
AC \oplus DC search: the winning solution to the FlyWire ventral nerve cord matching challenge

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 This paper¹ describes the Alternating Continuous and Discrete Combinatorial
2 (AC \oplus DC) optimizations behind the winning solution to the FlyWire Ventral
3 Nerve Cord Matching Challenge. The challenge was organized by the Prince-
4 ton Neuroscience Institute and held over three months, attracting research teams
5 with expertise in machine learning, high-performance computing, graph data min-
6 ing, biological network analysis, and quadratic assignment problems. The goal of
7 the challenge was to align the connectomes of a male and female fruit fly, and
8 more specifically, to determine a one-to-one correspondence between the neurons
9 in their ventral nerve cords. The connectomes were represented as large weighted
10 graphs, and the challenge was posed as a problem in graph matching, or finding a
11 permutation that maps the nodes of one graph onto the nodes of another. The win-
12 ning solution to the challenge alternated between two complementary approaches
13 to graph matching—the first, a combinatorial optimization over the symmetric
14 group of permutations, and the second, a continuous relaxation of this problem to
15 the space of doubly stochastic matrices that is amenable to Frank-Wolfe methods.
16 We provide a complete implementation of these methods in MATLAB; with only
17 a few hundred lines of code, it is able to obtain a winning score to the challenge
18 in less than 15 minutes on a laptop computer.

19 **1 Introduction**

20 The problem of graph matching is to find the best permutation that maps the nodes and edges of one
21 graph onto those of another. The problem arises in many areas of science and engineering where
22 graphs are used to encode similarity, co-dependence, or the flow of information (Conte et al., 2004;
23 Mamano & Hayes, 2017; Haller et al., 2022). The problem is solved in practice by maximizing
24 an objective function that scores each permutation by quantifying the similarity of nodes and edges
25 that it brings into correspondence. Graph matching is in general an NP-hard problem; one can find a
26 globally optimal solution by exhaustively considering all permutations, but this is only possible for
27 very small graphs. For larger problems, the best solvers rely on approximate search algorithms that
28 attempt to find a high-scoring match.

29 A particular instance of this problem was at the heart of a recent challenge² posed by the FlyWire
30 consortium at the Princeton Neuroscience Institute. The goal of the challenge was to align the
31 connectomes of a male and female fruit fly, where each connectome was represented by a large
32 sparse graph. The nodes in these graphs represented neurons, and the edges indicated which neurons
33 were connected by synapses. These graphs were also directed and weighted: each edge counted the

¹A longer version of this manuscript has been submitted to TMLR. Joint submission is permitted by both the workshop and TMLR editorial policies.

²https://codex.flywire.ai/app/vnc_matching_challenge

34 number of synapses observed in a particular direction between two neurons. The determination of
 35 these connectomes—down to the level of individual synapses—was the culmination of many years
 36 of painstaking research (Dorkenwald et al., 2024; Devineni, 2024), and the FlyWire consortium has
 37 since issued a stream of open challenges to further process these results. This particular challenge
 38 was posed in the winter of 2024, and its purpose was to study how gender differences in male and
 39 female fruit flies are manifested in the connectomes of their ventral nerve cords (VNCs).

40 There were two features of this challenge that made for an especially compelling problem in graph-
 41 matching. First was the problem size: each VNC connectome was represented by a graph with
 42 $n = 18524$ nodes, far larger than many previous problems in this space. By comparison, for example,
 43 the hermaphrodite *C. elegans* connectome consists of only 302 neurons (Chen et al., 2016; Varshney
 44 et al., 2011). At the same time, the graphs in the VNC challenge were small enough that soft
 45 matches, represented by dense $n \times n$ matrices, could fit into the memory of a modestly equipped
 46 computer. It was therefore possible to explore approaches that took advantage of this ability and did
 47 not rely on purely combinatorial techniques.

48 The second distinguishing feature of the challenge was the particular way that different matches
 49 were scored. Let π denote the permutation of the indices $\{1, 2, \dots, n\}$ that maps i to π_i , and let A
 50 and B denote, respectively, the sparse matrices whose nonzero elements record edge weights in the
 51 male and female connectomes. The alignment score for the VNC matching challenge was computed
 52 as

$$\mathcal{S}(\pi) = \sum_{ij} \min(A_{ij}, B_{\pi_i \pi_j}). \quad (1)$$

53 Eq. (1) is a variant on the weighted Jaccard distance, and it was chosen by the challenge organizers
 54 because it appeared to correlate better with known biological isomorphisms. In particular, they
 55 found that eq. (1) was more robust with respect to these isomorphisms than scores based on simple
 56 correlation or cosine distance. The score in eq. (1) can be computed efficiently by restricting the
 57 sum to nonzero elements of A and B .

58 The challenge ran for three months, and it attracted teams of researchers with expertise in machine
 59 learning, high-performance computing, graph data mining, biological network analysis, and
 60 quadratic assignment problems. The challenge organizers provided a baseline match that was determined
 61 from neuron cell types, and this benchmark solution (though not the cell type metadata)
 62 was made available for teams to use as a warm start. Nearly all teams continued to submit improved
 63 solutions up to the deadline on January 31, 2025, and the scores of these submissions were independently
 64 verified by the challenge organizers. Throughout the challenge, scores were not disclosed,
 65 and different teams did not share code or details of their solutions. Table 1 shows the top ten scores
 66 from the leaderboard for the challenge.

67 In this paper, we reveal the methods behind the winning solution to the challenge. The solution combined
 68 two complementary approaches to graph matching: the first was a combinatorial optimization
 69 over the space of permutation matrices (Mamano & Hayes, 2017), and the second was a continuous
 70 relaxation of this problem to the space of doubly stochastic matrices (Vogelstein et al., 2015). Both

Submitted	Name	Score
2025-02-18	██████████	5,853,925
2025-02-17	D. A. Bader, H. A. Sriram, S. Chinthalapudi, and Z. Du	5,853,910
2025-01-31	████████ (Winner)	5,853,779
2025-01-31	D. A. Bader, H. A. Sriram, S. Chinthalapudi, and Z. Du	5,849,534
2025-01-31	Y. Ma, X. Zhu, and L. Zhu	5,842,347
2025-01-31	W. B. Hayes, M. Longo, and R. Longo	5,841,041
2025-01-31	Team FAQ	5,838,188
2025-01-31	D. Hashorva	5,837,872
2025-01-31	P. J. C. Duarte, C. Larsen, and R. Willemse	5,834,246
2025-01-31	T. M. da Nóbrega	5,824,339

Table 1: Top ten scores on the leaderboard of the VNC matching challenge as of the writing of this paper. The winning score on 2025-01-31 was obtained using the methods in this paper, and the top score on 2025-02-18 was obtained by combining the methods of the two leading teams.

