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Abstract

In the realm of machine translation utilizing
Large Language Models (LLMs), the stan-
dard workflow involves Cross-Lingual Align-
ment learning followed by Instruction-tuning.
Low-Rank Adaptation (LoRA) has been a
widely-used and effective method for fine-
tuning LLMs. However, LoRA alone exhibits
limited benefits when confronted with multi-
task or multi-domain scenarios. Given the
prevalent existence of multi-domain challenges
in machine translation, this paper focuses on
enhancing the multi-domain translation capa-
bilities of LLMs. We extend LoRA to Mixture
of Experts (MoE) architecture, defined as MoE-
LoRA, to address domain conflicts in multi-
domain settings. Our approach involves intro-
ducing MoE-LoRA solely at higher layers to
target specific domain-related knowledge ac-
quisition, preceded by General Cross-Lingual
Alignment during the training process. Particu-
larly, we propose a methodology called Expert
Margin Optimization (EMO) to facilitate the
transfer of additional knowledge from other
domains to enhance the inputs specific to a do-
main. Experimental validations conducted on
the English-to-German and English-to-Chinese
translation directions using the Llama2-7B and
Llama3-8B models demonstrate consistent im-
provements in BLEU and COMET scores, high-
lighting the efficacy of our proposed approach.

1 Introduction

Generative (decoder-only) large language models
(LLMs), such as GPT models (Brown et al., 2020),
PalLM (Chowdhery et al., 2023), LLaMA (Touvron
et al., 2023a,b), and others, have garnered signif-
icant attention and shown substantial progress in
the field, capturing the fascination of researchers.
Leveraging fine-tuning techniques, LLMs have ex-
hibited remarkable performance across a spectrum
of NLP tasks. Among these techniques, LoRA (Hu
et al., 2022) (Low-Rank Adaptation) has emerged

as an efficient and widely adopted method for fine-
tuning. LoRA involves freezing the pretrained
model weights and incorporating trainable rank
decomposition matrices within each layer of the
Transformer architecture, leading to a significant
reduction in the number of trainable parameters
for downstream tasks. However, as underscored
by recent studies (Biderman et al., 2024), "LoRA
Learns Less and Forgets Less." While LoRA excels
in preserving the inherent capabilities of the base
model and mitigating forgetfulness, it tends to ac-
quire comparatively less performance improvement
than full fine-tuning.

Machine translation (MT) predominantly relies
on encoder-decoder architectures, as evidenced by
prominent models like M2M (Fan et al., 2021),
MTS5 (Xue et al., 2021), and NLLB (Costa-jussa
et al., 2022). Although these models have reached
a high level of maturity, avoiding overfitting and
achieving robust out-of-domain performance re-
main significant challenges in machine translation.
Notably, the state-of-the-art (SOTA) model NLLB
covers only four major domains such as news, for-
mal speech, and health. Recently, the field has
shifted towards utilizing LLMs for MT. While em-
ploying small yet high-quality instruction data for
supervised fine-tuning (SFT) of LLMs has shown
effectiveness in various NLP tasks (Taori et al.,
2023; Touvron et al., 2023b), it poses challenges
in the context of translation. Fine-tuning LLMs
with a small amount of high-quality translation in-
struction data still falls short when compared to
state-of-the-art encoder-decoder MT models (Yang
et al., 2023; Zeng et al., 2023; Zhang et al., 2023).

Guo et al. (2024) introduced a Three-Stages
Translation Pipeline (TP3) to boost translation ca-
pabilities of LLMs, emphasizing the significance
of its second stage, Continual Pre-training with In-
terlinear Text Format Documents, achieving com-
parable quality to the leading model NLLB. TP3
also integrates LoRA to enhance its efficiency, with



this stage being considered as Cross-Lingual Align-
ment learning. Building upon this work, we delve
into the challenges posed by multi-domain scenar-
ios.

