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ABSTRACT

Conventional reinforcement learning (RL) needs an environment to collect fresh
data, which is impractical when an online interaction is costly. Offline RL pro-
vides an alternative solution by directly learning from the logged dataset. How-
ever, it usually yields unsatisfactory performance due to a pessimistic update
scheme or/and the low quality of logged datasets. Moreover, how to evaluate
the policy under the offline setting is also a challenging problem. In this paper,
we propose a unified framework called Adaptive Q-learning for effectively tak-
ing advantage of offline and online learning. Specifically, we explicitly consider
the difference between the online and offline data and apply an adaptive update
scheme accordingly, i.e., a pessimistic update strategy for the offline dataset and
a greedy or no pessimistic update scheme for the online dataset. When combin-
ing both, we can apply very limited online exploration steps to achieve expert
performance even when the offline dataset is poor, e.g., random dataset. Such a
framework provides a unified way to mix the offline and online RL and gain the
best of both worlds. To understand our framework better, we then provide an ini-
tialization following our framework. Extensive experiments are done to verify the
effectiveness of our proposed method.

1 INTRODUCTION

Conventional online reinforcement learning (RL) methods (Haarnoja et al., 2018; Fujimoto et al.,
2018) usually learn from experiences generated by interactions with the online environment. They
are impractical in some real-world applications, e.g., dialog (Jaques et al., 2019) and educa-
tion (Mandel et al., 2014), where interactions are costly. Recently, offline RL (Levine et al., 2020)
has aroused much attention. It targets the above challenge by making the agent learn from an offline
dataset collected by other policies in a purely data-driven manner. The difference between online
RL and offline RL is shown in Figure 1.

Existing offline RL studies try to target the distribution mismatch or out-of-distribution actions issue
by employing a pessimistic update scheme (Kumar et al., 2019; 2020) or in combination with imi-
tation learning (Fujimoto et al., 2019). However, when the dataset is fixed, offline RL cannot learn
the optimal policy (Kidambi et al., 2020), and even worse, when the dataset’s quality is poor, offline
RL usually gains a relatively bad performance (Kumar et al., 2020; Fu et al., 2020; Levine et al.,
2020). On the other hand, it is challenging to evaluate the learned policy when learning totally from
the offline dataset. Even though some research topics, e.g., off-policy evaluation (Dann et al., 2014),
study how to evaluate the learned policy without the interaction with the environment, it is still not
ideal for the practical purpose.

Some recent works try to address the above issues by employing an offline-online setting. Such
methods (Lee et al., 2021; Nair et al., 2020) focus on pre-training a policy using the offline dataset
and fine-tuning the policy through further online interactions. Even though their methods allevi-
ate the above issues to some extent, their main bottleneck is that they do not consider the different
characteristics of offline and online data. For instance, pre-existing offline data can prevent agents
from converging prematurely due to the potential diverse offline dataset, while online data can im-
prove stability and accelerate convergence. Generally, these different data are mixed and used by a
pessimistic strategy to update the policy in their methods, which may be problematic since using a
pessimistic strategy for online data may harm the policy performance (Nair et al., 2020). Moreover,
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Figure 1: Online RL collect the data by interacting with the environment and they don’t utilize the
existing logged dataset while offline RL only exploit logged dataset without any future performance
improvement. By contrast, we focus on obtaining the best of both worlds.

with sufficiently large and diverse offline data, a high-performing policy can be learned just using a
pure online RL algorithm (Agarwal et al., 2020). And the online near-on-policy data also play a key
role in improving the RL algorithm’s stability (Fujimoto et al., 2019). Hence, we should take full
advantage of both offline and online dataset.

To tackle the above problems, in this paper, we emphasize that online and offline RL should be cou-
pled organically. First, a separate updating strategy should be employed for online and offline data,
respectively, considering their different characteristics. To do so, we present a framework called
adaptive Q-learning that integrates the advantage of offline learning and online learning effectively.
When learning from the offline dataset, we conduct a pessimistic update strategy. In contrast, we
use a greedy or non-pessimistic update strategy when learning from the online dataset. Second,
we design a novel replay buffer to distinguish the offline from online datasets in a simple way. By
utilizing such a novel framework and buffer design, the agent can achieve an expert policy using lim-
ited online interaction steps regardless of the quality of the offline dataset. In the experiments, our
proposed framework can achieve better performance by using only one fifth number of interactions
compared with the previous method (Nair et al., 2020).

Our contributions can be summarized as below:

• We propose a unified framework called Adaptive Q-learning that can effectively benefit
from both the offline dataset and limited number of online interaction data.