71 of these approaches were pursued individually by other teams, but it was the combination of these
72 approaches that led to a winning solution. We refer to this alternation of continuous and discrete
73 combinatorial methods as AC \oplus DC search.

74 The continuous relaxation of this problem is obtained by extending the score in eq. (1) to the convex
75 set of doubly stochastic matrices. The relaxed objective is given by

$$\mathcal{S}(P) = \sum_{ijk\ell} \min(A_{ij}, B_{k\ell}) P_{ik} P_{j\ell}, \quad (2)$$

76 where P is an $n \times n$ nonnegative matrix whose rows and columns sum to one. Note that the
77 objective in eq. (2) is quadratic *but not concave* in its argument; also, when P is dense, it appears
78 naively to require $O(n^4)$ operations to perform its quadruple sum. The winning solution optimized
79 eq. (2) by adapting Frank-Wolfe methods for constrained convex optimization (Frank & Wolfe,
80 1956) alongside a fast preconditioner to solve the linear assignment problem at each iteration. This
81 type of relaxation has been used successfully for other quadratic assignment problems (Vogelstein
82 et al., 2015). The main novelties described in this paper are highly optimized routines for computing
83 the gradient of eq. (2) and projecting this gradient into the space of permutation matrices.

84 With these techniques, we show how to obtain a winning score to the challenge in under 15 minutes,
85 on a laptop computer, with a few hundred lines of code in MATLAB. Though not revealed at the
86 time—because teams on the leaderboard were listed by the date of their most recent submission—
87 the AC \oplus DC methods held the top score for the final forty days of the challenge. These methods
88 should be of direct interest to other researchers in biological network analysis, and they should also
89 be of general interest to researchers in machine learning whose problems require optimizations over
90 the permutation group.

91 The organization of this paper is as follows. In section 2, we describe a greedy search algorithm
92 for the combinatorial optimization of eq. (1) over the space of permutation matrices. This approach
93 has the advantage of simplicity, and it also directly optimizes the score in eq. (1). But it improves
94 the score slowly in the early stages of optimization, and in the later stages, it is prone to getting
95 stuck. In section 3, we describe a first-order method for the continuous optimization of eq. (2).
96 This method has the advantage that it makes rapid initial progress, but it does not converge to a
97 permutation matrix that maximizes eq. (1). In section 4, we describe the winning solution that is
98 found by alternating these approaches, and additional techniques (albeit with diminishing returns)
99 for optimizing the scores in eqs. (1) and (2). Finally, in section 5, we conclude with a discussion of
100 open problems and directions for future work.

101 2 Discrete search

102 There are many ways to search for a permutation that maximizes the score in eq. (1). Arguably
103 the simplest is a hill-climbing approach that makes local moves in the space of $n!$ permutations.
104 This approach can equivalently be viewed as an optimization over the space of $n \times n$ permutation
105 matrices—that is, matrices whose elements are equal to zero or one and whose rows and columns
106 sum to one. Within this approach, there are also many types of local moves that can be considered,
107 but the simplest are those that swap exactly one pair of indices (viewing permutations as shuffles) or
108 exactly one pair of rows (viewing them as matrices). In this section, we describe an efficient way to
109 evaluate these moves and illustrate the strengths and weaknesses of this approach.

110 2.1 Evaluation of pairwise swaps

111 Our first goal is to evaluate how the score in eq. (1) is changed by single pairwise swaps. The
112 following notation will be useful. Let P^π denote the $n \times n$ permutation matrix corresponding to the
113 permutation π , whose elements are given by $P_{ik}^\pi = \delta(\pi_i, k)$, where $\delta(\cdot, \cdot)$ is the Kronecker delta
114 function. Similarly, let σ_{ij} denote the permutation that swaps i and j while leaving all other indices
115 intact, and let $\pi \circ \sigma_{ij}$ denote the composition (from right to left) of these two permutations—that is,
116 the permutation obtained by first swapping i and j and then permuting the indices according to π .

117 We begin by computing the $n \times n$ symmetric matrix Δ^π whose elements record the difference in
118 scores between permutations that are related by a single pairwise swap of indices. In particular, let

$$\Delta_{ij}^\pi = \mathcal{S}(\pi \circ \sigma_{ij}) - \mathcal{S}(\pi), \quad (3)$$

119 so that the diagonal elements of Δ^π are zero, while the nonzero elements indicate those local moves
 120 in the space of permutations that change the score. Note that for this challenge, with $n = 18524$
 121 nodes per graph, each matrix Δ^π records the effect of over 171 million pairwise swaps.

122 Let \mathcal{P} denote the convex set of doubly stochastic $n \times n$ matrices. Since the score in eq. (2) is quadratic
 123 in the matrix $P \in \mathcal{P}$, the differences in eq. (3) can also be expressed in terms of the gradient and
 124 Hessian of this score. The gradient of eq. (2) is given by the $n \times n$ matrix with elements

$$[\nabla \mathcal{S}(P)]_{j\ell} = \sum_{ik} \left[\min(A_{ij}, B_{k\ell}) + \min(A_{ji}, B_{\ell k}) \right] P_{ik}, \quad (4)$$

125 and it is generally a *dense* matrix even when the matrices A , B , and P in eq. (4) are sparse. Of
 126 particular interest is the form of this gradient at the permutation matrix P^π . We denote this gradient
 127 by $G^\pi = \nabla \mathcal{S}(P^\pi)$, and its elements are given by

$$G^\pi_{j\ell} = \sum_i \left[\min(A_{ij}, B_{\pi_i \ell}) + \min(A_{ji}, B_{\ell \pi_i}) \right]. \quad (5)$$

128 The gradient in eq. (5) can be computed in $O(n^2)$ operations by exploiting the sparsity of the connectome
 129 weights in the matrices A and B . In particular, for the matrices of size $n = 18524$ in this
 130 challenge, this gradient takes about 15 seconds to compute on a Macbook Pro (M1 Max) laptop.

131 Next we consider the way in which the Hessian of the score in eq. (2) enters into the calculation of
 132 differences in eq. (3). To this end, we introduce a new matrix B^π , whose elements are obtained by
 133 permuting the rows and columns of B according to the permutation π ; in particular,

$$B^\pi_{ij} = B_{\pi_i \pi_j}. \quad (6)$$

134 The elements of B^π appear in certain combinations of Hessian elements that arise repeatedly in the
 135 calculation of the matrix Δ^π . As further shorthand, we define the functions

$$h^\pi_{ij}(a) = \min(a, B^\pi_{ii}) + \min(a, B^\pi_{jj}) - \min(a, B^\pi_{ij}) - \min(a, B^\pi_{ji}), \quad (7)$$

136 where in practice we will take the argument a to be a particular connectome weight from the
 137 matrix A . For example, when $a = A_{ii}$, the right side of eq. (7) expresses a particular linear combination
 138 of elements from the Hessian of eq. (2) evaluated at the matrix P^π .

