OnlineNewsPopularity 0.04 ± 0.03 0.06 ± 0.03 0.08 ± 0.03 0.08 ± 0.03
nyc-taxi-green-dec-2016 0.34 ± 0.05 0.34 ± 0.05 0.39 ± 0.03 0.40 ± 0.04
house_sales 0.77 ± 0.01 0.77 ± 0.01 0.82 ± 0.01 0.82 ± 0.01
particulate-matter-ukair-2017 0.55 ± 0.03 0.55 ± 0.03 0.61 ± 0.01 0.61 ± 0.01
SGEMM_GPU_kernel_performance 0.96 ± 0.00 0.96 ± 0.00 0.99 ± 0.00 0.99 ± 0.00
tabular benchmark, classification, with only numerical features
credit 0.70 ± 0.03 0.71 ± 0.03 0.72 ± 0.03 0.73 ± 0.02
california 0.84 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.85 ± 0.01
wine 0.77 ± 0.02 0.77 ± 0.02 0.75 ± 0.02 0.76 ± 0.02
electricity 0.75 ± 0.01 0.75 ± 0.01 0.75 ± 0.02 0.75 ± 0.01
covertype 0.74 ± 0.01 0.74 ± 0.01 0.75 ± 0.01 0.75 ± 0.02
pol 0.93 ± 0.01 0.94 ± 0.01 0.93 ± 0.01 0.94 ± 0.01
house_16H 0.84 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.84 ± 0.01
kdd_ipums_la_97-small 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01
MagicTelescope 0.82 ± 0.01 0.82 ± 0.01 0.81 ± 0.02 0.82 ± 0.02
bank-marketing 0.77 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.78 ± 0.01
phoneme 0.83 ± 0.01 0.83 ± 0.01 0.79 ± 0.01 0.83 ± 0.01
MiniBooNE 0.83 ± 0.01 0.85 ± 0.01 0.87 ± 0.01 0.85 ± 0.02
Higgs 0.60 ± 0.01 0.62 ± 0.02 0.65 ± 0.02 0.65 ± 0.02
eye_movements 0.56 ± 0.01 0.56 ± 0.02 0.56 ± 0.01 0.57 ± 0.02
jannis 0.72 ± 0.01 0.72 ± 0.01 0.73 ± 0.01 0.73 ± 0.01
tabular benchmark, classification, with both numerical and categorical features
electricity 0.75 ± 0.02 0.75 ± 0.02 0.75 ± 0.01 0.76 ± 0.02
eye_movements 0.56 ± 0.01 0.56 ± 0.02 0.56 ± 0.02 0.56 ± 0.01
covertype 0.76 ± 0.01 0.76 ± 0.01 0.76 ± 0.01 0.77 ± 0.01
rl 0.62 ± 0.01 0.61 ± 0.01 0.63 ± 0.01 0.62 ± 0.01
road-safety 0.69 ± 0.01 0.69 ± 0.01 0.70 ± 0.01 0.71 ± 0.02
compass 0.66 ± 0.01 0.66 ± 0.01 0.68 ± 0.02 0.68 ± 0.02
KDDCup09_upselling 0.73 ± 0.01 0.73 ± 0.01 0.76 ± 0.02 0.77 ± 0.02
scikit-feature benchmark, classification, with only numerical features
arcene 0.73 ± 0.04 0.77 ± 0.05 0.80 ± 0.04 0.76 ± 0.04
CLL_SUB_111 0.59 ± 0.07 0.56 ± 0.07 0.63 ± 0.13 0.65 ± 0.11
Prostate_GE 0.84 ± 0.10 0.82 ± 0.09 0.93 ± 0.07 0.93 ± 0.07
SMK_CAN_187 0.68 ± 0.08 0.65 ± 0.08 0.70 ± 0.09 0.67 ± 0.08
TOX_171 0.80 ± 0.10 0.80 ± 0.11 0.91 ± 0.04 0.82 ± 0.07

30

Under review as submission to TMLR

Table S16: Comparison to RF and GDBT. Values are R2 scores for regression problems and accuracies
for classification problems, averaged over 10 random data subsamplings for the tabular datasets and over 5
cross-validation folds for the scikit-feature datasets.

