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ABSTRACT

Pre-training medical image encoder to provide robust, task-agnostic representations
is highly valuable, as it enhances the understanding of medical images and is im-
portant for performing many data-scarce analysis tasks. Current pre-training works
are unable to integrate various types of supervisions, including self-supervision
and external supervision such as segmentation annotations, while they are highly
valuable for medical image understanding. Therefore, in this paper, we take the first
step toward exploring unifying all common types of supervisions into a pre-training
framework through a same scalable way. This require the pre-training framework
being both unified, for accommodating diverse data and extensible, and effective,
for making heterogeneous data synergistically assist unknown downstream tasks.
To this end, we propose UmiF, whose principle is that once converted into token
embeddings in a unified space, all diverse supervisions can be effectively utilized
via contrastive learning and mask modeling with a same way. With UmiF, we pre-
train on 1.66M samples from 14 public datasets, significantly surpassing previous
efforts in terms of the dataset scale. We obtain and release 1 the UmiF model, which
achieved state-of-the-art performance across various downstream tasks, including
classification, segmentation, and detection, retrieval and VQA.

1 INTRODUCTION

As a practical application field, medical image analysis tasks are highly diverse, including diagnosis,
prognosis and progression prediction for different diseases, as well as segmentation for organs or
lesions. Despite recent advancements in deep learning (He et al., 2016; Dosovitskiy et al., 2020b),
many critical practical problems lack sufficient data for training a deep model. For instance, pediatric
interstitial lung disease (Guillerman, 2010), primarily affects children and is rare, resulting in
insufficient high-quality CT data to train a robust deep model. One promising direction is pre-training
task-agnostic medical image representations on large datasets with general learning objectives. Such
representations provide basic understandings to medical images, and can achieve better performances
on downstream tasks via further fine-tuning or even zero-shot adaptation (Qiu et al., 2023).

Many previous works explore pre-training techniques in medical images. In terms of the supervision
type, they can be generally divided into two groups. One group of works mainly use language as
supervisions to guide image representation learning (Zhao et al., 2023; Shrestha et al., 2023). These
pre-trained models focus on image-level downstream tasks like classification while fine-grained
patch-level information is not emphasized. The other group of works use supervisions in images
themselves and employ self-supervised learning methods like DINO (Pérez-García et al., 2024)
and MAE (Zhou et al., 2023b). However, some supervisions, such as paired texts, segmentation
annotations and classification labels, are largely overlooked by them in the pre-training stage. These
labels often come from doctors with rich domain knowledge, incurring extremely high costs and
possessing significant value on medical image understanding and high-quality visual features. Some
works are also attempting to combine different training signals, such as incorporating labels within the
vision-language pre-training framework (Wu et al., 2023). However, these efforts are mostly limited
to specific few types of supervisions and do not fully align with the goal of pre-training task-agnostic
medical image representations. Borrowing the insight from the language domain (Brown et al., 2020),
since the downstream tasks are unknown during the pre-training stage, the model needs to encounter

1Models and codes will be released upon acceptance.
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as many diverse types of data and annotations as possible, rather than being restricted to a limited
set, to to acquire as many abilities as possible in the pre-training stage.

In this work, we take the first step toward exploring a new objective: unifying all common types
of supervisions in the medical image domain through a same scalable way in one model. This
goal is quite challenging, as it requires the framework to be both unified and effective. Firstly, the
framework needs to adopt a cohesive approach rather than implementing complex designs tailored to
the characteristics of the data and annotations. Real-world medical data is highly diverse, and new
data types may emerge; a unified framework allows the model to encounter more data types and offers
better scalability. Additionally, the framework must be effective, ensuring that various heterogeneous
data and supervisions, with distinct characteristics, can synergistically assist unknown downstream
tasks, which is the essence of pre-training models. This goal in the general vision domain also
remains challenging and unsolved (Bai et al., 2024; Wang et al., 2023). Here, we focus on medical
images, as medical datasets often have diverse annotations and small individual sizes, necessitating
such a unified framework. Furthermore, we concentrate on 2D X-rays, given the relatively good
public availability of this medical modality, and because 2D data provides a cleaner setting to study
the synergistic effects of different supervisions within a unified framework. Besides, X-rays are a
common diagnostic modality, making the pre-training techniques for X-rays clinically significant.

We propose a Unified medical image pre-training framework, UmiF, aiming at tackling all common
types of supervisions, including (1) image and patch-level self-supervisions; (2) external supervisions
such as paired reports, captions, segmentation annotations, and classification labels. The design
principle behind UmiF is simple: once converted into token embeddings in a unified space, all
supervisions can be effectively utilized via contrastive learning and mask modeling with a same way,
making them collectively contributing to the development of a robust medical image representations.
In UmiF, an image and its supervision, such as the segmentation annotation, form an input pair. This
pair is then tokenized separately and concatenated into a sequence of input tokens. UmiF introduce a
novel flexible token grouping strategy to randomly split input tokens into two groups. These groups
are used as a positive pair for contrastive learning, and two incomplete views for mask modeling.
Besides, all tokens are processed by a single backbone, enabling effective fusion of all signals.

UmiF well addresses the above two requirements. Specifically, although the data types across various
datasets are highly diverse, we abstract three modalities (i.e., radiology, language and segmentation
mask) and introduced modality-specific tokenizers. This design avoids excessive data-specific
operations and facilitates the transformation of data into a unified token space, providing the basis
for the cohesive modeling for all data types. Besides, the random token grouping strategy makes the
data views in contrastive learning and mask modeling highly flexible and varied, thereby effectively
covering a wide range of supervisions and largely enriching learning tasks. This enables thorough
exploration of the data, enhancing the effectiveness of UmiF. Our contributions are summarized as:

• We introduce a novel pre-training framework UmiF that can unify all common types of
supervisions in the medical image domain through a same way and one model. UmiF
introduces a unified token space and a novel flexible token grouping strategy, making the
framework unified and effective at the same time.

• To fully exploit the advantages of UmiF, we collect a large-scale pre-training datasets based
on public datasets, comprising 1.66M pairs (include 1M images), significantly surpassing
previous efforts, which mostly limited to 380K image-report pairs or 838K images.

