
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MIXLLM: MIXED-PRECISION LLM QUANTIZATION
WITH ALGORITHM-SYSTEM CO-DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization has become one of the most effective methodologies to compress
LLMs into smaller size. However, the existing quantization solutions still show
limitations of either non-negligible accuracy drop or system inefficiency. In this
paper, we make a comprehensive analysis of the general quantization principles
on their effect to the triangle of accuracy, memory consumption and system effi-
ciency. We propose MixLLM that explores the new optimization space of mixed-
precision quantization between output features based on the insight that different
output features matter differently in the model. MixLLM identifies the output fea-
tures with high salience in the global view rather than within each single layer,
effectively assigning the larger bit-width to output features that need it most to
achieve good accuracy with low memory consumption. We present the sweet spot
of quantization configuration of algorithm-system co-design that lead to high ac-
curacy and system efficiency. To address the system challenge of this sweet spot,
we design the two-step dequantization to make use of the int8 Tensor Core easily
and fast data type conversion to reduce dequantization overhead significantly. Ex-
tensive experiments show that MixLLM achieves the best accuracy on a variety
of tasks for the popular LLMs than a set of state-of-the-art works. It shows 0.31
lower perplexity and 0.43% improvement on zero shot tasks for Llama 3 8B than
QoQ, with similar memory consumption and system efficiency.

1 INTRODUCTION

Large language models (LLMs) (Bubeck et al., 2023; Meta, Cited Sep. 2024) have shown remark-
able performance on various tasks. But their large memory consumption and massive computation
cost have become an obstacle for the efficient deployment (Xia et al., 2023; 2024). Quantization
has become one of the most sufficient solution to compress LLMs into smaller size (Frantar et al.,
2022; Lin et al., 2024a; Xiao et al., 2023; Yao et al., 2022), by representing the weight or activation
with smaller bit-width. However, the existing quantization solutions still show limitations of either
non-negligible accuracy drop or system inefficiency.

There is a triangle of characteristics for efficient LLM quantization: accuracy, memory consumption
of parameters, and system efficiency of execution, which we call effectiveness triangle of quantiza-
tion. The existing quantization solutions have different focus and trade-off in the triangle:

• The weight-only methodologies target to solve the memory consumption problem, and can
speedup the small-batched decoding execution that faces the memory-wall problem (Xia et al.,
2023; Kim et al., 2024). But their accuracy drop of 4-bit quantization can be a challenge for the
production workloads sensitive to accuracy, as illustrated in recent studies (Wu et al., 2023). Be-
sides, the weight-only method can lead to system performance drop for large-batched workloads
(e.g., the SOTA W4A16 kernel only achieves 83% performance of its float16 counterpart at batch
size 512 with hidden size 4096, shown in Fig.2).

• The weight-activation quantization represents the activation with low-bit values along with the
weights, potentially lead to higher system efficiency. But it can lead to larger accuracy drop
than the weight-only method as the activation is usually harder to quantize (Zhao et al., 2024;
Ashkboos et al., 2024; Lin et al., 2024b). Besides, it introduces more dequantization overhead for
the activation that can hurt the system efficiency. The transformation optimizations in some works
can make the system efficiency even worse.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Outlier separation and mixed-precision technologies emerge to improve the accuracy of low-
bit quantization by either excluding the unstructured high-salience weights from quantiza-
tion (Dettmers et al., 2024; Kim et al., 2024) or assigning larger bit-width for the quantization
of structured high-salience weights (Zhao et al., 2024). The former shows system efficiency prob-
lem due to the low efficiency of half precision (i.e., float16/bfloat16) sparse tensor processing.
The state-of-the-art mixed-precision solution (Zhao et al., 2024) aims for low-bit quantization but
shows non-negligible accuracy drop, even inferior to the 4-bit weight-only quantization.

Contributions. In this paper, we provide an extensive analysis of the general quantization prin-
ciples. To address the limitations of the previous works and cover the three characteristics in the
effectiveness triangle, we propose MixLLM, which makes the following contributions:

▶ High accuracy with low memory consumption: mixed-precision between output features on
the weight, with global salience identification. Given that different neurons matter differently to
the model’s output, we use different bit-width for different output features (i.e., output channels) for
the weight quantization, 8-bit for output features with high salience and 4-bit for others. Rather than
using a uniformed number of outliers within each layer according to the estimated salience w.r.t.
each single layer (Zhao et al., 2024), MixLLM identifies the salience of different output features
globally according to the estimated loss to the model’s output. This is because different layers
can have different importance to the model. Besides, the mixed-precision between output features
makes the system design easier than between input features because the calculation of different
output features are disjoint sub-problems.

▶ High accuracy with good system efficiency: the co-designed quantization configuration and
GPU kernel optimization. We observe the sweet spot of several quantization decisions to achieve
both good accuracy and system efficiency. MixLLM uses 8-bit for activation quantization as it can
retain a good accuracy. Besides, MatMul execution tends to be bound more on the larger weight ten-
sor rather than the smaller activation tensor, which weakens the need to push the activation smaller
(refer to Sec.3.1). MixLLM uses symmetric quantization for 8-bit and asymmetric for 4-bit for good
accuracy, both in group-wise manner. Such configuration makes it challenging to achieve good sys-
tem efficiency. We design the two-step dequantization to enable using fast int8 Tensor Core for such
configuration, along with the fast integer-float conversion to decrease the dequantization overhead.

2 BACKGROUND, RELATED WORK, AND DISCUSSION

2.1 BACKGROUND OF QUANTIZATION

The quantizaiton maps the tensor X into the target range with smaller bit-width representation
through affine transformation: Xq = clamp(⌊Xs ⌉ + z, range), where s is the scale and z is the
zero point. The value can be recovered (i.e., dequantization) through: X ′ = (Xq − z) × s. X ′ is
pushed to the discrete chunks rather than recovered to the original value, thus has accuracy loss. The
bit-width is essential for the accuracy of quantization as it determines the number of chunks for the
quantized values (2bit width). Take an example, enlarging the bit-width from 4 to 5 can double the
number of chunks, so that the 5-bit RTN quantization can easily beat the 4-bit quantizations with
advanced techniques (Tab.1).

