
Under review as a conference paper at ICLR 2022

ADAPTIVE Q-LEARNING FOR INTERACTION-LIMITED
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional reinforcement learning (RL) needs an environment to collect fresh
data, which is impractical when an online interaction is costly. Offline RL pro-
vides an alternative solution by directly learning from the logged dataset. How-
ever, it usually yields unsatisfactory performance due to a pessimistic update
scheme or/and the low quality of logged datasets. Moreover, how to evaluate
the policy under the offline setting is also a challenging problem. In this paper,
we propose a unified framework called Adaptive Q-learning for effectively tak-
ing advantage of offline and online learning. Specifically, we explicitly consider
the difference between the online and offline data and apply an adaptive update
scheme accordingly, i.e., a pessimistic update strategy for the offline dataset and
a greedy or no pessimistic update scheme for the online dataset. When combin-
ing both, we can apply very limited online exploration steps to achieve expert
performance even when the offline dataset is poor, e.g., random dataset. Such a
framework provides a unified way to mix the offline and online RL and gain the
best of both worlds. To understand our framework better, we then provide an ini-
tialization following our framework. Extensive experiments are done to verify the
effectiveness of our proposed method.

1 INTRODUCTION

Conventional online reinforcement learning (RL) methods (Haarnoja et al., 2018; Fujimoto et al.,
2018) usually learn from experiences generated by interactions with the online environment. They
are impractical in some real-world applications, e.g., dialog (Jaques et al., 2019) and educa-
tion (Mandel et al., 2014), where interactions are costly. Recently, offline RL (Levine et al., 2020)
has aroused much attention. It targets the above challenge by making the agent learn from an offline
dataset collected by other policies in a purely data-driven manner. The difference between online
RL and offline RL is shown in Figure 1.

Existing offline RL studies try to target the distribution mismatch or out-of-distribution actions issue
by employing a pessimistic update scheme (Kumar et al., 2019; 2020) or in combination with imi-
tation learning (Fujimoto et al., 2019). However, when the dataset is fixed, offline RL cannot learn
the optimal policy (Kidambi et al., 2020), and even worse, when the dataset’s quality is poor, offline
RL usually gains a relatively bad performance (Kumar et al., 2020; Fu et al., 2020; Levine et al.,
2020). On the other hand, it is challenging to evaluate the learned policy when learning totally from
the offline dataset. Even though some research topics, e.g., off-policy evaluation (Dann et al., 2014),
study how to evaluate the learned policy without the interaction with the environment, it is still not
ideal for the practical purpose.

Some recent works try to address the above issues by employing an offline-online setting. Such
methods (Lee et al., 2021; Nair et al., 2020) focus on pre-training a policy using the offline dataset
and fine-tuning the policy through further online interactions. Even though their methods allevi-
ate the above issues to some extent, their main bottleneck is that they do not consider the different
characteristics of offline and online data. For instance, pre-existing offline data can prevent agents
from converging prematurely due to the potential diverse offline dataset, while online data can im-
prove stability and accelerate convergence. Generally, these different data are mixed and used by a
pessimistic strategy to update the policy in their methods, which may be problematic since using a
pessimistic strategy for online data may harm the policy performance (Nair et al., 2020). Moreover,

1

Under review as a conference paper at ICLR 2022

Figure 1: Online RL collect the data by interacting with the environment and they don't utilize the
existing logged dataset while of�ine RL only exploit logged dataset without any future performance
improvement. By contrast, we focus on obtaining the best of both worlds.

with suf�ciently large and diverse of�ine data, a high-performing policy can be learned just using a
pure online RL algorithm (Agarwal et al., 2020). And the online near-on-policy data also play a key
role in improving the RL algorithm's stability (Fujimoto et al., 2019). Hence, we should take full
advantage of both of�ine and online dataset.

