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Abstract

In the realm of machine translation utilizing001
Large Language Models (LLMs), the stan-002
dard workflow involves Cross-Lingual Align-003
ment learning followed by Instruction-tuning.004
Low-Rank Adaptation (LoRA) has been a005
widely-used and effective method for fine-006
tuning LLMs. However, LoRA alone exhibits007
limited benefits when confronted with multi-008
task or multi-domain scenarios. Given the009
prevalent existence of multi-domain challenges010
in machine translation, this paper focuses on011
enhancing the multi-domain translation capa-012
bilities of LLMs. We extend LoRA to Mixture013
of Experts (MoE) architecture, defined as MoE-014
LoRA, to address domain conflicts in multi-015
domain settings. Our approach involves intro-016
ducing MoE-LoRA solely at higher layers to017
target specific domain-related knowledge ac-018
quisition, preceded by General Cross-Lingual019
Alignment during the training process. Particu-020
larly, we propose a methodology called Expert021
Margin Optimization (EMO) to facilitate the022
transfer of additional knowledge from other023
domains to enhance the inputs specific to a do-024
main. Experimental validations conducted on025
the English-to-German and English-to-Chinese026
translation directions using the Llama2-7B and027
Llama3-8B models demonstrate consistent im-028
provements in BLEU and COMET scores, high-029
lighting the efficacy of our proposed approach.030

1 Introduction031

Generative (decoder-only) large language models032

(LLMs), such as GPT models (Brown et al., 2020),033

PaLM (Chowdhery et al., 2023), LLaMA (Touvron034

et al., 2023a,b), and others, have garnered signif-035

icant attention and shown substantial progress in036

the field, capturing the fascination of researchers.037

Leveraging fine-tuning techniques, LLMs have ex-038

hibited remarkable performance across a spectrum039

of NLP tasks. Among these techniques, LoRA (Hu040

et al., 2022) (Low-Rank Adaptation) has emerged041

as an efficient and widely adopted method for fine- 042

tuning. LoRA involves freezing the pretrained 043

model weights and incorporating trainable rank 044

decomposition matrices within each layer of the 045

Transformer architecture, leading to a significant 046

reduction in the number of trainable parameters 047

for downstream tasks. However, as underscored 048

by recent studies (Biderman et al., 2024), "LoRA 049

Learns Less and Forgets Less." While LoRA excels 050

in preserving the inherent capabilities of the base 051

model and mitigating forgetfulness, it tends to ac- 052

quire comparatively less performance improvement 053

than full fine-tuning. 054

Machine translation (MT) predominantly relies 055

on encoder-decoder architectures, as evidenced by 056

prominent models like M2M (Fan et al., 2021), 057

MT5 (Xue et al., 2021), and NLLB (Costa-jussà 058

et al., 2022). Although these models have reached 059

a high level of maturity, avoiding overfitting and 060

achieving robust out-of-domain performance re- 061

main significant challenges in machine translation. 062

Notably, the state-of-the-art (SOTA) model NLLB 063

covers only four major domains such as news, for- 064

mal speech, and health. Recently, the field has 065

shifted towards utilizing LLMs for MT. While em- 066

ploying small yet high-quality instruction data for 067

supervised fine-tuning (SFT) of LLMs has shown 068

effectiveness in various NLP tasks (Taori et al., 069

2023; Touvron et al., 2023b), it poses challenges 070

in the context of translation. Fine-tuning LLMs 071

with a small amount of high-quality translation in- 072

struction data still falls short when compared to 073

state-of-the-art encoder-decoder MT models (Yang 074

et al., 2023; Zeng et al., 2023; Zhang et al., 2023). 075

Guo et al. (2024) introduced a Three-Stages 076

Translation Pipeline (TP3) to boost translation ca- 077

pabilities of LLMs, emphasizing the significance 078

of its second stage, Continual Pre-training with In- 079

terlinear Text Format Documents, achieving com- 080

parable quality to the leading model NLLB. TP3 081

also integrates LoRA to enhance its efficiency, with 082
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this stage being considered as Cross-Lingual Align-083