• Based on the general framework, we initialize a practical algorithm, called Greedy-
conservative Q-ensemble learning (GCQL) that builds on top of State-of-the-Art offline
RL and online RL method.

• We empirically verify the effectiveness of our method by comprehensive experiments on
the popular continuous control tasks MuJoCo (Todorov et al., 2012) with offline dataset
coming from D4RL (Fu et al., 2020).

2 RELATED WORK

Online RL In general, online RL algorithms can be divided into two categories, i.e., on-policy
and off-policy algorithms. On-policy methods (Schulman et al., 2015; 2017) update the policy
using data collected by its current behavior policy. As ignoring the logged data collected by its
history behaviour policies, they usually have a lower sample efficiency than the off-policy RL. On
the other hand, off-policy methods (Fujimoto et al., 2018; Chen et al., 2021) enable the policy to
learn from experience collected by history behavior polices, however, they cannot learn well from
history trajectories collected by other agents’ behavior policies (Fujimoto et al., 2019; Kumar et al.,
2020). Consequently, the need for huge online interaction makes online RL impractical for some
real-world applications,such as dialog agents (Jaques et al., 2019) or education system (Mandel
et al., 2014).

Offline RL Offline RL algorithms assume the online environment is unavailable and learn policies
only from the pre-collected dataset. As the value estimation error cannot be corrected using online
interactions here, these methods tend to utilize a pessimistic updating strategy to relieve the distri-
bution mismatch problem (Fujimoto et al., 2019; Kumar et al., 2019). To implement such a strategy,
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model-free offline RL methods generally employ value or policy penalties to constrain the updated
policy close to the data collecting policy (Wu et al., 2019; Kumar et al., 2020; Fujimoto et al., 2019;
He & Hou, 2020). And model-based methods use predictive models to estimate uncertainties of
states and then update the policy in a pessimistic way based on them (Kidambi et al., 2020; Yu et al.,
2020). Those offline RL methods cannot guarantee a good performance, especially when the data
quality is poor (Kumar et al., 2020). Besides, policy evaluation when the online environment is un-
available is also challenging. Even though off-policy evaluation (OPE) methods (Dann et al., 2014)
present alternative solutions, they are still far from perfect.

Above issues of online and offline RL motivate us to investigate the offline-online setting.

Offline-online RL Lee et al. (2021) and Nair et al. (2020) focus on the mixed setting where the
agent is first learned from the offline dataset, and then trained online. Nair et al. (2020) propose
an advantage-weighted actor-critic (AWAC) method that restricts the policy to select actions close
to those in the offline data by an implicit constraint. When online interactions are available, such
conservative constraint may have adverse effects on the performance. Lee et al. (2021) employ a
balanced replay scheme to address the distribution shift issue. It uses the offline data by only se-
lecting near-on-policy samples. Unlike these two works, our method utilizes all online and offline
data, and explicitly considers the difference between them by adaptively applying non-conservative
or conservative updating schemes, respectively. Matsushima et al. (2021) focuses on optimizing
deployment efficiency, i.e., the number of distinct data-collection policies used during learning, by
employing a behavior-regularized policy updating strategy. Although in terms of deployment effi-
ciency, their work is between online and offline RL, it ignores existing offline dataset, and dose not
focusing on improving sample efficiency, while both are addressed in our paper. Some works (Zhu
et al., 2019; Vecerik et al., 2017; Rajeswaran et al., 2018; Kim et al., 2013) can also learn from on-
line interactions and offline data. However, they need expert demonstrations instead of any dataset,
and this limits their applicability.

3 PRELIMINARIES

In RL, the interaction between the agent and environment is usually modelled using Markov de-
cision process (MDP) (S,A, pM , r, γ), with state space S (state s ∈ S), action space A (action
a ∈ A). At each discrete time step, the agent takes an action a based on the current state s, and
the state changes into s′ according to the transition dynamics pM (s′ | s, a), and the agent receives
a reward r (s, a, s′) ∈ R. The agent’s objective is to maximize the return, which is defined as
Rt =

∑∞
i=t+1 γ

ir (si, ai, si+1), where t is the time step, and γ ∈ [0, 1) is the discounted factor.
The mapping from s to a is denoted by the stochastic policy π : a ∼ π(·|s). Policy can be stochastic
or deterministic, and we use the stochastic from in this paper for generality. Each policy π have a
corresponding action-value function Qπ(s, a) = Eπ [Rt | s, a], which is the expected return follow-
ing the policy after taking action a in state s. The policy π’s action-value function can be updated
by the Bellman operator T π:

T πQ(s, a) = Es′ [r + γQ (s′, π (s′))] (1)

Q-learning (Sutton & Barto, 2011) directly learns the optimal action-value function Q∗(s, a) =
maxπ Q

π(s, a), and such Q-function can be modelled using neural networks (Mnih et al., 2015).