139 With the above definitions, we can express the effects of swaps in eq. (3) in terms of the connectome
 140 weights and the gradient and Hessian of the score. In terms of these quantities, the elements of Δ^π
 141 are given by

$$\Delta^\pi_{ij} = G^\pi_{i\pi_j} + G^\pi_{j\pi_i} - G^\pi_{i\pi_i} - G^\pi_{j\pi_j} + h^\pi_{ij}(A_{ii}) + h^\pi_{ij}(A_{jj}) - h^\pi_{ij}(A_{ij}) - h^\pi_{ij}(A_{ji}), \quad (8)$$

142 and again, all n^2 matrix elements in this equation can be computed in $O(n^2)$ operations for a given
 143 permutation π . For the matrices of size $n = 18524$ in this challenge, it takes about 8 additional
 144 seconds to compute the elements in eq. (8) on top of the gradient in eq. (5). We provide pseudocode
 145 for a procedure (EVALUATESWAPS) to compute these elements in the Appendix as Algorithm 1.

146 It is possible for none of the matrix elements Δ^π_{ij} in eq. (8) to be positive. When this is the case,
 147 it indicates that the permutation π cannot be improved by a single pairwise swapping of indices.
 148 Otherwise, the largest (i.e., most positive) element of Δ^π indicates the pairwise swap that most
 149 improves the scoring function in eq. (1). This suggests a simple algorithm for greedy local search
 150 which we describe in the next section.

151 2.2 Greedy search with pairwise swaps

152 Starting from an initial permutation π , one can attempt to optimize the score in eq. (1) by alternating
 153 two procedures; the first evaluates the effect of each pairwise swap by computing its corresponding
 154 element in Δ^π , and the second performs those swaps that seem likely to increase the score by the
 155 largest amount. We give the pseudocode for a greedy search based on these two procedures in the
 156 Appendix as Algorithm 2. The search terminates when the first procedure returns a matrix Δ^π with
 157 no positive elements.

158 We use a threshold τ to adjust the balance of time spent in these two procedures. The MAKESWAPS
 159 procedure in Algorithm 2 performs up to τ swaps that increase the score while skipping over

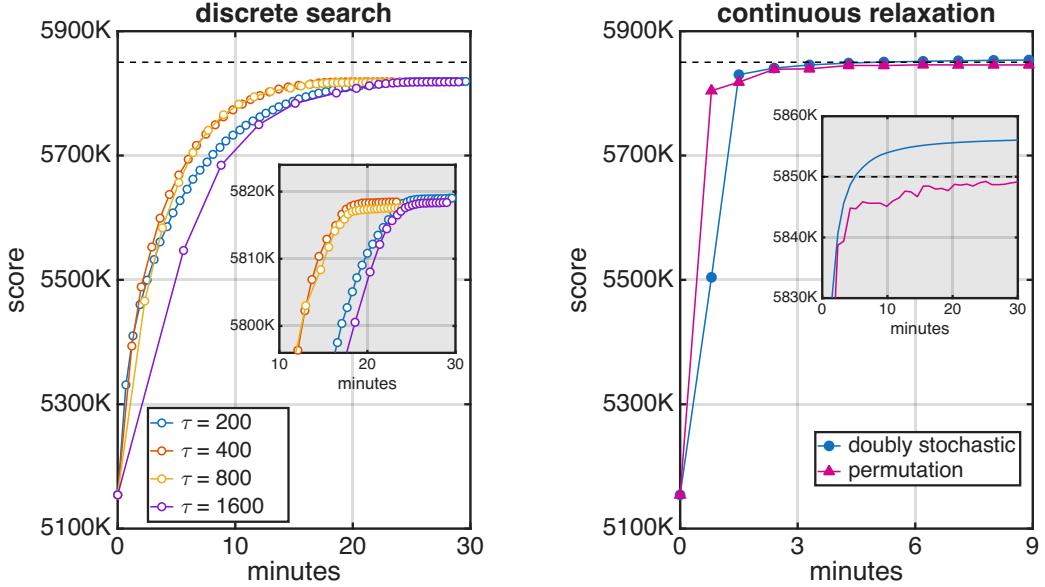


Figure 1: Alignment scores in eqs. (1–2) versus wall clock time starting from the benchmark solution at score 5154247. *Left*. Greedy discrete search utilizing up to τ pairwise swaps per iteration. *Right*. Frank-Wolfe updates in eqs. (11) and (13) to optimize the continuous relaxation in eq. (2). Neither method converges to a winning score for the challenge (indicated by the dashed line at 5850K).

160 swaps that do not. The threshold is only needed in the early stages of optimization, when the
 161 permutation π is very far from optimal; in this case, the matrix Δ^π returned by the first procedure
 162 (EVALUATESWAPS) may have an inordinately large number of positive elements. The MAKESWAPS
 163 procedure considers pairwise swaps in descending order of their corresponding elements in Δ^π . If
 164 the maximal element of Δ^π is positive, then the first such swap is guaranteed to yield a permutation
 165 with a higher score. However, successive swaps are *not* guaranteed to increase the score, even if
 166 they correspond to positive elements of Δ^π , due to possible interference with previously executed
 167 swaps. (A trivial example of such interference arises from the symmetry of the matrix Δ^π : a swap
 168 $j \leftrightarrow i$ will exactly negate the gain from an immediately preceding swap $i \leftrightarrow j$.)

169 The left panel of Fig. 1 shows results from the greedy search in Algorithm 2 for different thresholds
 170 on the maximum numbers of pairwise swaps per iteration. All of these runs were initialized from
 171 the benchmark solution with score 5154247 provided by the challenge organizers. The algorithm
 172 converges to different solutions for different thresholds τ , but all of these solutions have scores
 173 around 5818K. These solutions are evidence of the large number of local maxima in this problem:
 174 there are many permutations whose scores cannot be improved by any pairwise swaps of indices
 175 (and there are over 171 million possible pairwise swaps).

176 There are many ways to augment the greedy search so that it discovers higher-scoring permutations.
 177 One is to introduce an element of randomness, sometimes performing a pairwise swap that decreases
 178 the score, as is done in simulated annealing (Mamano & Hayes, 2017). Another is to evaluate and
 179 perform higher-order moves that swap three or more indices at a time. While these approaches may
 180 require more resources, one can also optimize them aggressively, in faster languages than MATLAB,
 181 while exploiting opportunities for parallelism (e.g., multi-core, GPUs) (Koblentz, 2025).

182 Multiple teams experimented with these ideas in the days and weeks leading up to the deadline.
 183 But even with considerably longer runs, these more elaborate forms of discrete search were not able
 184 to reach the dashed line in Fig. 1, indicating a score (at 5850K) that was high enough to win the
 185 challenge. As mentioned earlier, however, this winning score can be obtained in under 15 minutes
 186 by combining discrete and continuous approaches to the optimization of eq. (1). With this goal in
 187 mind, we now turn to the latter approach.