• By overcoming several challenges when implementing UmiF, we obtain and release a
generalized pre-trained encoder for medical images based on Vision Transformer (ViT). Even
when compared to previous methods with many data- and supervision-specific designs, UmiF
reaches SOTA performances on most of downstream tasks, including classification, semantic
segmentation, object detection, retrieval and VQA, showing outstanding capabilities in both
image and patch level.

2 PRE-TRAINING DATASETS AND PROCESSING

Regarding pre-training data, we focus on 4 types of input pairs: image-report, image-caption, image-
class and image-segment. Each type includes multiple public datasets, and we provide a processing
pipeline that uniformly converts different datasets into UmiF inputs. Previous pre-training works
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based on public data were mostly limited to MIMIC-CXR dataset (Johnson et al., 2019a) with
220K image-report pairs or PadChest dataset (Bustos et al., 2019) with 160K pairs, or image-only
pre-training (Pérez-García et al., 2024) with 838K images. Our data used in pre-training comprises
1.66M pairs (include 1M images), significantly surpassing previous efforts. Included datasets used in
our pre-training framework UmiF are listed in Table 1. And more details are in Appendix A.

Image-Report We include two large real-world chest X-ray (CXR) image-report datasets, i.e.,
MIMIC-CXR with English reports and PadChest with Spanish reports. For Spanish reports in
PadChest, we translate them into English with GPT-4, and further ask GPT-4 to polish the translated
English reports, resulting in two versions of reports. For other datasets, they originally only have
class labels and we ask GPT-4 to generate reports consistent with labels.

Image-Caption These data mainly come from figures and captions in biomedical papers and we only
use the radiology images provided by the datasets. Comparing with image-report datasets, which
contain CXR and detailed findings from doctors, image-caption data contain different types of images
in papers and simpler descriptions.

Image-Class The classes in these data are about disease types. Different datasets may use varying
names for the same disease, so we standardized the labels across these ten datasets.

Image-Segment These two datasets contain CXR images accompanied by detailed annotations
regarding the locations of pathologies, represented via their coordinates. Similar to image-class
datasets, pathology types are also standardized across datasets.

Table 1: Statistics on the datasets used in pre-training in UmiF.

Input pair type Datasets # Sample

Image-Report Brax Reis et al. (2022), Candidptx Feng et al. (2021), Chexpert Irvin
et al. (2019), Jfhealthcare Healthcare (2020), Nih Wang et al. (2017),

Vindr Nguyen et al. (2020), Padchest Bustos et al. (2020),
Mimic Johnson et al. (2019b)

668K

Image-Caption ROCO Pelka et al. (2018), MedICaT Subramanian et al. (2020) 229K

Image-Class Brax Reis et al. (2022), Candidptx Feng et al. (2021), Chexpert Irvin
et al. (2019), Jfhealthcare Healthcare (2020), Midrc Tsai et al. (2021),

Mimic Johnson et al. (2019b), Mura Rajpurkar et al. (2017), Nih Wang
et al. (2017), Padchest Bustos et al. (2020), Vindr Nguyen et al. (2020)

761K

Image-Segment CheXlocalize Saporta et al. (2022b), ChestX-ray14 Wang et al. (2017) 2K

3 UNIFY ALL COMMON SUPERVISIONS FOR MEDICAL IMAGE
REPRESENTATION LEARNING

In this section, we present the methodology of UmiF, as illustrated in Figure 1. We first show how
different types of input pairs are converted into tokens in Section 3.1, providing basis to utilize
multiple supervision for training in the same way. Then, we introduce the novel flexible grouping
strategy in Section 3.2, which is the key to realize learning tasks and interactions among input signals.
Finally, we show the enabled learning tasks and architectures used by UmiF in Section 3.3.

3.1 UNIFIED TOKEN SPACE FOR VARIOUS INPUT PAIRS

To integrate diverse types of supervisions into a unified framework, we adopt an idea similar to some
previous works (Wang et al., 2022b; Zhang et al., 2023) in the general domain, by converting all input
data into token embeddings. Differently, they focus on generation tasks, while we aim to learning a
medical image encoder with multi-level capabilities.Our overall approach involves first designing a
modality abstraction, mapping all input data listed in Table 1 to three different modalities (radiology,
language, and segmentation masks). Then, for each modality, we introduce specific tokenizers to
convert them into token embeddings.

View Input Pairs as Three Modalities All images in inputs are radiology image, belonging to
the radiology modality. Supervisions in image-report and image-caption datasets (i.e., reports and
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Figure 1: Illustration for the proposed UmiF framework, a unified framework for all common types
of supervisions in the medical image domain. UmiF covers various datastes with 4 different input
pair types, comprising 1.66M pairs. By abstracting 3 kinds of modalities and using modality-specific
tokenizers, all data can by unified in a token space. In UmiF, an image and its supervision form an
input pair. This pair is then tokenized separately and concatenated into a sequence of input tokens.
Then, UmiF employs a novel flexible token grouping strategy to randomly split input tokens into
two groups, serving as a positive pair for contrastive learning, and two incomplete views for mask
modeling. This strategy, together with the unified token space, flexibly enables and enriches various
learning tasks, making the model to fully exploit the information in the pre-training data, thereby
allowing diverse datasets to synergistically contribute to learning one transformer model with robust
medical image representation capabilities.

captions) are texts, belonging to the language modality. For class labels in image-class datasets, we
employ fixed templates (see Appendix A.3) to convert existing disease labels into a text passage, thus
categorizing them as the language modality. For image-segment data, to better integrate pixel-level
supervision, we do not simply convert coordinates into text. Instead, we generate a segmentation
mask with the same size as the image based on the coordinates. As shown in the bottom left corner of
Figure 1, the mask has a black background, and each abnormality is marked with a different color
patch. Since the mask is an RGB image, it belongs to the third modality, i.e., segmentation mask.

Modality-Specific Tokenizers For the language modality, we use tokenizers from BioClinical-
BERT (Alsentzer et al., 2019), including a segmentation unit to convert texts into segments, and a
word embedding layer to map segments into token embeddings. For the radiology and segmentation
mask modalities, since both are images, we apply the same patching operation and tokenizer from
DeiT (Touvron et al., 2021) to convert input patches into token embeddings. Separate tokenizers are
used for radiology and segmentation mask, but they use the same initialization. In this way, data of
three modalities can be converted into a sequence of token embeddings, with each embedding being
a one-dimensional vector of dimension D (denoted as x ∈ RD), and the number of tokens may vary
for each modality.

