
AC⊕DC search: the winning solution to the
FlyWire ventral nerve cord matching challenge

Anonymous Author(s)
Affiliation
Address
email

Abstract

This paper1 describes the Alternating Continuous and Discrete Combinatorial1

(AC⊕DC) optimizations behind the winning solution to the FlyWire Ventral2

Nerve Cord Matching Challenge. The challenge was organized by the Prince-3

ton Neuroscience Institute and held over three months, attracting research teams4

with expertise in machine learning, high-performance computing, graph data min-5

ing, biological network analysis, and quadratic assignment problems. The goal of6

the challenge was to align the connectomes of a male and female fruit fly, and7

more specifically, to determine a one-to-one correspondence between the neurons8

in their ventral nerve cords. The connectomes were represented as large weighted9

graphs, and the challenge was posed as a problem in graph matching, or finding a10

permutation that maps the nodes of one graph onto the nodes of another. The win-11

ning solution to the challenge alternated between two complementary approaches12

to graph matching—the first, a combinatorial optimization over the symmetric13

group of permutations, and the second, a continuous relaxation of this problem to14

the space of doubly stochastic matrices that is amenable to Frank-Wolfe methods.15

We provide a complete implementation of these methods in MATLAB; with only16

a few hundred lines of code, it is able to obtain a winning score to the challenge17

in less than 15 minutes on a laptop computer.18

1 Introduction19

The problem of graph matching is to find the best permutation that maps the nodes and edges of one20

graph onto those of another. The problem arises in many areas of science and engineering where21

graphs are used to encode similarity, co-dependence, or the flow of information (Conte et al., 2004;22

Mamano & Hayes, 2017; Haller et al., 2022). The problem is solved in practice by maximizing23

an objective function that scores each permutation by quantifying the similarity of nodes and edges24

that it brings into correspondence. Graph matching is in general an NP-hard problem; one can find a25

globally optimal solution by exhaustively considering all permutations, but this is only possible for26

very small graphs. For larger problems, the best solvers rely on approximate search algorithms that27

attempt to find a high-scoring match.28

A particular instance of this problem was at the heart of a recent challenge2 posed by the FlyWire29

consortium at the Princeton Neuroscience Institute. The goal of the challenge was to align the30

connectomes of a male and female fruit fly, where each connectome was represented by a large31

sparse graph. The nodes in these graphs represented neurons, and the edges indicated which neurons32

were connected by synapses. These graphs were also directed and weighted: each edge counted the33

1A longer version of this manuscript has been submitted to TMLR. Joint submission is permitted by both
the workshop and TMLR editorial policies.

2https://codex.flywire.ai/app/vnc_matching_challenge

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://codex.flywire.ai/app/vnc_matching_challenge


number of synapses observed in a particular direction between two neurons. The determination of34

these connectomes—down to the level of individual synapses—was the culmination of many years35

of painstaking research (Dorkenwald et al., 2024; Devineni, 2024), and the FlyWire consortium has36

since issued a stream of open challenges to further process these results. This particular challenge37

was posed in the winter of 2024, and its purpose was to study how gender differences in male and38

female fruit flies are manifested in the connectomes of their ventral nerve cords (VNCs).39

There were two features of this challenge that made for an especially compelling problem in graph-40

matching. First was the problem size: each VNC connectome was represented by a graph with41

n=18524 nodes, far larger than many previous problems in this space. By comparison, for example,42

the hermaphrodite C. elegans connectome consists of only 302 neurons (Chen et al., 2016; Varshney43

et al., 2011). At the same time, the graphs in the VNC challenge were small enough that soft44

matches, represented by dense n × n matrices, could fit into the memory of a modestly equipped45

computer. It was therefore possible to explore approaches that took advantage of this ability and did46

not rely on purely combinatorial techniques.47

The second distinguishing feature of the challenge was the particular way that different matches48

were scored. Let π denote the permutation of the indices {1, 2, . . . , n} that maps i to πi, and let A49

and B denote, respectively, the sparse matrices whose nonzero elements record edge weights in the50

male and female connectomes. The alignment score for the VNC matching challenge was computed51

as52

S(π) =
∑
ij

min
(
Aij , Bπiπj

)
. (1)

Eq. (1) is a variant on the weighted Jaccard distance, and it was chosen by the challenge organizers53

because it appeared to correlate better with known biological isomorphisms. In particular, they54

found that eq. (1) was more robust with respect to these isomorphisms than scores based on simple55

correlation or cosine distance. The score in eq. (1) can be computed efficiently by restricting the56

sum to nonzero elements of A and B.57

The challenge ran for three months, and it attracted teams of researchers with expertise in ma-58

chine learning, high-performance computing, graph data mining, biological network analysis, and59

quadratic assignment problems. The challenge organizers provided a baseline match that was de-60

termined from neuron cell types, and this benchmark solution (though not the cell type metadata)61

was made available for teams to use as a warm start. Nearly all teams continued to submit improved62

solutions up to the deadline on January 31, 2025, and the scores of these submissions were indepen-63

dently verified by the challenge organizers. Throughout the challenge, scores were not disclosed,64

and different teams did not share code or details of their solutions. Table 1 shows the top ten scores65

from the leaderboard for the challenge.66

In this paper, we reveal the methods behind the winning solution to the challenge. The solution com-67

bined two complementary approaches to graph matching: the first was a combinatorial optimization68

over the space of permutation matrices (Mamano & Hayes, 2017), and the second was a continuous69

relaxation of this problem to the space of doubly stochastic matrices (Vogelstein et al., 2015). Both70