188 **3 Continuous relaxation**

189 In this section we describe a complementary approach to this problem in graph-matching, one based
 190 on a continuous optimization over the convex set of doubly stochastic matrices. This type of relax-
 191 ation has been studied previously for quadratic assignment problems (Vogelstein et al., 2015), but
 192 for the best results in the challenge this approach must be tailored specifically to the alignment score
 193 in eq. (2). This score is a quadratic function of P , but it is not concave, and therefore an iterative
 194 hill-climbing procedure is not guaranteed to find its global maximum. Here we show that an iterative
 195 procedure, based on the Frank-Wolfe algorithm for constrained convex optimization (Frank &
 196 Wolfe, 1956), can be adapted to this problem with extremely competitive results. One crucial part
 197 of this procedure, described below, is the efficient calculation of a projected gradient.

198 **3.1 Frank-Wolfe updates**

199 The Frank-Wolfe iterative procedure alternates between three steps: the first step computes the
 200 gradient in eq. (4). As mentioned previously, it takes about 15 sec to compute this gradient at a
 201 permutation matrix of size $n = 18524$. For this iterative procedure, we need to compute the gradient
 202 at doubly stochastic matrices, which in general can take much longer. As we shall see, however, the
 203 procedure converges very quickly, so that in practice—if the search is initialized by a permutation
 204 matrix—we only need to compute gradients for doubly stochastic matrices that are highly sparse.
 205 When this is the case, it takes only slightly longer to compute the gradient in eq. (4).

206 The second step of the iterative procedure projects this gradient back into the convex set of doubly
 207 stochastic matrices. In particular, this step computes

$$Q_t = \operatorname{argmax}_{Q \in \mathcal{P}} \left(\operatorname{trace} \left[\nabla \mathcal{S}(P_t)^\top Q \right] \right). \quad (9)$$

208 Note that eq. (9) defines a linear program whose solution always lies at a *vertex* of the set \mathcal{P} ; in other
 209 words, its solution Q_t is not merely a doubly stochastic matrix, but also a permutation matrix. The
 210 optimization in eq. (9) is most commonly known as the linear assignment problem, or the problem
 211 of perfect matching in a complete bipartite graph. It can be solved by the so-called Hungarian
 212 method (Kuhn, 1955) in polynomial time (Munkres, 1957; Edmonds & Karp, 1972; Tomizawa,
 213 1971). We will discuss this step in more detail later.

214 The third step of the iterative procedure is to find the convex combination of P_t and Q_t that maxi-
 215 mizes the score in eq. (2). In particular, the update is given by

$$\alpha_t = \operatorname{argmax}_{\alpha \in [0,1]} \left[\mathcal{S}((1-\alpha)P_t + \alpha Q_t) \right], \quad (10)$$

$$P_{t+1} = (1-\alpha_t)P_t + \alpha_t Q_t. \quad (11)$$

216 In practice, it is not necessary to perform a line search to compute the optimal convex combination
 217 in eq. (10). Instead one can simply calculate the point where the gradient of the score vanishes along
 218 the line connecting P_t and Q_t . Since the score in eq. (2) is quadratic in its argument, this gradient
 219 vanishes at some point $(1-\lambda)P_t + \lambda Q_t$ where $\lambda \in \mathbb{R}$. In particular, λ satisfies the linear equation

$$(1-\lambda) \operatorname{trace} \left[(Q_t - P_t)^\top \nabla \mathcal{S}(P_t) \right] = \lambda \operatorname{trace} \left[(Q_t - P_t)^\top \nabla \mathcal{S}(Q_t) \right]. \quad (12)$$

220 If $\lambda \in [0, 1]$, then the weight α_t in eq. (10) is simply equal to λ . If $\lambda \notin [0, 1]$, then there are two
 221 possibilities: either the score along the line from P_t to Q_t is *concave* with a *maximum* at $\lambda > 1$, or it
 222 is *convex* with a *minimum* at $\lambda < 0$. In both these cases, eq. (10) yields $\alpha_t = 1$.

223 Pseudocode for all three steps of this algorithm is given in the Algorithm 3 of the Appendix. Finally,
 224 we note that the updates in eqs. (9–11) converge monotonically to a doubly stochastic matrix that is
 225 a stationary point (where the gradient has no component inside \mathcal{P}) of this procedure.

226 **3.2 Application to graph-matching**

227 While the Frank-Wolfe updates lead to monotonic improvement in the score of eq. (2), they converge
 228 in general to a doubly stochastic matrix and not a permutation matrix. But it is the latter that is
 229 needed to align two graphs with a score given by eq. (1). To rectify this problem, we also compute a

230 permutation matrix Π_t at each iteration of the updates in eqs. (9–11). This is done by projecting the
 231 doubly stochastic matrix P_t into the space of permutation matrices:

$$\Pi_t = \operatorname{argmax}_{\Pi \in \mathcal{P}} \left(\operatorname{trace} \left[P_t^\top \Pi \right] \right). \quad (13)$$

232 Eq. (13) is a linear program whose solution is the closest-matching permutation matrix to P_t . Again
 233 this can be solved by the Hungarian method or any other algorithm for perfect matching in a com-
 234 plete bipartite graph. In practice the linear program in eq. (13) is much faster to solve than the one
 235 in eq. (9); the reason is that the doubly stochastic matrix P_t in eq. (13) is highly sparse—expressible
 236 as a convex combination of a small number of permutation matrices—whereas the gradient $\nabla \mathcal{S}(P_t)$
 237 in eq. (9) is dense.

238 Since the updates for P_t in eqs. (9–11) converge to a point inside the convex set of doubly stochastic
 239 matrices, it is also true that their projections to Π_t in eq. (13) converge to a permutation matrix at
 240 a vertex of this set. But while the scores $\{\mathcal{S}(P_t)\}_{t=0}^T$ of these doubly stochastic matrices increase
 241 monotonically as a result of these updates, the same is *not* true for the scores $\{\mathcal{S}(\Pi_t)\}_{t=0}^T$ of their
 242 closest-matching permutation matrices. The right panel of Fig. 1 plots the scores from these updates
 243 starting from the benchmark solution with score 5154247.

244 From the results in Fig. 1, we make several observations of interest. First, at the outset of the
 245 optimization, the continuous updates in the convex set of doubly stochastic matrices (shown right)
 246 increase the score much more rapidly than the discrete search based on pairwise swaps (shown
 247 left). Second, the scores of the permutation matrices Π_t in eq. (13) generally track the scores of the
 248 doubly stochastic matrices P_t in eq. (11), but the latter increase monotonically while the former do
 249 not. Third, the scores of the doubly stochastic matrices P_t saturate around 5856K, while those of
 250 the permutation matrices Π_t saturate just below 5850K. In particular, these updates by themselves
 251 do not obtain a handily winning score for the challenge.