In principle, off-policy methods, such as Q-learning, can utilize experiences collected by any poli-
cies, and thus they usually maintain a replay buffer B to store and repeatedly learn from experiences
collected by behavior policies (Agarwal et al., 2020). Such capability also enables off-policy meth-
ods to be used in the offline setting, by storing offline data into the buffer B, and not updating the
buffer during learning since no further interactions are available here (Levine et al., 2020). But this
simple adjusting cannot guarantee the agent to have a reasonable performance, especially when the
dataset is not diverse (Kumar et al., 2020; Agarwal et al., 2020; Fujimoto et al., 2019), and this is
also the problem tackled in most offline RL works.

In this paper, we focus on the offline-online setting, where the agent is first learned from the offline
dataset, and then trained via online interactions. And without additional remarks, online RL meth-
ods refer to off-policy algorithms in the rest of this paper. We only use off-policy methods because
they can make more use of offline data than on-policy ones for gaining high sample efficiency, and
on-policy methods are not compatible with our proposed framework introduced next.
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Figure 2: Learning curves on the D4RL (Fu et al., 2020) task Hopper-medium-replay-v0. The re-
ported results are the averaged performance across five random seeds and the shaded areas represent
the standard deviation across different seeds. The normalized score of 100 is the average returns of
a domain-specific expert while normalized score of 0 corresponds to the average returns of an agent
taking actions uniformly at random across the action space.

4 METHODOLOGY

In this section, we first give an illustrative example to explain our motivation. After that, we in-
troduce the proposed general framework, namely Adaptive Q-learning, trying to couple online and
offline RL in an organic way. To implement the proposed framework, then we present the Online-
Offline Replay Buffer, targeting retaining and distinguishing online and offline data simultaneously.
And finally we incorporate State-of-the-Art (SotA) online and offline RL algorithms into the frame-
work, and introduce the proposed Greedy-Conservative Q-ensemble Learning algorithm in detail.

4.1 AN ILLUSTRATIVE EXAMPLE

We test the SotA offline RL method conservative Q-learning (CQL) (Kumar et al., 2020) and on-
line RL method Randomized Ensembled Double Q-learning (REDQ) (Chen et al., 2021) under the
offline-online setting. Here, we choose a widely used locomotion task Hopper (Todorov et al., 2012),
and use the dataset hopper-medium-replay-v0 in the D4RL benchmark (Fu et al., 2020) as the offline
dataset, which contains diverse experiences from different policies. Specifically, we first pre-train
the agent with the offline dataset for 100K steps. Then, the agent is fine-tuned online by alternately
conducting the interaction and updating process, where the agent interacts with the environment
for 1K steps, and is updated for 10K steps. Such interleaving process ends until the total online
interaction steps reach 90K.

The offline-online setting in this task should be a favourable one for policy learning, because both di-
verse offline data and online interactions are available here. Therefore, we expect following results:
the initial offline training using the dataset will provide a relatively good but not perfect starting
point for the agent, and then the agent can be further improved by the online alternating process
since online interaction data can be obtained, and finally we may acquire a well-performed policy,
even with normalized score close to or better than 100 (i.e., the performance of an expert).

Nonetheless, experiment results are shown in Figure 2, and they do not totally meet our expectation.
Specifically, starting points of two curves show that the offline algorithm CQL and online algorithm
REDQ can both obtain normalized scores greater than 0 (i.e., the performance of a random policy)
but not very high after the initial offline training process. This result is what we expected, because
CQL is designed for the offline setting, and online off-policy methods, such as REDQ, can also learn
from the diverse and large offline dataset even though it is fixed (Agarwal et al., 2020). However,
although the starting scores (below 30) are far from the expert score and leave a large room for
further promoting, both algorithms have troubles in the following online process. REDQ suffers
from severe instability issue and its performance drops significantly during online learning, and in
the end, the policy almost degenerates into a random one. One the other hand, even though the CQL
agent can keep stable during learning, its improvement is very limited.
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These results indicate that pure online RL algorithm may be problematic for effectively handling
offline data and online interaction data in a single training process, and pure offline RL algorithm
cannot make good use of valuable online interaction data due to its conservative updating strategy.
Such observation motivates us to couple them in an organic way.