Through these two steps, we convert diverse input pairs into token embeddings of the same dimension,
allowing these tokens to be processed by a unified transformer model. Besides, by mapping different
data into a unified token space, we can conveniently design token-based learning tasks without
focusing on the specifics of each data type and modality, facilitating a multimodal learning approach
that addresses the varied nature of the data in radiology image and annotations.

3.2 FLEXIBLE TOKEN GROUPING STRATEGY ENRICHES DIFFERENT LEARNING TASKS

To accommodate different learning tasks with a unified approach, we designed a flexible grouping
strategy that divides tokens into two groups for contrastive learning and mask modeling. Specifically,
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a input sample to UmiF is image-supervision pair, with their token embeddings denoted as Xi ∈
Rni×D and Xs ∈ Rns×D, where ni and ns are the number of image tokens and supervision tokens,
respectively. Then, we introduce a set of randomly sampled binary bits b = Concat(bi,bs) where
bi ∈ {0, 1}ni

and bs ∈ {0, 1}ns

. According to whether the binary bit at each corresponding position
in b is 0 or 1, we can divide the tokens into two groups. We use X1 = Concat(X1i,X1s) to denote
token embeddings in group 1, which is a concatenation of tokens embeddings from Xi and Xi at
positions where the corresponding binary bit is 1. Similarly, token embeddings in group 0 are denoted
as X0 = Concat(X0i,X0s). Therefore, tokens are split into two groups according to b.

Here, we use r to represent the ratio of 1 in bi and let the ratio of 1 in bs be 1− r, and then sampling
b according to r. Setting r = 1 means image and supervision tokens are separated into two groups.
Since these two groups are used as the positive pair in contrastive learning, when r = 1 and the
supervision is language, UmiF degrades to vision-language (VL) learning in CLIP. Beyond this point,
other values of r produce the mixed view composed of partial image and supervision tokens (as
shown in Figure 1). This interesting design allows more diverse views and enriches the learning tasks
with many possibilities, surpassing previous VL learning approaches. To ensure more cross-modality
information can be leveraged by UmiF, we employ the following method to set the ratio r. With
a certain probability, r is set to 1 and in remaining cases, r is randomly sampled from [0, 1]. We
provide detailed ablations on the probability in experiments in Section 4.4.

3.3 MODEL ARCHITECTURE AND LEARNING TASKS

Following (Wang et al., 2022d; Zhang et al., 2023), all token embeddings are processed by one model
for better information fusion. UmiF uses ViT (Dosovitskiy et al., 2020a) as it is proven to be effective
for pre-training with large-scale data in many previous works (Wang et al., 2022c; Zhang et al., 2023).
After pre-training, we freeze the weights of the model and use it for different downstream tasks. To
obtain global information, we use two CLS tokens for X1 and X0, separately. They are encoded by
the ViT model and denoted as f1 and f0.

Sampling Pairs and Constructing Batch Since a large number of diverse datasets are incorporated
by UmiF, batch data sampling and construction strategy is critical for the final performance. The
challenges include balancing among data types and datasets to avoid overfitting on dominant ones. We
choose to first sample input pair types, where the type with larger dataset size has higher probability
to be sampled, and then sample pairs with the corresponding type (see Algorithm 1 in Appendix for
details). Therefore, all samples have approximately the same probability of being selected, ensuring
coverage, while allowing for a variety of data pair types within a single batch. Let B denote the
number of sampled images, together with their supervisions, 2B data points in total are obtained in a
training minibatch. Next, we introduce learning objectives in UmiF.

Contrastive Learning Contrastive learning learns representations by maximizing agreement between
positive pairs via a contrastive loss in the latent space. Here, the positive pair is constructed via
the flexible token grouping strategy explained in the last sub-section, and remaining 2(B − 1) data
points within the minibatch are considered as negative examples. We them apply an alignment loss
for contrastive learning, borrowed from SimCLR (Chen et al., 2020). Specifically, features of one
positive pair is represented by (f1i, f0j) with i, j being the index of data point, and sim is the cosine
similarity. The loss function is

Lalign =
1

B

∑
B positive pairs

ℓ(f1i, f0j) + ℓ(f0j , f1i),

where ℓ(fi, fj) = − log
exp(sim(fi, fj)/τ)∑2B

k=1 1[k ̸=i] exp(sim(fi, fk)/τ)
.

(1)

τ is a temperature parameter that scales the distribution of distances, and 1[k ̸=i] is an indicator
function that equals 1 when k ̸= i and 0 otherwise. This formulation encourages representations of
positive pairs to be more similar to each other than to any other example in the minibatch, effectively
learning from the structure inherent within the data itself. Note that by using this method to construct
positive and negative pairs, images in the same batch can also be the negative view. Therefore,
image-level self-supervision is also included in UmiF. Also, since a batch of data may come from
different dataset, UmiF also enables learning signals cross multiple datasets.
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Mask Modeling Another self-supervision task UmiF considered is mask modeling. Specifically, the
binary bits b can also be regarded as masks and we consider the consistency between the complete
view and the masked view. The objective is to ensure that the model can effectively learn invariant or
robust features that are representative of the underlying content, despite variations in visibility due
to masking. Specifically, during the training process, we maintain a student network, and a teacher
network, which is updated by the exponential moving averaged (EMA) over the student network.
Different from the masked inputs to the student model, the input token embeddings of the teacher
model are directly concatenation of Xi and Xs. Finally, the teacher model outputs a CLS token t.
We then apply the consistency loss from BYOL (Grill et al., 2020):

Lcon =
1

B

B∑
i=1

2− 2
t⊤i f0i

||ti|| · ||f0i||
+ 2− 2

t⊤i f1i

||ti|| · ||f1i||
. (2)

In this way, the student network is required to predict the teacher network representation of the same
input under a complete view.