252 4 A winning solution

253 It is possible to combine the methods for search in the last two sections and reap the advantages of
 254 both. The discrete swaps in section 2 lead to slow but steady improvement until they reach a local
 255 maximum from which they cannot escape. The continuous Frank-Wolfe updates in section 3 lead to
 256 rapid improvement in the alignment score, but they plateau when the high-scoring doubly stochastic
 257 matrices in eq. (2) do not project to high-scoring permutation matrices in eq. (1). A winning solution
 258 can be quickly obtained by alternating these approaches, using each to offset the weaknesses of the
 259 other. This is the method of alternating continuous and discrete combinatorial (AC \oplus DC) search.

260 Fig. 2 shows the results from this alternating approach. First, we use ten Frank-Wolfe updates to
 261 climb from the benchmark score at 5154K to a score above 5845K in less than 10 minutes. Then we
 262 apply pairwise swaps until the score can no longer be further improved; in five additional minutes,
 263 these swaps produce a solution whose score exceeds 5850K, higher than all but the winning entry to
 264 the challenge. As shown in the figure, the score can be further improved by alternating these different
 265 types of search, with the Frank-Wolfe updates jumping out of the local maximum reached by the
 266 pairwise swaps, and the pairwise swaps reaching higher scores from wherever they are subsequently
 267 initialized. This combined approach reaches a score over 5852K in under one hour.

268 Fig. 2 also highlights the different role played by the continuous Frank-Wolfe updates in the later
 269 stages of optimization. In the first few iterations, before the five-minute mark, there is a high degree
 270 of correlation between the scores of the doubly stochastic matrices in eq. (11) and their closest-
 271 matching permutation matrices in eq. (13): when the former increase (shown in blue), so do the
 272 latter (shown in red). But this relationship no longer holds past the five-minute mark in Fig. (2). In
 273 this regime, we see that higher-scoring interior solutions often project to lower-scoring permutation
 274 matrices. Nevertheless these continuous updates still play a crucial role: they re-initialize the next
 275 stage of discrete updates in a basin of attraction where pairwise swaps can reach a higher maximum
 276 of the score in eq. (1). The overall result is the seesaw pattern of improvement between the red and
 277 yellow curves that we see in Fig. (2).

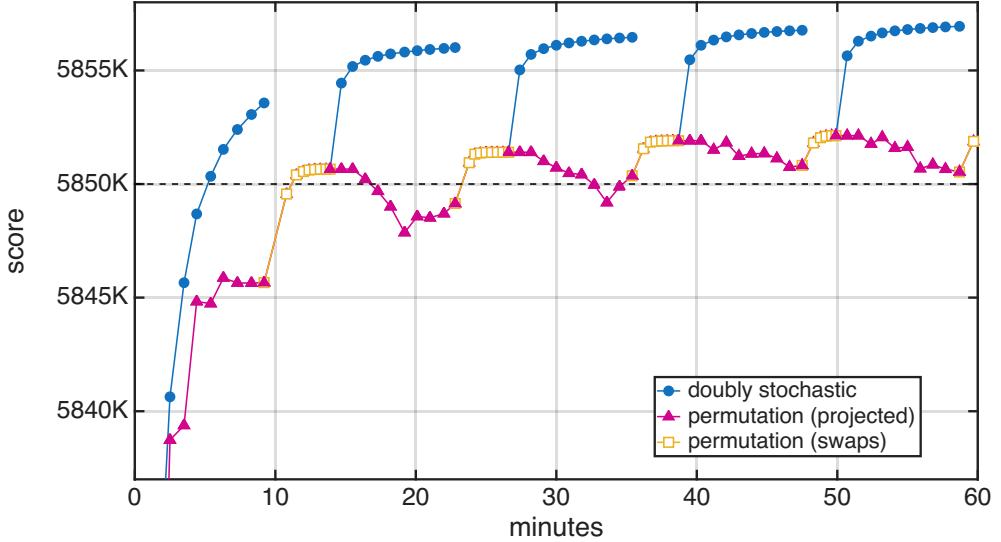


Figure 2: Alignment scores for AC \oplus DC search in eqs. (1–2) versus wall clock time starting from the benchmark solution at score 5154247. The scores were obtained by alternating updates for continuous and discrete combinatorial search—in particular, Frank-Wolfe updates (in batches of ten) for the former and greedy pairwise swaps (repeated until no further swaps improved the score) for the latter. It takes less than 15 minutes for this method to produce a winning score for the challenge (indicated by the dashed line at 5850K).

278 5 Discussion

279 In this paper we have described the AC \oplus DC optimizations behind the winning solution to the VNC
 280 Matching Challenge. The graphs in this challenge were large enough to foil exhaustive methods,
 281 but small enough to experiment with many different approaches on a modestly equipped computer.
 282 The highest-scoring solution was obtained by combining continuous relaxations, additive and
 283 multiplicative updates, bespoke graph decompositions, and higher-order swaps. But most of the work
 284 was done by alternating simple (but aggressively optimized) methods for continuous and discrete
 285 combinatorial search and exploiting the particular structure of the alignment score in eq. (1).

286 We mention several directions for future work. First, not all of the methods in this paper scale
 287 gracefully to larger graphs with $n \gg 10^4$ nodes. For such graphs, it seems necessary to develop
 288 divide-and-conquer methods that do not require the storage of $n \times n$ matrices. Second, we expect
 289 the linear assignment problem in eq. (9) to remain a crucial subroutine for higher-order assignment
 290 problems (or at least for any problem whose score function can be linearized). We need to under-
 291 stand better why certain heuristics such as preconditioning lead to faster solutions, and then perhaps
 292 we can use this understanding to develop even faster approaches. Third, the winning solution to
 293 the VNC matching challenge was implemented in MATLAB, a relatively high-level programming
 294 language, but it is surely possible to produce faster implementations that are better at exploiting
 295 sparsity, managing high-speed memory, and harnessing GPUs. Indeed, to solve larger problems in
 296 graph matching, we are likely to need further progress in all of these directions.

297 Acknowledgements

302 **References**

303 L. Chen, J. T. Vogelstein, V. Lyzinski, and C. E. Priebe. A joint graph inference case study: the *c. elegans* chemical and electrical connectomes. *Worm*, 5(2):e1142041, 2016.

305 D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pattern recognition. *International Journal of Pattern Recognition and Artificial Intelligence*, 18:265–298, 2004.