4.2 ADAPTIVE Q-LEARNING FRAMEWORK

In this subsection, we introduce our proposed framework. The underlying idea is simple and can
be described as follows. When the agent learns from online and near-on-policy interaction data, we
choose a more greedy or no-pessimistic updating strategy, since these data reflect the truth situation
of the current policy. By contrast, when data are sampled from the offline dataset, we tend to use
a more pessimistic updating strategy. Through such an adaptive way, we can make full use of
both online and offline data, and explicitly consider their differences by separately applying suitable
updating schemes.

Then, we give a formalization for above intuition based on Q-learning, and call this framework
Adaptive Q-learning. The updating function of this framework can be defined by the following
equation:

Qk+1 ← argmin
Qk

[
A(Qk) +W(s, a)B(Qk)

]
. (2)

This function consists of two terms. The first term A(Q) stands for the greedy updating strategy,
which is a regular updating function for Q-value in online RL algorithms, e.g., the bellman error.
The second term B(Q) stands for the pessimistic updating strategy, which is the value penalty, e.g.,
the Q-value regularizer (Wu et al., 2019). Besides, a weight function W(s, a) is applied to the
penalty term B(Q). This weight function is based on the sampled data type. Specifically, when we
use online and near-on-policy interaction data, W(s, a) will be a smaller value, and the updating
relies more on the objective of online RL, leading to a relatively greedy strategy. On the contrary,
when we use offline data, W(s, a) will be a bigger value, and the updating strategy is relatively
pessimistic.

Remark: Our behind intuition can also be easily formalized via the policy learning objective. Such
variant of our framework can be denoted by πk+1 ← argmaxπk

[
A
(
πk
)
+W(s, a)B

(
πk
)]

, where
A(πk) is a objective for the policy in online RL and B(πk) is a policy penalty term. We also provide
a implementation for this variant based on TD3+BC algorithm (Fujimoto & Gu, 2021), and our
framework can largely boost its performance within limited environment steps in most tasks (see
Appendix D for details).

4.3 OORB: ONLINE-OFFLINE REPLAY BUFFER

Next, we introduce a simple but effective online-offline replay buffer (OORB) to distinguish between
near-on-policy online interaction data, and the offline data. OORB consists of two replay buffers.
One is the online buffer that collects the online interaction data. Besides, to ensure the data in the
online buffer is near-on-policy, we set it to be very small, and fresh online interaction data are stored
into it by following a first-in-first-out rule. The other is the offline buffer consisting of the newly
generated online interaction data and the offline dataset which may come from any policies.

Data are sampled from OORB following a Bernoulli distribution, which means that with a proba-
bility p, they are sampled from the online buffer, and with probability 1− p, they are sampled from
the offline buffer. To benefit from both online and offline data in a balanced way, we empirically set
p to 0.5, and its effect on the final performance is further tested via ablation studies in Section 5.4.
Results show that p = 0.5 works best overall, which confirms our claim that offline data and online
interaction data are both crucial for policy learning.

4.4 GCQL: GREEDY-CONSERVATIVE Q-ENSEMBLE LEARNING

We then present a detailed implementation of our proposed framework, by incorporating SotA of-
fline RL algorithm CQL and online RL algorithm REDQ, and we call our implemented algorithm
Greedy Conservative Q-ensemble Learning (GCQL). Specifically, we use the updating function in
REDQ as the first term A(Q) in Equation 2, and use the conservative regularizer in CQL as the
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Algorithm 1: Greedy-conservative Q-ensemble learning
1 Initialization:
2 Initialize policy πφ, ensemble Q functions Qθi , i ∈ N ,offline training steps t
3 Online exploration steps Ton, offline update steps Toff
4 Initialize Tinitial, sample possibility p, start sampling steps:Ts
5 Initialize online buffer Bon to empty, offline buffer Boff ← offline dataset
6 Initialize online buffer size Son ← 0
7 Initial offline learning:
8 Train the agent for Tinitial steps using the logged dataset
9 while True do

10 t← 0
11 Explore Ton steps online
12 Store the Ton steps experiences to both online buffer Bon and offline buffer Boff
13 Son ← Son + Ton
14 for t < Toff do
15 Sample a random value ps ∼ U(0, 1)
16 if ps < p and Son > Ts then
17 Sample a batch (s, a) from online buffer Bon
18 Set theW(s, a) to 0
19 end
20 else
21 Sample a batch (s, a) from offline buffer Boff
22 Set theW(s, a) to 1
23 end
24 Update the Q functions by Equation 3
25 Update the policy by Equation 5
26 t += 1
27 end
28 end

second term B(Q), and the updating function can be presented by the following equation:

Qk+1
i ← argmin

Qki

{
1

2
Es,a,s′∼DOORB,a′∼πφ(·|s′)

[(
Qki (s,a)− B̂πQ̂k(s′,a′)

)2]
+ W(s,a)αEs∼DOORB

[
log
∑
ȧ

exp(Q(s, ȧ))− Ea∼DOORB [Q(s,a)]

]} (3)

where the action ȧ is sampled from current policy, i.e., ȧ ∼ πφ(·|s), s ∼ DOORB and DOORB is the
OORB replay buffer. B̂πQ̂k(s,a) is defined by

r + γ min
i∈M

Q̂ki (s
′,a′) , a′ ∼ πφ (· | s′) . (4)

We randomly select two Q functions from the ensemble Q functions and the M represents the
selected Q functions’ index just following the REDQ’s setting. The Q̂ stands for a target Q function
for stabilizing the learning process (Mnih et al., 2015). The update function of policy is defined by:

πφk+1
← argmax

πφk

E [Ei∈N [Qi (s,a)]− α log πφk (a | s)] , a ∼ πφk (· | s) (5)

When sampled data is from the online replay buffer, we set W(s, a) to 0, otherwise 1, and this is
why we use the term ”greedy-conservative” to describe our algorithm. In another word, we greedy
exploit the near-on-policy online data by the regular online RL scheme without any conservative
regularizer. On the contrary, we conservatively exploit the offline data by employing the offline RL
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Environment GCQL (Ours) CQL REDQ AWAC

walker2d-random 53±27 16±9 19±3 12
hopper-random 84±40 11±1 12±17 63
halfcheetah-random 100±2 46±4 34±1 53

walker2d-medium 94±6 83±1 5±3 80
hopper-medium 105±1 100±1 3±1 91
halfcheetah-medium 66±3 42±0 46±1 41

walker2d-expert 117±2 113±1 6±1 103
hopper-expert 114±1 113±1 12±6 112
halfcheetah-expert 110±0 108±1 1±0 106

walker2d-medium-expert 117±4 113±1 12±3 78
hopper-medium-expert 115±1 114±0 40±15 112
halfcheetah-medium-expert 107±1 95±2 9±3 41

walker2d-medium-replay 114±6 64±5 53±11 -
hopper-medium-replay 96±9 39±4 38±9 -
halfcheetah-medium-replay 59±2 50±0 50±1 -

Table 1: Performance of policies trained using 90K online interaction steps for GCQL, CQL and
REDQ, and 500K online interaction for AWAC whose results are taken from Nair et al. (2020).±
captures the standard deviation over seeds. The reported results are the average test performance
across five random seeds in our experiments. The learning curves are showed in Appendix A.

regularizer. Formally, this strategy can be explained by Definition 6:

W(s, a)←
{
0 if (s, a) is sampled from the online replay buffer
1 otherwise

(6)

Algorithm 1 summarizes our proposed method. And we also explain the main steps in the Algorithm
as follows. Firstly, We first learn from the existing offline data for Tinitial steps to leverage them. To
make good use of the offline data, we usually set a big value for Tinitial, e.g., 100K. Secondly, We
begin the following interleaving learning steps. We conduct the online exploration process for Ton
steps and store the new experiences to OORB. We set the online exploration steps Ton to a small
value, e.g., 1K. In contrast, the offline update step Toff is set to be larger than Ton, e.g., 10K.
We sample a batch from our OORB and update the policy and Q-functions. If the sampled batch
comes from the online buffer, then we set the weight value W(s, a) to 0, otherwise 1. The above
interleaving learning process is repeated till the end.

5 EXPERIMENTS

In this section, we design experiments to verify the effectiveness of our method from three perspec-
tives: (1) the performance superiority compared with other baselines; (2) ablation studies to test the
effect of each component used in our method. (3) the influence of different hyper-parameters.