ment learning. Building upon this work, we delve084

into the challenges posed by multi-domain scenar-085

ios.086

In this study, we extend the concept of LoRA087

to the Mixture of Experts (MoE) architecture. A088

typical MoE setup includes multiple expert net-089

works and a router. Here, we view LoRA as an090

expert, training multiple LoRAs to learn Cross-091

Lingual Alignment from data across various do-092

mains. We hypothesize the existence of common-093

alities in alignment among different domains, em-094

phasizing the need to learn this shared knowledge095

first. To address this, we configure the lower layers096

of the model to utilize a unified LoRA, referred to097

as General LoRA, while reserving MoE LoRA for098

the higher layers. Experimental outcomes validate099

the efficacy of our approach in effectively man-100

aging domain conflicts. Our training process en-101

compasses General Cross-Lingual Alignment Pre-102

training, Domain-Motivated Experts Pre-training103

and Instruction-Tuning, and Expert Margin Op-104

timization (EMO). For detailed insights into our105

training strategies, please refer to Section 3.3. For106

the inference phase, we introduce two modes: one107

leveraging all trained MoE LoRAs and the other108

utilizing only the top-k MoE LoRAs to reduce com-109

putational overhead.110

Our main contributions are summarized as fol-111

lows:112

• To the best of our knowledge, we are the first113

to introduce MoE-LoRA to Translation upon114

LLM to alleviate domain conflicts.115

• We propose a training strategy that in-116

volves initial general pre-training followed117

by domain-specific training, further enhanc-118

ing domain performance. By utilizing MoE119

LoRAs only in the higher layers, we reduce120

computational complexity while preserving a121

General LoRA within these LoRAs to retain122

the acquired common knowledge.123

• We introduce a novel Expert Margin Optimiza-124

tion strategy aimed at training a more effec-125

tive Router policy, ensuring that the combined126

output of multiple experts consistently outper-127

forms that of a single specific expert.128

• Experimental validation conducted on the129

Llama2-7B and Llama3-8B confirms the ef-130

fectiveness of our approach, underpinning the131

robustness of our methodology.132

2 Background 133

2.1 TP3 134

Guo et al. (2024) propose a novel training 135

paradigm, consisting of Three-Stages Translation 136

Pipeline (TP3), to boost the translation capabilities 137

of LLMs. The training paradigm includes: 138

Stage 1: Continual Pre-training using Exten- 139

sive Monolingual Data. This stage aims to expand 140

the multilingual generation capabilities of LLMs. 141

While it is inherently related to machine translation 142

tasks, it is not essential. 143

Stage 2: Continual Pre-training with Interlinear 144

Text Format Documents. They construct interlinear 145

text format from sentence-aligned bilingual paral- 146

lel data and utilize them for continual pre-training 147

of LLMs. Experimental results demonstrate the 148

critical importance of this stage, resulting in a sig- 149

nificant improvement in translation quality, partic- 150

ularly for English-Other translations. 151

Stage 3: Leveraging Source-Language Consis- 152

tent Instruction for Supervised Fine-Tuning. In 153

this stage, they discover that setting instructions 154

consistent with the source language benefits the 155

supervised fine-tuning process. 156

As Stage 1 is high compute and not essential, we 157

only use there Stage 2 and Stage 3 in our paper. We 158

consider there Stage 2 as Cross-Lingual Alignment 159

learning. 160

3 Method 161

In this section, we will begin by outlining the model 162

architecture. Following that, we will delve into the 163

challenges of MoE. Finally, we will introduce the 164

training and inference procedures in detail. 165

3.1 Model Architecture 166

Our model is illustrated in Figure 1. We employ 167

LoRA for acquiring knowledge of Cross-Lingual 168

Alignment and the instruction for the translation 169

task. In each of the lower m layers, we designate a 170

single LoRA, known as the General LoRA, while 171

in the higher n layers, we expand LoRA into MoE 172

architecture, referred to as MoE-LoRA. 173

For MoE-LoRA, we define a total of d + 1 ex- 174

perts, where one aligns with the lower layers to 175

capture General knowledge, and the other d ex- 176

perts are dedicated to learning the knowledge of d 177

different domains. Additionally, for MoE-LoRA, 178

we train a gate function as the Router. We employ 179

a linear transformation to learn a weight vector, de- 180
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Figure 1: The overall of our model architecture.