RF GBDT PRS-tree PRS-kNN PRS-SVM
tabular benchmark, regression, with only numerical features
cpu_act 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.74 ± 0.04
pol 0.94 ± 0.00 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.45 ± 0.21
elevators 0.68 ± 0.02 0.74 ± 0.02 0.71 ± 0.02 0.73 ± 0.02 -0.00 ± 0.00
isolet 0.71 ± 0.02 0.70 ± 0.02 0.76 ± 0.02 0.85 ± 0.02 0.71 ± 0.01
wine_quality 0.37 ± 0.02 0.32 ± 0.03 0.34 ± 0.02 0.34 ± 0.02 0.35 ± 0.02
Ailerons 0.80 ± 0.02 0.81 ± 0.01 0.78 ± 0.02 0.80 ± 0.01 -0.00 ± 0.00
houses 0.74 ± 0.02 0.77 ± 0.02 0.74 ± 0.03 0.76 ± 0.02 0.74 ± 0.02
house_16H 0.51 ± 0.07 0.46 ± 0.14 0.46 ± 0.07 0.42 ± 0.10 0.46 ± 0.11
diamonds 0.94 ± 0.00 0.94 ± 0.00 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.00
Brazilian_houses 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.01 0.97 ± 0.01
Bike_Sharing_Demand 0.63 ± 0.02 0.65 ± 0.02 0.59 ± 0.02 0.63 ± 0.02 0.24 ± 0.04
nyc-taxi-green-dec-2016 0.39 ± 0.04 0.41 ± 0.05 0.44 ± 0.05 0.46 ± 0.03 0.38 ± 0.04
house_sales 0.83 ± 0.01 0.84 ± 0.01 0.83 ± 0.01 0.83 ± 0.01 0.83 ± 0.01
sulfur 0.72 ± 0.10 0.71 ± 0.10 0.68 ± 0.08 0.69 ± 0.10 0.15 ± 0.05
medical_charges 0.97 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.97 ± 0.01
MiamiHousing2016 0.86 ± 0.01 0.88 ± 0.01 0.87 ± 0.01 0.86 ± 0.01 0.87 ± 0.01
superconduct 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.82 ± 0.01 0.68 ± 0.02
california 0.75 ± 0.02 0.77 ± 0.02 0.78 ± 0.02 0.77 ± 0.02 0.76 ± 0.02
fifa 0.62 ± 0.02 0.64 ± 0.02 0.56 ± 0.03 0.61 ± 0.02 0.61 ± 0.02
year 0.15 ± 0.02 0.16 ± 0.04 0.14 ± 0.04 0.18 ± 0.02 0.16 ± 0.04
tabular benchmark, regression, with both numerical and categorical features
yprop_4_1 0.04 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 0.05 ± 0.01 -0.04 ± 0.07
analcatdata_supreme 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.96 ± 0.01
visualizing_soil 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
black_friday 0.51 ± 0.03 0.55 ± 0.03 0.57 ± 0.03 0.55 ± 0.03 0.48 ± 0.02
diamonds 0.97 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.96 ± 0.01 0.97 ± 0.00
Mercedes_Benz_Greener_Manufacturing 0.48 ± 0.05 0.55 ± 0.05 0.55 ± 0.05 0.54 ± 0.05 0.53 ± 0.05
Brazilian_houses 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.01 0.97 ± 0.01
Bike_Sharing_Demand 0.84 ± 0.01 0.89 ± 0.01 0.88 ± 0.02 0.86 ± 0.02 0.24 ± 0.03
OnlineNewsPopularity 0.10 ± 0.03 0.08 ± 0.03 0.08 ± 0.03 0.10 ± 0.03 0.08 ± 0.03
nyc-taxi-green-dec-2016 0.41 ± 0.03 0.42 ± 0.04 0.45 ± 0.05 0.48 ± 0.03 0.39 ± 0.03