Submitted Name Score
2025-02-18 5,853,925
2025-02-17 D. A. Bader, H. A. Sriram, S. Chinthalapudi, and Z. Du 5,853,910
2025-01-31 (Winner) 5,853,779
2025-01-31 D. A. Bader, H. A. Sriram, S. Chinthalapudi, and Z. Du 5,849,534
2025-01-31 Y. Ma, X. Zhu, and L. Zhu 5,842,347
2025-01-31 W. B. Hayes, M. Longo, and R. Longo 5,841,041
2025-01-31 Team FAQ 5,838,188
2025-01-31 D. Hashorva 5,837,872
2025-01-31 P. J. C. Duarte, C. Larsen, and R. Willemsen 5,834,246
2025-01-31 T. M. da Nóbrega 5,824,339

Table 1: Top ten scores on the leaderboard of the VNC matching challenge as of the writing of this
paper. The winning score on 2025-01-31 was obtained using the methods in this paper, and the top
score on 2025-02-18 was obtained by combining the methods of the two leading teams.

2



of these approaches were pursued individually by other teams, but it was the combination of these71

approaches that led to a winning solution. We refer to this alternation of continuous and discrete72

combinatorial methods as AC⊕DC search.73

The continuous relaxation of this problem is obtained by extending the score in eq. (1) to the convex74

set of doubly stochastic matrices. The relaxed objective is given by75

S(P ) =
∑
ijkℓ

min(Aij , Bkℓ)PikPjℓ, (2)

where P is an n × n nonnegative matrix whose rows and columns sum to one. Note that the76

objective in eq. (2) is quadratic but not concave in its argument; also, when P is dense, it appears77

naively to require O(n4) operations to perform its quadruple sum. The winning solution optimized78

eq. (2) by adapting Frank-Wolfe methods for constrained convex optimization (Frank & Wolfe,79

1956) alongside a fast preconditioner to solve the linear assignment problem at each iteration. This80

type of relaxation has been used successfully for other quadratic assignment problems (Vogelstein81

et al., 2015). The main novelties described in this paper are highly optimized routines for computing82

the gradient of eq. (2) and projecting this gradient into the space of permutation matrices.83

With these techniques, we show how to obtain a winning score to the challenge in under 15 minutes,84

on a laptop computer, with a few hundred lines of code in MATLAB. Though not revealed at the85

time—because teams on the leaderboard were listed by the date of their most recent submission—86

the AC⊕DC methods held the top score for the final forty days of the challenge. These methods87

should be of direct interest to other researchers in biological network analysis, and they should also88

be of general interest to researchers in machine learning whose problems require optimizations over89

the permutation group.90

The organization of this paper is as follows. In section 2, we describe a greedy search algorithm91

for the combinatorial optimization of eq. (1) over the space of permutation matrices. This approach92

has the advantage of simplicity, and it also directly optimizes the score in eq. (1). But it improves93

the score slowly in the early stages of optimization, and in the later stages, it is prone to getting94

stuck. In section 3, we describe a first-order method for the continuous optimization of eq. (2).95

This method has the advantage that it makes rapid initial progress, but it does not converge to a96

permutation matrix that maximizes eq. (1). In section 4, we describe the winning solution that is97

found by alternating these approaches, and additional techniques (albeit with diminishing returns)98

for optimizing the scores in eqs. (1) and (2). Finally, in section 5, we conclude with a discussion of99

open problems and directions for future work.100

2 Discrete search101

There are many ways to search for a permutation that maximizes the score in eq. (1). Arguably102

the simplest is a hill-climbing approach that makes local moves in the space of n! permutations.103

This approach can equivalently be viewed as an optimization over the space of n×n permutation104

matrices—that is, matrices whose elements are equal to zero or one and whose rows and columns105

sum to one. Within this approach, there are also many types of local moves that can be considered,106

but the simplest are those that swap exactly one pair of indices (viewing permutations as shuffles) or107

exactly one pair of rows (viewing them as matrices). In this section, we describe an efficient way to108

evaluate these moves and illustrate the strengths and weaknesses of this approach.109

2.1 Evaluation of pairwise swaps110

Our first goal is to evaluate how the score in eq. (1) is changed by single pairwise swaps. The111

following notation will be useful. Let Pπ denote the n×n permutation matrix corresponding to the112

permutation π, whose elements are given by Pπ
ik = δ(πi, k), where δ(·, ·) is the Kronecker delta113

function. Similarly, let σij denote the permutation that swaps i and j while leaving all other indices114

intact, and let π ◦ σij denote the composition (from right to left) of these two permutations—that is,115

the permutation obtained by first swapping i and j and then permuting the indices according to π.116

We begin by computing the n × n symmetric matrix ∆π whose elements record the difference in117

scores between permutations that are related by a single pairwise swap of indices. In particular, let118

∆π
ij = S(π ◦ σij)− S(π), (3)

3



so that the diagonal elements of ∆π are zero, while the nonzero elements indicate those local moves119

in the space of permutations that change the score. Note that for this challenge, with n = 18524120

nodes per graph, each matrix ∆π records the effect of over 171 million pairwise swaps.121

LetP denote the convex set of doubly stochastic n×n matrices. Since the score in eq. (2) is quadratic122

in the matrix P ∈ P , the differences in eq. (3) can also be expressed in terms of the gradient and123