To tackle the above problems, in this paper, we emphasize thatonline and of�ine RL should be cou-
pled organically. First, a separate updating strategy should be employed for online and of�ine data,
respectively, considering their different characteristics. To do so, we present a framework called
adaptive Q-learning that integrates the advantage of of�ine learning and online learning effectively.
When learning from the of�ine dataset, we conduct a pessimistic update strategy. In contrast, we
use a greedy or non-pessimistic update strategy when learning from the online dataset. Second,
we design a novel replay buffer to distinguish the of�ine from online datasets in a simple way. By
utilizing such a novel framework and buffer design, the agent can achieve an expert policy using lim-
ited online interaction steps regardless of the quality of the of�ine dataset. In the experiments, our
proposed framework can achieve better performance by using only one �fth number of interactions
compared with the previous method (Nair et al., 2020).

Our contributions can be summarized as below:

• We propose a uni�ed framework called Adaptive Q-learning that can effectively bene�t
from both the of�ine dataset and limited number of online interaction data.

• Based on the general framework, we initialize a practical algorithm, called Greedy-
conservative Q-ensemble learning (GCQL) that builds on top of State-of-the-Art of�ine
RL and online RL method.

• We empirically verify the effectiveness of our method by comprehensive experiments on
the popular continuous control tasks MuJoCo (Todorov et al., 2012) with of�ine dataset
coming from D4RL (Fu et al., 2020).

2 RELATED WORK

Online RL In general, online RL algorithms can be divided into two categories, i.e., on-policy
and off-policy algorithms. On-policy methods (Schulman et al., 2015; 2017) update the policy
using data collected by its current behavior policy. As ignoring the logged data collected by its
history behaviour policies, they usually have a lower sample ef�ciency than the off-policy RL. On
the other hand, off-policy methods (Fujimoto et al., 2018; Chen et al., 2021) enable the policy to
learn from experience collected by history behavior polices, however, they cannot learn well from
history trajectories collected by other agents' behavior policies (Fujimoto et al., 2019; Kumar et al.,
2020). Consequently, the need for huge online interaction makes online RL impractical for some
real-world applications,such as dialog agents (Jaques et al., 2019) or education system (Mandel
et al., 2014).

Of�ine RL Of�ine RL algorithms assume the online environment is unavailable and learn policies
only from the pre-collected dataset. As the value estimation error cannot be corrected using online
interactions here, these methods tend to utilize a pessimistic updating strategy to relieve the distri-
bution mismatch problem (Fujimoto et al., 2019; Kumar et al., 2019). To implement such a strategy,

2

Under review as a conference paper at ICLR 2022

model-free of�ine RL methods generally employ value or policy penalties to constrain the updated
policy close to the data collecting policy (Wu et al., 2019; Kumar et al., 2020; Fujimoto et al., 2019;
He & Hou, 2020). And model-based methods use predictive models to estimate uncertainties of
states and then update the policy in a pessimistic way based on them (Kidambi et al., 2020; Yu et al.,
2020). Those of�ine RL methods cannot guarantee a good performance, especially when the data
quality is poor (Kumar et al., 2020). Besides, policy evaluation when the online environment is un-
available is also challenging. Even though off-policy evaluation (OPE) methods (Dann et al., 2014)
present alternative solutions, they are still far from perfect.

Above issues of online and of�ine RL motivate us to investigate the of�ine-online setting.

Of�ine-online RL Lee et al. (2021) and Nair et al. (2020) focus on the mixed setting where the
agent is �rst learned from the of�ine dataset, and then trained online. Nair et al. (2020) propose
an advantage-weighted actor-critic (AWAC) method that restricts the policy to select actions close
to those in the of�ine data by an implicit constraint. When online interactions are available, such
conservative constraint may have adverse effects on the performance. Lee et al. (2021) employ a
balanced replay scheme to address the distribution shift issue. It uses the of�ine data by only se-
lecting near-on-policy samples. Unlike these two works,our method utilizes all online and of�ine
data, and explicitly considers the difference between them by adaptively applying non-conservative
or conservative updating schemes, respectively. Matsushima et al. (2021) focuses on optimizing
deployment ef�ciency, i.e., the number of distinct data-collection policies used during learning, by
employing a behavior-regularized policy updating strategy. Although in terms of deployment ef�-
ciency, their work is between online and of�ine RL, it ignores existing of�ine dataset, and dose not
focusing on improving sample ef�ciency, while both are addressed in our paper. Some works (Zhu
et al., 2019; Vecerik et al., 2017; Rajeswaran et al., 2018; Kim et al., 2013) can also learn from on-
line interactions and of�ine data. However, they need expert demonstrations instead of any dataset,
and this limits their applicability.