house_sales 0.83 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.84 ± 0.00 0.82 ± 0.01
particulate-matter-ukair-2017 0.61 ± 0.02 0.63 ± 0.01 0.56 ± 0.02 0.62 ± 0.02 0.61 ± 0.01
SGEMM_GPU_kernel_performance 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
tabular benchmark, classification, with only numerical features
credit 0.77 ± 0.01 0.77 ± 0.01 0.75 ± 0.01 0.76 ± 0.01 0.72 ± 0.03
california 0.85 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.85 ± 0.01
wine 0.79 ± 0.02 0.78 ± 0.02 0.78 ± 0.02 0.77 ± 0.02 0.75 ± 0.02
electricity 0.79 ± 0.01 0.79 ± 0.02 0.78 ± 0.01 0.77 ± 0.01 0.75 ± 0.02
covertype 0.75 ± 0.02 0.74 ± 0.01 0.74 ± 0.02 0.76 ± 0.02 0.75 ± 0.01
pol 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.95 ± 0.01 0.93 ± 0.01
house_16H 0.86 ± 0.01 0.86 ± 0.01 0.85 ± 0.02 0.85 ± 0.01 0.85 ± 0.01
kdd_ipums_la_97-small 0.88 ± 0.01 0.88 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.84 ± 0.01
MagicTelescope 0.83 ± 0.01 0.82 ± 0.01 0.80 ± 0.01 0.81 ± 0.02 0.81 ± 0.02
bank-marketing 0.78 ± 0.02 0.78 ± 0.01 0.75 ± 0.02 0.78 ± 0.01 0.77 ± 0.01
phoneme 0.86 ± 0.01 0.85 ± 0.01 0.84 ± 0.01 0.84 ± 0.01 0.79 ± 0.01
MiniBooNE 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.89 ± 0.01 0.87 ± 0.01
Higgs 0.66 ± 0.01 0.66 ± 0.01 0.65 ± 0.02 0.67 ± 0.01 0.65 ± 0.02
eye_movements 0.56 ± 0.01 0.56 ± 0.01 0.63 ± 0.02 0.57 ± 0.02 0.56 ± 0.01
jannis 0.73 ± 0.02 0.73 ± 0.01 0.73 ± 0.02 0.74 ± 0.01 0.73 ± 0.01
tabular benchmark, classification, with both numerical and categorical features
electricity 0.79 ± 0.01 0.79 ± 0.02 0.78 ± 0.01 0.77 ± 0.02 0.75 ± 0.01
eye_movements 0.58 ± 0.02 0.57 ± 0.02 0.63 ± 0.01 0.57 ± 0.02 0.56 ± 0.02
covertype 0.78 ± 0.02 0.77 ± 0.02 0.75 ± 0.02 0.78 ± 0.02 0.76 ± 0.01
rl 0.69 ± 0.01 0.71 ± 0.01 0.77 ± 0.01 0.73 ± 0.02 0.63 ± 0.01
road-safety 0.72 ± 0.01 0.72 ± 0.01 0.71 ± 0.02 0.72 ± 0.01 0.70 ± 0.01
compass 0.68 ± 0.02 0.69 ± 0.02 0.67 ± 0.02 0.68 ± 0.02 0.68 ± 0.02
KDDCup09_upselling 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.77 ± 0.01 0.76 ± 0.02
scikit-feature benchmark, classification, with only numerical features
arcene 0.78 ± 0.05 0.74 ± 0.05 0.81 ± 0.05 0.81 ± 0.05 0.80 ± 0.04
CLL_SUB_111 0.67 ± 0.13 0.70 ± 0.08 0.70 ± 0.09 0.55 ± 0.16 0.63 ± 0.13
Prostate_GE 0.90 ± 0.08 0.85 ± 0.10 0.88 ± 0.11 0.89 ± 0.07 0.93 ± 0.07
SMK_CAN_187 0.65 ± 0.10 0.67 ± 0.04 0.64 ± 0.07 0.66 ± 0.04 0.70 ± 0.09
TOX_171 0.71 ± 0.06 0.77 ± 0.07 0.75 ± 0.05 0.88 ± 0.06 0.91 ± 0.04