Unify Various Supervisions and Learning Tasks We now explain why UmiF can enable a variety
of different learning tasks and unify supervisions through these learning tasks. As mentioned before,
vanilla VL and beyond are incorporated by UmiF, and images in the same batch can serve as negative
views, accounting for the image-level self-supervision. The combination of flexible batch sampling
methods and token grouping strategy provides a multiplicative increase in learning task diversity.
Besides, inputs also contains image-segmentation pairs. Here, when and image and its supervision
are in separate groups, mask modeling force the model to predict the segmentation annotation. When
they are mixed, the model needs to reconstruct the image. Thus, both patch-level self-supervision and
external supervision are inherently included in UmiF. Thus, UmiF is highly flexible covering various
forms of supervision, which makes it ideally suits for medical image pre-training, where datasets
often have diverse annotations and small individual sizes. Additionally, the design of pre-training
tasks endows the model with both image and patch-level capabilities, enabling it to handle diverse
downstream tasks in medical image analysis.

4 EXPERIMENTS

4.1 PRE-TRAINING CONFIGURATION

In the pre-training stage, we employ ViT (Dosovitskiy et al., 2020b) as our backbone. Our UmiF
model is obtained after 50 epochs training on 16 V100 GPUs with a batch size of 128 per GPU using
UmiF. We utilize AdamW (Loshchilov & Hutter, 2017) as the optimizer, setting the learning rate
to 4e−5 and the weight decay to 5e−2. A linear warm-up and cosine annealing scheduler are also
deployed in this process.

4.2 DOWNSTREAM TASKS

Medical Image Linear Classification We conduct medical image linear classification on three
representative dataset: CheXpert (Irvin et al., 2019), RSNA (Shih et al., 2019), and COVIDx (Wang
et al., 2020). We adopt data split strategies in (Huang et al., 2021; Zhang et al., 2020; Wang et al.,
2022a) for the datasets. Meanwhile, we keep the pre-trained ViT vision encoder fixed and solely
training a linear classification head initialized randomly for the classification task with varying
amounts of training data on each dataset. We report the AUC scores (AUC) on CheXpert and RSNA
and accuracy (ACC) on COVIDx as the evaluation metric following (Huang et al., 2021; Wang et al.,
2022a).

Medical Image Semantic Segmentation Following (Wang et al., 2022a; Huang et al., 2021), we
conduct medical image semantic segmentation on RSNA (Shih et al., 2019) and the SIIM (Steven
G. Langer & George Shih, 2019) datasets. We keep the pre-trained vison backbone frozen and only
update the decoders of U-Net during the fine-tuning. The segmentation performance is evaluated
using Dice scores (Dice).

Medical Image Object Detection Following (Wang et al., 2022a), we conduct medical image
object detection on RSNA (Shih et al., 2019). We utilize YOLOv3 (Redmon & Farhadi, 2018) as the
detection architecture, using our pre-trained vision encoder as the backbone and only updating the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Linear classification results for CheXpert, RSNA, and COVIDx datasets with 1%, 10%, and
100% training data. The best results are highlighted in bold.

CheXpert (AUC) RSNA (AUC) COVIDx (ACC)
Method 1% 10% 100% 1% 10% 100% 1% 10% 100%

Random Init 56.1 62.6 65.7 58.9 69.4 74.1 50.5 60.3 70.0
ImageNet Init 74.4 79.7 81.4 74.9 74.5 76.3 64.8 78.8 86.3

CNN-based
GLoRIA (Huang et al., 2021) 86.6 87.8 88.1 86.1 88.0 88.6 67.3 77.8 89.0
ConVIRT (Zhang et al., 2020) 85.9 86.8 87.3 77.4 80.1 81.3 72.5 82.5 92.0
GLoRIA-MIMIC (Huang et al., 2021) 87.1 88.7 88.0 87.0 89.4 90.2 66.5 80.5 88.8
MedKLIP (Wu et al., 2023) 86.2 86.5 87.7 87.3 88.0 89.3 74.5 85.2 90.3
MGCA (Wang et al., 2022a) 87.6 88.0 88.2 88.6 89.1 89.9 72.0 83.5 90.5
Med-UniC (Wan et al., 2024) (ResNet-50) 88.2 89.2 89.5 89.1 90.4 90.8 76.5 89.0 92.8

ViT-based
MRM (Zhou et al., 2023a) 88.5 88.5 88.7 91.3 92.7 93.3 66.9 79.3 90.8
MGCA (ViT-B/16) (Wang et al., 2022a) 88.8 89.1 89.7 89.1 89.9 90.8 74.8 84.8 92.3
Med-UniC (Wan et al., 2024) (ViT-B/16) 89.4 89.7 90.8 91.9 93.1 93.7 80.3 89.5 94.5
UmiF (ViT-B/16) 89.1 90.1 90.9 92.2 93.4 93.8 79.6 88.6 94.8

detection head during fine-tuning. Mean Average Precision (mAP) with IOU thresholds 0.4∼0.75, is
adopted to evaluate the detection task.

Medical Image Zero-shot Classification Following (Huang et al., 2021; Wan et al., 2024),We
conduct this experiment on the CXP500 (Saporta et al., 2022a), which is the test set of CheXlocalize.
It includes 500+ CXR images with clinician annotated disease label. The results are represented as
the macro average of AUC across all categories.

Medical Visual Question Answer We conduct Medical Viusal Question Answer on VQA-
RAD (Lau et al., 2018). VQA-RAD has 315 radiology images with 3064 question-answer pairs,
with 451 pairs used for testing. There are two types of questions: closed-ended questions that have
limited answer choices (e.g. "yes" or "no") and open-ended questions that VQA models are required
to generate answers in free text, which are more challenging. Following (Li et al., 2023; Chen et al.,
2022), we add a decoder and fintune the whole model.

For Medical Image Linear Classification, Semantic Segmentation and Object Detection, we fine-tune
with 1%, 10%, 100% of the training data.