The scale and zero point can be calculated from the whole channel/token vector or a small group
within the channel/token, the former is called per-channel/token quantization and the latter is group-
wise quantization. The group-wise scheme results in smaller accuracy loss due to the smaller chunk
scale, but requires more complex GPU kernel design1.

The symmetric quantization uses 0 as the zero point value, which simplifies the computations (Xq =

clamp(⌊Ws ⌉, range), X
′ = Xq × s). This simplification enables many works to design the per-

channel/per-token quantized linear kernels by multiplying the scales at the epilogue of the whole
MatMul (matrix multiplication) for dequantization (Xiao et al., 2023; TensorRT-LLM, Cited Sep.
2024). However, the symmetric quantization usually leads to larger loss than the asymmetric one as
the data distribution can be usually asymmetric, especially for smaller bit-width like 4-bit.

1We mainly discuss the model execution on the GPU in this paper. But the basic principle is general.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 RELATED WORKS AND DISCUSSION OF GENERAL QUANTIZATION PRINCIPLES

This paper mainly focuses on post-training quantization (PTQ).

Systems that affect the quantization requirement. The continuous batching technology (Yu et al.,
2022) enables to batch the decoding tasks from different requests together to enlarge the batch di-
mension of MatMul during LLM inference. The SplitFuse method (Holmes et al., 2024) advances
the continuous batching by merging the prefill and decoding tasks into the same batch, further en-
larging the MatMul shapes. These technologies pushes the server side LLM jobs to become the
compute-bound workloads and further motivate the demand to reduce the massive computation.

Weight-only quantization and its limitation. There emerges a wide range of technologies to im-
prove the accuracy of weight-only quantization. GPTQ (Frantar et al., 2022) advances OBC (Frantar
& Alistarh, 2022) on OBS-based (Hassibi et al., 1993) weight compensation with blocked updating
and reordering. AWQ (Lin et al., 2024a) proposes to scale the weight according to the characteristic
of activation. OminiQuant (Shao et al., 2024)) proposes the learnable scaling and weight clipping
factors. SpQR (Dettmers et al., 2024), SqueezeLLM (Kim et al., 2024) and OWQ (Lee et al., 2024)
separate the outliers from the quantiation and with half precision. QuiP (Chee et al., 2023) aims
to achieve extreme low-bit quantization with incoherence processing. ZeroQuant(4+2) (Wu et al.,
2023) aims to improve accuracy with medium-sized FP6 quantization.

The weight-only quantization does not reduce the computation but introduces the extra dequantiza-
tion operations. The low-bit weight will be dequantized to float16 to execute the MatMul in float16
datatype. The current weight-only quantization faces two challenges: 1) From the accuracy as-
pect, there is still an accuracy gap between the 4-bit quantization and the float16 model, especially
for many real business scenarios sensitive to the small accuracy drop, as discussed in the recent
works (Wu et al., 2023; Xia et al., 2024). 2) It can lead to system efficiency drop on busy servers
as the recent LLM inference serving systems will usually batch the processing of different requests
together on the server and form large MatMuls. The large MatMuls are compute-bound and will
suffer from the dequantization overhead (Lin et al., 2024b).

Weight-activation quantization and the challenges. The weight-activation quantization helps to
make use of the low-bit computing unit. LLM.int8() (Dettmers et al., 2022) observes the activa-
tion outlier problem and separates outliers from quantization with half precision. ZeroQuant (Yao
et al., 2022) proposes the per-token activation quantization and group-wise weight quantization.
SmoothQuant (Xiao et al., 2023) addresses the activation outlier problem through smoothing,
and AffineQuant (Ma et al., 2024) proposes the general affine transformation for quantization.
RPTQ (Yuan et al., 2023) reorders the channels to cluster similar scaled values together. Spin-
Quant (Liu et al., 2024) and QuaRot (Ashkboos et al., 2024) leverages matrix rotation properties
to alleviate the outlier phenomenon. Atom (Zhao et al., 2024) uses the mixed-precision between
input features to improve accuracy of 4-bit activation quantization. QoQ (Lin et al., 2024b) is a
holistic weight-activation-KV quantization solution with progressive group quantization, attention
smoothing, and channel reordering.

Even though the weight-activation quantization has the advantage of reduced MatMul computation
(i.e., MatMul in smaller bit-width to make use of the smaller bit-width computing unit with higher
computation throughput2), it faces the challenge of accuracy drop caused by the activation quantiza-
tion, especially that the activation is usually harder to quantize than the weight. The SOTA low-bit
weight 8-bit activation solution (W4A8) (Lin et al., 2024b) still have a gap to the 4-bit weight only
quantization. Beside the accuracy drop, the activation quantization will introduce more dequantiza-
tion overhead than the weight-only one, which is another challenge from system side.

The existing solutions focus on partial of the effectiveness triangle, but cannot cover all of them well.
MixLLM is orthogonal to the above works by exploring the mixed-precision between output features
with global salience identification, and the co-designed quantization decision and GPU kernels.

2The extra dynamic activation quantization kernel can be fused into other operators with very little system
cost (Zhao et al., 2024), thus we only discuss the MatMul itself.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

in
-f

ea
tu

re
s

out-features

high salience,

large bit quant
8-bit act

pre-packing into

sub-problems

scatter in

fused kernel

output4-bit 8-bit

mix-bit weight

Figure 1: Illustration of mixed-precision between output features.

3 METHODOLOGY

3.1 QUANTIZATION DESIGN AND DECISION IN MIXLLM

To cover the three aspects of the effectiveness triangle simultaneously, we make the following design
and decision of weight and activation quantization according to the analysis in Sec.2.2.

A. Mixed-precision between output features of weight, with global salience identification.

It is known that different elements of the weight show different salience to the network’s loss when
being quantized (Kim et al., 2024; Dettmers et al., 2024). The outlier separation method can im-
prove the accuracy by using float16 to store the high-salience elements, but suffers from the system
efficiency problem (detailed analysis in Sec.A.4). We observe that the elements with high salience
tend to show distribution along the output channels for most of the linear layers in many LLMs.
Based on this observation, we can assign larger bit-width to the output channels of high salience,
and smaller bit-with to the others, forming structured mixed-precision quantization. Through the
experiments, we get the same conclusion with the existing works (Kim et al., 2024; Dettmers et al.,
2024) that there is only a small set of elements with high salience contributing significantly to the
model’s accuracy drop. Thus we only need to assign the large bit-width to a small portion of the
output channels to achieve good accuracy and retain a small memory consumption at the same time.