31

Under review as submission to TMLR

Table S17: Number of features used per base model (tree), i.e. for RS: the number K of randomly
sampled features (optimized on the validation test), for PRS: the sum

∑M
j=1 αj , and for RaSE: the average

feature subset size over the T models. Values are means and standard deviations over 10 random data
subsamplings for the tabular datasets and over 5 cross-validation folds for the scikit-feature datasets.

RS-tree PRS-tree RaSE-tree
tabular benchmark, regression, with only numerical features
cpu_act 11.10 ± 3.30 8.47 ± 0.57 14.92 ± 0.83
pol 26.00 ± 0.00 10.95 ± 0.64 18.01 ± 1.51
elevators 7.70 ± 0.90 6.03 ± 0.31 5.81 ± 0.47
isolet 189.90 ± 53.01 48.75 ± 3.35 27.84 ± 0.46
wine_quality 5.80 ± 0.60 5.77 ± 0.69 1.00 ± 0.00
Ailerons 16.00 ± 0.00 6.59 ± 0.52 17.95 ± 1.13
houses 4.00 ± 0.00 3.55 ± 0.17 4.50 ± 0.55
house_16H 7.30 ± 1.42 5.43 ± 1.58 10.72 ± 1.10
diamonds 2.50 ± 0.50 2.41 ± 0.18 1.00 ± 0.00
Brazilian_houses 8.00 ± 0.00 4.16 ± 0.31 3.04 ± 0.46
Bike_Sharing_Demand 3.00 ± 0.00 2.66 ± 0.36 1.09 ± 0.14
nyc-taxi-green-dec-2016 3.70 ± 0.46 1.23 ± 0.20 1.55 ± 0.28
house_sales 8.00 ± 0.00 6.13 ± 0.33 9.95 ± 0.68
sulfur 4.50 ± 1.50 2.20 ± 0.60 3.86 ± 0.57
medical_charges 3.00 ± 0.00 1.78 ± 0.16 2.29 ± 0.19
MiamiHousing2016 6.00 ± 0.00 6.58 ± 0.31 8.85 ± 0.32
superconduct 22.10 ± 10.14 8.91 ± 0.71 22.69 ± 0.68
california 4.00 ± 0.00 4.03 ± 0.20 4.20 ± 0.50
fifa 2.00 ± 0.00 2.09 ± 0.33 1.43 ± 0.50
year 39.30 ± 9.24 8.94 ± 1.88 23.27 ± 0.62
tabular benchmark, regression, with both numerical and categorical features
yprop_4_1 10.70 ± 6.10 4.80 ± 0.99 3.48 ± 1.26
analcatdata_supreme 12.00 ± 0.00 1.62 ± 0.27 2.65 ± 1.33
visualizing_soil 5.00 ± 0.00 4.19 ± 0.26 3.90 ± 0.16
black_friday 12.00 ± 0.00 2.58 ± 0.32 2.10 ± 0.66
diamonds 15.60 ± 5.20 11.94 ± 1.06 18.09 ± 0.98
Mercedes_Benz_Greener_Manufacturing 125.10 ± 33.45 34.65 ± 2.14 17.00 ± 3.31
Brazilian_houses 17.00 ± 0.00 5.01 ± 0.86 3.95 ± 0.65
Bike_Sharing_Demand 15.00 ± 5.00 7.91 ± 0.56 9.60 ± 1.12
OnlineNewsPopularity 16.00 ± 8.05 6.50 ± 1.13 7.47 ± 2.38
nyc-taxi-green-dec-2016 15.40 ± 1.80 2.78 ± 0.38 6.39 ± 2.90
house_sales 10.00 ± 0.00 7.55 ± 0.70 12.65 ± 0.98
particulate-matter-ukair-2017 13.00 ± 0.00 5.42 ± 1.14 1.81 ± 0.25
SGEMM_GPU_kernel_performance 15.00 ± 0.00 3.37 ± 0.37 6.14 ± 1.17
tabular benchmark, classification, with only numerical features
credit 3.60 ± 0.92 4.42 ± 0.49 2.85 ± 0.26
california 3.70 ± 0.46 4.03 ± 0.21 3.85 ± 0.73
wine 5.40 ± 0.92 5.29 ± 0.44 7.71 ± 0.68
electricity 4.00 ± 0.00 3.11 ± 0.23 3.43 ± 0.71
covertype 4.80 ± 0.60 4.05 ± 0.19 6.13 ± 0.62
pol 14.30 ± 3.90 9.52 ± 0.71 19.54 ± 1.09
house_16H 7.70 ± 0.90 7.62 ± 0.58 11.43 ± 0.79
kdd_ipums_la_97-small 8.20 ± 1.99 3.42 ± 0.57 10.30 ± 1.60
MagicTelescope 5.00 ± 0.00 5.43 ± 0.29 7.35 ± 0.35
bank-marketing 3.60 ± 0.49 3.41 ± 0.15 5.27 ± 0.79
phoneme 3.50 ± 1.50 3.20 ± 0.13 4.46 ± 0.25
MiniBooNE 18.70 ± 4.61 11.94 ± 1.36 24.09 ± 0.62
Higgs 10.80 ± 1.83 6.08 ± 0.77 14.59 ± 1.96
eye_movements 3.10 ± 1.76 2.73 ± 0.30 2.17 ± 0.27
jannis 18.50 ± 6.95 9.05 ± 0.88 23.98 ± 1.17
tabular benchmark, classification, with both numerical and categorical features
electricity 7.00 ± 0.00 5.02 ± 0.75 7.37 ± 0.99
eye_movements 5.40 ± 2.65 3.05 ± 0.61 2.40 ± 0.39
covertype 46.00 ± 0.00 14.09 ± 1.61 25.53 ± 0.76
rl 16.60 ± 2.94 5.70 ± 0.73 17.67 ± 3.00
road-safety 15.00 ± 3.00 5.62 ± 1.26 9.40 ± 3.73
compass 23.80 ± 7.07 6.67 ± 2.13 17.46 ± 3.32
KDDCup09_upselling 48.60 ± 6.80 6.51 ± 1.09 9.08 ± 2.33
scikit-feature benchmark, classification, with only numerical features
arcene 2100.00 ± 3950.19 128.03 ± 192.70 8.23 ± 0.13
CLL_SUB_111 654.80 ± 824.08 407.63 ± 205.17 5.68 ± 0.60
Prostate_GE 1948.40 ± 2275.37 226.31 ± 113.33 5.19 ± 0.54
SMK_CAN_187 5811.20 ± 7474.69 861.53 ± 326.82 7.27 ± 0.33
TOX_171 256.40 ± 187.45 172.96 ± 133.50 7.99 ± 0.09