307 A. V. Devineni. A complete wiring diagram of the fruit-fly brain. *Nature*, 634:35–36, 2024.

308 S. Dorkenwald, A. Matsliah, A. R. Sterling, P. Schlegel, S.-C. Yu, C. E. McKellar, A. Lin, M. Costa, K. Eichler, Y. Yin, W. Silversmith, C. Schneider-Mizell, C. S. Jordan, D. Brittain, A. Halageri, K. Kuehner, O. Ogedengbe, R. Morey, J. Gager, K. Kruk, E. Perlman, R. Yang, D. Deutsch, D. Bland, M. Sorek, R. Lu, T. Macrina, K. Lee, J. A. Bae, S. Mu, B. Nehoran, E. Mitchell, S. Popovych, J. Wu, Z. Jia, M. A. Castro, N. Kemnitz, D. Ih, A. S. Bates, N. Eckstein, J. Funke, F. Collman, D. D. Bock, G. S. X. E. Jefferis, H. S. Seung, M. Murthy, and The Fly Wire Consortium. Neuronal wiring diagram of an adult brain. *Nature*, 634:124–138, 2024.

315 I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse matrix. *SIAM Journal on Matrix Analysis and Applications*, 22(4):973–996, 2001.

317 J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. *Journal of the ACM*, 19(2):248–264, 1972.

319 M. Frank and P. Wolfe. An algorithm for quadratic programming. *Naval Research Logistics Quarterly*, 3(1-2):95–110, 1956.

321 S. Haller, L. Feineis, L. Hutschenreiter, F. Bernard, C. Rother, D. Kainmüller, P. Swoboda, and B. Savchnynskyy. A comparative study of graph matching algorithms in computer vision. In *Proceedings of the 17th European Conference on Computer Vision (ECCV-2002)*, pp. 636–653, 2022.

325 E. Koblentz. Fruit fly research led NJIT scientists and Edison teens to better AI habits on supercomputers. <https://davidbader.net/post/20250303-njit/>, 2025. Accessed: 2025-06-11.

327 H. W. Kuhn. The Hungarian method for the assignment problem. *Naval Research Logistics Quarterly*, 2:83–97, 1955.

329 D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. *Nature*, 401:788–791, 1999.

331 N. Mamano and W. B. Hayes. Simulated annealing far outperforms many other search algorithms for biological network alignment. *Bioinformatics*, 33(14):2156–2164, 2017.

333 J. Munkres. Algorithms for the assignment and transportation problems. *Journal of the Society for Industrial and Applied Mathematics*, 5(1):32–38, 1957.

335 L. Saul and F. Pereira. Aggregate and mixed-order markov models for statistical language processing. In *Proceedings of the 2nd Conference on Empirical Methods in Natural Language Processing*, pp. 81–89, 1997.

338 R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices. *Pacific Journal of Mathematics*, 21:343–348, 1967.

340 N. Tomizawa. On some techniques useful for solution of transportation network problems. *Networks*, 1(2):173–194, 1971.

342 L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and D. B. Chklovskii. Structural properties of the *caenorhabditis elegans* neuronal network. *PLoS Computational Biology*, 7(2):e1001066, 2011.

345 J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T. Harley, D. E. Fishkind, R. J. Vogelstein, and C. E. Priebe. Fast approximate quadratic programming for graph matching. *PLOS ONE*, 10(4):1–17, 2015.

348 **A Algorithms**

349 In this section, we provide detailed pseudocode for the algorithms discussed in the main paper.

350 **A.1 Pairwise swaps**

351 Below is pseudocode for evaluating pairwise swaps as described in Sec. 2.1.

Algorithm 1 Given connectome weights $A, B \in \mathbb{R}^{n \times n}$ and a base permutation π , evaluate the score differences in eq. (8) obtained by a single pairwise swap of indices.

```

procedure  $\Delta = \text{EVALUATESWAPS}(A, B, \pi)$ 
    ▷ Compute gradient at  $\pi$  and permute rows and columns of  $B$ 
    for  $i \leftarrow 1$  to  $n$  do
        for  $j \leftarrow 1$  to  $n$  do
             $G_{ij} \leftarrow \sum_{k=1}^n [\min(A_{ki}, B_{\pi_k j}) + \min(A_{ik}, B_{j\pi_k})]$ 
             $B_{ij}^\pi \leftarrow B_{\pi_i \pi_j}$ 
        end for
    end for
    ▷ Evaluate difference in scores due to pairwise swaps
    for  $i \leftarrow 1$  to  $n$  do
        for  $j \leftarrow 1$  to  $n$  do
             $hA_{ii} \leftarrow \min(A_{ii}, B_{ii}^\pi) + \min(A_{ii}, B_{jj}^\pi) - \min(A_{ii}, B_{ij}^\pi) - \min(A_{ii}, B_{ji}^\pi)$ 
             $hA_{jj} \leftarrow \min(A_{jj}, B_{ii}^\pi) + \min(A_{jj}, B_{jj}^\pi) - \min(A_{jj}, B_{ij}^\pi) - \min(A_{jj}, B_{ji}^\pi)$ 
             $hA_{ij} \leftarrow \min(A_{ij}, B_{ii}^\pi) + \min(A_{ij}, B_{jj}^\pi) - \min(A_{ij}, B_{ij}^\pi) - \min(A_{ij}, B_{ji}^\pi)$ 
             $hA_{ji} \leftarrow \min(A_{ji}, B_{ii}^\pi) + \min(A_{ji}, B_{jj}^\pi) - \min(A_{ji}, B_{ij}^\pi) - \min(A_{ji}, B_{ji}^\pi)$ 
             $\Delta_{ij} \leftarrow G_{i\pi_j} + G_{j\pi_i} - G_{i\pi_i} - G_{j\pi_j} + hA_{ii} + hA_{jj} - hA_{ij} - hA_{ji}$ 
        end for
    end for
end procedure

```

352 **A.2 Greedy pairwise search**

353 Below is pseudocode for the greedy discrete combinatorial search using pairwise swaps as described
354 in Sec. 2.2.

Algorithm 2 Given connectome weights $A, B \in \mathbb{R}^{n \times n}$ and an initial permutation π_0 , perform a
greedy search with up to τ pairwise swaps (per iteration) to find a local optimum in the alignment
score of eq. (1).

```

procedure  $\pi = \text{GREEDYSEARCH}(A, B, \pi_0, \tau)$  procedure  $\pi = \text{MAKESWAPS}(A, B, \pi, \Delta, \tau)$ 
     $\pi \leftarrow \pi_0$   $\mathcal{S} \leftarrow \sum_{ij} \min(A_{ij}, B_{\pi_i \pi_j})$ 
     $\Delta \leftarrow \text{EVALUATESWAPS}(A, B, \pi)$  while  $((\tau > 0) \text{ AND } (\max_{ij}(\Delta_{ij}) > 0))$  DO
    while  $(\max_{ij}(\Delta_{ij}) > 0)$  do  $(i, j) \leftarrow \text{argmax}_{ij}(\Delta_{ij})$ 
         $\pi \leftarrow \text{MAKESWAPS}(A, B, \pi, \Delta, \tau)$   $\pi' \leftarrow \pi \circ \sigma_{ij}$ 
         $\Delta \leftarrow \text{EVALUATESWAPS}(A, B, \pi)$   $\mathcal{S}' \leftarrow \sum_{ij} \min(A_{ij}, B_{\pi'_i \pi'_j})$ 
    end while if  $(\mathcal{S}' > \mathcal{S})$  then
    end while  $(\pi, \mathcal{S}, \tau) \leftarrow (\pi', \mathcal{S}', \tau - 1)$ 
    end if  $(\Delta_{ij}, \Delta_{ji}) \leftarrow (0, 0)$ 
    end while
end procedure