5.1 SETTINGS

All experiments were done on the continuous control benchmark MuJoCo (Todorov et al., 2012),
and the offline dataset comes from the popular offline RL benchmark D4RL (Fu et al., 2020). To
make interaction limited, we set the number of online interaction steps for each iteration to a small
value, i.e., 1K. To better exploit the offline dataset, we set the number of offline training steps to a
large value, i.e., 100K for Tintial, and 10K for Toff . The training process ends until the number
of all online interaction steps reach 90K, and the number of all offline updating steps reach 1M .
For OORB, we set p = 0.5 as described in Section 4.3. The size of the online buffer is set to 20K,
and the size of the offline buffer is set to 3M . For other hyper-parameters, we follow the default
setting in baselines, except for the number of the ensemble Q, which is 5 in our experiments. The
above configurations keep same across all tasks. As our main purpose is to present a new framework
instead of gaining SotA performance, we do not fine-tune these hyper-parameters for each task.
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(a) walker2d-expert (b) walker2d-medium-expert (c) walker2d-medium-replay

(d) walker2d-medium (e) walker2d-random

Figure 3: Ablation study on Walker2d task.

5.2 OVERALL PERFORMANCE

4 methods, i.e., GCQL (Ours), CQL, REDQ and AWAC, are tested on 3 tasks, i.e., Walker, Hop-
per and HalfCheetah, and each task has 5 different kinds of offline dataset, which are random-v0,
medium-v0, expert-v0, medium-expert-v0, and medium-replay-v0. As online interactions are avail-
able, we take the maximization over testing scores during the whole training process, and report
the average of these max scores across five different seeds in Table 1. Please note that the results of
AWAC are directly taken from their paper (Nair et al., 2020). As shown in Table 1, our method gains
a better performance than the baselines in all tasks. Particularly, for the medium-replay and random
dataset, our GCQL outperforms the baselines by a large margin. By contrast, CQL also achieves
an expert performance on the high-quality dataset, e.g., expert and medium-expert tasks. For these
high-quality datasets, our method achieves a comparable or slightly better performance over CQL. In
terms of the online RL method REDQ, it fails on almost all tasks. Even though we employ an online
limited exploration process, conventional online RL cannot benefit from such limited experiences.
On the contrary, such limited online experiences could bring catastrophic consequences, e.g., on the
halfcheetah-medium-replay task, REDQ suffers a significant instability issue. On the other hand,
when dataset quality is high, e.g., expert or medium-expert dataset, our method can leverage the
benefit of the offline RL that gains an expert performance with very limited interaction steps, such
as around 20K steps. By contrast, when dataset quality is poor, e.g., the random or medium-replay
dataset, only our method can learn effectively with less than 100K online steps, which demonstrate
that our method can take the advantage of the limited online experiences as much as possible. In
sum, our method can benefit the most from the limited online experience while still maintain the
offline learning’s ability. Besides, We also include the corresponding learning curves in Appendix
A for a comprehensive understanding. These learning curves demonstrate that our method also
achieves a better final average score at the last iteration in most cases.

5.3 ABLATION STUDIES

To investigate each component’s effect in our method, we conduct the following ablation studies.
To do this, we design four variants of our method. GCQL WE: GCQL without the ensemble where
we only use two Q functions same as the setting of CQL. GCQL WO: GCQL without the online
replay buffer where we only sample from the offline buffer. GCQL WG: GCQL without the greedy
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strategy where we fix the weighedW to 1. GCQL WC: GCQL without the conservative term where
we fix theW to 0.

We test all 5 kinds of offline dataset for the task Walker2d, and results averaged over three differ-
ent random seeds are shown in Figure 3. First, from Figure 3, it is easy to deduce that when the
quality of data is high, i.e., including the expert dataset, almost all variants perform well except the
GCQL WC. The underlying reason is obvious as we firstly pre-train the policy by offline data. If
no such conservative restriction, then the pre-trained policy would suffer a serious distribution mis-
match issue (Kumar et al. (2020)) and gain a poor pre-trained policy at last. By contrast, with the
conservative scheme, a relatively good pre-trained policy can be obtained. That is why the starting
point of GCQL WC is much lower than other variants.

Secondly, when the dataset is diverse, which means that the dataset is collected by different behavior
policies and includes data from different distributions, such as the medium-replay dataset, the greedy
scheme (including the offline-online replay buffer and the greedy update strategy) plays an important
role while the ensemble feature seems have limited influence. For instance, the performance declined
significantly for GCQL WO and GCQL WG on walker2d-medium-replay.

Thirdly, when the dataset is not diverse, such as the medium dataset which is collected by one
medium policy, almost all curves grow slowly except GCQL WC. This may be caused by the charac-
teristic of the dataset, because dataset diversity plays an important role for policy learning (Agarwal
et al., 2020). However, according to the learning curves, our method still has a clear performance
improvement at the latter learning stage. For the random dataset, all variants fail due to the poor
quality of the dataset. Instead, our method achieves a clear performance improvement under it,
which indicates that every component is important in this case.

