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Abstract

Health conditions among patients in intensive care
units (ICUs) are monitored via electronic health
records (EHRs), composed of numerical time se-
ries and lengthy clinical note sequences, both
taken at irregular time intervals. Dealing with
such irregularity in every modality, and integrat-
ing irregularity into multimodal representations
to improve medical predictions, is a challenging
problem. Our method first addresses irregularity
in each single modality by (1) modeling irregular
time series by dynamically incorporating hand-
crafted imputation embeddings into learned inter-
polation embeddings via a gating mechanism, and
(2) casting a series of clinical note representations
as multivariate irregular time series and tackling
irregularity via a time attention mechanism. We
further integrate irregularity in multimodal fusion
with an interleaved attention mechanism across
temporal steps. To the best of our knowledge, this
is the first work to thoroughly model irregularity
in multimodalities for improving medical predic-
tions. Our proposed methods for two medical
prediction tasks consistently outperforms state-of-
the-art (SOTA) baselines in each single modality
and multimodal fusion scenarios. Specifically,
we observe relative improvements of 6.5%, 3.6%,
and 4.3% in F1 for time series, clinical notes, and
multimodal fusion, respectively. These results
demonstrate the effectiveness of our methods and
the importance of considering irregularity in mul-
timodal EHRs. 1.
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Figure 1: An example of a patient’s ICU stay includes
MISTS with three features and a series of clinical notes.
For MISTS, heart rate and temperature are monitored regu-
larly with different frequencies, and glucose is a laboratory
test ordered at irregular time intervals based on doctors’
decisions. Clinical notes are free text, collected with much
sparser irregular time points than clinical measurements.

1. Introduction
ICUs admit patients with life-threatening conditions, e.g.
trauma (Tisherman & Stein, 2018), sepsis (Alberti et al.,
2002), and organ failure (Afessa et al., 2007). Care in the
first few hours after admission is critical to patient outcomes.
This period is also more prone to medical decision errors
than later times (Otero-López et al., 2006). Automated
tools with effective and real-time predictions can be much
beneficial in assisting clinicians in providing appropriate
treatments. Recently, the health conditions of patients in
ICUs have been recorded in EHRs (Adler-Milstein et al.,
2015), bringing the possibility of applying deep neural net-
works to healthcare (Xiao et al., 2018; Shickel et al., 2017),
e.g. mortality prediction (Zhang et al., 2021a) and pheno-
type classification (Harutyunyan et al., 2019). EHRs contain
multivariate irregularly sampled time series (MISTS) and
irregular clinical note sequences, as shown in Figure 1. The
multimodal structure and complex irregular temporal nature
of the data present challenges for prediction. This leads us
to formulate two research objectives:

1. Tackling irregularity in both time series and
clinical notes
2. Integrating irregularity into multimodal repre-
sentation learning
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To the best of our knowledge, none of the existing works has
fully considered irregularity in multimodal representation
learning.

We observed three major drawbacks for irregular multi-
modal EHRs modeling in existing works. 1) MISTS models
perform diversely. While the numerous MISTS models have
been proposed to tackle irregularity (Lipton et al., 2016;
Shukla & Marlin, 2019; 2021; Zhang et al., 2021b; Horn
et al., 2020; Rubanova et al., 2019), none of the approaches
consistently outperforms the others. Even among Temporal
discretization-based embedding (TDE) methods, including
hand-crafted imputation (Lipton et al., 2016) and learned
interpolation (Shukla & Marlin, 2019; 2021), which trans-
form MISTS into regular time representations to interface
with deep neural networks for regular time series, there is
no clear superior approach. 2) Irregularity in clinical notes
is not well tackled. Most existing works (Golmaei & Luo,
2021; Mahbub et al., 2022) directly concatenate all clinical
notes of each patient but ignore the note-taking time infor-
mation. Although Zhang et al. (2020) proposes an LSTM
variant to model time decay among clinical notes, this ap-
proach utilizes only a few trainable parameters, which could
be less powerful. 3) Exiting works ignore irregularity in
multimodal fusion. Deznabi et al. (2021); Yang et al. (2021)
have demonstrated the effectiveness of combining time se-
ries and clinical notes for medical prediction tasks, however
these works are deployed only on multimodal data without
considering irregularity. Their fusion strategies may not be
able to fully integrate irregular time information into multi-
modal representations, which can be essential for prediction
performance in real-world scenarios.

Our Contributions. To tackle the aforementioned issues,
we separately model irregularity in MISTS and irregular
clinical notes, and further integrate multimodalities across
temporal steps, so as to provide powerful medical predic-
tions based on the complicated irregular time pattern and
multimodal structure of EHRs. Specifically, we first show
that different TDE methods of tackling MISTS are comple-
mentary for medical predictions, by introducing a gating
mechanism that incorporates different TDE embeddings
specific to each patient. Secondly, we cast note representa-
tions and note-taking time as MISTS, and leverage a time
attention mechanism (Shukla & Marlin, 2021) to model
the irregularity in each dimension of note representations.
Finally, we incorporate irregularity into multimodal rep-
resentations by adopting a fusion method that interleaves
self-attentions and cross-attentions (Vaswani et al., 2017) to
integrate multimodal knowledge across temporal steps. To
the best of our knowledge, this is the first work for a unified
system that fully considers irregularity to improve medical
predictions, not only in every single modality but also in
multimodal fusion scenarios. Our approach demonstrates
superior performance compared to baselines in both single

modality and multimodal fusion scenarios, with notable rel-
ative improvements of 6.5%, 3.6%, and 4.3% in terms of
F1 for MISTS, clinical notes, and multimodal fusion, re-
spectively. Our comprehensive ablation study demonstrates
that tackling irregularity in every single modality benefits
not only their own modality but also multimodal fusion.
We also show that modeling long sequential clinical notes
further improves medical prediction performance.