In this study, we extend the concept of LoRA
to the Mixture of Experts (MoE) architecture. A
typical MoE setup includes multiple expert net-
works and a router. Here, we view LoRA as an
expert, training multiple LoRAs to learn Cross-
Lingual Alignment from data across various do-
mains. We hypothesize the existence of common-
alities in alignment among different domains, em-
phasizing the need to learn this shared knowledge
first. To address this, we configure the lower layers
of the model to utilize a unified LoRA, referred to
as General LoRA, while reserving MoE LoRA for
the higher layers. Experimental outcomes validate
the efficacy of our approach in effectively man-
aging domain conflicts. Our training process en-
compasses General Cross-Lingual Alignment Pre-
training, Domain-Motivated Experts Pre-training
and Instruction-Tuning, and Expert Margin Op-
timization (EMO). For detailed insights into our
training strategies, please refer to Section 3.3. For
the inference phase, we introduce two modes: one
leveraging all trained MoE LoRAs and the other
utilizing only the top-k MoE LoRAs to reduce com-
putational overhead.

Our main contributions are summarized as fol-
lows:

* To the best of our knowledge, we are the first
to introduce MoE-LoRA to Translation upon
LLM to alleviate domain conflicts.

* We propose a training strategy that in-
volves initial general pre-training followed
by domain-specific training, further enhanc-
ing domain performance. By utilizing MoE
LoRAs only in the higher layers, we reduce
computational complexity while preserving a
General LoRA within these LoRAs to retain
the acquired common knowledge.

* We introduce a novel Expert Margin Optimiza-
tion strategy aimed at training a more effec-
tive Router policy, ensuring that the combined
output of multiple experts consistently outper-
forms that of a single specific expert.

* Experimental validation conducted on the
Llama2-7B and Llama3-8B confirms the ef-
fectiveness of our approach, underpinning the
robustness of our methodology.

2 Background

2.1 TP3

Guo et al. (2024) propose a novel training
paradigm, consisting of Three-Stages Translation
Pipeline (TP3), to boost the translation capabilities
of LLMs. The training paradigm includes:

Stage 1: Continual Pre-training using Exten-
sive Monolingual Data. This stage aims to expand
the multilingual generation capabilities of LLMs.
While it is inherently related to machine translation
tasks, it is not essential.

Stage 2: Continual Pre-training with Interlinear
Text Format Documents. They construct interlinear
text format from sentence-aligned bilingual paral-
lel data and utilize them for continual pre-training
of LLMs. Experimental results demonstrate the
critical importance of this stage, resulting in a sig-
nificant improvement in translation quality, partic-
ularly for English-Other translations.

Stage 3: Leveraging Source-Language Consis-
tent Instruction for Supervised Fine-Tuning. In
this stage, they discover that setting instructions
consistent with the source language benefits the
supervised fine-tuning process.

As Stage 1 is high compute and not essential, we
only use there Stage 2 and Stage 3 in our paper. We
consider there Stage 2 as Cross-Lingual Alignment
learning.

3 Method

In this section, we will begin by outlining the model
architecture. Following that, we will delve into the
challenges of MoE. Finally, we will introduce the
training and inference procedures in detail.

3.1 Model Architecture

Our model is illustrated in Figure 1. We employ
LoRA for acquiring knowledge of Cross-Lingual
Alignment and the instruction for the translation
task. In each of the lower m layers, we designate a
single LoRA, known as the General LoRA, while
in the higher n layers, we expand LoRA into MoE
architecture, referred to as MoE-LoRA.

For MoE-LoRA, we define a total of d + 1 ex-
perts, where one aligns with the lower layers to
capture General knowledge, and the other d ex-
perts are dedicated to learning the knowledge of d
different domains. Additionally, for MoE-LoRA,
we train a gate function as the Router. We employ
a linear transformation to learn a weight vector, de-



Output [

Houtput J

.................

Pretrained

ixn Transformer Layer Weights

—

[ hautput

i xm Transformer Layer

Pretrained
Weights

Sampled

\y Trainable

2ic Frozen

J : O Data

Figure 1: The overall of our model architecture.

noted as w € R4*!, representing the contribution
weights for these experts.