```

355 **A.3 Frank-Wolfe updates**

356 Below is pseudocode for the continuous optimization using Frank-Wolfe updates as described in
357 Sec. 3.1.

Algorithm 3 Given connectome weights $A, B \in \mathbb{R}^{n \times n}$ and an initial doubly stochastic matrix P_0 , perform T Frank-Wolfe updates to optimize the score in eq. (2), then return the doubly stochastic matrix P_T and permutation matrix Π_T found from these updates.

```

procedure  $(P_T, \Pi_T) = \text{DOFRANKWOLFE}(A, B, P_0, T)$ 
   $P \leftarrow P_0$ 
  for  $t \leftarrow 1$  to  $T$  do
    ▷ Compute gradient
    for  $i \leftarrow 1$  to  $n$  do
      for  $j \leftarrow 1$  to  $n$  do
         $G_{ij} \leftarrow \sum_{k\ell} [\min(A_{ki}, B_{\ell j}) + \min(A_{ik}, B_{j\ell})] P_{k\ell}$ 
      end for
    end for
    ▷ Project gradient, compute step size, and interpolate
     $Q \leftarrow \text{argmax}_{Q \in \mathcal{P}} \text{trace}[G^\top Q]$ 
     $\alpha \leftarrow \text{argmax}_{\alpha \in [0,1]} [\mathcal{S}((1-\alpha)P + \alpha Q)]$ 
     $P \leftarrow (1-\alpha)P + \alpha Q$ 
    ▷ Compute closest-matching permutation matrix
     $\Pi \leftarrow \text{argmax}_{\Pi \in \mathcal{P}} \text{trace}[P^\top \Pi]$ 
  end for
   $P_T \leftarrow P$ 
   $\Pi_T \leftarrow \Pi$ 
end procedure

```

358 **B Acceleration by preconditioning**

359 In this section we describe how the winning entry to the challenge solved the linear program in
 360 eq. (9). As mentioned previously, this problem is equivalent to one of perfect matching, and it is
 361 more typically posed in terms of a cost matrix $C \in \mathbb{R}^{n \times n}$, where the goal is to find the permutation
 362 π that minimizes the linear assignment cost

$$\text{trace}(C^\top P^\pi) = \sum_i C_{i\pi_i}. \quad (14)$$

363 There is an internal (though not especially well-documented) routine in MATLAB that solves this
 364 problem by permuting large entries to the diagonal of a sparse matrix (Duff & Koster, 2001). It
 365 assumes that C is stored as a dense matrix, and it is called as

$$\pi = \text{matlab.internal.graph.perfectMatching}(C). \quad (15)$$

366 We used this internal routine to solve the linear programs in eqs. (9) and (13) whose cost matrices
 367 had $n = 18524$ rows and columns. The routine is based on a polynomial-time algorithm, but it
 368 can be very slow if called in the above manner when C is a dense matrix. For example, when
 369 $C = -\nabla \mathcal{S}(P_t)$, this routine requires 10-15 minutes per call on a MacBook Pro (M1 Max) with 64
 370 GB of RAM. Of course it would not be possible to obtain a winning solution in less than 15 minutes
 371 if each iteration of Algorithm 3 required this much computation.

372 We discovered a heuristic that greatly accelerates this routine for perfect matching when it is called
 373 with the gradients $\nabla \mathcal{S}(P_t)$ that appear in eq. (9). The heuristic is based on three observations. First,
 374 the result in eq. (15) is unaffected if we shift any row or column of the cost matrix by a constant
 375 value. Second, the result is trivially equal to the identity permutation if C has negative elements on
 376 the diagonal and nonnegative elements off the diagonal. Third, suppose that an approximate solution
 377 ω can be guessed for eq. (15), where ω is a permutation that nearly solves the linear assignment
 378 problem. Then the matrix product $C \cdot (P^\omega)^\top$ should be closer than C to a matrix whose smallest
 379 entries appear on the diagonal.

380 Based on these observations, we discovered something akin to a preconditioner for the routine in
 381 eq. (15) when $C = -\nabla \mathcal{S}(P_t)$. We describe this preconditioner in detail because it yielded a sig-
 382 nificant speedup, reducing the time per call by a factor of 50-60x, or from minutes to seconds. As
 383 shorthand, let $\mathbb{1} \in \mathbb{R}^n$ denote the column vector of all ones, and let $\text{diag}(\cdot)$ denote the column vector

384 of diagonal elements from its matrix argument. We start by observing that Π_t in eq. (13) provides
 385 an approximate guess for Q_t in eq. (9). With this and the previous observations in mind, we solve
 386 eq. (9) in the following way:

$$(\text{PERMUTE}) \quad \Lambda = \nabla \mathcal{S}(P_t) \Pi_t^\top, \quad (16)$$

$$(\text{SHIFT}) \quad \Omega = \Lambda + \text{diag}(\Lambda) \mathbb{1}^\top + \mathbb{1} \text{diag}(\Lambda)^\top - \mathbb{1} \mathbb{1}^\top \Lambda - \Lambda \mathbb{1} \mathbb{1}^\top, \quad (17)$$

$$(\text{MATCH}) \quad \omega = \text{matlab.internal.graph.perfectMatching}(-\Omega), \quad (18)$$

$$(\text{UNPERMUTE}) \quad Q_t = P^\omega \Pi_t. \quad (19)$$

387 Intuitively, the first of these steps (PERMUTE) ensures that Λ has positive elements on the diagonal,
 388 the second (SHIFT) makes it more likely that Ω has negative elements off the diagonal, and the third
 389 (MATCH) is fastest when Ω has positive elements on the diagonal and none elsewhere, in which case
 390 ω is close to the identity permutation. We do not have a formal justification for this heuristic, but in
 391 practice it was essential, removing eq. (9) as the main bottleneck in Algorithm 3.

392 C Further improvements

393 For the VNC matching challenge, we have shown that a score of over 5852K can be reached in
 394 under one hour by combining simple methods for discrete and continuous search. In this section, we
 395 give a brief overview of additional methods to further improve the score. At the outset, we note that
 396 above 5852K the optimization appears to enter a regime of diminishing returns. As shown in Fig. 2,
 397 it takes only a few minutes to improve the benchmark score by nearly 700K, and then another
 398 hour after that to improve the score by an additional 10K. But beyond this regime it takes many
 399 additional hours—even for the more elaborate methods we discuss next—to obtain improvements
 400 that are orders-of-magnitude less. In light of this, we only provide a high-level sketch of these
 401 methods.