Hessian of this score. The gradient of eq. (2) is given by the n×n matrix with elements124 [
∇S(P )

]
jℓ

=
∑
ik

[
min(Aij , Bkℓ) + min(Aji, Bℓk)

]
Pik, (4)

and it is generally a dense matrix even when the matrices A, B, and P in eq. (4) are sparse. Of125

particular interest is the form of this gradient at the permutation matrix Pπ . We denote this gradient126

by Gπ=∇S(Pπ), and its elements are given by127

Gπ
jℓ =

∑
i

[
min(Aij , Bπiℓ) + min(Aji, Bℓπi)

]
. (5)

The gradient in eq. (5) can be computed in O(n2) operations by exploiting the sparsity of the con-128

nectome weights in the matrices A and B. In particular, for the matrices of size n=18524 in this129

challenge, this gradient takes about 15 seconds to compute on a Macbook Pro (M1 Max) laptop.130

Next we consider the way in which the Hessian of the score in eq. (2) enters into the calculation of131

differences in eq. (3). To this end, we introduce a new matrix Bπ , whose elements are obtained by132

permuting the rows and columns of B according to the permutation π; in particular,133

Bπ
ij = Bπiπj

. (6)

The elements of Bπ appear in certain combinations of Hessian elements that arise repeatedly in the134

calculation of the matrix ∆π . As further shorthand, we define the functions135

hπ
ij(a) = min(a,Bπ

ii) + min(a,Bπ
jj) − min(a,Bπ

ij) − min(a,Bπ
ji), (7)

where in practice we will take the argument a to be a particular connectome weight from the ma-136

trix A. For example, when a=Aii, the right side of eq. (7) expresses a particular linear combination137

of elements from the Hessian of eq. (2) evaluated at the matrix Pπ .138

With the above definitions, we can express the effects of swaps in eq. (3) in terms of the connectome139

weights and the gradient and Hessian of the score. In terms of these quantities, the elements of ∆π140

are given by141

∆π
ij = Gπ

iπj
+Gπ

jπi
−Gπ

iπi
−Gπ

jπj
+ hπ

ij(Aii) + hπ
ij(Ajj)− hπ

ij(Aij)− hπ
ij(Aji), (8)

and again, all n2 matrix elements in this equation can be computed in O(n2) operations for a given142

permutation π. For the matrices of size n = 18524 in this challenge, it takes about 8 additional143

seconds to compute the elements in eq. (8) on top of the gradient in eq. (5). We provide pseudocode144

for a procedure (EVALUATESWAPS) to compute these elements in the Appendix as Algorithm 1.145

It is possible for none of the matrix elements ∆π
ij in eq. (8) to be positive. When this is the case,146

it indicates that the permutation π cannot be improved by a single pairwise swapping of indices.147

Otherwise, the largest (i.e., most positive) element of ∆π indicates the pairwise swap that most148

improves the scoring function in eq. (1). This suggests a simple algorithm for greedy local search149

which we describe in the next section.150

2.2 Greedy search with pairwise swaps151

Starting from an initial permutation π, one can attempt to optimize the score in eq. (1) by alternating152

two procedures; the first evaluates the effect of each pairwise swap by computing its corresponding153

element in ∆π , and the second performs those swaps that seem likely to increase the score by the154

largest amount. We give the pseudocode for a greedy search based on these two procedures in the155

Appendix as Algorithm 2. The search terminates when the first procedure returns a matrix ∆π with156

no positive elements.157

We use a threshold τ to adjust the balance of time spent in these two procedures. The MAKESWAPS158

procedure in Algorithm 2 performs up to τ swaps that increase the score while skipping over159

4



minutes
0 10 20 30

sc
or

e

5100K

5300K

5500K

5700K

5900K discrete search

 = = 200
 = = 400
 = = 800
 = = 1600

minutes
10 20 30

5800K

5810K

5820K

minutes
0 3 6 9

sc
or

e

5100K

5300K

5500K

5700K

5900K continuous relaxation

 doubly stochastic
 permutation

minutes
0 10 20 30

5830K

5840K

5850K

5860K

Figure 1: Alignment scores in eqs. (1–2) versus wall clock time starting from the benchmark solution
at score 5154247. Left. Greedy discrete search utilizing up to τ pairwise swaps per iteration. Right.
Frank-Wolfe updates in eqs. (11) and (13) to optimize the continuous relaxation in eq. (2). Neither
method converges to a winning score for the challenge (indicated by the dashed line at 5850K).

swaps that do not. The threshold is only needed in the early stages of optimization, when the160

permutation π is very far from optimal; in this case, the matrix ∆π returned by the first procedure161

(EVALUATESWAPS) may have an inordinately large number of positive elements. The MAKESWAPS162

procedure considers pairwise swaps in descending order of their corresponding elements in ∆π . If163

the maximal element of ∆π is positive, then the first such swap is guaranteed to yield a permutation164

with a higher score. However, successive swaps are not guaranteed to increase the score, even if165

they correspond to positive elements of ∆π , due to possible interference with previously executed166

swaps. (A trivial example of such interference arises from the symmetry of the matrix ∆π: a swap167

j↔ i will exactly negate the gain from an immediately preceding swap i↔j.)168

The left panel of Fig. 1 shows results from the greedy search in Algorithm 2 for different thresholds169

on the maximum numbers of pairwise swaps per iteration. All of these runs were initialized from170

the benchmark solution with score 5154247 provided by the challenge organizers. The algorithm171

converges to different solutions for different thresholds τ , but all of these solutions have scores172

around 5818K. These solutions are evidence of the large number of local maxima in this problem:173

there are many permutations whose scores cannot be improved by any pairwise swaps of indices174