2. Related Work
Multivariate irregularly sampled time series (MISTS).
MISTS refer to observations of each variable that are ac-
quired at irregular time intervals and can have misaligned
observation times across different variables (Zerveas et al.,
2021). GRU-D (Che et al., 2018) captures temporal depen-
dencies by decaying the hidden states in gated recurrent
units. SeFT (Horn et al., 2020) represents the MISTS to
a set of observations based on differentiable set function
learning. ODE-RNN (Rubanova et al., 2019) uses latent
neural ordinary differential equations (Chen et al., 2018)
to specify hidden state dynamics and update RNN hidden
states with a new observation. RAINDROP (Zhang et al.,
2021b) models MISTS as separate sensor graphs and lever-
ages graph neural networks to learn the dependencies among
variables. These approaches model irregular temporal de-
pendencies in MISTS from different perspectives through
specialized design. TDE methods are a subset of methods
for handling MISTS, converting them to fixed-dimensional
feature spaces, and feeding regular time representations
into deep neural models for regular time series. Imputa-
tion methods (Lipton et al., 2016; Harutyunyan et al., 2019;
McDermott et al., 2021) are straightforward TDE methods
to discretize MISTS into regular time series with manual
missing values imputation, but these ignore the irregularity
in the raw data. To fill this gap, Shukla & Marlin (2019)
presents interpolation-prediction networks (IP-Nets) to inter-
polate MISTS at a set of regular reference points via a kernel
function with learned parameters. Shukla & Marlin (2021)
further presents a time attention mechanism with time em-
beddings to learn interpolation representations. However,
learned interpolation strategies do not always outperform
simple imputation methods. This may be due to compli-
cated data sampling patterns (Horn et al., 2020). Inspired
by Mixture-of-Experts (MoE) (Shazeer et al., 2017; Jacobs
et al., 1991), which maintains a set of experts (neural net-
works) and seeks a combination of the experts specific to
each input via a gating mechanism, we leverage different
TDE methods as submodules and integrate hand-crafted im-
putation embeddings into learned interpolation embeddings
to improve medical predictions.

Irregular clinical notes modeling. (Golmaei & Luo, 2021;
Mahbub et al., 2022) concatenate each patient’s clinical
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Figure 2: The model architecture, which encodes MISTS and clinical notes separately, and then performs a multimodal
fusion. UTDE is a gating mechanism to obtain MISTS representations by dynamically fusing embeddings of imputation
and a time attention module, mTANDts. Irregular clinical notes are encoded by a pretrained language model, TextEncoder,
whose outputs are fed into mTANDtxt to obtain text interpolation representations. The multimodal fusion strategy contains
J identical layers. Each layer interleaves self-attentions (MH) and cross-attentions (CMH) to integrate representations from
multimodalities and incorporate irregularity into multimodal representations. A classifier with fully connected layers is used
to predict patient outcomes.

notes, divide them into blocks, and then obtain text rep-
resentations by feeding a series of note blocks into BERT
(Devlin et al., 2018) variants (Huang et al., 2019; Gu et al.,
2021), ignoring the irregularity in clinical notes. Zhang
et al. (2020) further proposes a time-awarded LSTM with
trainable decay function to model irregular time information
among clinical notes. However, this approach can be less
powerful due to limited parameters. To fully model irreg-
ularity, we cast clinical note representations with irregular
note-taking time as MISTS, such that each dimension of a
series of clinical note representations is an irregular time
series, and perform a time attention mechanism (Shukla &
Marlin, 2021) to further model the irregularity.

Multimodal fusion. Combining both time series and clin-
ical notes outperforms the results obtained when only one
of them is used (Liu et al., 2021). Khadanga et al. (2019);
Deznabi et al. (2021); Yang et al. (2021) directly concatenate
representations from different modalities for downstream
predictions. Yang & Wu (2021) utilizes an attention gate
to fuse multimodal information. (Xu et al., 2021) selects
multimodal fusion strategies from addition, concatenation
and multiplication by a neural architecture search method.
However, these fusion methods are only performed on EHRs
without considering irregularity, failing to fully incorporate
time information into multimodal representations, which
is critical in real-world scenarios. To fill this gap, we first
tackle irregularity in time series and clinical notes, respec-
tively, and further leverage fusion module, which interleaves
self-attentions and cross-attentions (Vaswani et al., 2017) to
obtain multimodal interaction integrated with irregularity
across temporal steps.

3. Method
Our method models irregularity in three portions: MISTS,
clinical notes, and multimodal fusion, as shown in Figure 2.
In this section, we will illustrate each part thoroughly.