3 PRELIMINARIES

In RL, the interaction between the agent and environment is usually modelled using Markov de-
cision process (MDP)(S; A ; pM ; r;), with state spaceS (states 2 S), action spaceA (action
a 2 A). At each discrete time step, the agent takes an actiona based on the current states, and
the state changes intos0 according to the transition dynamicspM (s0 j s; a), and the agent receives
a rewardr (s; a; s0) 2 R. The agent's objective is to maximize the return, which is de�ned as
Rt =

P 1
i = t +1 i r (si ; ai ; si +1), wheret is the time step, and 2 [0; 1) is the discounted factor.

The mapping froms to a is denoted by the stochastic policy� : a � � (�js). Policy can be stochastic
or deterministic, and we use the stochastic from in this paper for generality. Each policy� have a
corresponding action-value functionQ� (s; a) = E� [Rt j s; a], which is the expected return follow-
ing the policy after taking actiona in states. The policy� 's action-value function can be updated
by the Bellman operatorT � :

T � Q(s; a) = Es0 [r + Q (s0; � (s0))] (1)

Q-learning (Sutton & Barto, 2011) directly learns the optimal action-value functionQ� (s; a) =
max� Q� (s; a), and such Q-function can be modelled using neural networks (Mnih et al., 2015).

In principle, off-policy methods, such as Q-learning, can utilize experiences collected by any poli-
cies, and thus they usually maintain a replay bufferB to store and repeatedly learn from experiences
collected by behavior policies (Agarwal et al., 2020). Such capability also enables off-policy meth-
ods to be used in the of�ine setting, by storing of�ine data into the bufferB, and not updating the
buffer during learning since no further interactions are available here (Levine et al., 2020). But this
simple adjusting cannot guarantee the agent to have a reasonable performance, especially when the
dataset is not diverse (Kumar et al., 2020; Agarwal et al., 2020; Fujimoto et al., 2019), and this is
also the problem tackled in most of�ine RL works.

In this paper,we focus on the of�ine-online setting, where the agent is �rst learned from the of�ine
dataset, and then trained via online interactions. And without additional remarks, online RL meth-
ods refer to off-policy algorithms in the rest of this paper. We only use off-policy methods because
they can make more use of of�ine data than on-policy ones for gaining high sample ef�ciency, and
on-policy methods are not compatible with our proposed framework introduced next.

3

Under review as a conference paper at ICLR 2022

Figure 2: Learning curves on the D4RL (Fu et al., 2020) task Hopper-medium-replay-v0. The re-
ported results are the averaged performance across �ve random seeds and the shaded areas represent
the standard deviation across different seeds. The normalized score of 100 is the average returns of
a domain-speci�c expert while normalized score of 0 corresponds to the average returns of an agent
taking actions uniformly at random across the action space.

4 METHODOLOGY

In this section, we �rst give an illustrative example to explain our motivation. After that, we in-
troduce the proposed general framework, namely Adaptive Q-learning, trying to couple online and
of�ine RL in an organic way. To implement the proposed framework, then we present the Online-
Of�ine Replay Buffer, targeting retaining and distinguishing online and of�ine data simultaneously.
And �nally we incorporate State-of-the-Art (SotA) online and of�ine RL algorithms into the frame-
work, and introduce the proposed Greedy-Conservative Q-ensemble Learning algorithm in detail.

4.1 AN ILLUSTRATIVE EXAMPLE

We test the SotA of�ine RL method conservative Q-learning (CQL) (Kumar et al., 2020) and on-
line RL method Randomized Ensembled Double Q-learning (REDQ) (Chen et al., 2021) under the
of�ine-online setting. Here, we choose a widely used locomotion task Hopper (Todorov et al., 2012),
and use the dataset hopper-medium-replay-v0 in the D4RL benchmark (Fu et al., 2020) as the of�ine
dataset, which contains diverse experiences from different policies. Speci�cally, we �rst pre-train
the agent with the of�ine dataset for100K steps. Then, the agent is �ne-tuned online by alternately
conducting the interaction and updating process, where the agent interacts with the environment
for 1K steps, and is updated for10K steps. Such interleaving process ends until the total online
interaction steps reach90K .