noted as w ∈ Rd+1, representing the contribution181

weights for these experts.182

3.2 Challenge of MoE183

One challenge of the Mixture of Experts (MoE)184

model is the phenomenon where the gating net-185

work displays no preference for any particular ex-186

pert, resulting in a seemingly random routing pro-187

cess. To address this issue, a straightforward ap-188

proach is to individually train each expert for spe-189

cific tasks or domains, and then train a task- or190

domain-motivated gate as the router. However, this191

approach essentially reduces the model to a sin-192

gle expert, negating the contributions of different193

experts. This contradicts the original intent of em-194

ploying MoE, which aims to decompose large prob-195

lems into smaller sub-problems, effectively solve196

these sub-problems with different experts, and then197

combine their outputs. Therefore, learning an effec-198

tive routing strategy poses a significant challenge199

within the MoE architecture.200

3.3 Training201

In the field of translation, it is common practice202

to conduct pre-training in a general domain before203

training in a specific domain to prevent overfit-204

ting of the model to the particular domain. There-205

fore, our training process begins with General206

Cross-Lingual Alignment Pre-training, followed207

by Domain-Motivated Experts Pre-training and208

Instruction-Tuning. Finally, we propose a strat-209

egy called Expert Margin Optimization to train the 210

Router. 211

3.3.1 General Cross-Lingual Alignment 212

Pre-training 213

In the General Cross-Lingual Alignment Pre- 214

training phase, we utilize multiple LoRAs mod- 215

ules at each layer of the LLM, collectively referred 216

to as the General LoRA. The weights assigned to 217

the LoRA modules at the i-th layer are denoted as 218

Ai and Bi respectively. These modules undergo 219

training on a mixed dataset sampled from various 220

domains. Data processing involves the use of an 221

Interlinear Text Format similar to Stage 2 of TP3. 222

For detailed formatting guidelines, please consult 223

Appendix A. 224

3.3.2 Domain-Motivated Experts Pre-training 225

and Instruction-Tuning 226

During the Domain-Motivated Experts Pre-training 227

and Instruction-Tuning process, we commence 228

with establishing LoRA experts in the higher n 229

layers, each corresponding to a specific domain. 230

Concurrently, we preserve the General LoRA in 231

these layers as a General Expert, yielding a total 232

of d+ 1 experts per layer, where d represents the 233

total number of domains. The weights of these ex- 234

perts are initialized based on those of the General 235

LoRA. Each Domain LoRA expert is denoted by 236

Ai−k and Bi−k, where i denotes the layer number 237

and k signifies the domain index. 238
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Subsequently, we proceed with Continued Pre-239

training for each expert using domain-specific data.240

The training is conducted sequentially with the241

same data format as in the prior phase. In this242

stage, the lower m layers of the pre-trained Gen-243

eral LoRA are frozen from parameter updates, and244

a slightly reduced learning rate is employed for245

training.246

In the Instruction-Tuning phase, we focus on247

training with a compact, high-quality dataset com-248

prising translation instructions spanning various249

domains. It is important to note that instruction250

data from different domains is utilized to train the251

respective domain experts, while a combination252

of data from all domains is employed to train the253

General Expert. Throughout this phase, both the254

weights of the General LoRA and the MoE LoRA255

are updated simultaneously.256

3.3.3 Expert Margin Optimization257

Figure 2: EMO.

We hold all trained LoRAs and pre-trained258

model parameters constant, focusing exclusively on259

optimizing the gating function’s parameters. In the260

previous stage, each expert was independently en-261

gaged in translating task within a specific domain,262

having been thoroughly trained. In this phase, we263

aim to maximize learning from other experts while264

being cautious of potential quality degradation in265

the current domain due to inputs from experts in266

different domains, see Figure 2. As a result, we267

impose a constraint to ensure that the benefits de-268

rived from multiple experts are at least as good269

as those from a single expert. Thus, given a set270

of source sentences x, targets y and the model F 271

with a learnable parameters θ, we introduce Ex- 272

pert Margin Optimization, with the following loss 273

function: 274

min
θ

L(Fθ)

s.t. E(x,y)∼D[logFθ(y|x)− G(y|x)] < ϵ
(1) 275

where ϵ is a small positive constant and G repre- 276

sents F with the single domain expert. 277

Then the final EMO loss is as following: 278

min
θ

L(Fθ)︸ ︷︷ ︸
Lprefer

−E(x,y)∼D[logFθ(y|x)]︸ ︷︷ ︸
LNLL

(2) 279

which includes one preference learning term 280

Lprefer and one negative log likelihood term 281

LNLL. 282

3.4 Inference 283

Figure 3: Infer mode.