3.1. Problem setup

Denote D = {(xts
i , ttsi ), (xtxt

i , ttxti ),yi}Ni=1 to be an EHR
dataset with N patients, where (xts

i , ttsi ) is dm-dimensional
MISTS, xts

i being observations and ttsi being corresponding
time points, (xtxt

i , ttxti ) is a series of clinical notes with
note-taking time and yi is the target outcome, e.g. discharge
or death for modality prediction. In the following part, we
drop the patient index i for simplicity. Each dimension
of the MISTS, (xts

j , ttsj ), where j = 1, · · · , dm, has ltsj
observations, and each patient’s (xtxt, ttxt) includes ltxt

clinical notes. In early-stage medical predictions, given
(xts, tts) and (xtxt, ttxt) before a certain time point (e.g.
48-hour) after admission, α, we seek to predict y for every
patient.

3.2. MISTS

3.2.1. TDE METHODS

We will describe two TDE methods to facilitate the intro-
duction of our proposed MISTS embedding approach. An
illustration is shown in Figure 3 for better understanding.

Imputation. We first discretize xts based on tts, to
hourly time intervals with a sequence of regular time points,
α = [0, 1, · · · , α − 1]. Then, for each feature, we use the
last observation, if multiple observations are in the same
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Figure 3: Architecture of UTDE module with two input features. UTDE incorporates two TDE methods: Imputation and
mTANDts, as submodules, and learns to integrate different embeddings that are best suited to patients for a given task, via
a gating mechanism.

interval, and regard intervals without any observations as
missingness. We impute missing values with the most re-
cent observation if it exists, and to the global mean of all
patients otherwise. For example, with α = [0, 1, 2, 3] be-
ing the first 4-hour prediction, a feature with observations
[10, 8, 12] collected at [1.2, 1.5, 3.7] hours after admission is
discretized to [miss1, 8,miss2, 12], where miss1 and miss2
will be imputed by global mean and the previous observed
value, respectively. The regular time series is fed into a 1D
causal convolutional layer with stride 1 to obtain imputation
embeddings with hidden dimension dh, etsimp ∈ Rα×dh .

Discretized multi-time attention (mTAND). We leverage
a discretized multi-time attention (mTAND) module (Shukla
& Marlin, 2021) to re-represent MISTS into α.

To incorporate irregular time knowledge of MISTS, a time
representation, Time2Vec (Kazemi et al., 2019), is learned
to transform each value in a list of continuous time points,
τ , with arbitrary length, lτ , to a vector of size dv and obtain
a series of time embeddings θ(τ ) ∈ Rlτ×dv ,

θ(τ )[i] =

{
ωiτ + ϕi if i = 1

sin(ωiτ + ϕi), if 1 < i ≤ dv,

where θ(τ )[i] is the i-th dimension of Time2Vec, and
{ωi, ϕi}dv

i=1 are learnable parameters. The sine function
captures periodic patterns while the linear term captures
non-periodic behaviors, conditional on the progression of
time (Kazemi et al., 2019).

The mTAND module leverages V different Time2Vec,
{θv(·)}Vv=1, to produce interpolation embeddings at α,
based on a time attention mechanism. Specifically, similar to

the multi-head attention (Vaswani et al., 2017), {θv(·)}Vv=1

are performed on α and all dimensions of MISTS to em-
bed all time points to V different dv-dimensional hidden
spaces simultaneously, capturing various characteristics of
different time points with regard to the overall time infor-
mation in different time subspaces. For each θv(·), a time
attention mechanism is performed for each dimension of
the MISTS simultaneously, which takes α as queries, ttsj as
keys and xts

j as values, and acquires x̂ts
j ∈ Rα, a series of

interpolations of corresponding univariate time series at α.
Therefore, an interpolation matrix ots

v ∈ Rα×dm is obtained
by

ots
v = [x̂ts

1 , x̂ts
2 , · · · , x̂ts

dm
]

x̂ts
j = Attn(θv(α)wq

v, θv(t
ts
j )wk

v ,x
ts
j )

where j = 1, · · · , dm, and wq
v and wk

v are learned param-
eters. Afterwards, ots

1 ,ots
2 , · · · ,ots

V are further concate-
nated and linearly projected to obtain mTAND embeddings,
etsattn ∈ Rα×dh .

3.2.2. UNIFYING TDE METHODS

The imputation approach ignores the irregularity of the time
series, while mTAND could result in worse performance,
probably due to different time series sampling strategies
(Horn et al., 2020). We propose a Unified TDE module,
UTDE, via a gate mechanism to take advantage of both, for
tackling complex time patterns in EHRs. The architecture
of UTDE is illustrated in Figure 3. UTDE incorporates Im-
putation and mTAND as submodules, and learns to dynam-
ically integrate etsimp into etsattn to obtain compounding
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embeddings zts ∈ Rα×dh . Formally,

zts = g ⊙ etsimp + (1− g)⊙ etsattn

g = f (etsimp ⊕ etsattn),

where f (·) is a gating function implemented by MLP for
simplicity, ⊕ is the concatenation operator and ⊙ is point-
wise multiplication. Specifically, we perform UTDE in 3
levels in which g has different dimensions : 1) patient level
with g ∈ R , 2) temporal level with g ∈ Rα, and 3) hidden
space level with g ∈ Rα×dh . The g on the hidden space
level can be more powerful than temporal and patient levels,
while it introduces more parameters to update, making the
whole module more challenging to optimize. In the experi-
ment section, we use validation sets to decide the level on
which to operate.2 In principle, UTDE can be applied to
any two TDE methods. Here, we utilize Imputation and
mTAND as submodules based on empirically results.