5.4 ANALYSIS ON HYPER-PARAMETERS

As we do not fine-tune the hyper-parameters in our experiments, one may wonder how the hyper-
parameters affect the performance. To this end, we conduct experiments to investigate their influ-
ence. The detailed learning curves are shown in Appendix B. As one main characteristic of our
method is limited interaction, we fix the online exploration step as 1K for each iteration in the Mu-
JoCo benchmark. We then try settings with different initial update steps Tinitial, offline update steps
Toff , and sample possibility from online buffer p. Specifically, Tinitial is tested with 2e5 and 5e4;
Toff is tested with 2e4 and 5e3; p is tested with 0.3, 0.4, 0.5, 0.6 and 0.7.

According to the evaluation results, we may conclude that the performance of our method is insen-
sitive to the Tinitial and Toff , especially for datasets with not poor quality, e.g., datasets except
for the random one. By contrast, p has a bigger impact on the performance. Particularly, methods
with higher p performs better on the medium and medium-replay tasks, while the ones with lower p
perform better on the other tasks. That indicates that when dataset quality is very good or very bad,
methods with more offline updating perform better. On the other hand, only the variant of p = 0.5
can achieve a clear performance improvement in both the medium and random datasets. Overall, the
default setting p = 0.5 is the most suitable setting, which indicates that taking the online and offline
data equally important may be the best option in most cases.

6 CONCLUSIONS

This paper first discusses the disadvantages of online and offline RL, and the shortcomings of current
offline-online RL methods. Then, considering that offline and near-on-policy online datasets are both
crucial for policy learning, we propose a unified framework that can adaptively and effectively take
advantage of both offline and online data. Furthermore, a practical algorithm based on the framework
that greedily exploits the online experiences and conservatively exploits the offline experiences is
presented. We conduct comprehensive experiments to verify the effectiveness of our method. In
terms of the shortcomings, although our framework can take advantage of the offline and limited
online dataset, the quality of the offline dataset still has a big impact on the performance. For
instance, our method is relatively slower when learning from the random dataset. At last, we hope
this work could contribute to bridging the gap between the practice and DRL research.
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A LEARNING CURVES FOR ALL TASKS

Figure 4 indicate the whole learning curves for GCQL, REDQ and CQL.

B EXTRA EXPERIMENTS ON HYPER-PARAMETERS

Figure 5 and 6 shows the different hyper-parameters’ setting on the performance.

C EXTRA ABLATION STUDY ON HALFCHEETAH

Figure 7 present extra ablation study on halfcheetah. GCQL WG is the GCQL without the greedy
update scheme but still with the online-offline two-level buffer, while GCQL WGO is the GCQL
without the greedy scheme and online-offline replay buffer. From Figure 7 c,d,e, it is clear that the
greedy scheme plays an important role in boosting the performance when the dataset is not optimal
or near-optimal. On the other hand, from Figure 7 d, we can see the online-offline replay buffer is
crucial for stabilizing the learning process where the GCQL WGO and CQL suffer serious stability
issues which may be caused by extrapolation error (Fujimoto et al., 2019).
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(a) walker2d-random (b) hopper-random (c) halfcheetah-random

(d) walker2d-medium (e) hopper-medium (f) halfcheetah-medium

(g) walker2d-expert (h) hopper-expert (i) halfcheetah-expert

(j) walker2d-medium-expert (k) hopper-medium-expert (l) halfcheetah-medium-expert

(m) walker2d-medium-replay (n) hopper-medium-replay (o) halfcheetah-medium-replay

Figure 4: Training curves on D4RL continuous control benchmark across five random seeds. The
shaded areas represent the standard deviation across different seeds.
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(a) walker2d-expert (b) walker2d-medium-expert (c) walker2d-medium-replay

(d) walker2d-medium (e) walker2d-random

Figure 5: Different offline update steps on walker2d task across three random seeds.GCQL-
i2e5:initial steps is 2e5, GCQL-i5e4: initial stesp is 5e4, GCQL-o2e4: offline update steps is 2e4,
GCQL-o5e3: offline update steps is 5e3.

(a) walker2d-expert (b) walker2d-medium-expert (c) walker2d-medium-replay

(d) walker2d-medium (e) walker2d-random

Figure 6: Different possibility setting on walker2d task across three random seeds.GCQL-X means
the sample possibility from online buffer is X.