402 C.1 Higher-order swaps

403 The discrete search in Algorithm 2 quickly finds a solution that cannot be improved by further
 404 pairwise swaps. This search over permutation matrices can be extended by considering higher-order
 405 swaps that permute more than two indices at a time. For higher-order swaps, however, it is no
 406 longer feasible to evaluate all possible local moves before considering which ones to perform; there
 407 are, for instance, over one trillion different three-node swaps that can be performed in a graph with
 408 $n = 18524$ nodes. Instead one can evaluate a subset of higher-order moves that seem most likely
 409 to yield improvements. For example, we considered the subset of three-cycles $\{(i \rightarrow j \rightarrow k \rightarrow i)\}$
 410 where the index k was chosen greedily for all pairwise swaps $\{(i \leftrightarrow j)\}$ that did not reduce the score
 411 by a certain threshold. We also devised similar strategies for considering many different types of
 412 higher-order swaps. In total, our most sophisticated discrete search considered not only pairwise
 413 swaps, but also 3-cycles, 4-cycles, and 5-cycles, as well as 2x2, 3x2, 3x3, 4x2, 5x2, 2x2x2, 3x2x2,
 414 and 2x2x2x2 swaps. With these higher-order swaps, it takes another dozen hours to boost the score
 415 from 5852K to 5853K (amounting to a gain of less than 0.01%).

416 C.2 Multiplicative updates

417 The Frank-Wolfe updates in Algorithm 3 produce a sequence of doubly stochastic matrices that
 418 improve the score in eq. (2). When these updates are initialized from a permutation matrix, they
 419 produce a sequence of *sparse* doubly stochastic matrices. This sparsity has certain computational
 420 advantages: for example, it can be exploited to compute the gradient in eq. (4) much more efficiently.
 421 But it also has potential disadvantages; in particular, an optimization restricted to sparse solutions
 422 may not fully leverage the continuous search that is afforded by the relaxation to doubly stochastic
 423 matrices.

424 Recall that the updates in eq. (11) are *additive* updates in which the existing solution P_t is linearly
 425 interpolated with the projected gradient Q_t . We also experimented with *multiplicative* updates that
 426 use the gradient in eq. (4) quite differently. These updates take the form

$$[P_{t+1}]_{ij} = [P_t]_{ij} \cdot \frac{[\nabla \mathcal{S}(P_t)]_{ij}}{u_i + v_j}, \quad (20)$$

427 where in the numerator of eq. (20) appear the elements of the gradient $\nabla \mathcal{S}(P_t)$ and in the denominator appear Lagrange multipliers $u, v \in \mathbb{R}^n$. This multiplicative update can be derived as a generalization of those for nonnegative and (singly) stochastic matrix factorization (Lee & Seung, 1999; Saul & Pereira, 1997). The main generalization is to introduce two sets of Lagrange multipliers into the update; one of these is to enforce sum-to-one constraints on the rows of doubly stochastic matrices, and the other is to enforce sum-to-one constraints on the columns. The resulting update is similar but not equivalent to the Sinkhorn-Knopp procedure for projecting a nonnegative matrix onto the set of doubly stochastic matrices (Sinkhorn & Knopp, 1967).

435 The multiplicative updates in eq. (20) can be used to optimize the score in eq. (2), and unlike the Frank-Wolfe updates, they do not involve the expense of computing a projected gradient, as in eq. (9). But to use these updates on dense doubly stochastic matrices, it is necessary to compute the score in eq. (2) and the gradient in eq. (4) when P is dense. Naively this appears to require $O(n^4)$ operations, a prohibitive scaling for matrices of size $n=18524$.

440 We devised a faster way to compute these gradients by exploiting the fact that the connectome weights are *quantized*. In particular, each nonzero weight records a positive number of synapses, and therefore not only are the elements of A and B quantized, but so are the possible values of $\min(A_{ij}, B_{kl})$ in eq. (4). Let $\mathcal{Q} = \{q_0, q_1, \dots, q_M\}$ denote the set of these quantized values, with $q_0=0$ and $q_i < q_{i+1}$, and let $\Theta(\cdot)$ denote the step function defined by $\Theta(z)=1$ if $z>0$ and $\Theta(z)=0$ otherwise. Then it follows that

$$\min(A_{ij}, B_{kl}) = \sum_{m=0}^{M-1} \Theta(A_{ij} - q_m) \Theta(B_{kl} - q_m) (q_{m+1} - q_m) \quad (21)$$

446 for all connectome weights A_{ij} and B_{kl} . Note how this identity expresses the minimum as a sum over M components. We now use this identity to more efficiently compute the score in eq. (2) and the gradient in eq. (4). To do so, for each interval (q_m, q_{m+1}) , we define connectome *components* with weights

$$A_{ij}^{(m)} = \Theta(A_{ij} - q_m) \sqrt{q_{m+1} - q_m} \quad (22)$$

$$B_{ij}^{(m)} = \Theta(B_{ij} - q_m) \sqrt{q_{m+1} - q_m}. \quad (23)$$

450 Note that each connectome component is a sparse matrix in its own right, one that is at least as sparse as the connectome from which it is derived. Finally, combining eqs. (21–23), we rewrite the score in eq. (2) as

$$\mathcal{S}(P) = \sum_{ijkl} \min(A_{ij}, B_{kl}) P_{ik} P_{jl} \quad (24)$$

$$= \sum_{ijkl} \left[\sum_m A_{ij}^{(m)} B_{kl}^{(m)} \right] P_{ik} P_{jl} \quad (25)$$

$$= \sum_m \text{trace} \left[\left(A^{(m)} P \right) \left(P B^{(m)} \right)^\top \right]. \quad (26)$$

453 Note that this final expression for the score in eq. (26) can be computed in $O(Mn^3)$ as opposed to $O(n^4)$. This savings is significant when $M \ll n$, and it is also inherited by the computation of the gradient. For the VNC matching challenge, there are $M=617$ graph components that arise from the nonzero connectome weights of the male and female fruit fly. With this savings, and using a GPU, it takes less than 2 minutes to compute the gradient of eq. (26) and perform each multiplicative update in eq. (20).

459 C.3 Final results

460 The official winning score to the challenge was 5853779. This score was submitted on January 461 31, 2025 and achieved by alternating the additive updates for sparse doubly stochastic matrices in 462 eq. (11) with the multiplicative updates for dense doubly stochastic matrices in eq. (20). A score of 463 5853925, higher by 0.0025%, was obtained on February 18, 2025 by combining the methods of the 464 two top-scoring teams. Table 1 in the main text shows the top ten scores on the leaderboard as of the 465 writing of this paper.