4.3 COMPARISON TO PREVIOUS STATE-OF-THE-ART

Medical Image Linear Classification To evaluate the effectiveness of the visual representations
learned by the UmiF, we conduct linear classification tasks on three medical datasets: CheXpert (Irvin
et al., 2019), RSNA (Shih et al., 2019), and COVIDx (Wang et al., 2020). As demonstrated in Tab 2,
our UmiF model exhibits best performance in most settings. It is worth noting that the some baselines
use designs tailored to specific data and annotations. Med-UniC belongs to a multi-stage pre-training
paradigm and focuses on unifying cross-lingual text (English and Spanish), so they basically employ
back-translation as an augmentation. MedKLIP and MGCA utilize VL pre-training with disease-level
annotations. In contrast, we target on a unified framework for incorporating as many diverse data
types as possible, so such specific designs are not utilized by us. These designs are largely orthogonal
with our method, but they are not consistant with the focus of this work about studying a unified
framework to make data synergistically benefit downstream tasks. Even without these specific
operations, UmiF shows very competitive performance, well demonstrating that representations
encoded by UmiF is discriminative in terms of disease and abnormality types, and UmiF is able to
learn robust and task-agnostic representations for medical images.

Medical Image Semantic Segmentation and Object Detection We extend our evaluation of
UmiF’s representations to include segmentation and detection tasks in Tab 3. Remarkably, UmiF
surpasses all SOTA methods in every evaluated data subset for all dataset. Notably, for segmentation
tasks, our method outperforms Med-UniC with ViT-B/16 backbone with +1.4%, +0.3%, +0.9%
Dice on SIIM dataset, +0.8%, +0.5%, +0.3% Dice on RSNA dataset under the 1%, 10%, 100%
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Table 3: Results of semantic segmentation (Dice) on SIIM and RSNA datasets and object detection
(mAP) on RSNA dataset. The best results for each setting are highlighted in bold.

Semantic Segmentation Object Detection

SIIM RSNA RSNA
Method 1% 10% 100% 1% 10% 100% 1% 10% 100%

Random 9.0 28.6 54.3 6.9 10.6 18.5 1.0 4.0 8.9
ImageNet 10.2 35.5 63.5 34.8 39.9 64.0 3.6 8.0 15.7

ConVIRT (Zhang et al., 2020) 25.0 43.2 59.9 55.0 67.4 67.5 8.2 15.6 17.9
GLoRA (Huang et al., 2021) 35.8 46.9 63.4 59.3 67.5 67.8 9.8 14.8 18.8
GLoRIA-MIMIC (Huang et al., 2021) 37.4 57.1 64.0 60.3 68.7 68.3 11.6 16.1 24.8
MGCA (Wang et al., 2022a) 49.7 59.3 64.2 63.0 68.3 69.8 12.9 16.8 24.9
MedKLIP (Wu et al., 2023) 50.2 60.8 63.9 66.2 69.4 71.9 8.9 16.3 24.5
Med-UniC (Wan et al., 2024) (ResNet-50) 56.7 62.2 64.4 72.6 74.4 76.7 16.6 22.3 31.1
Med-UniC (Wan et al., 2024) (ViT-B) 62.1 67.3 71.5 75.6 76.6 77.9 - - -

UmiF (ViT-B) 63.5 67.6 72.4 76.4 77.1 78.2 18.7 23.4 32.2

training ratio respectively. Meanwhile, for detection tasks, UmiF also achieves +2.1%, +1.1%, +1.1%
performance gain over the previous method. The significant improvement demonstrate UmiF has
much better patch-level capacity comparing with previous VL-based models. This result indicate the
importance of incorporating segmentation annotations in pre-training, the efficiency and effectiveness
of UmiF in utilizing supervisions on segmentation.

Medical Image Zero-shot Classification To assess the efficacy of the visual-textual representation
capabilities of UmiF, we executed a zero-shot image classification task using the CXP500 dataset.
The zero-shot learning paradigm is particularly challenging, as it requires the model to correctly
classify images it has never seen during training, which is a testament to the generalizability of the
learned representations. As detailed in Table 4, UmiF not only meets but exceeds the performance
of all current SOTA methods when evaluated on the CXP500 dataset. This superior performance is
indicative of UmiF’s robust understanding of visual and textual data, capturing nuanced relationships
between the two modalities without the need for explicit example-based learning for each class.

Medical VQA Consistent with previous research (Chen et al., 2022; Li et al., 2023), we adopt
accuracy as the performance metric. We treated VQA as a generative task by calculating similarities
between the generated answers and candidate list answers, selecting the highest score as the final
answer. As illustrated in Tab 5, UmiF outperforms all other methods on VQA-RAD, and yields the
best accuracy for open-ended and closed-ended answers. UmiF achieves an absolute margin of 0.8%
in Open-ended, 0.7% in Closed-ended, 0.7% Overall over the SOTA method, MUMC. These results
suggest that representations encoded by UmiF have rich semantic information, verifying that UmiF
can improve medical image understanding over previous pre-training methods.

4.4 FURTHER ANALYSIS

The Probability in Flexible Token Grouping Strategy As illustrated in Section 3.2, UmiF apply a
certain probability to let r set to 1, so UmiF degrades to VL learning in CLIP, ensuring UmiF can
make use of cross-modality information. Table 6 demonstrates the influence of probability in UmiF
on RSNA classification (1%). We see that when setting the probability to 0.2, UmiF achieves the
best performance in RSNA 1% classification. Note that although we do not include results when the
probability is greater than 0.8 in the table, we observe large performance descent for those cases.
Overall, these results indicate the importance of introducing the flexible grouping strategy to enable
sampling different kinds of positive pairs.

Ablation Study on Unifying Supervisions In order to show the significance in unifying various
supervisions in pre-training and investigate whether UmiF can uncover their synergistic effects, we
conduct ablation studies, where only one type of input pairs in included in supervision. As illustrated
in Tab 7, we compare these settings in three different downstream tasks (RSNA linear classification,
RSNA semantic segmentation and VQA-RAD VQA). Overall, we observe that model trained with
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Table 4: Results of Zero-shot Classification
on CXP500. The best results for each setting
are highlighted in bold.

CXP500
Method AUC

MGCA⋆

(Wang et al., 2022a) 72.1

MedKILP⋆

(Wu et al., 2023) 70.5

MRM
(Zhou et al., 2023a) 65.2

Med-UniC
(Wan et al., 2024) 75.4

UmiF 76.5

Table 5: Results of VQA on VQA-RAD. The
best results for each setting are highlighted in
bold.