3.3. Irregular clinical notes

To extract relevant knowledge from the clinical notes, we
first encode the notes by a in-domain pretrained language
model, TextEncoder. Then we extract the representation
of the [CLS] token for each encoded clinical note, to obtain
a series of note representations, etxt ∈ Rltxt×dt ,where dt
is the hidden dimension of the encoded text. Formally,

etxt = TextEncoder(xtxt).

To tackle irregularity, we sort etxt by ttxt and cast
(etxt, ttxt) as MISTS, such that each hidden dimension
of etxt is a time series sequence and every time series se-
quence has the same collected time points. The mTAND
module introduced in section 3.2.1 is further leveraged to
re-represent etxt into α. Specifically, the mTANDtxt takes
α as queries, ttxt as keys and etxt as values and outputs
ztxt ∈ Rα×dh , a set of text interpolation representations at
α. Thus we have

ztxt = mTANDtxt(α, ttxt, etxt).

For mTANDts, the mTAND module for time series, and
mTANDtxt, we utilize the same {θv(·)}Vv=1 to encode ir-
regular time points of two modalities to obtain temporal
knowledge, because all continuous time points are in the
same feature space. However, all of the other components in
mTANDts and mTANDtxt are learned separately because
the representations of time series and clinical notes are in
different hidden spaces. Moreover, since the mTANDtxt

projects ztxt to the same dimension dh as the zts, the dot-
products are adoptable in attention modules in the fusion.

2we defer more discussion on computation resource of UTDE
to Appendix A.

3.4. Multimodal fusion

Previous works (Khadanga et al., 2019; Deznabi et al., 2021;
Yang et al., 2021; Xu et al., 2021) perform fusion strategies
on multimodal data omitting irregularity. In our work, we
first obtain MISTS and irregular clinical note representa-
tions, zts and ztxt, by UTDE and mTANDtxt, respectively.
In addition, we leverage an interleaved attention mecha-
nism (Vaswani et al., 2017), which fuses zts and ztxt across
temporal steps and integrates irregularity into multimodal
representations, as shown in Figure 2.

Our multimodal fusion module is composed of a stack of
J identical layers. Each layer consists of two self-attention
sublayers and two cross-attention sublayers across temporal
steps to explore the latent interactions between two modal-
ities. Specifically, for each modality in the j-th layer, we
first perform a multi-head self-attention (MH) (Vaswani
et al., 2017) across temporal steps by taking the output of
the corresponding modality from the j−1-th layer to obtain
contextual embeddings. Formally, we acquire the contextual
embeddings of time series and clinical notes, ẑtsj and ẑtxtj ,
by

ẑtsj = MHts
j (ztsj−1), ẑtxtj = MHtxt

j (ztxtj−1),

where j = 1 . . . J , and zts0 = zts and ztxt0 = ztxt. To
capture the cross-modal information between two modali-
ties, two multi-head cross-attentions (CMH) (Vaswani et al.,
2017; Tsai et al., 2019) are leveraged to learn knowledge
of another modality attended by the current modality and
vice versa. Specifically, for a time series branch in the j-th
layer, a CMHts

j transforms ẑtxtj to keys and values to inter-
act with time series modality, and output ztsj , the time series
representations carrying information passed from clinical
notes. For the text branch, the same process is performed
but transforming ẑtsj to keys and values, to output ztxtj , the
clinical note representations integrated with information
passed from time series. Formally,

ztsj = CMHts
j (ẑtsj , ẑtxtj ), ztxtj = CMHtxt

j (ẑtxtj , ẑtsj ).

Upon the CMH output of each modality, a position-wise
feedforward sublayer is stacked. We apply pre-layer nor-
malizations and residual connections to every MH, CMH
and feedforward sublayer. For simplicity, we only draw MH
and CMH in multimodal fusion in Figure 2.

In this process, each modality alternately collects temporal
knowledge by a MH, and updates its sequence via external
information from another modality by a CMH. After zts

and ztxt are passed through J layers, the output of each
modality fully integrates information from another modal-
ity. Eventually, the last hidden states of ztsJ and ztxtJ are
extracted and concatenated to pass through a classifier with
fully-connected layers to make predictions.
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4. Experiments
To demonstrate the effectiveness of our methods, we con-
ducted comprehensive experiments and ablation studies on
two medical tasks: 48-hour in-hospital mortality prediction
(48-IHM) and 24-hour phenotype classification (24-PHE),
which are critical in the clinical scenario (Choi et al., 2016;
Gupta et al., 2018).

4.1. Experimental setup

Dataset. MIMIC III is a real-world public EHR of patients
admitted to ICUs, including numerical time series and clin-
ical notes (Johnson et al., 2016). We select the MISTS
features and extract clinical notes following Harutyunyan
et al. (2019) and Khadanga et al. (2019), respectively. For
each task, the data split of training, validation, and testing
sets follows Harutyunyan et al. (2019), and patients without
any clinical notes before the prediction time are removed.
We defer additional data preprocessing details to the Ap-
pendix B. After preprocessing, the number of patients in
the training, validation and testing sets for the 48-IHM are
11181, 2473 and 2488; and for the 24-PHE, they are 15561,
3410 and 3379, respectively.

Evaluation metric. The 48-IHM is a binary classification
problem with label imbalance with death to discharge ratio
of approximately 1:7. The 24-PHE is a multi-label classi-
fication problem with 25 acute care conditions, which is
more changeling due to earlier prediction time and more
prediction classes. We measured the performance of our
proposed methods and baselines by the F1 and AUPR on
48-IHM and F1(Macro) and AUROC on 24-PHE, following
the previous work (Lin et al., 2019; Arbabi et al., 2019).