(and there are over 171 million possible pairwise swaps).175

There are many ways to augment the greedy search so that it discovers higher-scoring permutations.176

One is to introduce an element of randomness, sometimes performing a pairwise swap that decreases177

the score, as is done in simulated annealing (Mamano & Hayes, 2017). Another is to evaluate and178

perform higher-order moves that swap three or more indices at a time. While these approaches may179

require more resources, one can also optimize them aggressively, in faster languages than MATLAB,180

while exploiting opportunities for parallelism (e.g., multi-core, GPUs) (Koblentz, 2025).181

Multiple teams experimented with these ideas in the days and weeks leading up to the deadline.182

But even with considerably longer runs, these more elaborate forms of discrete search were not able183

to reach the dashed line in Fig. 1, indicating a score (at 5850K) that was high enough to win the184

challenge. As mentioned earlier, however, this winning score can be obtained in under 15 minutes185

by combining discrete and continuous approaches to the optimization of eq. (1). With this goal in186

mind, we now turn to the latter approach.187

5



3 Continuous relaxation188

In this section we describe a complementary approach to this problem in graph-matching, one based189

on a continuous optimization over the convex set of doubly stochastic matrices. This type of relax-190

ation has been studied previously for quadratic assignment problems (Vogelstein et al., 2015), but191

for the best results in the challenge this approach must be tailored specifically to the alignment score192

in eq. (2). This score is a quadratic function of P , but it is not concave, and therefore an iterative193

hill-climbing procedure is not guaranteed to find its global maximum. Here we show that an itera-194

tive procedure, based on the Frank-Wolfe algorithm for constrained convex optimization (Frank &195

Wolfe, 1956), can be adapted to this problem with extremely competitive results. One crucial part196

of this procedure, described below, is the efficient calculation of a projected gradient.197

3.1 Frank-Wolfe updates198

The Frank-Wolfe iterative procedure alternates between three steps: the first step computes the199

gradient in eq. (4). As mentioned previously, it takes about 15 sec to compute this gradient at a200

permutation matrix of size n=18524. For this iterative procedure, we need to compute the gradient201

at doubly stochastic matrices, which in general can take much longer. As we shall see, however, the202

procedure converges very quickly, so that in practice—if the search is initialized by a permutation203

matrix—we only need to compute gradients for doubly stochastic matrices that are highly sparse.204

When this is the case, it takes only slightly longer to compute the gradient in eq. (4).205

The second step of the iterative procedure projects this gradient back into the convex set of doubly206

stochastic matrices. In particular, this step computes207

Qt = argmax
Q∈P

(
trace

[
∇S(Pt)

⊤Q
])

. (9)

Note that eq. (9) defines a linear program whose solution always lies at a vertex of the set P; in other208

words, its solution Qt is not merely a doubly stochastic matrix, but also a permutation matrix. The209

optimization in eq. (9) is most commonly known as the linear assignment problem, or the problem210

of perfect matching in a complete bipartite graph. It can be solved by the so-called Hungarian211

method (Kuhn, 1955) in polynomial time (Munkres, 1957; Edmonds & Karp, 1972; Tomizawa,212

1971). We will discuss this step in more detail later.213

The third step of the iterative procedure is to find the convex combination of Pt and Qt that maxi-214

mizes the score in eq. (2). In particular, the update is given by215

αt = argmax
α∈[0,1]

[
S
(
(1−α)Pt + αQt

)]
, (10)

Pt+1 = (1−αt)Pt + αtQt. (11)

In practice, it is not necessary to perform a line search to compute the optimal convex combination216

in eq. (10). Instead one can simply calculate the point where the gradient of the score vanishes along217

the line connecting Pt and Qt. Since the score in eq. (2) is quadratic in its argument, this gradient218

vanishes at some point (1−λ)Pt + λQt where λ∈R. In particular, λ satisfies the linear equation219

(1−λ) trace
[
(Qt−Pt)

⊤∇S(Pt)
]
= λ trace

[
(Qt−Pt)

⊤∇S(Qt)
]
. (12)

If λ ∈ [0, 1], then the weight αt in eq. (10) is simply equal to λ. If λ ̸∈ [0, 1], then there are two220

possibilities: either the score along the line from Pt to Qt is concave with a maximum at λ>1, or it221

is convex with a minimum at λ<0. In both these cases, eq. (10) yields αt=1.222

Pseudocode for all three steps of this algorithm is given in the Algorithm 3 of the Appendix. Finally,223

we note that the updates in eqs. (9–11) converge monotonically to a doubly stochastic matrix that is224

a stationary point (where the gradient has no component inside P) of this procedure.225

3.2 Application to graph-matching226

While the Frank-Wolfe updates lead to monotonic improvement in the score of eq. (2), they converge227

in general to a doubly stochastic matrix and not a permutation matrix. But it is the latter that is228

needed to align two graphs with a score given by eq. (1). To rectify this problem, we also compute a229

6



permutation matrix Πt at each iteration of the updates in eqs. (9–11). This is done by projecting the230

doubly stochastic matrix Pt into the space of permutation matrices:231

Πt = argmax
Π∈P

(
trace

[
P⊤
t Π

])
. (13)