VQA-RAD
Method Open Closed Overall

CPRD
(Liu et al., 2021) 61.1 80.4 72.7

PubMedCLIP
(Eslami et al., 2021) 60.1 80.0 72.1

MTL
(Cong et al., 2022) 69.8 79.8 75.8

M3AE
(Chen et al., 2022) 67.2 83.5 77.0

MUMC
(Li et al., 2023) 71.5 84.2 79.2

UmiF 72.3 84.9 79.9

Table 6: The influence of probability in Flexible Token Grouping Strategy on RSNA classification
(1%). The top-2 results for each setting are highlighted in bold

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RSNA (1%) AUC 91.5 91.2 92.2 91.4 90.8 90.5 91.3 92.0 90.9

all kinds of input pairs achieves the best performance on all tasks. This verifies our motivation that
for building task-agnostic medical image representations, the model needs to see as many diverse
data as possible during pre-training, indicating the importance of unifying all kinds of supervisions
in medical image pre-training. Results also demonstrate the effectiveness of our UmiF on utilizing
those supervisions. UmiF can make data with distinct character synergistically contribute to multiple
downstream tasks.

Besides, we also observe that different data contributes to different downstream tasks. Specifically,
image-report and image-class data has significant impact on linear classification tasks. Meanwhile,
image-caption contributes largely to VQA tasks. These results suggest that when datasets in pre-
training is more closer to downstream tasks, more benefits are gained via pre-training. However,
downstream tasks is often unknown during pre-training and medical image analysis tasks are highly
diverse, thus requiring pre-training frameworks to include more and more kinds of data. This
underscores the importance of the direction explored by our work.

5 RELATED WORK

Medical Vision-Language Pre-training The intricate nature of medical reports, coupled with the
scarcity of extensive medical image-text datasets, has constrained research in the field of medical
Vision-and-Language Pretraining (VLP). ConVIRT (Zhang et al., 2020) learns medical visual repre-

Table 7: Ablation study on unifying supervisions. The row of the input pair type contains results of
the model pre-trained only with that type of data.

RSNA (AUC) RSNA (Dice) VQA-RAD (ACC)
Input pair type 1% 10% 100% 1% 10% 100% Overall

Image-Report 91.0 92.6 93.1 75.9 76.5 77.4 76.2
Image-Caption 86.5 87.3 88.4 69.5 70.4 70.8 77.3
Image-Class 90.5 91.7 92.4 73.2 74.6 75.1 74.1
Image-Segment 85.1 85.3 86.0 70.2 71.5 71.8 68.3
All 92.2 93.4 93.8 76.4 77.1 78.2 79.9
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sentations by exploiting naturally occurring paired descriptive text. Based on this, Gloria (Huang
et al., 2021) learns global and local representations by contrasting image sub-regions and words in the
paired report. MGCA (Wang et al., 2022a) further exploits the high-level semantic correspondences
between inter-subject relationships, such as those related to disease. MedKLIIP (Wu et al., 2023)
involves the extraction of entities pertinent to the medical field. Meanwhile, MRM (Yang et al.,
2023), substituted the alignment task with one focused on reconstruction, which involved handling
masked tokens within both visual and textual modalities. Med-UniC (Wan et al., 2024) integrates
multimodal medical data from the two most prevalent languages, English and Spanish. However,
the availability of publicly accessible medical imaging report datasets has restricted the progress of
visual representation learning techniques. Exploring how to utilize diverse annotated data remains an
issue that needs to be addressed.

Self-Supervised Learning in Medical imaging Recent work in self-supervised learning is using
discriminative signals between images or groups of images to learn features (Chen et al., 2020; He
et al., 2020; Grill et al., 2020). In medical domain, self-supervised learning has also achieved numer-
ous successes. (Chaitanya et al., 2020) develops a novel method to enhance the contrastive learning
framework tailored for the task of segmenting three-dimensional medical images. MICLe (Azizi
et al., 2021) leverages the availability of multiple images depicting the underlying pathology from
each patient case, which constructs more informative positive pairs for self-supervised learning. Swin
UNETR (Tang et al., 2022) introduce a novel self-supervised learning framework with tailored proxy
tasks for medical image analysis. Self-supervised learning has made significant contributions to the
field of medical image processing by reducing the reliance on labeled data, meanwhile enhancing
feature representation learning.

Unified Frameworks In the field of Natural Language Processing (NLP), recent research has been
moving towards unifying a range of tasks from natural language understanding to generation into
a text-to-text framework, or treating them as language modeling challenges. Building upon this
concept, (Cho et al., 2021; Yang et al., 2021) have introduced multimodal pretraining models that
are based on text generation. Furthermore, (Jaegle et al., 2021;?) have developed a straightforward
framework capable of handling inputs from multiple modalities through a consistent representation
in byte sequences. OFA (Wang et al., 2022b) unifies a diverse set of crossmodal and unimodal
tasks, including image generation, visual grounding, image captioning, image classification, language
modeling, etc., in a simple sequence-to-sequence learning framework. Painter (Wang et al., 2023) is
a generalist model which addresses these obstacles with an “image”-centric solution, which redefines
the output of core vision tasks as images, and specify task prompts as also images. (Huang et al.,
2024; Peng et al., 2023) introduce a Multimodal Large Language Model (MLLM) that can perceive
general modalities. Recently, (Yi et al., 2023; Chen et al., 2023) further explore the possibility of
leveraging pre-trained VLMs as medical foundation models for building general purpose medical AI.
Given the variety of annotated data available for medical images, it is essential to fully leverage these
resources to construct a unified model.

6 CONCLUSION, LIMITATION AND FUTURE WORK

In this paper, we introduce an Unified medical image pre-training framework, namely UmiF, assem-
bling all common type of supervision for medical images in a same scalable way. By converting all
signals into token embeddings and leveraging a novel flexible grouping strategy, UmiF successfully
integrates self-supervisions like masking and recovering, as well as external supervisions, including
reports, captions, class labels and segmentation annotations. The pre-trained encoder UmiF reaches
SOTA performance on various downstream tasks, well demonstrating the importance of unifying
various signals and supervisions in one framework and the effectiveness of the UmiF framework in
uncovering synergistic effects of distinct pre-training datasets to multiple downstream tasks.