The structured mixed-precision between different output channels can be friendly to the system
efficiency and kernel development, due to the nature that different output features are disjoint in the
MatMul and the computation of them are different sub-problems. Fig.1 shows how the linear layer
computes with the mixed-precision between output features. It divides the linear into independent
sub-problems, and finally gathers the output of the sub-problems together to form the final result.
This optimization space is orthogonal to the existing quantization optimizations, e.g., GPTQ (Frantar
et al., 2022), and can be applied together with them.

One critical problem is how to identify the high-salience output channels in the model. The fixed
threshold (Dettmers et al., 2024) or the fixed number/ratio (Zhao et al., 2024; Lee et al., 2024) of
high salience elements computed by the local loss of layers can be sub-optimal to the end-to-end
model, as different layers can show different importance to the model’s final output (Gromov et al.,
2024; Men et al., 2024; Dong et al., 2019). A high salience channel w.r.t. a layer may not be a
high salience channel of the end-to-end model. In MixLLM, we compute the high salience channels
globally according to their impact to the model’s final loss (Sec.3.2). As a result, different layers
will have different number of high salience channels.

Note that this design is different from the mixed-precision in Atom (Zhao et al., 2024) from two
aspects. 1) MixLLM first addresses the problem of identifying the high-salience channels globally
rather than locally. 2) MixLLM applies the mixed-precision between output features rather than
input features, which is more system performant and algorithm flexible3 as the output features are
disjoint naturally.

B. Sweet spot of quantization decision with algorithm-system consideration: 8-bit symmetric
activation and 4-bit asymmetric weight quantization in group-wise manner.

3One example is that, the outlier number in each MatMul should be a multiplier of the corresponding tiling
size of kernel design to achieve a good system efficiency in Atom, which limits the flexibility of algorithm.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

MixLLM makes the same decision with QoQ (Lin et al., 2024b) on activation quantization to use
8-bit, as the 4-bit activation can lead to a large accuracy drop but does not lead to significant system
efficiency improvement as MatMul execution tends to be bound more on the larger weight tensor
rather than the smaller activation tensor. It can be partially indicated from the compute intensity
of the linear layer. Given token number M and input and output features K and N , the compute
intensity I = 2MNK

MKBact+KNBweight . Bact and Bweight are the bytes per element of activation and
weight. Given M = 512 and N = K = 4096, reducing Bweight from 8 to 4 will results in a 80%
increasement of I , while reducing Bact from 8 to 4 will only achieve 5.88% increasement.

Instead of using per-token and smoothing on the activation quantization, MixLLM uses group-wise
RTN method. On the one hand, Tab.1 shows that simple group-wise RTN quantization performs
better than token-wise smoothing method. On the other hand, the weight is already group-wise in
MixLLM, and the group-wise activation does not lead to significant more dequantization overhead in
the system. We observe symmetric quantization is enough for the 8-bit activation (refer to MixLLM
W8A8 in Tab.1), while asymmetric can be essential for the 4-bit weight. The group-wise method
with asymmetric can lead to a difficulty for the kernel to make use int8 Tensor Core, for which
QoQ (Lin et al., 2024b) introduces the two-step quantization method. Instead, we design a two-step
dequantization with the property of the mix of symmetric and asymmetric (Sec.3.3).

3.2 GLOBAL PRECISION SEARCH ALGORITHM

As discussed in Sec.3.1, MixLLM determines the precision of all output features in all layers glob-
ally rather than locally. It identifies the salience of these features with respect to the final loss of the
model, and assigns larger bit-width to the features leading to larger loss.

Specifically, it calculates the salience S of a channel c as:

Sc = |l(cq)− l(c0)| (1)

which is the distance of the model’s loss between quantizing and not quantizing this single channel.
In Eq.1, l() is the loss function of the model w.r.t. a single channel, cq is the quantized weight of the
channel and c0 is the original weight. Note that it regards other neurons except c as constant in l().

We use the Taylor Expansion method to estimate the loss function l(c) (similar with the existing
quantization works, ignoring the high-order items):

l(c) ≈ l(c0) + gT (c− c0) +
1

2
(c− c0)

TH(c− c0) (2)

where g = E[∂
∂c l(c)] is the loss’s gradient w.r.t. the channel, and H = E[∂2

∂c2 l(c)] is the second-order
gradient (i.e., Hessian matrix) w.r.t. the channel.

It is infeasible to calculate the Hessian matrix as it is too costly. We approximate the Hessian H
with the (empirical) Fisher information matrix F on the calibration dataset D :

H ≈ F =
1

|D |
∑
d∈D

gdg
T
d (3)

Note that F is w.r.t. a channel, differing from the diagonal Fisher information matrix in the recent
works that ignores any cross-neuron interactions (Kwon et al., 2022; Kim et al., 2024).

Based on this approximation, the second order loss factor 1
2 (c− c0)

T (gdg
T
d)(c− c0) can be further

simplified to 1
2 (g

T
d (c− c0))

2, simplifying the expensive chained matrix multiplication into a single
vector product. Finally, the salience can be calculated by:

Sc =
1

|D |
∑
d∈D

|gTd (cq − c0) +
1

2
(gTd (cq − c0))

2| (4)

We do not ignore the first order information during the calculation, differing from OBD (LeCun
et al., 1989) and many recent quantization works (Frantar et al., 2022; Dettmers et al., 2024; Kim
et al., 2024). This is because the first order factor can be more significant in the estimation in Eq.4,
as the estimated second order factor is the square of the first order factor divided by two for each
sample. Considering that g can be very small for the well pretrained models and the delta of the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Global precision search procedure.

Input: Linear layer number L, weight and gradient of all linear layers (Wi ∈ RO,I , Gi ∈ RO,I for
layer i).