3.2 Challenge of MoE

One challenge of the Mixture of Experts (MoE)
model is the phenomenon where the gating net-
work displays no preference for any particular ex-
pert, resulting in a seemingly random routing pro-
cess. To address this issue, a straightforward ap-
proach is to individually train each expert for spe-
cific tasks or domains, and then train a task- or
domain-motivated gate as the router. However, this
approach essentially reduces the model to a sin-
gle expert, negating the contributions of different
experts. This contradicts the original intent of em-
ploying MoE, which aims to decompose large prob-
lems into smaller sub-problems, effectively solve
these sub-problems with different experts, and then
combine their outputs. Therefore, learning an effec-
tive routing strategy poses a significant challenge
within the MoE architecture.

3.3 Training

In the field of translation, it is common practice
to conduct pre-training in a general domain before
training in a specific domain to prevent overfit-
ting of the model to the particular domain. There-
fore, our training process begins with General
Cross-Lingual Alignment Pre-training, followed
by Domain-Motivated Experts Pre-training and
Instruction-Tuning. Finally, we propose a strat-

egy called Expert Margin Optimization to train the
Router.

3.3.1 General Cross-Lingual Alignment
Pre-training

In the General Cross-Lingual Alignment Pre-
training phase, we utilize multiple LoRAs mod-
ules at each layer of the LLM, collectively referred
to as the General LoRA. The weights assigned to
the LoRA modules at the i-th layer are denoted as
A; and B; respectively. These modules undergo
training on a mixed dataset sampled from various
domains. Data processing involves the use of an
Interlinear Text Format similar to Stage 2 of TP3.
For detailed formatting guidelines, please consult
Appendix A.

3.3.2 Domain-Motivated Experts Pre-training
and Instruction-Tuning

During the Domain-Motivated Experts Pre-training
and Instruction-Tuning process, we commence
with establishing LoRA experts in the higher n
layers, each corresponding to a specific domain.
Concurrently, we preserve the General LoRA in
these layers as a General Expert, yielding a total
of d + 1 experts per layer, where d represents the
total number of domains. The weights of these ex-
perts are initialized based on those of the General
LoRA. Each Domain LoRA expert is denoted by
A;_i and B;_j, where i denotes the layer number
and k signifies the domain index.



Subsequently, we proceed with Continued Pre-
training for each expert using domain-specific data.
The training is conducted sequentially with the
same data format as in the prior phase. In this
stage, the lower m layers of the pre-trained Gen-
eral LoRA are frozen from parameter updates, and
a slightly reduced learning rate is employed for
training.

In the Instruction-Tuning phase, we focus on
training with a compact, high-quality dataset com-
prising translation instructions spanning various
domains. It is important to note that instruction
data from different domains is utilized to train the
respective domain experts, while a combination
of data from all domains is employed to train the
General Expert. Throughout this phase, both the
weights of the General LoRA and the MoE LoRA
are updated simultaneously.

3.3.3 Expert Margin Optimization

input

input

Figure 2: EMO.

We hold all trained LoRAs and pre-trained
model parameters constant, focusing exclusively on
optimizing the gating function’s parameters. In the
previous stage, each expert was independently en-
gaged in translating task within a specific domain,
having been thoroughly trained. In this phase, we
aim to maximize learning from other experts while
being cautious of potential quality degradation in
the current domain due to inputs from experts in
different domains, see Figure 2. As a result, we
impose a constraint to ensure that the benefits de-
rived from multiple experts are at least as good
as those from a single expert. Thus, given a set

of source sentences z, targets y and the model F
with a learnable parameters 6, we introduce Ex-
pert Margin Optimization, with the following loss
function:

min £(Fp)
0 (D
s.t. E(w)ND[log ]:0(3/|$) - g(y‘$)] <€

where € is a small positive constant and G repre-
sents F with the single domain expert.
Then the final EMO loss is as following:

min N>~— 2
LNLL

which includes one preference learning term
Lyrefer and one negative log likelihood term

LNLL-

3.4 Inference
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Figure 3: Infer mode.

Inspired by Wu et al. (2024a), we introduce two
inference modes in our study. In the first mode, we
utilize all trained LoR As with a learned gating func-
tion, retaining their unique features with assigned
weights as illustrated in Figure 3(a). In the second
mode, we only retain the top-k LoRAs and readjust
the distributed weights. These dual modes enable
our model to adapt to various situations, providing
a versatile and adaptable strategy for composing
effective LoORAs as shown in Figure 3(b).