MISTS baselines. We compare UTDE with a classical and
5 SOTA baselines of MISTS: Imputation, IP-Net (Shukla &
Marlin, 2019), mTAND (Shukla & Marlin, 2021), GRU-D
(Che et al., 2018), SeFT (Horn et al., 2020) and RAINDROP
(Zhang et al., 2021b). We utilize Transformer (Vaswani
et al., 2017) as backbone for UTDE and TDE methods,
because Transformer has achieved SOTA results in regular
time series modeling (Li et al., 2019; Lim & Zohren, 2021).
We feed time series embeddings into Transformer and ex-
tract the last hidden states of the Transformer output to pass
through fully-connected layers to make predictions. Follow-
ing (Zhang et al., 2021b), we added two methods initially
designed for forecasting tasks, DGM2-O (Wu et al., 2021)
and MTGNN (Wu et al., 2020) in our baselines. Details on
MISTS baseline descriptions are in the Appendix C.1.

Irregular clinical note baselines. Considering the in-
domain knowledge and the length of clinical notes, we
utilize Clinical-Longformer (Li et al., 2022) with a max-
imum input sequence length of 1024 as our text encoder,
which covers more than 98% of notes in both tasks. Same

as time series modality, we feed the text interpolation rep-
resentations obtained by mTANDtxt into Transformer for
predictions. We compare our method with two baselines:
T-LSTM (Baytas et al., 2017), FT-LSTM (Zhang et al.,
2020), and GRU-D (Che et al., 2018), which shows strong
performance in MISTS modeling. All of these methods
model irregularity by acquiring a series of clinical note rep-
resentations with irregular note-taking time information. To
demonstrate our method’s effectiveness at tackling irregu-
larity, we further introduce two baselines: Flat (Deznabi
et al., 2021), utilizing the average of clinical note embed-
dings of a patient for predictions, and HierTrans (Pappagari
et al., 2019), utilizing Transformer to model sequential re-
lationships among a series of clinical notes representations
without considering irregular note-taking time. We defer
additional baseline descriptions to the Appendix C.2.

Multimodal fusion baselines. To examine the effectiveness
of our fusion method, we consider four baselines for fusion:
concatenation (Khadanga et al., 2019; Deznabi et al., 2021),
Tensor Fusion (Zadeh et al., 2017; Liu et al., 2018), MAG
(Yang & Wu, 2021; Rahman et al., 2020a), and MulT (Tsai
et al., 2019). While the first three are asynchronous meth-
ods that do not consider temporal information, MulT and
our method are synchronous relying on a cross-attention
mechanism to integrate information across temporal steps.
Additional multimodal fusion baseline details can be found
in the Appendix C.3.

4.2. Main results

In this section, we compare results between our proposed
methods and their corresponding baselines in MISTS, irreg-
ular clinical notes, and multimodal fusion scenarios, respec-
tively. The data split of each task is fixed across all methods.
We conduct 3 different runs for each setting and report the
corresponding mean values along with the standard devia-
tions in testing sets, based on the best average performance
on validation sets. Details for the hyperparameter selection
can be found in the Appendix D.3

MISTS. Table 1 compares the UTDE with other time series
baselines. UTDE, which incorporates two different TDE
methods, obtains the best performance across two tasks on
different evaluation metrics, demonstrating the advantages
of our hybrid approach for downstream predictions. Specifi-
cally, UTDE relatively outperforms the strongest baseline
by 4.4% in terms of AUPR on 48-IHM. Additionally, UTDE
shows a 6.5% relative improvement in F1 score on the more
challenging 24-PHE task compared to the best baseline.
Excluding UTDE, mTAND and Imputation are the top per-
formers on 48-IHM and 24-PHE, respectively. However,
UTDE, which dynamically incorporates Imputation and
mTAND, outperforms its submodules for both tasks across

3All experiments are conducted on 1 RTX-3090.
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Table 1: Comparison between UTDE and other MISTS methods. We report average performance on three random
seeds, with standard deviation as the subscript. The Best and 2nd best methods under each setup are bold and underlined,
respectively. The performance of 48-IHM is measured on F1 and AUPR, and 24-PHE on F1 (Macro) and AUROC,
respectively.

Imputation IP-Net mTAND GRU-D SeFT RAINDROP DGM2-O MTGNN UTDE (Ours)
48-IHM F1 39.731.39 37.222.75 43.870.54 42.820.57 16.468.61 39.463.70 39.081.53 38.602.50 45.260.70

AUPR 44.361.36 39.361.10 47.541.28 45.900.40 23.890.46 36.230.37 37.791.54 36.492.10 49.641.00

24-PHE F1 23.360.45 17.900.66 19.900.38 18.960.99 6.100.15 21.811.71 18.400.18 14.481.69 24.890.43
AUROC 74.930.22 73.450.10 73.480.11 73.330.10 65.660.11 73.950.89 71.710.16 70.560.68 75.560.17

Table 2: Results comparison in the clinical notes modality.

48-IHM 24-PHE
F1 AUPR F1 AUROC

Flat 39.781.14 51.690.79 18.141.36 74.810.22
HierTrans 48.762.44 52.981.69 50.251.21 84.900.25
T-LSTM 50.320.89 52.573.25 39.131.35 82.030.07
FT-LSTM 48.511.67 54.391.38 38.240.61 81.070.27
GRU-D 51.011.50 54.340.75 51.091.02 84.190.20
mTANDtxt (Ours) 52.571.30 56.051.09 52.950.06 85.430.07

various metrics, showing its ability to integrate knowledge
and benefit medical predictions.