Output: Global channel index with large and small bit width (largebit channels, smallbit channels).
1: Sglobal ← []
2: for i = 1, 2, ..., L do
3: W delta

i ← quantize(Wi) - Wi

4: S1st← sum(Gi ⊙W delta
i , dim=1) ▷ Per-channel dot product between Gi and W delta

i
5: S2nd ← 0.5 ∗ (S1st)

2

6: S ← |S1st + S2nd| ▷ S ∈ RO, the salience of the O channels
7: for channel id = 1, 2, .., O do ▷ Log the salience of each output channel of this layer
8: Sglobal.append(tuple(i, channel id, S[channel id]))
9: sort(Sglobal) ▷ Sort according to the salience, descending

10: largebit channels, smallbit channels← Sglobal[: Nlargebit], Sglobal[Nlargebit :]

quantized weight is usually not large, the first order factor can be larger than the second order one.
Besides, what we require is the loss itself rather than the arguments of the loss function, and thus we
do not need to ignore the first order factor to simplify the arguments calculation.

Algo.1 illustrates the procedure of the global precision search. It calculates the salience of all the
output channels of all linear layers and sort them in descending order globally. Given the global
threshold Nlargebit as the number of large-bit precision channels, the first Nlargebit channels are
intended to be quantized with 8-bit, and the other channels will be quantized with smaller bit-width
(i.e., 4-bit in this paper). Any quantization methodologies (e.g., GPTQ, clip search) can be applied
independently to these two disjoint parts of channels. Note that we calculate the salience of the
channels in one pass rather than iterative identifying the high-salience parts in a smaller step, as
we observe the single-pass method show similar results with the iterative method and saves a lot of
computation overhead than the latter.

3.3 EFFICIENT QUANTIZATION COMPUTATION SYSTEM

Parallel execution of sub-problems of different bit-width. As for the execution shown in Fig.1,
MixLLM puts different sub-problems onto different threads on the GPU to make them execute in
parallel. Finally, the MatMul execution of the two parts write to the same target tensor with different
channel indices to generate the final output. We implement this function with the fused epilogue of
MatMul to scatter the output to the corresponding indices, which is basically costless.

Two-step dequantization to make use of int8 Tensor Core. As for the W4A8 computation, the
dequantized weight and activations are (Wq−z)sw and Aqsa, where Wq and z are uint4 datatype, Aq

is int8 datatype, and sw and sa are float16 datatype. Directly dequantizing the tensors into float16
datatype before the MatMul computation will prevent us using the fast 8-bit Tensor Core on the
GPU. Instead, MixLLM uses a two step dequantization within each group. Specifically, MixLLM
first partially dequantizes the weight into (Wq− z), and then multiply it by Aq with the 8-bit Tensor
Core. Finally, it multiplies this MatMul result by the two scales within each group. Note that we use
int8 datatype for (Wq − z) that covers the data range correctly.

Fast Int to Float conversion with partially fusing into Tensor Core instruction. In the above
two-step dequantization computation, the step 2 is the MatMul between the integer tensor Aq(Wq−
z) and the float tensor sasw. It requires the integer to float conversion (I2F) before the multiply
operation. The I2F instruction is expensive on the modern GPUs. Instead, we make use of the
range-dependent fast I2F transformation to convert the I2F instruction into two add/sub instructions4.
Specifically, it is based on the fact that there exists a certain range where an integer value’s binary
is the same as its float binary. We can add a bias to this value to make it within this range, and then
subtract the bias in float (same underling binary) to restore its value in float type:

1 i n t tmp = s r c i n t + b i a s i n t ;
2 i n t d s t f l o a t = * ((f l o a t *)&tmp) − b i a s f p ;

4(CUTLASS, Cited Sep. 2024) also has an implementation of fast I2F for general purpose.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3 / / e . g . , b i a s i n t = 1262485504 , b i a s f p = 12582912 .0 f

We further fuse the integer subtraction into the Tensor Core mma (Matrix Multiply-Accumulate)
instruction. The mma instruction computes D = AB+D during the MatMul computation. We ini-
tialize the accumulator D as the bias int before MatMul computation of each quantization group,
and will only need to subtract the bias float after the MatMul. In another word, the expensive
I2F is converted into a single float subtraction. The above I2F simplification brings more than 20
TOPS performance improvement for the 512/4096/4096 (M/N/K) quantized MatMul computation
on an A100 GPU.

4 EVALUATION

4.1 SETUP

As for MixLLM evaluation in this paper, we use 0%, 10%, 20%, 50% and 100% percent of 8-bit
based on the 4-bit quantization, respectively. Meanwhile, we use 8-bit for activation quantization.
Both the weight and activation are group-wise quantized with group size 128. The 4-bit part is asym-
metric quantized and the 8-bit part (including that in weight) is symmetric, which is a good trade-off
between accuracy and system efficiency. Note that any other bit-width percentage configuration can
be used for real scenarios to trade-off memory usage, system efficiency and accuracy in practice.
We enable GPTQ (without reorder) and clip search in MixLLM for the models except for Llama 3
8B, as which shows poor performance without reorder in GPTQ. We also disable the clip search for
the 70B and 72B models as the clip search tasks too long time.

Baselines and configurations. We compare MixLLM with the state-of-the-art (SOTA) quantization
solutions of both weight-only and weight-activation methods. As for the weight only quantization,
we compare MixLLM with the basic round-to-nearst (RTN) 4-bit and 5-bit quantization, and the
production-level SOTA GPTQ (Frantar et al., 2022) and AWQ(Lin et al., 2024a). As for the weight-
activation quantization, we compare MixLLM with the most widely used SmoothQuant (Xiao et al.,
2023) and the recent SOTA QoQ (Lin et al., 2024b). The 8-bit tensors are all symmetric quantized
in all baselines and MixLLM. We also compare the perplexity with SqueezeLLM(Kim et al., 2024),
OminiQuant(Shao et al., 2024), AffineQuant(Ma et al., 2024), QuaRot(Ashkboos et al., 2024),
Atom(Zhao et al., 2024) and SpinQuant(Liu et al., 2024) according to their reported numbers.