4 [Experiments

4.1 Datasets

When it comes to the datasets, we have utilized
the parallel data for English-German and English-
Chinese provided by WMT22 !'. Following the
approach of Aharoni and Goldberg (2020), we em-
ployed Bert for unsupervised domain clustering,
resulting in the division of the data into four do-
mains: Subtitle, IT, Medical, and Law.

To mitigate discrepancies arising from vary-
ing data volumes, we conducted domain-experts
pre-training on 500w paired sentences for each
domain. Using COMET(Rei et al., 2020) from
Unbabel/wmt22-cometkiwi-da, we scored and
ranked the data for each domain, selecting the top
1w sentences with the highest scores as high-quality
instruction data.

Our test set comprises Sk sentences per domain.
Similar to the methodology of Aharoni and Gold-
berg (2020), none of the sentences from the test
set, pre-training data, and instruction data overlap.
This precaution is crucial due to the susceptibility
of neural models to memorization and hallucina-
tion, as observed by Miiller et al. (2020).

4.2 Evaluation Metrics

For automatic evaluation, we utilize Sacre-
BLEU, which implements BLEU(Papineni et al.,
2002), and COMET(Rei et al., 2020) from
Unbabel/wmt22-comet-da. SacreBLEU calcu-
lates similarity based on n-gram matching, while
COMET leverages cross-lingual pretrained models
for evaluation.

4.3 Compared Baselines

* Base Model (B): A model trained directly
using multi-domain instruction data.

¢ Single Domain Models (Ss.p, Sirs Sireds
Sraw): Individual domain-specific translation
models pre-trained and fine-tuned on data
from the Subtitle, IT, Medical, and Law do-
mains. Not utilizing the MoE architecture,
each layer consists of a single LoRA.

¢ Combined Domain Model (C): A unified
translation model pre-trained and fine-tuned
on a blend of data from the Subtitle, IT, Medi-
cal, and Law domains. Similar to the Single

1h'ctps ://www.statmt.org/wmt22/
translation-task.html#download

Domain Models, this model does not employ
the MoE architecture and features a single
LoRA per layer.

e MoE Domain Model (M): This model is
constructed by combining the LoRAs from
Ssub> S17> Shed and Spqy) in an MoE ar-
chitecture, followed by Expert Margin Opti-
mization training. Two key distinctions from
our approach: firstly, this model combines in-
dependently trained domain models, whereas
our method involves first training a general
model and then domain-specific training on
top of the general model, with a retained gen-
eral expert; secondly, while every layer in this
model is a MoE-LoRA, our approach utilizes
MOoE-LoRA only in the higher layers, result-
ing in fewer parameters and reduced compu-
tational overhead.

e Ours: As defined above.

4.4 Setup

We conducted experiments using Hugging Face
Transformers with open-source LLMs from the
Llama family (Touvron et al., 2023a,b), specifi-
cally leveraging Llama2-7b and Llama3-8b with
matched parameters as our base models.

Our experiments were based on the llama-
recipes project code. The original code supported
only the StepLR learning rate update strategy,
where the learning rate was updated after each
epoch, suitable for the Instruction-tuning phase
but too slow for extensive pre-training on large
datasets. To address this, we expanded the code to
flexibly accommodate strategies like WarmupLR,
ConstantLR, and step-level updates.

During the general pre-training stage, we em-
ployed the WarmupLR strategy with 2000 warmup
steps, a learning rate of le-4, using a batch strategy
with packing, batch size of 8, a context length of
4096, and trained for 2 epochs. For the domain pre-
training stage, the learning strategy was switched
to ConstantL.R with a learning rate of 1e-6, while
other settings remained consistent with the previ-
ous stage.