The of�ine-online setting in this task should be a favourable one for policy learning, because both di-
verse of�ine data and online interactions are available here. Therefore, we expect following results:
the initial of�ine training using the dataset will provide a relatively good but not perfect starting
point for the agent, and then the agent can be further improved by the online alternating process
since online interaction data can be obtained, and �nally we may acquire a well-performed policy,
even with normalized score close to or better than100(i.e., the performance of an expert).

Nonetheless, experiment results are shown in Figure 2, and they do not totally meet our expectation.
Speci�cally, starting points of two curves show that the of�ine algorithm CQL and online algorithm
REDQ can both obtain normalized scores greater than0 (i.e., the performance of a random policy)
but not very high after the initial of�ine training process. This result is what we expected, because
CQL is designed for the of�ine setting, and online off-policy methods, such as REDQ, can also learn
from the diverse and large of�ine dataset even though it is �xed (Agarwal et al., 2020). However,
although the starting scores (below30) are far from the expert score and leave a large room for
further promoting, both algorithms have troubles in the following online process. REDQ suffers
from severe instability issue and its performance drops signi�cantly during online learning, and in
the end, the policy almost degenerates into a random one. One the other hand, even though the CQL
agent can keep stable during learning, its improvement is very limited.

4

Under review as a conference paper at ICLR 2022

These results indicate that pure online RL algorithm may be problematic for effectively handling
of�ine data and online interaction data in a single training process, and pure of�ine RL algorithm
cannot make good use of valuable online interaction data due to its conservative updating strategy.
Such observation motivates us to couple them in an organic way.

4.2 ADAPTIVE Q-LEARNING FRAMEWORK

In this subsection, we introduce our proposed framework. The underlying idea is simple and can
be described as follows. When the agent learns from online and near-on-policy interaction data, we
choose a more greedy or no-pessimistic updating strategy, since these data re�ect the truth situation
of the current policy. By contrast, when data are sampled from the of�ine dataset, we tend to use
a more pessimistic updating strategy. Through such an adaptive way, we can make full use of
both online and of�ine data, and explicitly consider their differences by separately applying suitable
updating schemes.

Then, we give a formalization for above intuition based on Q-learning, and call this framework
Adaptive Q-learning. The updating function of this framework can be de�ned by the following
equation:

Qk+1 arg min
Q k

�
A(Qk) + W(s; a)B(Qk)

�
: (2)

This function consists of two terms. The �rst termA(Q) stands for the greedy updating strategy,
which is a regular updating function for Q-value in online RL algorithms, e.g., the bellman error.
The second termB(Q) stands for the pessimistic updating strategy, which is the value penalty, e.g.,
the Q-value regularizer (Wu et al., 2019). Besides, a weight functionW(s; a) is applied to the
penalty termB(Q). This weight function is based on the sampled data type. Speci�cally, when we
use online and near-on-policy interaction data,W(s; a) will be a smaller value, and the updating
relies more on the objective of online RL, leading to a relatively greedy strategy. On the contrary,
when we use of�ine data,W(s; a) will be a bigger value, and the updating strategy is relatively
pessimistic.

Remark: Our behind intuition can also be easily formalized via the policy learning objective. Such
variant of our framework can be denoted by� k+1 arg max� k

�
A

�
� k

�
+ W(s; a)B

�
� k

��
, where

A(� k) is a objective for the policy in online RL andB(� k) is a policy penalty term. We also provide
a implementation for this variant based on TD3+BC algorithm (Fujimoto & Gu, 2021), and our
framework can largely boost its performance within limited environment steps in most tasks (see
Appendix D for details).