32

Under review as submission to TMLR

Table S18: Number of features used per base model (kNN), i.e. for RS: the number K of randomly
sampled features (optimized on the validation test), for PRS: the sum

∑M
j=1 αj , and for RaSE: the average

feature subset size over the T models. Values are means and standard deviations over 10 random data
subsamplings for the tabular datasets and over 5 cross-validation folds for the scikit-feature datasets.

RS-kNN PRS-kNN RaSE-kNN
tabular benchmark, regression, with only numerical features
cpu_act 15.50 ± 5.50 5.59 ± 0.54 6.00 ± 1.27
pol 26.00 ± 0.00 7.51 ± 0.60 10.45 ± 1.66
elevators 10.40 ± 3.67 5.68 ± 0.46 4.82 ± 0.48
isolet 295.80 ± 30.60 81.65 ± 6.86 29.86 ± 0.20
wine_quality 6.00 ± 0.00 5.76 ± 0.32 7.64 ± 0.66
Ailerons 27.90 ± 7.79 6.21 ± 0.37 5.96 ± 0.70
houses 8.00 ± 0.00 2.56 ± 0.07 3.45 ± 0.31
house_16H 8.80 ± 2.40 5.89 ± 1.06 10.89 ± 1.04
diamonds 2.90 ± 0.30 2.62 ± 0.19 2.85 ± 0.34
Brazilian_houses 5.50 ± 2.06 2.82 ± 0.33 2.73 ± 0.68
Bike_Sharing_Demand 3.00 ± 0.00 2.58 ± 0.08 2.40 ± 0.19
nyc-taxi-green-dec-2016 3.90 ± 0.30 1.31 ± 0.21 1.43 ± 0.23
house_sales 9.40 ± 2.80 4.89 ± 0.31 6.48 ± 0.85
sulfur 5.70 ± 0.90 2.04 ± 0.34 2.36 ± 0.52
medical_charges 3.00 ± 0.00 1.56 ± 0.05 1.01 ± 0.01
MiamiHousing2016 6.00 ± 0.00 6.66 ± 0.75 8.65 ± 1.28
superconduct 11.50 ± 3.69 8.55 ± 1.39 21.05 ± 2.52
california 7.60 ± 1.20 3.47 ± 0.13 5.08 ± 0.53
fifa 2.00 ± 0.00 2.01 ± 0.03 2.00 ± 0.00
year 30.60 ± 8.57 12.45 ± 1.74 23.37 ± 2.10
tabular benchmark, regression, with both numerical and categorical features
yprop_4_1 17.70 ± 6.80 7.73 ± 1.48 19.13 ± 3.31
analcatdata_supreme 12.00 ± 0.00 1.80 ± 0.33 2.15 ± 0.51
visualizing_soil 5.00 ± 0.00 3.85 ± 0.05 3.52 ± 0.00
black_friday 5.60 ± 1.80 2.25 ± 0.29 2.17 ± 0.42
diamonds 11.00 ± 2.00 7.66 ± 0.73 8.74 ± 0.98
Mercedes_Benz_Greener_Manufacturing 77.60 ± 25.63 37.59 ± 3.10 20.06 ± 1.44
Brazilian_houses 7.60 ± 0.80 2.88 ± 0.49 3.16 ± 0.80
Bike_Sharing_Demand 9.40 ± 1.20 5.87 ± 0.48 6.56 ± 0.15
OnlineNewsPopularity 13.50 ± 4.50 7.18 ± 1.15 20.27 ± 1.59
nyc-taxi-green-dec-2016 14.20 ± 2.75 3.21 ± 0.71 4.79 ± 0.95
house_sales 11.80 ± 3.60 5.52 ± 0.70 7.55 ± 1.11
particulate-matter-ukair-2017 11.40 ± 1.96 3.88 ± 0.61 4.46 ± 0.60
SGEMM_GPU_kernel_performance 8.00 ± 0.00 2.93 ± 0.12 2.17 ± 0.68
tabular benchmark, classification, with only numerical features
credit 3.00 ± 0.00 3.48 ± 0.23 4.27 ± 0.37
california 3.30 ± 0.46 3.39 ± 0.15 4.41 ± 0.90
wine 4.40 ± 1.11 3.89 ± 0.15 7.00 ± 0.45
electricity 4.20 ± 0.98 2.72 ± 0.19 3.45 ± 0.77
covertype 4.40 ± 0.92 3.10 ± 0.16 4.07 ± 0.41
pol 13.00 ± 0.00 8.41 ± 0.30 13.84 ± 1.11
house_16H 5.30 ± 1.49 5.43 ± 0.39 10.61 ± 0.88
kdd_ipums_la_97-small 4.90 ± 1.92 2.46 ± 0.28 3.46 ± 0.50
MagicTelescope 5.50 ± 1.50 4.22 ± 0.22 5.93 ± 0.54
bank-marketing 3.80 ± 0.40 3.07 ± 0.19 3.83 ± 0.58
phoneme 3.80 ± 1.47 2.41 ± 0.28 4.03 ± 0.44
MiniBooNE 10.90 ± 4.18 7.71 ± 1.81 23.51 ± 2.22
Higgs 5.30 ± 0.90 4.03 ± 0.51 6.04 ± 0.94
eye_movements 4.10 ± 2.91 3.14 ± 0.18 8.26 ± 2.31
jannis 14.50 ± 8.80 5.89 ± 0.55 20.43 ± 1.81
tabular benchmark, classification, with both numerical and categorical features
electricity 6.10 ± 1.14 4.36 ± 0.30 5.94 ± 1.64
eye_movements 5.00 ± 1.55 3.45 ± 0.40 11.90 ± 4.06
covertype 35.50 ± 6.87 10.46 ± 0.88 24.06 ± 1.50
rl 12.00 ± 2.00 4.65 ± 0.43 14.65 ± 2.18
road-safety 12.10 ± 3.65 5.88 ± 0.45 14.07 ± 1.52
compass 11.80 ± 4.60 6.37 ± 0.65 16.70 ± 3.34
KDDCup09_upselling 17.80 ± 10.15 5.82 ± 0.42 5.19 ± 0.59
scikit-feature benchmark, classification, with only numerical features
arcene 4500.00 ± 4494.44 328.85 ± 103.85 9.26 ± 1.05
CLL_SUB_111 109.20 ± 71.57 222.60 ± 103.72 5.52 ± 1.35
Prostate_GE 1259.80 ± 2353.18 4.77 ± 1.77 6.08 ± 0.68
SMK_CAN_187 29.00 ± 56.00 743.66 ± 165.22 8.00 ± 0.79
TOX_171 1206.80 ± 2270.71 111.80 ± 67.25 8.53 ± 0.64