Inspired by Wu et al. (2024a), we introduce two 284

inference modes in our study. In the first mode, we 285

utilize all trained LoRAs with a learned gating func- 286

tion, retaining their unique features with assigned 287

weights as illustrated in Figure 3(a). In the second 288

mode, we only retain the top-k LoRAs and readjust 289

the distributed weights. These dual modes enable 290

our model to adapt to various situations, providing 291

a versatile and adaptable strategy for composing 292

effective LoRAs as shown in Figure 3(b). 293
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4 Experiments294

4.1 Datasets295

When it comes to the datasets, we have utilized296

the parallel data for English-German and English-297

Chinese provided by WMT22 1. Following the298

approach of Aharoni and Goldberg (2020), we em-299

ployed Bert for unsupervised domain clustering,300

resulting in the division of the data into four do-301

mains: Subtitle, IT, Medical, and Law.302

To mitigate discrepancies arising from vary-303

ing data volumes, we conducted domain-experts304

pre-training on 500w paired sentences for each305

domain. Using COMET(Rei et al., 2020) from306

Unbabel/wmt22-cometkiwi-da, we scored and307

ranked the data for each domain, selecting the top308

1w sentences with the highest scores as high-quality309

instruction data.310

Our test set comprises 5k sentences per domain.311

Similar to the methodology of Aharoni and Gold-312

berg (2020), none of the sentences from the test313

set, pre-training data, and instruction data overlap.314

This precaution is crucial due to the susceptibility315

of neural models to memorization and hallucina-316

tion, as observed by Müller et al. (2020).317

4.2 Evaluation Metrics318

For automatic evaluation, we utilize Sacre-319

BLEU, which implements BLEU(Papineni et al.,320

2002), and COMET(Rei et al., 2020) from321

Unbabel/wmt22-comet-da. SacreBLEU calcu-322

lates similarity based on n-gram matching, while323

COMET leverages cross-lingual pretrained models324

for evaluation.325

4.3 Compared Baselines326

• Base Model (B): A model trained directly327

using multi-domain instruction data.328

• Single Domain Models (SSub, SIT , SMed,329

SLaw): Individual domain-specific translation330

models pre-trained and fine-tuned on data331

from the Subtitle, IT, Medical, and Law do-332

mains. Not utilizing the MoE architecture,333

each layer consists of a single LoRA.334

• Combined Domain Model (C): A unified335

translation model pre-trained and fine-tuned336

on a blend of data from the Subtitle, IT, Medi-337

cal, and Law domains. Similar to the Single338

1https://www.statmt.org/wmt22/
translation-task.html#download

Domain Models, this model does not employ 339

the MoE architecture and features a single 340

LoRA per layer. 341

• MoE Domain Model (M): This model is 342

constructed by combining the LoRAs from 343

SSub, SIT , SMed and SLaw) in an MoE ar- 344

chitecture, followed by Expert Margin Opti- 345

mization training. Two key distinctions from 346

our approach: firstly, this model combines in- 347

dependently trained domain models, whereas 348

our method involves first training a general 349

model and then domain-specific training on 350

top of the general model, with a retained gen- 351

eral expert; secondly, while every layer in this 352

model is a MoE-LoRA, our approach utilizes 353

MoE-LoRA only in the higher layers, result- 354

ing in fewer parameters and reduced compu- 355

tational overhead. 356

• Ours: As defined above. 357

4.4 Setup 358

We conducted experiments using Hugging Face 359

Transformers with open-source LLMs from the 360

Llama family (Touvron et al., 2023a,b), specifi- 361

cally leveraging Llama2-7b and Llama3-8b with 362

matched parameters as our base models. 363

Our experiments were based on the llama- 364

recipes project code. The original code supported 365

only the StepLR learning rate update strategy, 366

where the learning rate was updated after each 367

epoch, suitable for the Instruction-tuning phase 368

but too slow for extensive pre-training on large 369

datasets. To address this, we expanded the code to 370

flexibly accommodate strategies like WarmupLR, 371

ConstantLR, and step-level updates. 372

During the general pre-training stage, we em- 373

ployed the WarmupLR strategy with 2000 warmup 374

steps, a learning rate of 1e-4, using a batch strategy 375

with packing, batch size of 8, a context length of 376

4096, and trained for 2 epochs. For the domain pre- 377

training stage, the learning strategy was switched 378

to ConstantLR with a learning rate of 1e-6, while 379

other settings remained consistent with the previ- 380

ous stage. 381

In the Instruction-Tuning and Expert Margin 382

Optimization phases, the batch strategy shifted to 383

padding, allowing for a reduced context length of 384

512, enabling a larger batch size of 64. We used the 385

StepLR strategy with a learning rate of 1e-4. For 386

comparative experiments, we adjusted the number 387
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Models MoE
Subtitle IT Medical Law

BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Our Recipe with Backbone Model: Llama2-7B

B % 20.99 79.75 18.23 75.16 14.22 69.88 16.23 70.3
SSub % 24.80 81.97 20.8 78.94 15.56 72.37 17.44 73.35
SIT % 23.02 80.25 22.91 81.53 15.05 73.09 16.82 72.75
SMed % 20.08 74.96 17.20 73.99 18.71 75.93 15.43 70.18
SLaw % 19.92 76.78 17.04 74.86 12.75 69.06 20.77 79.06
C % 23.75 80.70 21.55 81.13 17.38 75.64 18.76 77.41
M " 25.01 82.13 23.3 81.88 19.24 76.31 21.19 79.19
Ours " 26.41 83.46 24.21 82.41 19.78 78.20 21.55 80.61
- EMO % 25.59 82.36 23.15 82.68 19.00 77.89 21.36 78.89

Table 1: Overall results for the English-German translation direction.

Models MoE
Subtitle IT Medical Law

BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Our Recipe with Backbone Model: Llama2-7B

B % 22.48 78.93 20.71 75.66 16.82 71.32 18.89 70.84
SSub % 26.56 82.09 23.67 79.07 18.30 74.14 20.17 73.88
SIT % 24.42 79.30 25.45 81.74 17.88 74.47 19.61 73.16
SMed % 21.56 74.32 19.84 74.17 21.28 77.87 18.21 70.74
SLaw % 21.71 75.68 19.81 74.89 15.34 70.98 23.47 79.84
C % 24.33 80.00 24.06 81.51 19.6 76.98 21.28 77.92
M " 26.78 82.19 25.64 81.82 21.83 78.16 23.95 79.93
Ours " 27.26 82.80 26.10 82.35 22.28 79.05 24.15 80.97
- EMO % 26.56 82.46 25.88 81.65 21.38 78.54 24.09 80.48

Our Recipe with Backbone Model: Llama3-8B
B % 26.52 81.06 24.98 80.93 20.65 77.25 22.49 79.01
SSub % 26.77 82.18 25.27 81.29 19.48 76.32 21.19 77.02
SIT % 26.35 81.36 25.83 81.6 18.91 75.52 20.71 75.17
SMed % 25.43 80.53 24.57 80.42 21.36 77.91 20.42 74.74
SLaw % 25.86 80.69 24.54 80.86 18.33 75.87 23.66 80.01
C % 26.61 81.36 25.20 81.40 20.90 77.63 22.68 79.03
M " 26.87 82.20 26.23 82.00 22.04 78.39 24.06 80.12
Ours " 27.53 82.81 26.64 82.11 22.28 79.07 24.3 80.21
- EMO % 26.70 82.50 26.11 81.54 21.89 78.91 24.21 79.94

Table 2: Overall results for the English-Chinese translation direction.

of epochs or steps based on the dataset’s size to388

ensure a consistent total number of trained tokens.389

4.5 Results and Analysis390

As shown in Table 1 and Table 2, our training strat-391

egy ultimately achieved the best results compared392

to other methods, demonstrating the effectiveness393

of our approach.394

The Single Domain Models SSub, SIT , SMed,395

SLaw performed well on their respective domain 396

test sets but showed relatively weaker performance 397

in other domains, with some results even inferior 398

to the Base Model B. While the Combined Do- 399

main Model (C) demonstrated more balanced re- 400

sults overall, it consistently underperformed com- 401

pared to the specific Single Domain Models in their 402

respective domains. These observations underscore 403

the existence of conflicts between domains. The 404
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MoE Domain Model (M) outperformed the Single405