4.3 OORB: ONLINE-OFFLINE REPLAY BUFFER

Next, we introduce a simple but effective online-of�ine replay buffer (OORB) to distinguish between
near-on-policy online interaction data, and the of�ine data. OORB consists of two replay buffers.
One is the online buffer that collects the online interaction data. Besides, to ensure the data in the
online buffer is near-on-policy, we set it to be very small, and fresh online interaction data are stored
into it by following a �rst-in-�rst-out rule. The other is the of�ine buffer consisting of the newly
generated online interaction data and the of�ine dataset which may come from any policies.

Data are sampled from OORB following a Bernoulli distribution, which means that with a proba-
bility p, they are sampled from the online buffer, and with probability1 � p, they are sampled from
the of�ine buffer. To bene�t from both online and of�ine data in a balanced way, we empirically set
p to 0.5, and its effect on the �nal performance is further tested via ablation studies in Section 5.4.
Results show thatp = 0 :5 works best overall, which con�rms our claim that of�ine data and online
interaction data are both crucial for policy learning.

4.4 GCQL: GREEDY-CONSERVATIVE Q-ENSEMBLE LEARNING

We then present a detailed implementation of our proposed framework, by incorporating SotA of-
�ine RL algorithm CQL and online RL algorithm REDQ, and we call our implemented algorithm
Greedy Conservative Q-ensemble Learning(GCQL). Speci�cally, we use the updating function in
REDQ as the �rst termA(Q) in Equation 2, and use the conservative regularizer in CQL as the

5

Under review as a conference paper at ICLR 2022

Algorithm 1: Greedy-conservative Q-ensemble learning

1 Initialization :
2 Initialize policy � � , ensemble Q functionsQ� i ; i 2 N ,of�ine training steps t
3 Online exploration stepsTon , of�ine update stepsTof f
4 Initialize Tinitial , sample possibilityp, start sampling steps:Ts
5 Initialize online bufferBon to empty, of�ine bufferBoff of�ine dataset
6 Initialize online buffer sizeSon 0
7 Initial of�ine learning :
8 Train the agent forTinitial steps using the logged dataset
9 while Truedo

10 t 0
11 ExploreTon steps online
12 Store theTon steps experiences to both online bufferBon and of�ine bufferBoff
13 Son Son + Ton
14 for t < T of f do
15 Sample a random valueps � U(0; 1)
16 if ps < p andSon > T s then
17 Sample a batch(s; a) from online bufferBon
18 Set theW(s; a) to 0
19 end
20 else
21 Sample a batch(s; a) from of�ine buffer Boff
22 Set theW(s; a) to 1
23 end
24 Update the Q functions by Equation 3
25 Update the policy by Equation 5
26 t += 1
27 end
28 end

second termB(Q), and the updating function can be presented by the following equation:

Qk+1
i arg min

Q k
i

�
1
2

Es;a;s0�D OORB;a0� � � (�j s0)

� �
Qk

i (s; a) � B̂� Q̂k (s0; a0)
� 2

�

+ W(s; a)� Es�D OORB

"

log
X

_a

exp(Q(s; _a)) � Ea�D OORB[Q(s; a)]

#) (3)

where the action_ais sampled from current policy, i.e.,_a� � � (�js); s � D OORB andDOORB is the
OORB replay buffer.B̂� Q̂k (s; a) is de�ned by

r + min
i 2M

Q̂k
i (s0; a0) ; a0 � � � (� j s0) : (4)

We randomly select two Q functions from the ensemble Q functions and theM represents the
selected Q functions' index just following the REDQ's setting. TheQ̂ stands for a targetQ function
for stabilizing the learning process (Mnih et al., 2015). The update function of policy is de�ned by:

� � k +1 arg max
� � k

E [Ei 2 N [Qi (s; a)] � � log � � k (a j s)] ; a � � � k (� j s) (5)

When sampled data is from the online replay buffer, we setW(s; a) to 0, otherwise 1, and this is
why we use the term ”greedy-conservative” to describe our algorithm. In another word, we greedy
exploit the near-on-policy online data by the regular online RL scheme without any conservative
regularizer. On the contrary, we conservatively exploit the of�ine data by employing the of�ine RL