We make use of AutoGPTQ lib (AutoGPTQ, Cited Sep. 2024) (v0.8.0) to evaluate GPTQ, Au-
toAWQ lib (AutoAWQ, Cited Sep. 2024) (v0.2.6) to evaluate AWQ, and lmquant lib (MIT-Han-
Lab, Cited Sep. 2024a) (commit 58a3a16) to evaluate SmoothQuant and QoQ. We enable the re-
order trick for GPTQ evaluation, and use asymmetric and group size 128 for both GPTQ and AWQ.
We follow the official configurations in lmquant to use 0.85/0.15 as the alpha/beta parameter for
SmoothQuant, and 0.3/0.7 for QoQ. We disable the KV quantization of QoQ in our experiments to
make the comparison fair.

Models and Datasets. We evaluate MixLLM and the baselines on a variety of widely used LLMs
of different sizes, ranging from 1.5B to 72B. The models include Llama 3 8B and 70B (Meta, Cited
Sep. 2024), Llama 2 7B (Touvron et al., 2023), Mistral 7B v0.3 (Jiang et al., 2023), Qwen2 1.5B,
7B and 72B (Yang et al., 2024).

We use wikitext2 dataset (Merity et al., 2017) as the calibration set for GPTQ and MixLLM. We
use the default pile dataset (MIT-Han-Lab, Cited Sep. 2024b) as the calibration dataset for AWQ,
SmoothQuant and QoQ, to enable their better performance. GPTQ, AWQ and MixLLM uses 128
samples with sequence length of 2048 for calibration. SmoothQuant and QoQ uses 64 samples with
sequence length of 1024 for calibration (larger dataset results in OOM in our experiment).

Metrics. As for the algorithm accuracy, we compare the perplexity (ppl) between all the baselines
on wikitext2 and C4 (Raffel et al., 2020) dataset. Meanwhile, we compare a set of popular zero shot
tasks on Llama 3 8B, Mixtral 7B v0.3 and Qwen2 1.5B, including Piqa (PQ) (Tata & Patel, 2003),
ARCe/ARCc (Boratko et al., 2018), BoolQ (BQ) (Clark et al., 2019), HellaSwag (HS) (Zellers et al.,
2019), and WinoGrande (WG) (Sakaguchi et al., 2020).

We conduct the system experiments on NVIDIA A100 (80G) GPUs with CUDA 12.1. We use
PyTorch 2.4.1 and transformers 4.42.0.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Perplexity evaluation (↓) on wikitext2 and c4, sequence length 2048.

(a) Perplexity on wikitext2.

baselines Llama 3 Llama 2 Mistral Qwen2
8B 70B 7B 7B v0.3 1.5B 7B 72B

float16 6.14 2.85 5.47 5.32 9.54 7.14 5.22

RTN W4A16 6.73 3.72 5.73 5.51 10.17 7.46 5.31
W5A16 6.30 2.97 5.54 5.38 9.69 7.23 5.24

GPTQ W4A16 6.46 - 5.59 5.49 9.81 7.31 5.48
AWQ W4A16 6.55 3.26 5.60 5.44 10.09 7.32 5.28

SmoothQuant W8A8 6.24 2.97 5.51 5.34 9.67 7.26 5.27
QoQ W4A8 6.56 3.46 5.62 5.44 - - -

MixLLM

W4A8 (0% 8bit) 6.91 3.25 5.72 5.41 9.81 7.24 5.28
W4.4A8 (10% 8bit) 6.32 3.04 5.55 5.36 9.66 7.18 5.25
W4.8A8 (20% 8bit) 6.25 2.99 5.52 5.34 9.62 7.17 5.24
W6A8 (50% 8bit) 6.20 2.90 5.50 5.33 9.58 7.15 5.23

W8A8 (100% 8bit) 6.15 2.86 5.48 5.32 9.55 7.15 5.22
(b) Perplexity on c4.

baselines Llama 3 Llama 2 Mistral Qwen2
8B 70B 7B 7B v0.3 1.5B 7B 72B

float16 8.88 6.73 6.97 7.84 12.66 9.90 7.61

RTN W4A16 9.64 7.94 7.25 8.04 13.43 10.32 7.70
W5A16 9.08 7.16 7.06 7.91 12.85 10.00 7.64

GPTQ W4A16 9.47 - 7.15 8.19 13.25 10.23 7.69
AWQ W4A16 9.41 6.98 7.12 7.98 13.30 10.15 7.69

SmoothQuant W8A8 9.02 6.85 7.02 7.87 12.81 10.06 7.68
QoQ W4A8 9.41 7.08 7.13 7.99 - - -

MixLLM

W4A8 (0% 8bit) 9.59 7.05 7.18 7.99 13.23 10.16 7.70
W4.4A8 (10% 8bit) 9.21 6.88 7.08 7.92 12.91 10.03 7.65
W4.8A8 (20% 8bit) 9.10 6.84 7.05 7.89 12.85 9.99 7.64
W6A8 (50% 8bit) 9.00 6.78 7.01 7.87 12.77 9.95 7.63
W8A8 (100% 8bit) 8.89 6.74 6.98 7.84 12.68 9.91 7.62

4.2 PERPLEXITY EVALUATION

Comprehensive comparison. Tab.1 shows the perplexity on Wikitext2 and C4 dataset for the com-
monly used open source LLMs, of different baselines. GPTQ and QoQ fails to optimize some items,
for which we use “-” in the table. It shows that:

• Using 4.8 bits of weights with MixLLM can outperform the 5 bits RTN quantization, even with
8-bit activation quantization enabled in MixLLM. This is mainly because MixLLM assigns the
high-salience output channels with larger bit-widths than the uniform 5-bit solution.

• As for the weight-only quantization baselines, MixLLM W4.4A8 outperforms the production
SOTA solutions GPTQ and AWQ, with only 10% more bit-width, and even with 8-bit activa-
tion quantization enabled in MixLLM. Meanwhile, the RTN W5A16 method also outperforms
GPTQ and AWQ, which means a slightly larger bit-width can defeat the well tuned smaller bit-
width easily. MixLLM W4.4A8 benefits from the larger bits on the top 10% output features with
high salience.

• As for the weight-activation quantization baselines, MixLLM W4.4A8 shows a comparable accu-
racy with SmoothQuant with much smaller bit-width (60% of that in SmoothQuant). MixLLM
W4.4A8 shows better accuracy than QoQ with only 10% larger bit-width. It shows MixLLM
achieves a good balance of memory consumption and accuracy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Zero-shot tasks evaluation (↑) on Llama 3B, Mistral 7B v0.3 and Qwen2 1.5B.