Eq. (13) is a linear program whose solution is the closest-matching permutation matrix to Pt. Again232

this can be solved by the Hungarian method or any other algorithm for perfect matching in a com-233

plete bipartite graph. In practice the linear program in eq. (13) is much faster to solve than the one234

in eq. (9); the reason is that the doubly stochastic matrix Pt in eq. (13) is highly sparse—expressible235

as a convex combination of a small number of permutation matrices—whereas the gradient∇S(Pt)236

in eq. (9) is dense.237

Since the updates for Pt in eqs. (9–11) converge to a point inside the convex set of doubly stochastic238

matrices, it is also true that their projections to Πt in eq. (13) converge to a permutation matrix at239

a vertex of this set. But while the scores {S(Pt)}Tt=0 of these doubly stochastic matrices increase240

monotonically as a result of these updates, the same is not true for the scores {S(Πt)}Tt=0 of their241

closest-matching permutation matrices. The right panel of Fig. 1 plots the scores from these updates242

starting from the benchmark solution with score 5154247.243

From the results in Fig. 1, we make several observations of interest. First, at the outset of the244

optimization, the continuous updates in the convex set of doubly stochastic matrices (shown right)245

increase the score much more rapidly than the discrete search based on pairwise swaps (shown246

left). Second, the scores of the permutation matrices Πt in eq. (13) generally track the scores of the247

doubly stochastic matrices Pt in eq. (11), but the latter increase monotonically while the former do248

not. Third, the scores of the doubly stochastic matrices Pt saturate around 5856K, while those of249

the permutation matrices Πt saturate just below 5850K. In particular, these updates by themselves250

do not obtain a handily winning score for the challenge.251

4 A winning solution252

It is possible to combine the methods for search in the last two sections and reap the advantages of253

both. The discrete swaps in section 2 lead to slow but steady improvement until they reach a local254

maximum from which they cannot escape. The continuous Frank-Wolfe updates in section 3 lead to255

rapid improvement in the alignment score, but they plateau when the high-scoring doubly stochastic256

matrices in eq. (2) do not project to high-scoring permutation matrices in eq. (1). A winning solution257

can be quickly obtained by alternating these approaches, using each to offset the weaknesses of the258

other. This is the method of alternating continuous and discrete combinatorial (AC⊕DC) search.259

Fig. 2 shows the results from this alternating approach. First, we use ten Frank-Wolfe updates to260

climb from the benchmark score at 5154K to a score above 5845K in less than 10 minutes. Then we261

apply pairwise swaps until the score can no longer be further improved; in five additional minutes,262

these swaps produce a solution whose score exceeds 5850K, higher than all but the winning entry to263

the challenge. As shown in the figure, the score can be further improved by alternating these different264

types of search, with the Frank-Wolfe updates jumping out of the local maximum reached by the265

pairwise swaps, and the pairwise swaps reaching higher scores from wherever they are subsequently266

initialized. This combined approach reaches a score over 5852K in under one hour.267

Fig. 2 also highlights the different role played by the continuous Frank-Wolfe updates in the later268

stages of optimization. In the first few iterations, before the five-minute mark, there is a high degree269

of correlation between the scores of the doubly stochastic matrices in eq. (11) and their closest-270

matching permutation matrices in eq. (13): when the former increase (shown in blue), so do the271

latter (shown in red). But this relationship no longer holds past the five-minute mark in Fig. (2). In272

this regime, we see that higher-scoring interior solutions often project to lower-scoring permutation273

matrices. Nevertheless these continuous updates still play a crucial role: they re-initialize the next274

stage of discrete updates in a basin of attraction where pairwise swaps can reach a higher maximum275

of the score in eq. (1). The overall result is the seesaw pattern of improvement between the red and276

yellow curves that we see in Fig. (2).277

7



minutes
0 10 20 30 40 50 60

sc
or

e

5840K

5845K

5850K

5855K

 doubly stochastic
 permutation (projected)
 permutation (swaps)

Figure 2: Alignment scores for AC⊕DC search in eqs. (1–2) versus wall clock time starting from
the benchmark solution at score 5154247. The scores were obtained by alternating updates for
continuous and discrete combinatorial search—in particular, Frank-Wolfe updates (in batches of
ten) for the former and greedy pairwise swaps (repeated until no further swaps improved the score)
for the latter. It takes less than 15 minutes for this method to produce a winning score for the
challenge (indicated by the dashed line at 5850K).

5 Discussion278

In this paper we have described the AC⊕DC optimizations behind the winning solution to the VNC279

Matching Challenge. The graphs in this challenge were large enough to foil exhaustive methods,280

but small enough to experiment with many different approaches on a modestly equipped computer.281

The highest-scoring solution was obtained by combining continuous relaxations, additive and mul-282

tiplicative updates, bespoke graph decompositions, and higher-order swaps. But most of the work283

was done by alternating simple (but aggressively optimized) methods for continuous and discrete284

combinatorial search and exploiting the particular structure of the alignment score in eq. (1).285

We mention several directions for future work. First, not all of the methods in this paper scale286

gracefully to larger graphs with n≫ 104 nodes. For such graphs, it seems necessary to develop287

divide-and-conquer methods that do not require the storage of n×n matrices. Second, we expect288

the linear assignment problem in eq. (9) to remain a crucial subroutine for higher-order assignment289

problems (or at least for any problem whose score function can be linearized). We need to under-290

stand better why certain heuristics such as preconditioning lead to faster solutions, and then perhaps291

we can use this understanding to develop even faster approaches. Third, the winning solution to292

the VNC matching challenge was implemented in MATLAB, a relatively high-level programming293

language, but it is surely possible to produce faster implementations that are better at exploiting294

sparsity, managing high-speed memory, and harnessing GPUs. Indeed, to solve larger problems in295

graph matching, we are likely to need further progress in all of these directions.296