In the Instruction-Tuning and Expert Margin
Optimization phases, the batch strategy shifted to
padding, allowing for a reduced context length of
512, enabling a larger batch size of 64. We used the
StepLR strategy with a learning rate of le-4. For
comparative experiments, we adjusted the number
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Models MoE Subtitle IT Medical Law
BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Our Recipe with Backbone Model: Llama2-7B
B X 2099 79.75 18.23 75.16 14.22 69.88 16.23 70.3
Ssws X 2480 8197 208 7894 1556 7237 1744 7335
Sir X 230 80.25 2291 81.53 15.05 73.09 16.82 72.75
SMed X 2008 74.96 17.20 73.99 18.71 75.93 15.43 70.18
S Law X 19.92 76.78 17.04 74.86 12.75 69.06 20.77 79.06
c . X 2375 8070 2155 8113 1738 7564 1876 7741
M v/ 2501 8213 233  81.88 1924 7631 21.19 7919
Ours 4 26.41 83.46 24.21 82.41 19.78 78.20 21.55 80.61
-EMO X 2559 82.36 23.15 82.68 19.00 77.89 21.36 78.89
Table 1: Overall results for the English-German translation direction.
Models MoE Subtitle IT Medical Law
BLEU COMET BLEU COMET BLEU COMET BLEU COMET
Our Recipe with Backbone Model: Llama2-7B
B X 2248 78.93 20.71 75.66 16.82 71.32 18.89 70.84
Sew X 2656 8209 2367 7907 1830 7414 2017 7388
St X 2442 79.30 2545 81.74 17.88 74.47 19.61 73.16
SMed X 2156 74.32 19.84 74.17 21.28 77.87 18.21 70.74
S Law X 2171 75.68 19.81 74.89 15.34 70.98 23.47 79.84
c . X 2433 8000 2406 8151 196 7698 2128  77.92
M v/ 2678 8219 2564 81.82 21.83 7816 2395 7993
Ours 4 27.26 82.80 26.10 82.35 22.28 79.05 24.15 80.97
-EMO X 26.56 82.46 25.88 81.65 21.38 78.54 24.09 80.48
Our Recipe with Backbone Model: Llama3-8B
B X 2652 81.06 24.98 80.93 20.65 77.25 22.49 79.01
Ssws X 2677 8218 2527 8129 1948 7632 2119 77.02
Sir X 2635 81.36 25.83 81.6 18.91 75.52 20.71 75.17
SMed X 2543 80.53 24.57 80.42 21.36 7791 20.42 74.74
S Law X 2586 80.69 24.54 80.86 18.33 75.87 23.66 80.01
c . X 2661 8136 2520 8140 2090 77.63 2268  79.03
M v/ 2687 8220 2623 8200 2204 7839 2406 80.12
Ours 4 27.53 82.81 26.64 82.11 22.28 79.07 24.3 80.21
-EMO X 26.70 82.50 26.11 81.54 21.89 78.91 24.21 79.94

Table 2: Overall results for the English-Chinese translation direction.

of epochs or steps based on the dataset’s size to
ensure a consistent total number of trained tokens.

4.5 Results and Analysis

As shown in Table 1 and Table 2, our training strat-
egy ultimately achieved the best results compared
to other methods, demonstrating the effectiveness
of our approach.

The Single Domain Models Ssup, SiT> Sireds

Sraw performed well on their respective domain
test sets but showed relatively weaker performance
in other domains, with some results even inferior
to the Base Model B. While the Combined Do-
main Model (C) demonstrated more balanced re-
sults overall, it consistently underperformed com-
pared to the specific Single Domain Models in their
respective domains. These observations underscore
the existence of conflicts between domains. The



MoE Domain Model (M) outperformed the Single
Domain Models, highlighting the effectiveness of
MoE in mitigating domain conflicts.

We conducted experiments using Llama2-7B
and Llama3-8B as Backbone Models in English-to-
Chinese translation. Our training strategies yielded
the best results, showcasing the versatility of our
approach. It is worth noting that Llama3-8B of-
fers significant enhancements in multilingual capa-
bilities compared to Llama2-7B, resulting in our
method showing relatively lower gains when evalu-
ated on Llama3-8B.

In conclusion, these experiments collectively es-
tablish our approach as an effective method for
enhancing LLM multi-domain translation capabili-
ties.