Limitation and Future Work One limitation is that our model is only trained on public datasets,
which might exist region bias, since radiology device and experts in underdeveloped areas are
insufficient, and data collection process in these areas is almost infeasible. This limitation can be
addressed by including more private data, which one of our future work. Besides, developing AI
models in radiology, which is the research focus in this paper, offers large potential in solving this
radiology resource shortage and imbalance issue.
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Ethics Statement The datasets utilized in this paper are public datasets, making the results repro-
ducible by the boarder research community. Medical image analysis model might have negative
societal impacts, such as provide incorrect diagnosis. This can be mitigated by using medical image
models in a careful way, where human doctor control is always available and decisions made by the
model cannot directly effect treatments to patients.

Reproducibility Statement To ensure reproducibility, we have provided details about UmiF in the
main paper and appendix, including detailed designs, datasets, experiment setting, prompts when
using LLMs, et al. Furthermore, we plan to release all our code and model checkpoints upon the
acceptance.
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ROADMAP OF APPENDIX

The structure of the appendix is delineated as follows: Descriptions of the used dataset details are
provided in the Section A.

A PRE-TRAINING DATASETS

A.1 IMAGE-REPORT DATASET

We divide our Image-Report Dataset to three group: CXR images with original English reports 2,
CXR images with original Spanish reports 3 and CXR images with generated reports 4. We use
prompts as follows to generate reports and translations:

‘You are a senior radiologist proficient in Spanish and English, specializing in interpreting Chest
X-rays. Here is a section of a Spanish report: <Spanish> . . siluet cardi mediastin dentr normal .
cambi pulmonar cronic . . . sen costofren libr . . . no sign enfermed metastas. </Spanish> Please
provide the English translation in xml format in English tag: <English></English> And then polish
the language of the report as a native radiologist in Report tag: <Report></Report>’

Medical Report:
No acute cardiopulmonary process. There is 

no focal consolidation, pleural effusion or 

pneumothorax.  Bilateral nodular opacities that 

most likely represent nipple shadows. The

cardio mediastinal silhouette is normal.  Clips 

project over the left lung, potentially within 

the breast. The imaged upper abdomen is 

unremarkable. Chronic deformity of the 

posterior left sixth and seventh ribs are noted.

(a) CXR image example 1 

from MIMIC dataset

(b) CXR report example 1 

from MIMIC dataset

Medical Report:
No acute cardiopulmonary abnormality. The 

cardiac, mediastinal and hilar contours are 

normal. Pulmonary vasculature is normal.  

Lungs are clear. No pleural effusion or 

pneumothorax is present. Multiple clips are 

again seen projecting over the left breast.  

Remote left-sided rib fractures are also re- 

demonstrated.

(a) CXR image example 2 

from MIMIC dataset

(b) CXR report example 2 

from MIMIC dataset

Figure 2: CXR dataset examples from MIMIC-CXR.
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A.2 IMAGE-CAPTION DATASET

Our Image-Caption Dataset consists of ROCO and MedICaT. ROCO comprises over 80,000 image-
caption pairs. MedICaT includes over 217,000 medical images and their corresponding captions.
Figure 5 demonstrates the cases of ROCO.

Translated Report:
Chest X-ray compared to 

previous one from June 26 shows 

persistent right pleural effusion, 

small subsegmental basal 

atelectasis on the left, and 

thickening of the left apical 

pleura. There is a suture cerclage 

from a previous sternotomy.

(a) CXR image example 1 

from PadChest dataset

(b) Spanish report example 1 

from PadChest dataset

Medical Report:
radiografi actual comp con previ 

26 juni persistent derram pleural 

derech . pequen atelectasi 

subsegmentari bas izquierd . 

sutur cerclaj esternotomi medi . 

engros pleural apical izquierd.

Generated Report:
The current chest X-ray reveals 

persistent right pleural effusion, 

small subsegmental basal 

atelectasis on the left, and 

thickening of the left apical 

pleura. Additionally, there is 

evidence of a suture cerclage 

from a previous sternotomy.

(c) Translated report example 1 

from PadChest dataset

(d) Genrated report example 1 

from PadChest dataset

Translated Report:
Bilateral pleural effusion with 

predominant right-sided 

involvement. Small patchy 

infiltrates in both lung fields. 

Endotracheal tube in place. 

Previous sternotomy and 

mediastinal cerclage.

(a) CXR image example 2 

from PadChest dataset

(b) Spanish report example 2 

from PadChest dataset

Medical Report:
derram pleural bilateral 

predomini derech . pequen infiltr 

parch ambos hemitorax . tub 

endotraqueal . cerclaj 

esternotomi medi .

Generated Report:
The chest X-ray shows bilateral 

pleural effusion with a 

predominant right-sided 

involvement. There are small 

patchy infiltrates in both lung 

fields. An endotracheal tube is in 

place, and there is evidence of 

previous sternotomy and 

mediastinal cerclage.

(c) Translated report example 2 

from PadChest dataset

(d) Generated report example 2 

from PadChest dataset

Figure 3: CXR dataset examples from PadChest.

A.3 IMAGE-CLASS DATASET

CXR images and their corresponding labels are also part of our dataset. Figure 6 demonstrates some
cases of Image-Class Dataset and the Statistic of diseases in the dataset. Meanwhile, we also illustrate
the prompt template used in our pre-training process in Tab A.3
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Medical Report:
No evidence of pleural effusion is observed. 

No evidence of enlarged cardio mediastinum 

is observed. No cardiomegaly is identified in 

the examined region. There are findings 

suggestive of consolidation..

(a) CXR image example 1 from other dataset (b) CXR report example 1 from other datasets

Medical Report:
No signs of enlarged cardio mediastinum is 

observed. There is no indications of fracture in 

the radiograph. No evidence of pleural 

effusion is observed. The radiograph does not 

show any signs of cardiomegaly. The 

radiographic examination of the chest reveals 

no significant abnormalities or pathologies.

 (a) CXR image example 2 from other dataset (b) CXR report example 2 from other datasets

Figure 4: CXR dataset examples from Other Datasets (Brax, Candidptx, CheXpert, Jfhealthcare, Nih,
Vindr).
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Medical Caption:
Chest X-ray, posterior-anterior view after the 

surgical removal of the intermediate lobe of 

the right lung. Drain in the right pleural cavity. 