Acknowledgements297

298

299

300

301

8



References302

L. Chen, J. T. Vogelstein, V. Lyzinski, and C. E. Priebe. A joint graph inference case study: the c.303

elegans chemical and electrical connectomes. Worm, 5(2):e1142041, 2016.304

D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pattern recogni-305

tion. International Journal of Pattern Recognition and Artificial Intelligence, 18:265–298, 2004.306

A. V. Devineni. A complete wiring diagram of the fruit-fly brain. Nature, 634:35–36, 2024.307

S. Dorkenwald, A. Matsliah, A. R. Sterling, P. Schlegel, S.-C. Yu, C. E. McKellar, A. Lin, M. Costa,308

K. Eichler, Y. Yin, W. Silversmith, C. Schneider-Mizell, C. S. Jordan, D. Brittain, A. Halageri,309

K. Kuehner, O. Ogedengbe, R. Morey, J. Gager, K. Kruk, E. Perlman, R. Yang, D. Deutsch,310

D. Bland, M. Sorek, R. Lu, T. Macrina, K. Lee, J. A. Bae, S. Mu, B. Nehoran, E. Mitchell,311

S. Popovych, J. Wu, Z. Jia, M. A. Castro, N. Kemnitz, D. Ih, A. S. Bates, N. Eckstein, J. Funke,312

F. Collman, D. D. Bock, G. S. X. E. Jefferis, H. S. Seung, M. Murthy, and The Fly Wire Consor-313

tium. Neuronal wiring diagram of an adult brain. Nature, 634:124–138, 2024.314

I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse matrix.315

SIAM Journal on Matrix Analysis and Applications, 22(4):973–996, 2001.316

J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow317

problems. Journal of the ACM, 19(2):248–264, 1972.318

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quar-319

terly, 3(1-2):95–110, 1956.320

S. Haller, L. Feineis, L. Hutschenreiter, F. Bernard, C. Rother, D. Kainmüller, P. Swoboda, and321

B. Savchnynskyy. A comparative study of graph matching algorithms in computer vision. In322

Proceedings of the 17th European Conference on Computer Vision (ECCV-2002), pp. 636–653,323

2022.324

E. Koblentz. Fruit fly research led NJIT scientists and Edison teens to better AI habits on supercom-325

puters. https://davidbader.net/post/20250303-njit/, 2025. Accessed: 2025-06-11.326

H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quar-327

terly, 2:83–97, 1955.328

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.329

Nature, 401:788–791, 1999.330

N. Mamano and W. B. Hayes. Simulated annealing far outperforms many other search algorithms331

for biological network alignment. Bioinformatics, 33(14):2156–2164, 2017.332

J. Munkres. Algorithms for the assignment and transportation problems. Journal of the Society for333

Industrial and Applied Mathematics, 5(1):32–38, 1957.334

L. Saul and F. Pereira. Aggregate and mixed-order markov models for statistical language process-335

ing. In Proceedings of the 2nd Conference on Empirical Methods in Natural Language Process-336

ing, pp. 81–89, 1997.337

R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific338

Journal of Mathematics, 21:343–348, 1967.339

N. Tomizawa. On some techniques useful for solution of transportation network problems. Net-340

works, 1(2):173–194, 1971.341

L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and D. B. Chklovskii. Structural properties342

of the caenorhabditis elegans neuronal network. PLoS Computational Biology, 7(2):e1001066,343

2011.344

J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T. Harley, D. E. Fishkind,345

R. J. Vogelstein, and C. E. Priebe. Fast approximate quadratic programming for graph matching.346

PLOS ONE, 10(4):1–17, 2015.347

9

https://davidbader.net/post/20250303-njit/


A Algorithms348

In this section, we provide detailed pseudocode for the algorithms discussed in the main paper.349

A.1 Pairwise swaps350

Below is pseudocode for evaluating pairwise swaps as described in Sec. 2.1.351

Algorithm 1 Given connectome weights A,B∈Rn×n and a base permutation π, evaluate the score
differences in eq. (8) obtained by a single pairwise swap of indices.

procedure ∆ = EVALUATESWAPS(A,B,π)
▷ Compute gradient at π and permute rows and columns of B
for i← 1 to n do

for j ← 1 to n do
Gij ←

∑n
k=1[min(Aki, Bπkj) + min(Aik, Bjπk

)]
Bπ

ij ← Bπiπj

end for
end for
▷ Evaluate difference in scores due to pairwise swaps
for i← 1 to n do

for j ← 1 to n do
hAii ← min(Aii, B

π
ii) + min(Aii, B

π
jj)−min(Aii, B

π
ij)−min(Aii, B

π
ji)

hAjj ← min(Ajj , B
π
ii) + min(Ajj , B

π
jj)−min(Ajj , B

π
ij)−min(Ajj , B

π
ji)

hAij ← min(Aij , B
π
ii) + min(Aij , B

π
jj)−min(Aij , B

π
ij)−min(Aij , B

π
ji)

hAji ← min(Aji, B
π
ii) + min(Aji, B

π
jj)−min(Aji, B

π
ij)−min(Aji, B

π
ji)