Models Baselines PQ ARCe ARCc BQ HS WG avg.

Llama 3
8B

FP16 80.85 77.78 53.50 81.31 79.15 72.61 74.20
GPTQ W4A16 80.74 77.74 51.71 81.07 78.11 73.64 73.84
AWQ W4A16 79.92 77.27 53.07 81.16 78.49 73.32 73.87

SmoothQuant W8A8 80.14 77.61 52.65 81.07 78.95 73.01 73.91
QoQ W4A8 80.03 77.86 51.88 80.12 78.18 73.64 73.62

MixLLM W4.8A8 80.20 79.12 53.07 79.82 78.69 73.40 74.05

Mistral
7B

v0.3

FP16 82.26 78.24 52.22 82.11 80.43 73.80 74.84
GPTQ W4A16 81.28 78.03 51.88 81.35 79.45 73.01 74.17
AWQ W4A16 81.28 77.53 50.60 80.92 79.69 73.09 73.85

SmoothQuant W8A8 81.83 78.24 52.56 81.80 80.16 73.24 74.64
QoQ W4A8 82.05 77.86 51.54 81.50 79.95 73.88 74.46

MixLLM W4.8A8 82.05 77.90 51.71 82.54 80.05 73.64 74.65

Qwen2
1.5B

FP16 75.41 60.35 36.09 72.75 65.41 65.98 62.67
GPTQ W4A16 74.43 59.72 36.18 71.16 64.54 64.48 61.75
AWQ W4A16 75.08 58.92 35.92 72.29 63.99 64.88 61.85

SmoothQuant W8A8 75.46 60.61 36.60 72.23 65.24 66.54 62.78
QoQ W4A8 50.82 25.88 26.91 37.83 26.85 51.78 36.68

MixLLM W4.8A8 75.35 61.78 36.18 72.42 64.65 65.90 62.71

Table 3: Effect of GPTQ and clipping (ppl ↓).

Models W4A16 MixLLM w/o GPTQ&clip MixLLM w/ GPTQ&clip

Mistral 7B v0.3 5.51 / 8.04 5.36 / 7.90 5.34 / 7.89
Qwen2 1.5B 10.17 / 13.43 9.71 / 12.89 9.62 / 12.85
Qwen2 7B 7.46 / 10.32 7.21 / 10.00 7.17 / 9.99

• Note that MixLLM W8A8 quantization (equal to the group-wise RTN quantization of both weight
and activation) shows nearly lossless performance compared to the float16 baseline. This is part
of the motivation that MixLLM uses group-wise quantization for the activation.

4.3 ZERO-SHOT TASKS EVALUATION

Tab.2 shows the accuracy of the zero-shot tasks on two popular small LLMs and a tiny model. The
result shows that:

• MixLLM outperforms the weight-only quantizations. For example, for Llama 3 8B model,
MixLLM shows an accuracy drop of 0.15 on average while GPTQ/AWQ show 0.36/0.33 drop.

• MixLLM shows similar, or even better, accuracy when compare with SmoothQuant. Note that
the ppl metric of MixLLM is a little bit inferior to SmoothQuant, but the zero-shot metrics of
MixLLM are superior than SmoothQuant on Llama 3 8B and Mistral 7B v0.3. This can partially
come from the group-wise quantized activation of MixLLM. As for the tiny 1.5B model, both
MixLLM and SmoothQuant show comparable accuracy with the float16 baseline.

• MixLLM shows better accuracy than QoQ on average, and better on most of the single tasks.

Ablation study on the effect of GPTQ and clipping. Tab.3 compares the perplexity of enabling
GPTQ&clipping and disabling GPTQ&clipping. We use the Mistral and Qwen2 model for the
comparison because they usually do not effect by the reorder trick of GPTQ, while Llama 2/3 models
are sensitive to the reorder trick. Note we do not enable the reorder for the GPTQ in MixLLM. It
shows that even though the GPTQ and clipping contributes a little to the final accuracy, the main
accuracy gain comes from the mix-precision than the pure 4-bit.

Ablation study of non-diagonal Fisher Information Matrix (FIM) and not ignoring first-order
derivative. We have two small optimization decisions in Sec.3.2: using non-diagnal FIM (refer to
opt-1 in this section), and ignoring first-order derivative (refer to opt-2 in this section). We use
Llama 3 8B model to validate this two optimizations of precision search. We disable GPTQ and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation study of using non-diagonal FIM (opt-1) and not ignoring first-order derivative
(opt-2) in global precision search.

Dataset opt-1 off, opt-2 off opt-1 off, opt-2 on opt-1 on, opt-2 off opt-1 on, opt-2 on

wikitext2 6.400 6.416 6.401 6.398
c4 9.211 9.240 9.212 9.210

0

1

2

3

4

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Sp
ee

d
u

p

Token number

Torch FP16 TRT-LLM W4A16 QoQ W4A8

MixLLM W4A8 MixLLM W8A8 MixLLM W4.8A8

Figure 2: The speedup of a single linear layer over torch float16 baseline on the A100 GPU.

clip, and enable/disable each of the two optimizations to measure the perplexity, shown in Tab.4. It
shows interesting results that, when one optimization is turned off, turning on the other optimization
will hurt the accuracy. However, when one optimization is on, turning on the other one will increase
the accuracy. Turning both optimizations on (as in MixLLM) will get the best accuracy.

4.4 SYSTEM PERFORMANCE

We have evaluated MixLLM for the single linear layer of token number ranging from 1 to 4096 with
hidden size 4096, and compared it with the SOTA W4A16 (TRT-LLM) and QoQ (Lin et al., 2024b),
shown in Fig.2. It also shows MixLLM kernel performance of different percent of 8-bits (W4A8 0%
8-bit, W4.8A8 20% 8-bit, and W8A8 100% 8-bit). It shows that:

• MixLLM outperforms the float16 counterpart for all token numbers, achieving 1.78×, 2.55×, and
1.77× averaged speedup with MixLLM W4A8, W8A8, and W4.8A8 respectively.

• MixLLM outperforms the SOTA W4A16 solution, achieving 1.28×, 1.78×, and 1.29× averaged
speedup with MixLLM W4A8, W8A8, and W4.8A8 respectively.