33

Under review as submission to TMLR

Table S19: Number of features used per base model (SVM), i.e. for RS: the number K of randomly
sampled features (optimized on the validation test), for PRS: the sum

∑M
j=1 αj , and for RaSE: the average

feature subset size over the T models. Values are means and standard deviations over 10 random data
subsamplings for the tabular datasets and over 5 cross-validation folds for the scikit-feature datasets.

RS-SVM PRS-SVM RaSE-SVM
tabular benchmark, regression, with only numerical features
cpu_act 21.00 ± 0.00 1.87 ± 0.17 1.91 ± 0.13
pol 26.00 ± 0.00 1.61 ± 0.66 5.42 ± 0.27
elevators 1.00 ± 0.00 0.02 ± 0.02 8.68 ± 0.00
isolet 613.00 ± 0.00 42.45 ± 4.33 29.60 ± 0.29
wine_quality 8.50 ± 2.50 7.45 ± 0.59 9.15 ± 0.44
Ailerons 1.00 ± 0.00 0.00 ± 0.00 15.14 ± 0.00
houses 8.00 ± 0.00 5.64 ± 0.65 6.43 ± 0.68
house_16H 16.00 ± 0.00 9.01 ± 1.18 12.43 ± 1.61
diamonds 3.00 ± 0.00 3.08 ± 0.57 2.90 ± 0.69
Brazilian_houses 8.00 ± 0.00 3.12 ± 0.37 2.64 ± 0.50
Bike_Sharing_Demand 5.70 ± 0.90 1.85 ± 0.12 2.00 ± 0.00
nyc-taxi-green-dec-2016 9.00 ± 0.00 1.42 ± 0.54 3.04 ± 0.45
house_sales 10.10 ± 3.21 5.63 ± 0.56 7.14 ± 0.89
sulfur 4.10 ± 1.58 0.30 ± 0.06 3.97 ± 1.25
medical_charges 3.00 ± 0.00 1.46 ± 0.18 1.02 ± 0.03
MiamiHousing2016 13.00 ± 0.00 9.34 ± 0.39 10.59 ± 0.32
superconduct 79.00 ± 0.00 9.56 ± 2.15 12.14 ± 3.44
california 8.00 ± 0.00 4.89 ± 0.32 5.86 ± 0.76
fifa 5.00 ± 0.00 1.75 ± 0.13 2.00 ± 0.00
year 90.00 ± 0.00 12.06 ± 2.97 15.03 ± 3.77
tabular benchmark, regression, with both numerical and categorical features
yprop_4_1 1.80 ± 2.40 2.11 ± 2.07 14.49 ± 1.94
analcatdata_supreme 12.00 ± 0.00 1.31 ± 0.16 1.01 ± 0.01
visualizing_soil 5.00 ± 0.00 3.70 ± 0.17 4.00 ± 0.00
black_friday 13.40 ± 6.64 0.95 ± 0.08 1.00 ± 0.00
diamonds 26.00 ± 0.00 13.70 ± 1.57 18.41 ± 1.27
Mercedes_Benz_Greener_Manufacturing 149.70 ± 89.27 32.27 ± 6.69 21.54 ± 7.33