Irregular clinical notes. We compare our method with
baselines in the clinical notes modality in Table 2. All of
the methods that model the sequential relationships among
clinical notes yield better results than Flat by a large mar-
gin, demonstrating that exploiting sequential information
of clinical notes can significantly improve the downstream
predictions. T-LSTM, FT-LSTM and GRU-D outperform or
have comparable result compared to HierTrans on 48-IHM,
but do not perform well on the more challenging 24-PHE
task, where note sequences are sparser. This highlights the
difficulty in modeling irregularity in sparse clinical note se-
quences. The proposed method, mTANDtxt, significantly
outperforms HierTrans by relative margins of 7.8% and
5.3% in terms of F1 on the 48-IHM and 24-PHE, respec-
tively. This shows the importance of modeling the irreg-
ularity present in clinical notes. Additionally, the results
show that mTANDtxt surpasses other irregularity-modeling
methods, particularly achieving a 3.6% relative improve-
ment in terms of F1 on the 24-PHE, demonstrating its strong
performance in tickling irregularity in clinical notes.

Multimodal fusion. We first obtain MISTS embeddings
by UTDE and irregular clinical note embeddings by
mTANDtxt, since they have the best results in each modal-
ity, and then fuse their representations via various multi-
modal fusion strategies. The results are shown in Table
3. Compared to models that use only one source of avail-
able data, most fusion strategies achieve better results, illus-
trating the effectiveness of multimodal fusion. Our fusion
method yields better results than baselines for both tasks,
achieving a particularly 4.3% relative improvement in F1

Table 3: Performance comparison of different fusion strate-
gies. Concat and TF use the concatenation and Tensor
Fusion method to fuse the two modalities, respectively.

48-IHM 24-PHE
F1 AUPR F1 AUROC

TS only 45.260.70 49.641.00 24.890.43 75.560.17
Note only 52.571.30 56.051.09 52.950.06 85.430.07
Concat 52.770.70 57.130.7 53.300.35 85.940.21
TF 51.440.66 57.070.82 49.840.83 84.740.16
MAG 53.202.13 57.861.07 53.730.37 85.940.07
MulT 54.131.20 58.941.94 54.200.33 85.960.07
Interleaved (Ours) 56.451.30 60.231.54 54.840.31 86.060.06

Table 4: Ablation study on the effects of substituting differ-
ent submodules in UTDE. UTDEIP−Net consists of IP-Net
and Imputation, and UTDEmTAND incorporates mTAND
and Imputation.

Imputation IP-Net UTDEIP−Net UTDEmTAND

48-IHM F1 39.731.39 37.222.75 44.881.96 45.260.70

AUPR 44.361.36 39.361.10 45.493.45 49.641.00

24-PHE F1 23.360.45 17.900.66 24.060.51 24.890.43

AUROC 74.930.22 73.450.10 75.170.07 75.560.17

on the 48-IHM, showing the power of the interleaved at-
tention mechanism. Synchronous strategies consistently
achieve better results than asynchronous methods by in-
corporating temporal information in multimodal fusion, re-
sulting in better integration of irregularity and fusion of
different modalities. Our method further outperforms the
MulT, which separately applies a cross-modal Transformer
and a self-attention Transformer for each modality. This
result shows that alternately obtaining temporal information
and cross-modal knowledge for different modalities is more
capable of fusing different modalities and integrating irreg-
ularity into multimodal representations than learning these
two components separately.

4.3. Ablation study

UTDE with different submodules in MISTS. UTDE
could have incorporated different TDE methods as
submodules to obtain fused time series embeddings.
We explored the effectiveness of the gate mechanism
in UTDE by substituting mTAND to IP-Net in Table 4.
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Table 5: Comparison of UTDE and its submodules with different time series backbones.

CNN LSTM Transformer

Imputation mTAND UTED Imputation mTAND UTED Imputation mTAND UTED
48-IHM F1 39.661.72 41.401.16 44.451.41 39.720.70 43.610.55 44.580.18 39.731.39 43.870.54 45.260.70

APUR 41.840.52 46.620.27 48.220.99 42.520.98 47.360.67 48.170.36 44.361.36 47.541.28 49.641.00

24-PHE F1 20.090.70 19.051.17 20.640.54 19.211.37 19.490.32 21.550.21 23.360.45 19.900.38 24.890.43

AUROC 74.690.07 72.310.21 74.900.06 73.950.14 71.500.04 75.150.11 74.930.22 73.480.11 75.560.17

The UTDEIP−Net underperforms UTDEmTAND but still
achieves better results than its submodules, Imputation
and IP-Net, on both tasks, demonstrating that UTDE
successfully learns from different submodules and achieves
optimal performance via the gate mechanism.

UTDE with various backbones in MISTS. To evaluate the
effectiveness of UTDE across different backbone encoders,
we further leverage CNN (LeCun et al., 1998) and LSTM
(Hochreiter & Schmidhuber, 1997) to encode time series rep-
resentations obtained from TDE and UTDE methods. The
results are shown in Table 5. The empirical analysis shows
that Imputation and mTAND performance varies across dif-
ferent time series encoders. However, UTDE consistently
outperforms them, demonstrating the gains of dynamically
integrating different time series embeddings for medical
predictions regarding the effectiveness and generalizability
across time series backbones.