Domain Models, highlighting the effectiveness of406

MoE in mitigating domain conflicts.407

We conducted experiments using Llama2-7B408

and Llama3-8B as Backbone Models in English-to-409

Chinese translation. Our training strategies yielded410

the best results, showcasing the versatility of our411

approach. It is worth noting that Llama3-8B of-412

fers significant enhancements in multilingual capa-413

bilities compared to Llama2-7B, resulting in our414

method showing relatively lower gains when evalu-415

ated on Llama3-8B.416

In conclusion, these experiments collectively es-417

tablish our approach as an effective method for418

enhancing LLM multi-domain translation capabili-419

ties.420

4.5.1 Measuring the Effectiveness of General421

Pre-training422

As shown in Table 1 and Table 2, - EMO repre-423

sents our approach of utilizing domain experts to424

generate outputs for each domain’s test set. As425

mentioned earlier, domain experts undergo gen-426

eral pre-training before domain-specific training.427

Remarkably, our findings reveal that these results428

outperform the performance of the Single Domain429

Models in each domain, thus validating the effec-430

tiveness of General Pre-training.431

4.5.2 Measuring the Effectiveness of EMO432

As demonstrated in Table 1 and Table 2, following433

the application of EMO, the BLEU scores decrease434

by 0.2 to 1.2 on test sets with varying language435

directions, while the COMET scores decrease by436

0.2 to 0.6. These results serve as evidence of the437

effectiveness of the EMO strategy. Furthermore,438

The MoE Domain Model (M), which combines439

LoRA parameters from Single Domain Models to440

form MoE LoRA before undergoing EMO training,441

yields superior results across various domains com-442

pared to the Single Domain Model. This further443

validates the effectiveness of the EMO strategy.444

4.5.3 Understanding the Top-k Inference445

As depicted in Figure 4 and Figure 5, we have446

computed the variations in BLEU and COMET447

scores when employing different k values in the448

English-German direction. It is evident that the449

results are noticeably lower when k=1. However,450

when k=2, the results are already quite satisfactory.451

Further increasing k leads to fluctuations in results,452

with a marginal overall improvement observed.453

Figure 4: BLEU under different k.

Figure 5: COMET under different k.

4.5.4 Understanding the Router 454

Expert Subtitle IT Medical Law
General 27.03% 26.32% 19.74% 21.21%
Subtitle 45.05% 21.93% 5.92% 7.88%

IT 22.52% 43.86% 5.26% 7.27%
Medical 2.25% 4.39% 65.79% 3.03%

Law 3.15% 3.51% 3.29% 60.61%

Table 3: The overall results.

We were intrigued by how much knowledge each 455

domain actually acquired from different experts, 456

prompting an analysis of the results at the final 457

layer of the Router. By examining token-level prob- 458

ability distributions across experts, the findings are 459

summarized in Table 3. 460

It was observed that for each domain, the proba- 461

bility of selecting an expert from the same domain 462

was the highest. Additionally, all domains were 463

found to source knowledge from the General Ex- 464

pert. Specifically, the Medical and Law domains 465

exhibited a stronger inclination towards choosing 466

experts within their respective fields. On the other 467

hand, the Subtitle and IT domains displayed a ten- 468

dency to mutually select experts. 469
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5 Conclusion470

In conclusion, our study presented a approach by471

incorporating MoE-LoRA into Translation upon472

LLM, which effectively mitigates domain conflicts.473

By proposing a training methodology that com-474

bines general pre-training with domain-specific475

training and strategically placing MoE LoRAs476

in higher layers while maintaining a General477

LoRA for preserving common knowledge, we have478

achieved significant improvements in domain per-479

formance while reducing computational complex-480

ity. Additionally, the introduction of the Expert481

Margin Optimization strategy has led to the suc-482

cessful training of a robust Router policy that con-483

sistently outperforms individual experts in diverse484

scenarios. These findings highlight the efficacy485

of our methods in enhancing model performance486

and addressing domain-specific challenges in nat-487

ural language processing tasks. In summary, our488

research offers valuable insights and techniques489

that may potentially contribute to the progress of490

machine learning and language processing in the491

future.492

6 Related Work493

There are some studies on the combination of MoE494

and LoRA.495

When MOE Meets LLMs(Liu et al., 2024):496

This study focuses on the integration of MoE and497

LoRA, where a Router is utilized to learn a Task498

ID. During inference, only one expert is activated499

for final prediction.500

MoELoRA(Luo et al., 2024): Another research501

effort incorporates Contrastive Learning into MoE502

training, aiming to encourage each expert to cap-503

ture distinct knowledge representations.504

MoLE(Wu et al., 2024b): A different study ex-505

plores the use of a top-k strategy during prediction,506

as briefly mentioned in our preceding discussion.507

Mix-of-show(Gu et al., 2023): This work delves508

more into the realm of image processing, employ-509

ing LoRA as a feature extractor within MoE to510

facilitate the intricate fusion of multiple features.511

7 Limitations512

However, it is important to acknowledge the limita-513

tions of our research. One limitation is the scope of514

our dataset, which may not fully represent all pos-515

sible scenarios. These limitations should be taken516

into consideration when interpreting the results and517

implications of our study.518
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Figure 6: Data format.
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