Brazilian_houses 17.00 ± 0.00 3.21 ± 0.38 3.03 ± 0.68
Bike_Sharing_Demand 12.20 ± 6.78 2.09 ± 0.32 2.51 ± 0.41
OnlineNewsPopularity 24.30 ± 4.73 11.50 ± 1.87 22.58 ± 2.08
nyc-taxi-green-dec-2016 31.00 ± 0.00 3.03 ± 1.18 5.68 ± 1.46
house_sales 17.20 ± 3.60 6.25 ± 0.76 8.08 ± 0.85
particulate-matter-ukair-2017 26.00 ± 0.00 3.66 ± 1.08 4.06 ± 1.09
SGEMM_GPU_kernel_performance 15.00 ± 0.00 2.49 ± 0.45 1.43 ± 0.25
tabular benchmark, classification, with only numerical features
credit 4.40 ± 3.17 2.32 ± 0.21 3.93 ± 1.03
california 8.00 ± 0.00 3.43 ± 0.34 5.39 ± 0.72
wine 8.10 ± 2.98 2.48 ± 0.19 8.61 ± 0.80
electricity 6.70 ± 0.90 1.98 ± 0.20 5.08 ± 0.42
covertype 7.50 ± 2.50 2.13 ± 0.17 4.75 ± 0.42
pol 22.10 ± 5.96 5.07 ± 1.07 18.02 ± 2.24
house_16H 11.60 ± 4.54 4.86 ± 0.29 11.92 ± 1.16
kdd_ipums_la_97-small 9.20 ± 3.84 1.40 ± 0.13 8.18 ± 2.37
MagicTelescope 10.00 ± 0.00 3.33 ± 0.23 6.99 ± 0.52
bank-marketing 6.70 ± 0.90 2.65 ± 0.16 4.81 ± 0.49
phoneme 5.00 ± 0.00 1.67 ± 0.12 4.63 ± 0.35
MiniBooNE 14.00 ± 5.20 4.10 ± 0.60 14.13 ± 5.08
Higgs 5.00 ± 3.03 2.98 ± 0.31 8.71 ± 1.54
eye_movements 7.80 ± 4.92 2.09 ± 0.23 10.22 ± 3.36
jannis 30.80 ± 15.94 3.12 ± 0.41 23.65 ± 2.36
tabular benchmark, classification, with both numerical and categorical features
electricity 10.80 ± 3.97 2.83 ± 0.43 8.30 ± 1.39
eye_movements 10.40 ± 8.52 2.01 ± 0.22 13.07 ± 2.96
covertype 93.00 ± 0.00 8.29 ± 1.27 26.15 ± 1.19
rl 24.10 ± 9.27 2.73 ± 0.65 18.99 ± 2.88
road-safety 16.80 ± 7.10 1.70 ± 0.21 14.78 ± 3.26
compass 39.80 ± 24.20 3.53 ± 0.27 19.33 ± 3.48
KDDCup09_upselling 98.80 ± 15.60 2.65 ± 0.35 7.48 ± 4.11
scikit-feature benchmark, classification, with only numerical features
arcene 100.00 ± 0.00 188.33 ± 138.66 9.38 ± 0.66
CLL_SUB_111 2333.20 ± 4503.59 113.33 ± 82.10 6.63 ± 0.54
Prostate_GE 1254.80 ± 2355.60 17.19 ± 12.82 5.94 ± 0.47
SMK_CAN_187 4055.40 ± 7969.05 574.63 ± 377.67 8.07 ± 0.69
TOX_171 76.00 ± 0.00 94.18 ± 53.14 9.35 ± 0.44