The postoperative chest radiograph revealed 

no pneumothorax.

(a) CXR image example 1 from ROCO dataset (b) CXR report example 1 from ROCO dataset

Medical Caption:
Chest x-ray of the patient (anteroposterior 

view) shows a small and bell-shaped thoracic 

cage (white arrows) with a round heart (black 

arrow in the middle). Thin ribs and slender 

long bones are also visible (black arrows on 

the ribs).

(a) CXR image example 2 from ROCO dataset (b) CXR report example 2 from ROCO dataset

Figure 5: Dataset example from ROCO.

consolidation no finding atelectasis

pneumonia edema infiltration

fibrosis pleural effusion lung opacity

(a) Cases from Image-Class Dataset (b) Statistic of diseases

Figure 6: Illustration for Image-Class Datasets.
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Text Prompts

1. a xray image showing the characteristic signs of
2. a xray depicting the typical features of
3. a detailed xray revealing the bone structure affected by
4. a diagnostic xray highlighting the presence of
5. a xray of the chest with signs of
6. a close-up xray image focusing on
7. a xray of a limb affected by
8. a frontal xray image displaying signs of
9. a xray of the area showing

10. a xray showing an acute case of
11. a xray demonstrating the severity of
12. a digital xray of a patient with
13. a xray highlighting the complications associated with
14. a preoperative xray of a patient diagnosed with
15. a xray showing the unexpected discovery of
16. a routine xray screening that detected
17. a xray with a detailed view of
18. a labeled xray image identifying the areas affected by
19. a targeted xray of the region commonly affected by
20. an underexposed xray of a case of
21. a xray of the barely visible signs of
22. a low resolution xray image of
23. a poorly taken xray of
24. a cropped xray focusing on
25. a xray with the subtle markings of
26. a high-contrast xray of a difficult to detect
27. A brightened xray image of
28. a xray of a pristine
29. a xray of
30. a xray showing the soiled area from
31. a darkened xray revealing
32. a xray of the intriguing
33. a close-up xray of
34. a xray with excellent lighting of
35. a blurry xray of
36. a xray depicting
37. a jpeg corrupted xray image of
38. a xray with a magnified view of
39. a diagnostic xray pinpointing the location of
40. a xray capturing the classic sign of
41. a xray exhibiting the early stages of
42. a bad xray of

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

43. a xray of the hard to see

44. a low resolution xray of the
45. a bright xray of

46. a dark xray of the
47. a good xray of

48. a xray showcasing the distinct pathology of
49. a high-definition xray image demonstrating the features of

50. a oblique xray view capturing the essence of
51. a comprehensive xray revealing the full extent of

52. a xray snapshot highlighting the critical areas of
53. a medical xray photograph illustrating the anomaly of

54. an advanced xray scan showing the intricate details of
55. a xray image with annotations of the

56. a panoramic xray encompassing the entire scope of
57. a xray with contrast dye emphasizing

58. a xray with highlighted annotations showing
59. a detailed xray mapping the structure compromised by

60. a precise xray pinpointing the origin of
61. a xray with a comparative analysis of

62. a xray with advanced imaging techniques highlighting
63. a follow-up xray indicating the healing progress of

64. a xray showing the differential diagnosis indicators of
65. a post-treatment xray showcasing the resolution of

66. a targeted xray using contrast to delineate
67. a xray with a panoramic view focusing on

68. a xray with a silhouette view of
69. a xray with a spotlight effect on

70. a xray with a windowed view to analyze
71. a xray with a schematic diagram for educational purposes on

72. a teaching xray with labeled structures affected by
73. a xray with a ghosted view to highlight

74. a xray with a false-color enhancement to visualize
75. a xray with an embossed effect to accentuate the texture of

76. a xray with a magnification loupe for close examination of
77. a xray with a highlighted outline of the affected area by

78. a microfocus xray detailing the minute structures within
79. a xray with edge enhancement to clarify the margins of

80. radiographic evidence for
81. signs of

82. convincing signs of
83. focal consolidation concerning for

84. evidence of
85. suggest the presence of

86. convincing evidence of
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87. severe

88. These findings would be consistent with
89. a rapidly developing

90. consider worsening
91. worrisome for
92. acute
93. concerning for

94. the possibility of supervening would have to be considered in the appropriate clinical setting
95. patient was discharged from ED with diagnosis of

96. should also be considered
97. in the appropriate clinical setting should be considered

98. developing
99. findings may be due to

100. consistent with
101. but in the right clinical setting could be due to

102. should also be considered
103. an early focus of

104. findings to suggest
105. there is good evidence for

106. concerning for early developing
107. includes in the appropriate clinical setting

108. an early should also be considered
109. appears more likely

110. suggestive of
111. patient presents with

112. suspicion of
113. Diagnosis:

114. the findings could correspond to a radiological
115. possible radiological

116. these findings suggest the possibility of

A.4 IMAGE-SEGMENT DATASET

CheXlocalize and ChestX-ray14 constucts our Image-Segment dataset. For unified training, we
convert the coordinates of disease to segmentation mask while use different color to represent different
diseases.
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Algorithm 1 Training algorithm of UmiF.

Dataset: Image-Report Dataset Dir , Image-Cation Dataset Dica, Image-Class Dataset Dicl, Image-Segment
Dataset Dics

Vision Encoder: student network E, teacher network E,
for each updating step do

Sample 4 tasks from the task set {Image-Report, Image-Caption, Image-Class, Image-Segment} with
replacement according to the dataset size (larger dataset has higher probability to be sampled)
For each sampled task, randomly select M pairs in the corresponding dataset, resulting in a batch {(i, s)}
with 4M image-supervision pairs.
for each pair in the batch do

Tokenizer the image-supervision pair and obtain Xi and Xs in student and teacher model
Apply token gouping strategy in student model and get X0, X1
f0, f1 = E(X0), E(X1)

t = E(Concat(Xi,Xs))
end for
Gather f0, f1, t in the current batch (4M in total)
Compute Lalign and Lcon

Update the model with Lalign + Lcon

end for
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