Does UTDE benefit performance in multimodal fusion?
We drop UTDE (w/o UTDE) in our fusion model and
perform only Imputation (w Imputation) and mTAND (w
mTANDts) to obtain MISTS embeddings, respectively. Ta-
ble 6 shows results. Consistent with the time series modality,
the fusion model with learned mTAND embeddings does not
consistently outperform the one with classical imputation
embeddings, and vice versa. However, our fusion model
with UTDE consistently surpasses those using only one
TDE approach. This result further indicates that UTDE can
maintain optimal performance for predictions by integrating
MISTS embeddings from different TDE approaches.

Does tackling irregularity in clinical notes improve per-
formance in multimodal fusion? We remove mTANDtxt

and directly fuse a series of clinical notes representations
with UTDE representations. The results are shown in the
last row in Table 6. Performance drops when the fusion
model ignores irregularity in clinical notes, showing the im-
portance of tackling irregularity in clinical notes for medical
predictions.

Does the length of clinical notes affect results in multi-
modal fusion? Clinical notes are often lengthy and contain
valuable patient information. A longer encoded clinical
note brings more expressive power. We adjust our fusion
model by encoding clinical notes with Bio-Clinical BERT

Table 6: Ablation study of our multimodal fusion model.

48-IHM 24-PHE
F1 AUPR F1 AUROC

Ours 56.451.30 60.231.54 54.840.31 86.060.06

:w/o UTDE
w Imputation 54.590.91 56.800.54 54.460.17 85.980.02
w mTANDts 54.891.09 59.111.21 54.070.51 85.920.12

:w/o mTANDtxt 51.141.79 57.810.76 53.330.62 85.600.06
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Figure 4: Performance of fusion models along with different
maximum input sequence lengths.

(Alsentzer et al., 2019) with maximum input sequence
lengths of 128, 256, and 512, and Clinical-Longformer
(Li et al., 2022), with a maximum input sequence length
of 1024, respectively. Figure 4 shows improvement in per-
formance as maximum input sequence length increases in
both tasks across various evaluation metrics, highlighting
the value of clinical notes and the importance of model-
ing long-term dependency in text in the multimodal fusion
scenario.

5. Conclusion
In this paper, we propose a unified system to fully model
irregularity in multimodal EHRs for medical predictions.
We first tackle irregularity in time series via a gating mecha-
nism and long sequential clinical notes via a time attention
mechanism separately, and effectively integrate irregularity
into multimodal representations by an interleaved fusion
strategy. We hope that our work will encourage further ex-
plorations of tackling irregularity in both single modality
and multimodal scenarios.
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Appendix

A. Computation resource of UTDE
We set the integration level of UTDE as a hyperparameter and use validation sets to search the level on which to operate,
which requires more computation resources than a model with only a single TDE method. Specifically, each time series
experiment run takes less than 10 minutes with a 1 RTX-3090. The integrating operation is a hyperparameter with three
levels. In this case, the total running time of UTDE will be less than 30 minutes across different integrating levels, which is
affordable.

B. Data prepossessing

Table 7: Links for data generation and preprocessing used in experiments

Links
MIMIC III https://mimic.physionet.org/

Time series features selection and extraction https://github.com/YerevaNN/mimic3-benchmarks
clinical notes extraction https://github.com/kaggarwal/ClinicalNotesICU

The dataset link, and time series and clinical notes extraction used in the experiments are listed in Table 7. For time series,
we follow (Harutyunyan et al., 2019) to select numerical time series features and extract time series within 48/24 hours and
split the training, validation and test sets for each task. We rescale each numerical feature to be between 0 and 1. We also
rescale the time to be in [0, 1] for all tasks. The clinical notes within 48/24 hours are extracted by following (Khadanga et al.,
2019). For patients with more than 5 clinical notes, we utilize the last 5 clinical notes preceding the prediction time, due to
computational resource limitations. We hypothesize that a note is taken closer to prediction time, the more influential it is.

Note that our early-stage phenotype classification is a brand new task compared to phenotype classification in (Harutyunyan
et al., 2019), which uses the whole time series of an ICU stay. Our belief is that acute care conditions should occur during
the ICU stay, and the earlier they can be predicted, the more valuable they become. Therefore, we focus on extracting
the first 24 hours of data for phenotype classification, rather than using the entire admission data. This approach is also
supported by Yang et al. (2021) in their research on early-stage diagnoses prediction.

C. Baselines
C.1. MISTS baselines

Imputation: Discretizes MISTS to hourly intervals and obtains imputation embeedings, as described in Section 3.2.
IP-Net (Shukla & Marlin, 2019): Employs a semi-parametric RBF interpolation network to obtain interpolation representa-
tions and a prediction network for prediction. We utilize a Transformer encoder as the prediction network.
mTAND (Shukla & Marlin, 2021): Presents a multi-time attention module to obtain an interpolation representation, as
described in Section 3.2. We adopt a Transformer as the time series encoder to predict downstream tasks.
GRU-D (Che et al., 2018): Extends the GRU model to include a learnable decay term, such that the last observation is
decayed to the empirical mean of time series.
SeFT (Horn et al., 2020) : Uses differentiable set function learning, such that all of the observations are first modeled
individually and then pooled together via an attention based approach.
RAINDROP (Zhang et al., 2021b): Assumes that each variable of MISTS acts as a separate sensor and leverages graph
neural networks to learn the dependencies between different variables.
DGM2-O (Wu et al., 2021): A model initially designed for forecasting tasks, that utilizes a kernel-based approach to
interpolate irregular time series.
MTGNN (Wu et al., 2020): A graph neural network initially designed for forecasting tasks, in which the inter-variate
relationships are constructed by connecting each node with its top k nearest neighbors in a defined metric space.
The implementations of IP-Net (Shukla & Marlin, 2019) and mTAND (Shukla & Marlin, 2021) follow the original paper4 5.
We directly adopt the implementations of GRU-D (Che et al., 2018), SeFT (Horn et al., 2020), RAINDROP (Zhang et al.,