34

Under review as submission to TMLR

G Additional results on the DREAM4 networks

Net1 Net2 Net3 Net4 Net5
0

2

4

6

8

No
. r

eg
ul

at
or

s

PRS - tree
lambda

0.0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

Net1 Net2 Net3 Net4 Net5
0

2

4

6

8

10

No
. r

eg
ul

at
or

s

PRS - kNN

Net1 Net2 Net3 Net4 Net5
0

2

4

6

8

No
. r

eg
ul

at
or

s

PRS - SVM

Figure S7: Expected number of selected candidate regulators per base model in a PRS ensemble,
i.e.

∑M
j=1 αj,g, where M is the number of candidate regulators. The boxplots summarize the values over the

100 target genes.

35

	Introduction
	Methods
	The Parametric Random Subspace approach (PRS)
	Training the PRS model
	Computing the gradient
	Estimating the gradient
	Updating the gradient

	Discussion

	Results
	Simulated Problems
	Real-world problems
	MNIST
	Gene network inference

	Conclusions
	Pseudo-code
	Computing the gradient
	Estimating the gradient
	Estimation with baseline b
	Optimal value of the baseline b

	Implementation details
	Data pre-processing
	PRS
	RS, RF and GBDT
	RaSE

	Simulated problems
	Simulation protocol
	Additional results

	Real-world datasets
	Additional results on the DREAM4 networks