∆ij ← Giπj
+Gjπi

−Giπi
−Gjπj

+ hAii + hAjj − hAij − hAji

end for
end for

end procedure

A.2 Greedy pairwise search352

Below is pseudocode for the greedy discrete combinatorial search using pairwise swaps as described353

in Sec. 2.2.354

Algorithm 2 Given connectome weights A,B ∈ Rn×n and an initial permutation π0, perform a
greedy search with up to τ pairwise swaps (per iteration) to find a local optimum in the alignment
score of eq. (1).

procedure π = GREEDYSEARCH(A,B,π0,τ )
π ← π0

∆← EVALUATESWAPS(A,B, π)
while (maxij(∆ij) > 0) do

π ← MAKESWAPS(A,B, π,∆, τ)
∆← EVALUATESWAPS(A,B, π)

end while
end procedure

procedure π = MAKESWAPS(A,B,π,∆,τ )
S ←

∑
ij min(Aij , Bπiπj

)

while ((τ >0) AND (maxij(∆ij)>0)) DO
(i, j)← argmaxij(∆ij)
π′ ← π ◦ σij

S ′ ←
∑

ij min(Aij , Bπi
′πj

′)

if (S ′ > S) then
(π,S, τ)← (π′,S ′, τ−1)

end if
(∆ij ,∆ji)← (0, 0)

end while
end procedure

A.3 Frank-Wolfe updates355

Below is pseudocode for the continuous optimization using Frank-Wolfe updates as described in356

Sec. 3.1.357

10



Algorithm 3 Given connectome weights A,B ∈Rn×n and an initial doubly stochastic matrix P0,
perform T Frank-Wolfe updates to optimize the score in eq. (2), then return the doubly stochastic
matrix PT and permutation matrix ΠT found from these updates.

procedure (PT ,ΠT ) = DOFRANKWOLFE(A,B,P0,T )
P ← P0

for t← 1 to T do
▷ Compute gradient
for i← 1 to n do

for j ← 1 to n do
Gij ←

∑
kℓ

[
min(Aki, Bℓj) + min(Aik, Bjℓ)

]
Pkℓ

end for
end for
▷ Project gradient, compute step size, and interpolate
Q← argmaxQ∈P trace

[
G⊤Q

]
α← argmaxα∈[0,1]

[
S((1−α)P + αQ)

]
P ← (1−α)P + αQ
▷ Compute closest-matching permutation matrix
Π← argmaxΠ∈P trace

[
P⊤Π

]
end for
PT ← P
ΠT ← Π

end procedure

B Acceleration by preconditioning358

In this section we describe how the winning entry to the challenge solved the linear program in359

eq. (9). As mentioned previously, this problem is equivalent to one of perfect matching, and it is360

more typically posed in terms of a cost matrix C ∈ Rn×n, where the goal is to find the permutation361

π that minimizes the linear assignment cost362

trace(C⊤Pπ) =
∑
i

Ciπi
. (14)

There is an internal (though not especially well-documented) routine in MATLAB that solves this363

problem by permuting large entries to the diagonal of a sparse matrix (Duff & Koster, 2001). It364

assumes that C is stored as a dense matrix, and it is called as365

π = matlab.internal.graph.perfectMatching(C). (15)

We used this internal routine to solve the linear programs in eqs. (9) and (13) whose cost matrices366

had n = 18524 rows and columns. The routine is based on a polynomial-time algorithm, but it367

can be very slow if called in the above manner when C is a dense matrix. For example, when368

C =−∇S(Pt), this routine requires 10-15 minutes per call on a MacBook Pro (M1 Max) with 64369

GB of RAM. Of course it would not be possible to obtain a winning solution in less than 15 minutes370

if each iteration of Algorithm 3 required this much computation.371

We discovered a heuristic that greatly accelerates this routine for perfect matching when it is called372

with the gradients∇S(Pt) that appear in eq. (9). The heuristic is based on three observations. First,373

the result in eq. (15) is unaffected if we shift any row or column of the cost matrix by a constant374

value. Second, the result is trivially equal to the identity permutation if C has negative elements on375

the diagonal and nonnegative elements off the diagonal. Third, suppose that an approximate solution376

ω can be be guessed for eq. (15), where ω is a permutation that nearly solves the linear assignment377

problem. Then the matrix product C · (Pω)⊤ should be closer than C to a matrix whose smallest378

entries appear on the diagonal.379

Based on these observations, we discovered something akin to a preconditioner for the routine in380

eq. (15) when C = −∇S(Pt). We describe this preconditioner in detail because it yielded a sig-381

nificant speedup, reducing the time per call by a factor of 50-60x, or from minutes to seconds. As382

shorthand, let 1∈Rn denote the column vector of all ones, and let diag(·) denote the column vector383

11



of diagonal elements from its matrix argument. We start by observing that Πt in eq. (13) provides384

an approximate guess for Qt in eq. (9). With this and the previous observations in mind, we solve385

eq. (9) in the following way:386

(PERMUTE) Λ = ∇S(Pt)Π
⊤
t , (16)

(SHIFT) Ω = Λ+ diag(Λ)1⊤ + 1 diag(Λ)⊤ − 11⊤Λ− Λ11⊤, (17)

(MATCH) ω = matlab.internal.graph.perfectMatching(−Ω), (18)

(UNPERMUTE) Qt = PωΠt. (19)