6

Under review as a conference paper at ICLR 2022

Environment GCQL (Ours) CQL REDQ AWAC

walker2d-random 53� 27 16� 9 19� 3 12
hopper-random 84� 40 11� 1 12� 17 63
halfcheetah-random 100� 2 46� 4 34� 1 53

walker2d-medium 94� 6 83� 1 5� 3 80
hopper-medium 105� 1 100� 1 3� 1 91
halfcheetah-medium 66� 3 42� 0 46� 1 41

walker2d-expert 117� 2 113� 1 6� 1 103
hopper-expert 114� 1 113� 1 12� 6 112
halfcheetah-expert 110� 0 108� 1 1� 0 106

walker2d-medium-expert 117� 4 113� 1 12� 3 78
hopper-medium-expert 115� 1 114� 0 40� 15 112
halfcheetah-medium-expert107� 1 95� 2 9� 3 41

walker2d-medium-replay 114� 6 64� 5 53� 11 -
hopper-medium-replay 96� 9 39� 4 38� 9 -
halfcheetah-medium-replay59� 2 50� 0 50� 1 -

Table 1: Performance of policies trained using 90K online interaction steps for GCQL, CQL and
REDQ, and 500K online interaction for AWAC whose results are taken from Nair et al. (2020).�
captures the standard deviation over seeds. The reported results are the average test performance
across �ve random seeds in our experiments. The learning curves are showed in Appendix A.

regularizer. Formally, this strategy can be explained by De�nition 6:

W(s; a)
�

0 if (s; a) is sampled from the online replay buffer
1 otherwise

(6)

Algorithm 1 summarizes our proposed method. And we also explain the main steps in the Algorithm
as follows. Firstly, We �rst learn from the existing of�ine data forTinitial steps to leverage them. To
make good use of the of�ine data, we usually set a big value forTinitial , e.g.,100K . Secondly, We
begin the following interleaving learning steps. We conduct the online exploration process forTon
steps and store the new experiences to OORB. We set the online exploration stepsTon to a small
value, e.g.,1K . In contrast, the of�ine update stepTof f is set to be larger thanTon , e.g.,10K .
We sample a batch from our OORB and update the policy and Q-functions. If the sampled batch
comes from the online buffer, then we set the weight valueW(s; a) to 0, otherwise 1. The above
interleaving learning process is repeated till the end.

5 EXPERIMENTS

In this section, we design experiments to verify the effectiveness of our method from three perspec-
tives: (1) the performance superiority compared with other baselines; (2) ablation studies to test the
effect of each component used in our method. (3) the in�uence of different hyper-parameters.

5.1 SETTINGS

All experiments were done on the continuous control benchmark MuJoCo (Todorov et al., 2012),
and the of�ine dataset comes from the popular of�ine RL benchmark D4RL (Fu et al., 2020). To
make interaction limited, we set the number of online interaction steps for each iteration to a small
value, i.e.,1K . To better exploit the of�ine dataset, we set the number of of�ine training steps to a
large value, i.e.,100K for Tintial , and10K for Tof f . The training process ends until the number
of all online interaction steps reach90K , and the number of all of�ine updating steps reach1M .
For OORB, we setp = 0 :5 as described in Section 4.3. The size of the online buffer is set to20K ,
and the size of the of�ine buffer is set to3M . For other hyper-parameters, we follow the default
setting in baselines, except for the number of the ensemble Q, which is5 in our experiments. The
above con�gurations keep same across all tasks. As our main purpose is to present a new framework
instead of gaining SotA performance, we do not �ne-tune these hyper-parameters for each task.

7

	Introduction
	Related Work
	Preliminaries
	Methodology
	An illustrative example
	Adaptive Q-learning framework
	OORB: Online-Offline Replay Buffer
	GCQL: Greedy-Conservative Q-ensemble Learning

	Experiments
	Settings
	Overall performance
	Ablation studies
	Analysis on hyper-parameters

	Conclusions
	Learning curves for all tasks
	Extra experiments on Hyper-parameters
	Extra ablation study on HalfCheetah
	Extra experiments on TD3+BC
	Extra experiments on OFF2ON
	Extra experiments on official online REDQ