4https://github.com/mlds-lab/interp-net
5https://github.com/reml-lab/mTAN
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2021b), DGM2-O (Wu et al., 2021) and MTGNN (Wu et al., 2020) provided by (Zhang et al., 2021b) 6.
Following (Zhang et al., 2021b), predictions with forecasting models are designed as single-step forecasting problems.

C.2. Irregular clinical notes baselines

Time-Aware LSTM (T-LSTM) (Baytas et al., 2017): A variant of LSTM taking the elapsed time between notes into account
with a decreasing function.
Flexible Time-aware LSTM (FT-LSTM) (Zhang et al., 2020): Encodes the temporal information of clinical notes by
utilizing time-aware trainable parameters in an LSTM cell.
We utilize Clinical-Longformer with a maximum sequence length of 1024 (Li et al., 2022) as the text encoder by using the
pre-trained weights provided in HuggingFace (Wolf et al., 2020)7. We directly adopt the implementations of T-LSTM and
FT-LSTM provided by (Zhang et al., 2020). and GRU-D (Che et al., 2018) provided by (Zhang et al., 2021b). We leverage
the same implementation of mTAND as MISTS baseline.

C.3. multimodal fusion baselines

Multimodal Adaptation Gate (MAG) (Rahman et al., 2020b; Yang & Wu, 2021):Adjusts the representation of one modality
with a displacement vector derived from the other modalities.
Tensor Fusion (TF) (Zadeh et al., 2017; Liu et al., 2018): Performs an outer product on representations of different modalities.
Multimodal Transformer (MulT) (Tsai et al., 2019): Uses a cross-modal Transformer followed by a self-attention Transformer
to obtain multimodal representations across time steps for each modality.
We utilize the implementations of MAG and TF provided by (Yang et al., 2021) 8, and MulT (Tsai et al., 2019) provided by
the original paper9. We perform Concat, MAG and TF as late fusion by first applying a Transformer on every modality
to acquire representations of different modalities, and then integrating the last hidden state of every single modality with
different fusion strategies to obtain multimodal representations for downstream tasks.

D. Hyperparameters and training details
We use a batch size of 32 and learning rate for pre-trained language models (PLMs) of 2× 10−5 and others of 0.0004. We
use the Adam algorithm for gradient-based optimization (Kingma & Ba, 2014). We store the parameters that obtain the
highest F1 and Macro-F1 in the validation set, and use it to make predictions for testing samples for 48-IHM and 24-PHE,
respectively. The chosen hyperparameters are the same across tasks (48-IHM and 24-PHE) and models (both baselines and
our methods) based on MISTS, irregular clinical note and multimodal fusion settings.

D.1. MISTS

For all MISTS models, we run the models for 20 epochs. We search for hidden units of Imputation, mTAND, IP-Net,
GRU-D and SeFT, over the range {64,128}. For Imputation, we set the kernel size of 1D Convolution as 1. For mTAND we
search for hidden size of time embeddings over the range {64,128} and take the the number of time embeddings, V, to be 8.
We utilize a 3-layer Transformer as the backbone encoder for Imputation, mTAND and IP-Net. For UTDE, we search the
hyperparameters of submodules Imputation and mTAND over the same range as the model with only a single method, and
use a 3-layer Transformer as backbone encoder. We search for the gate integration level in {”patient”, ”temporal”, ”hidden
space” }.

D.2. Irregular clinical notes

In our primary study, we empirically found that all models in the clinical note modality converge within 6 epochs, so that we
train all the models for 6 epochs. In addition, we found that fine-tuning the PLM in the first 3 epochs and regarding the PLM
as a feature extractor in later epochs achieved better results than fine-tuning the PLM in the whole training. We search for

6https://github.com/mims-harvard/Raindrop
7https://huggingface.co/yikuan8/Clinical-Longformer
8https://github.com/emnlp-mimic/mimic
9https://github.com/yaohungt/Multimodal-Transformer
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hidden units of T-LSTM, FT-LSTM, GRU-D and mTANDtxt over the range {64,128}. For mTANDtxt, time embeddings
hidden size is searched over the range {64,128} and the number of embeddings V is equal to 8.

D.3. Multimodal fusion

. Same as the clinical note modality, we run all fusion models for 6 epochs, and fine-tune the PLM in the first 3 epochs.
We utilize 3-layer Transformer encoders to encode each modality for Concat, MAG and TF. For MulT, we perform 3 layer
cross-modal Transformer followed by a 3 layer self-attention Transformer for each modality. We learn a 3 layer interleaved
Transformer for our multimodal fusion strategy (J=3). We search for the hyperparameters of UTDE and mTANDtxt over
the same range in each single modality setting. We search for the hidden size of Transformers over the range {64,128}.
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