• MixLLM achieves similar performance with QoQ with similar bit-width, achieving 0.99×, 1.37×,
and 1.00× averaged speedup with MixLLM W4A8, W8A8, and W4.8A8 respectively. Note that
MixLLM has better accuracy than QoQ (Tab.1, Tab.2).

5 SUMMARY

We have presented MixLLM, achieving high accuracy with low memory consumption and high sys-
tem efficiency with the rarely explored optimization space of mixed-precision quantization between
output features. MixLLM identifies the salience of each output feature according to the loss distance
estimation w.r.t. the global model loss rather than local layer loss. By assigning larger bit-width to
the features need it most, MixLLM achieves the superior accuracy to SOTA with low memory con-
sumption. The sub-problems of different bit-widths are disjoint and can run in parallel efficiently
on the GPU. We have identified the sweet spot of the quantizaiton configuration that is friendly
to both accuracy and system efficiency. To address the challenge of system efficiency, we design
the two-step dequantization to enable using int8 Tensor Core computation and the fast integer-float
conversion to reduce the dequantization overhead. Experiment results show that MixLLM achieves
superior accuracy to SOTA with low memory cost and high system efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. CoRR,
abs/2404.00456, 2024. doi: 10.48550/ARXIV.2404.00456. URL https://doi.org/10.
48550/arXiv.2404.00456.

AutoAWQ. Autoawq. https://github.com/casper-hansen/AutoAWQ, Cited Sep.
2024.

AutoGPTQ. Autogptq. https://github.com/AutoGPTQ/AutoGPTQ, Cited Sep. 2024.

Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew
McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei, Ryan
Musa, Kartik Talamadupula, and Michael Witbrock. A systematic classification of knowledge,
reasoning, and context within the ARC dataset. In Eunsol Choi, Minjoon Seo, Danqi Chen,
Robin Jia, and Jonathan Berant (eds.), Proceedings of the Workshop on Machine Reading for
Question Answering@ACL 2018, Melbourne, Australia, July 19, 2018, pp. 60–70. Association
for Computational Linguistics, 2018.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi,
Marco Túlio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with GPT-4. CoRR, abs/2303.12712, 2023.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization of
large language models with guarantees. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pp. 2924–2936. Association for Computational Linguistics, 2019.

CUTLASS. Cutlass. https://github.com/NVIDIA/cutlass, Cited Sep. 2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale. CoRR, abs/2208.07339, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless LLM weight compression. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. HAWQ: hessian
aware quantization of neural networks with mixed-precision. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2,
2019, pp. 293–302. IEEE, 2019.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training
quantization for generative pre-trained transformers. CoRR, abs/2210.17323, 2022.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A. Roberts. The
unreasonable ineffectiveness of the deeper layers. CoRR, abs/2403.17887, 2024.

11

https://doi.org/10.48550/arXiv.2404.00456
https://doi.org/10.48550/arXiv.2404.00456
https://github.com/casper-hansen/AutoAWQ
https://github.com/AutoGPTQ/AutoGPTQ
https://github.com/NVIDIA/cutlass

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Babak Hassibi, David G. Stork, and Gregory J. Wolff. Optimal brain surgeon and general network
pruning. In Proceedings of International Conference on Neural Networks (ICNN’88), San Fran-
cisco, CA, USA, March 28 - April 1, 1993, pp. 293–299. IEEE, 1993.

Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad Awan, Jeff Rasley, Samyam
Rajbhandari, Reza Yazdani Aminabadi, Heyang Qin, Arash Bakhtiari, Lev Kurilenko, and Yux-
iong He. Deepspeed-fastgen: High-throughput text generation for llms via MII and deepspeed-
inference. CoRR, abs/2401.08671, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W.
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024. URL https://openreview.net/forum?id=0jpbpFia8m.

Woosuk Kwon, Sehoon Kim, Michael W. Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for transformers. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,
USA, November 27-30, 1989], pp. 598–605. Morgan Kaufmann, 1989.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. OWQ: outlier-aware
weight quantization for efficient fine-tuning and inference of large language models. In Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), Thirty-Eighth AAAI Conference on Ar-
tificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, pp. 13355–13364. AAAI Press,
2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: activation-aware weight quantization for
on-device LLM compression and acceleration. In Phillip B. Gibbons, Gennady Pekhimenko, and
Christopher De Sa (eds.), Proceedings of the Seventh Annual Conference on Machine Learning
and Systems, MLSys 2024, Santa Clara, CA, USA, May 13-16, 2024. mlsys.org, 2024a.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4A8KV4 quantization and system co-design for efficient LLM serving. CoRR,
abs/2405.04532, 2024b.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: LLM quantiza-
tion with learned rotations. CoRR, abs/2405.16406, 2024.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
CoRR, abs/2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

12

https://openreview.net/forum?id=0jpbpFia8m

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Meta. Llama 3. https://ai.meta.com/blog/meta-llama-3, Cited Sep. 2024.

MIT-Han-Lab. lmquant. https://github.com/mit-han-lab/lmquant, Cited Sep.
2024a.

MIT-Han-Lab. Pileval. https://huggingface.co/datasets/mit-han-lab/
pile-val-backup, Cited Sep. 2024b.

NVIDIA. Nvidia a100 tensor core gpu architectur. https://
images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf, Cited Sep. 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An ad-
versarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8732–8740. AAAI Press,
2020.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Sandeep Tata and Jignesh M. Patel. Piqa: An algebra for querying protein data sets. In Proceedings
of the 15th International Conference on Scientific and Statistical Database Management (SSDBM
2003), 9-11 July 2003, Cambridge, MA, USA, pp. 141–150. IEEE Computer Society, 2003.

TensorRT-LLM. Tensorrt-llm. https://github.com/NVIDIA/TensorRT-LLM, Cited Sep.
2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023.