4.5.1 Measuring the Effectiveness of General

Pre-training

As shown in Table 1 and Table 2, - EMO repre-
sents our approach of utilizing domain experts to
generate outputs for each domain’s test set. As
mentioned earlier, domain experts undergo gen-
eral pre-training before domain-specific training.
Remarkably, our findings reveal that these results
outperform the performance of the Single Domain
Models in each domain, thus validating the effec-
tiveness of General Pre-training.

4.5.2 Measuring the Effectiveness of EMO

As demonstrated in Table 1 and Table 2, following
the application of EMO, the BLEU scores decrease
by 0.2 to 1.2 on test sets with varying language
directions, while the COMET scores decrease by
0.2 to 0.6. These results serve as evidence of the
effectiveness of the EMO strategy. Furthermore,
The MoE Domain Model (M), which combines
LoRA parameters from Single Domain Models to
form MoE LoRA before undergoing EMO training,
yields superior results across various domains com-
pared to the Single Domain Model. This further
validates the effectiveness of the EMO strategy.

4.5.3 Understanding the Top-% Inference

As depicted in Figure 4 and Figure 5, we have
computed the variations in BLEU and COMET
scores when employing different k values in the
English-German direction. It is evident that the
results are noticeably lower when k=1. However,
when k=2, the results are already quite satisfactory.
Further increasing k leads to fluctuations in results,
with a marginal overall improvement observed.

1 2 3 a 5

Figure 5: COMET under different k.

4.5.4 Understanding the Router

Expert  Subtitle IT Medical Law
General 27.03% 2632% 19.74% 21.21%
Subtitle 45.05% 21.93% 592%  7.88%
IT 22.52% 43.86% 526% @ 1.27%
Medical 2.25% 4.39% 65.79%  3.03%
Law 3.15% 351% 3.29% 60.61%

Table 3: The overall results.

We were intrigued by how much knowledge each
domain actually acquired from different experts,
prompting an analysis of the results at the final
layer of the Router. By examining token-level prob-
ability distributions across experts, the findings are
summarized in Table 3.

It was observed that for each domain, the proba-
bility of selecting an expert from the same domain
was the highest. Additionally, all domains were
found to source knowledge from the General Ex-
pert. Specifically, the Medical and Law domains
exhibited a stronger inclination towards choosing
experts within their respective fields. On the other
hand, the Subtitle and IT domains displayed a ten-
dency to mutually select experts.



5 Conclusion

In conclusion, our study presented a approach by
incorporating MoE-LoRA into Translation upon
LLM, which effectively mitigates domain conflicts.
By proposing a training methodology that com-
bines general pre-training with domain-specific
training and strategically placing MoE LoRAs
in higher layers while maintaining a General
LoRA for preserving common knowledge, we have
achieved significant improvements in domain per-
formance while reducing computational complex-
ity. Additionally, the introduction of the Expert
Margin Optimization strategy has led to the suc-
cessful training of a robust Router policy that con-
sistently outperforms individual experts in diverse
scenarios. These findings highlight the efficacy
of our methods in enhancing model performance
and addressing domain-specific challenges in nat-
ural language processing tasks. In summary, our
research offers valuable insights and techniques
that may potentially contribute to the progress of
machine learning and language processing in the
future.

6 Related Work

There are some studies on the combination of MoE
and LoRA.

When MOE Meets LLMs(Liu et al., 2024):
This study focuses on the integration of MoE and
LoRA, where a Router is utilized to learn a Task
ID. During inference, only one expert is activated
for final prediction.

MOoELoRA(Luo et al., 2024): Another research
effort incorporates Contrastive Learning into MoE
training, aiming to encourage each expert to cap-
ture distinct knowledge representations.

MoLE(Wu et al., 2024b): A different study ex-
plores the use of a top-k strategy during prediction,
as briefly mentioned in our preceding discussion.

Mix-of-show(Gu et al., 2023): This work delves
more into the realm of image processing, employ-
ing LoRA as a feature extractor within MoE to
facilitate the intricate fusion of multiple features.

7 Limitations

However, it is important to acknowledge the limita-
tions of our research. One limitation is the scope of
our dataset, which may not fully represent all pos-
sible scenarios. These limitations should be taken
into consideration when interpreting the results and
implications of our study.
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Figure 6:

Data format.
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