D EXTRA EXPERIMENTS ON TD3+BC

Extra experiments on TD3+BC (Fujimoto & Gu, 2021) (without states normalization) for the sub-
optimal dataset, i.e., random, medium, and medium-replay, as the offline RL method can per-
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(a) halfcheetah-expert (b) halfcheetah-medium-expert (c) halfcheetah-medium-replay

(d) halfcheetah-medium (e) halfcheetah-random

Figure 7: Extra ablation study on Halfcheetah.

form very well on expert or near-on-expert datasets. We simply apply our greedy-conservative
learning framework and online-offline buffer to TD3+B without any fine-tuning and call it:
TD3BCGC. The learning curves indicate that our greedy-conservative framework can still im-
prove policy-penalty-based methods by a large margin in most tasks. Moreover, it is very
simple to apply our framework to TD3+BC where less than 20 lines codes are needed. We
modify the policy objective from π = argmaxπE(s,a)∼D

[
λQ(s, π(s))− (π(s)− a)2

]
to π =

argmaxπE(s,a)∼D
[
λQ(s, π(s))−W(s, a)(π(s)− a)2

]
, where W(s, a) follows our setting intro-

duced in section 4.4.

E EXTRA EXPERIMENTS ON OFF2ON

Here, we compared our method with OFF2ON (Lee et al., 2021) which also employs an online
update scheme to fine-tune a pre-trained agent. As the author did not provide the pre-training code
for CQL, we use the pre-trained CQL agents provided by OFF2ON’s author for online fine-tuning.
All the hyper-parameters follow the default setting except the online interaction steps. Figure 9
indicated the whole learning curves. From this figure, we can see GCQL has a comparable or better
performance than OFF2ON. It is worth noting that OFF2ON fine-tuning their method, for instance,
the critic’s neural network architecture is different from the original CQL paper. In contrast, we did
not fine-tune these parameters, and all settings are the same for all tasks.

F EXTRA EXPERIMENTS ON OFFICIAL ONLINE REDQ

In this section, we conduct extra experiments on the online REDQ (Chen et al., 2021). To guarantee
the reproduction performance, we use the official code from the author, and all hyper-parameters
are following its default setting, e.g., the number of Q is 10, and the utd-ratio is 20. In contrast,
the number of Q in GCQL is 5, and utd-ratio is 10. REDQ-ONLINE updates its policy following
a conventional online RL setting, i.e., learning from scratch without the offline pre-training. From
Figure 10, it is clear that GCQL achieves a better or comparable performance than REDQ-ONLINE
except for the walker2d-random dataset. Specifically, when the dataset is good, e.g., including the
expert dataset, GCQL can outperform the REDQ-ONLINE by a large margin. On the other hand,
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(a) walker2d-random (b) hopper-random (c) halfcheetah-random

(d) walker2d-medium (e) hopper-medium (f) halfcheetah-medium

(g) walker2d-medium-replay (h) hopper-medium-replay (i) halfcheetah-medium-replay

Figure 8: Training curves for TD3+BC on D4RL continuous control benchmark across three ran-
dom seeds on tasks: random-v0, medium-v0 and medium-replay-v0. TD3BC means the algorithm
introduced by (Fujimoto & Gu, 2021) while TD3BCGC is the variant with our greedy-conservative
framework and online-buffer replay buffer.

when the offline dataset is of poor quality, i.e., random-dataset, GCQL can still learn a comparable
or better policy than REDQ-ONLINE in two of three tasks, i.e., the hopper-random and halfcheetah-
random.
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(a) walker2d-random (b) hopper-random (c) halfcheetah-random

(d) walker2d-medium (e) hopper-medium (f) halfcheetah-medium

(g) walker2d-medium-replay (h) hopper-medium-replay (i) halfcheetah-medium-replay

(j) walker2d-medium-expert (k) hopper-medium-expert (l) halfcheetah-medium-expert

Figure 9: Training curves for OFF2ON (Lee et al., 2021) on D4RL continuous control benchmark
across four random seeds on tasks: random-v0, medium-v0,medium-expert-v0 and medium-replay-
v0.
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(a) walker2d-random (b) hopper-random (c) halfcheetah-random

(d) walker2d-medium (e) hopper-medium (f) halfcheetah-medium

(g) walker2d-expert (h) hopper-expert (i) halfcheetah-expert

(j) walker2d-medium-expert (k) hopper-medium-expert (l) halfcheetah-medium-expert

(m) walker2d-medium-replay (n) hopper-medium-replay (o) halfcheetah-medium-replay

Figure 10: REDQ-ONLINE learn from scratch without the offline pre-training while GCQL and
CQL learn from both offline dataset and online interaction.
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