Xiaoxia Wu, Haojun Xia, Stephen Youn, Zhen Zheng, Shiyang Chen, Arash Bakhtiari, Michael
Wyatt, Reza Yazdani Aminabadi, Yuxiong He, Olatunji Ruwase, Leon Song, and Zhewei Yao.
Zeroquant(4+2): Redefining llms quantization with a new fp6-centric strategy for diverse genera-
tive tasks. CoRR, abs/2312.08583, 2023.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei
Lin, and Shuaiwen Leon Song. Flash-llm: Enabling low-cost and highly-efficient large generative
model inference with unstructured sparsity. Proc. VLDB Endow., 17(2):211–224, 2023.

Haojun Xia, Zhen Zheng, Xiaoxia Wu, Shiyang Chen, Zhewei Yao, Stephen Youn, Arash Bakhtiari,
Michael Wyatt, Donglin Zhuang, Zhongzhu Zhou, Olatunji Ruwase, Yuxiong He, and Shuai-
wen Leon Song. Quant-llm: Accelerating the serving of large language models via fp6-centric
algorithm-system co-design on modern gpus. In Saurabh Bagchi and Yiying Zhang (eds.), Pro-
ceedings of the 2024 USENIX Annual Technical Conference, USENIX ATC 2024, Santa Clara,
CA, USA, July 10-12, 2024, pp. 699–713. USENIX Association, 2024.

13

https://ai.meta.com/blog/meta-llama-3
https://github.com/mit-han-lab/lmquant
https://huggingface.co/datasets/mit-han-lab/pile-val-backup
https://huggingface.co/datasets/mit-han-lab/pile-val-backup
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://github.com/NVIDIA/TensorRT-LLM

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp. 38087–38099.
PMLR, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. CoRR, abs/2407.10671, 2024.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. In
Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022,
2022.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca:
A distributed serving system for transformer-based generative models. In Marcos K. Aguilera
and Hakim Weatherspoon (eds.), 16th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022, pp. 521–538. USENIX As-
sociation, 2022.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun,
Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. RPTQ: reorder-based post-training quantization for
large language models. CoRR, abs/2304.01089, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluı́s Màrquez (eds.),
Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4791–4800. Association for
Computational Linguistics, 2019.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate LLM serving. In Proceedings of the Seventh Annual Conference on Machine Learning
and Systems, MLSys 2024, Santa Clara, CA, USA, May 13-16, 2024, 2024.

A APPENDIX

A.1 COMPARISON WITH MORE RELATED WORKS

Table 5: PPL (wikitext2) comparison with more works, ’-G’ means GPTQ enabled in the baselines.

Llama FP16 SqueezeLLM
W4A16 0.45%

OminiQuant
W4A16/A4

AffineQuant
W4A16/A4

QuaRot-G
W4A16/A4

Atom
W4A4

SpinQuant-G
W4A16/A4

MixLLM
W4.8A8

2-7B 5.47 5.57 5.58 / 14.26 5.58 / 12.69 5.60 / 6.10 6.03 5.6 / 5.9 5.52
3-8B 6.14 - - - - - 6.4 / 7.1 6.25

We compare MixLLM with more recent quantization works according to the reported numbers in
their papers (Tab.5), showing that MixLLM achieves superior accuracy to a broad range of related
works with similar memory consumption.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: The overhead of global precision search in MixLLM.

Models Llama 3 Llama 2 Mistral Qwen2
8B 70B 7B 7B v0.3 1.5B 7B 72B

Time (min) 7 55 7 7 2 7 57

A.2 ONE-PASS VS. PROGRESSIVE SEARCH

As described in Sec.3.2, MixLLM searches the high-salience features within a single pass. We have
tried the progressive procedure on Llama 2 7B and Mistral 7B models, which identifies smaller
portions of the high-salience features iteratively. Results show that the accuracy is the same to
the one-pass method to two decimal places. However, the progressive method shows much higher
search time due to the repeated procedure. The one-pass method takes 7 minutes for each of the
two models to search 10% high-salience features, while the progressive method that searches 2%
high-salience iteratively takes 30 minutes to find top 10% features.

A.3 OVERHEAD OF GLOBAL PRECISION SEARCH

Tab.6 shows the global precision search overhead described in Sec.3.2. As noted in Sec.4.1, the
calibration dataset has 128 samples with sequence length of 2048. We use a single A100 GPU
for the 1.5B, 7B and 8B models, and 4 A100 GPUs for the 70B and 72B models to perform the
search. We make use of device map in huggingface for multi-GPU execution, which is sequential
execution of layers. The 7B models require about 7 minutes and the 70B models require less than
60 minutes to complete the search. Considering that the quantization only needs to be preformed
once, the searching algorithm is practical for the real workloads.

A.4 PERFORMANCE CHALLENGE OF THE FLOAT16 OUTLIER SEPARATION

Outlier separation with half precision works to improve the accuracy while using small bit-width
for the non-sensitive weights (Kim et al., 2024; Dettmers et al., 2024), by separating the outliers
into an extra sparse tensor in float16. However, it is hard to achieve the peak performance due
to the inefficiency of the sparse computation on the GPU, especially when the batch size is large
and the linear layer becomes compute-bounded. (As discusseded in Flash-LLM (Xia et al., 2023),
the hardware utilization can be lower than 10% for the sparse MatMul, while its dense counterpart
can usually achieve more than 60%.) This is because the unstructured tensor computation cannot
make use the fast Tensor Core easily, but has to use the SIMT Core in float16 for computation and
float32 for accumulation5. Note the peak performance of int8 Tensor Core is 8× higher than that of
float16 SIMT Core on A100 GPU (NVIDIA, Cited Sep. 2024), and 32× higher than float32 SIMT
Core. Moreover, sparse computing makes it more difficult to fully utilize the hardware due to the
non-continuous memory pattern and the extra index computation.

5Flash-LLM (Xia et al., 2023) optimizes the unstructured sparse MatMul, but can only speedup the small-
batched scenarios.

15

	Introduction
	Background, Related Work, and Discussion
	Background of Quantization
	Related Works and Discussion of General Quantization Principles

	Methodology
	Quantization Design and Decision in MixLLM
	Global Precision Search Algorithm
	Efficient Quantization Computation System

	Evaluation
	Setup
	Perplexity Evaluation
	Zero-shot Tasks Evaluation
	System Performance

	Summary
	Appendix
	Comparison with More Related Works
	One-pass vs. Progressive Search
	Overhead of Global Precision Search
	Performance challenge of the float16 outlier separation