Intuitively, the first of these steps (PERMUTE) ensures that Λ has positive elements on the diagonal,387

the second (SHIFT) makes it more likely that Ω has negative elements off the diagonal, and the third388

(MATCH) is fastest when Ω has positive elements on the diagonal and none elsewhere, in which case389

ω is close to the identity permutation. We do not have a formal justification for this heuristic, but in390

practice it was essential, removing eq. (9) as the main bottleneck in Algorithm 3.391

C Further improvements392

For the VNC matching challenge, we have shown that a score of over 5852K can be reached in393

under one hour by combining simple methods for discrete and continuous search. In this section, we394

give a brief overview of additional methods to further improve the score. At the outset, we note that395

above 5852K the optimization appears to enter a regime of diminishing returns. As shown in Fig. 2,396

it takes only a few minutes to improve the benchmark score by nearly 700K, and then another397

hour after that to improve the score by an additional 10K. But beyond this regime it takes many398

additional hours—even for the more elaborate methods we discuss next—to obtain improvements399

that are orders-of-magnitude less. In light of this, we only provide a high-level sketch of these400

methods.401

C.1 Higher-order swaps402

The discrete search in Algorithm 2 quickly finds a solution that cannot be improved by further403

pairwise swaps. This search over permutation matrices can be extended by considering higher-order404

swaps that permute more than two indices at a time. For higher-order swaps, however, it is no405

longer feasible to evaluate all possible local moves before considering which ones to perform; there406

are, for instance, over one trillion different three-node swaps that can be performed in a graph with407

n = 18524 nodes. Instead one can evaluate a subset of higher-order moves that seem most likely408

to yield improvements. For example, we considered the subset of three-cycles {(i→ j→ k→ i)}409

where the index k was chosen greedily for all pairwise swaps {(i↔j)} that did not reduce the score410

by a certain threshold. We also devised similar strategies for considering many different types of411

higher-order swaps. In total, our most sophisticated discrete search considered not only pairwise412

swaps, but also 3-cycles, 4-cycles, and 5-cycles, as well as 2x2, 3x2, 3x3, 4x2, 5x2, 2x2x2, 3x2x2,413

and 2x2x2x2 swaps. With these higher-order swaps, it takes another dozen hours to boost the score414

from 5852K to 5853K (amounting to a gain of less than 0.01%).415

C.2 Multiplicative updates416

The Frank-Wolfe updates in Algorithm 3 produce a sequence of doubly stochastic matrices that417

improve the score in eq. (2). When these updates are initialized from a permutation matrix, they418

produce a sequence of sparse doubly stochastic matrices. This sparsity has certain computational419

advantages: for example, it can be exploited to compute the gradient in eq. (4) much more efficiently.420

But it also has potential disadvantages; in particular, an optimization restricted to sparse solutions421

may not fully leverage the continuous search that is afforded by the relaxation to doubly stochastic422

matrices.423

Recall that the updates in eq. (11) are additive updates in which the existing solution Pt is linearly424

interpolated with the projected gradient Qt. We also experimented with multiplicative updates that425

use the gradient in eq. (4) quite differently. These updates take the form426

[Pt+1]ij = [Pt]ij ·
[∇S(Pt)]ij
ui + vj

, (20)

12



where in the numerator of eq. (20) appear the elements of the gradient ∇S(Pt) and in the denomi-427

nator appear Lagrange multipliers u, v ∈ Rn. This multiplicative update can be derived as a gener-428

alization of those for nonnegative and (singly) stochastic matrix factorization (Lee & Seung, 1999;429

Saul & Pereira, 1997). The main generalization is to introduce two sets of Lagrange multipliers430

into the update; one of these is to enforce sum-to-one constraints on the rows of doubly stochastic431

matrices, and the other is to enforce sum-to-one constraints on the columns. The resulting update432

is similar but not equivalent to the Sinkhorn-Knopp procedure for projecting a nonnegative matrix433

onto the set of doubly stochastic matrices (Sinkhorn & Knopp, 1967).434

The multiplicative updates in eq. (20) can be used to optimize the score in eq. (2), and unlike the435

Frank-Wolfe updates, they do not involve the expense of computing a projected gradient, as in436

eq. (9). But to use these updates on dense doubly stochastic matrices, it is necessary to compute the437

score in eq. (2) and the gradient in eq. (4) when P is dense. Naively this appears to require O(n4)438

operations, a prohibitive scaling for matrices of size n=18524.439

We devised a faster way to compute these gradients by exploiting the fact that the connectome440

weights are quantized. In particular, each nonzero weight records a positive number of synapses,441

and therefore not only are the elements of A and B quantized, but so are the possible values of442

min(Aij , Bkl) in eq. (4). Let Q = {q0, q1, . . . , qM} denote the set of these quantized values, with443

q0=0 and qi<qi+1, and let Θ(·) denote the step function defined by Θ(z)=1 if z>0 and Θ(z)=0444

otherwise. Then it follows that445

min(Aij , Bkl) =

M−1∑
m=0

Θ(Aij−qm)Θ(Bkl−qm) (qm+1−qm) (21)

for all connectome weights Aij and Bkl. Note how this identity expresses the minimum as a sum446

over M components. We now use this identity to more efficiently compute the score in eq. (2) and447

the gradient in eq. (4). To do so, for each interval (qm, qm+1), we define connectome components448

with weights449

A
(m)
ij = Θ(Aij−qm)

√
qm+1−qm, (22)

B
(m)
ij = Θ(Bij−qm)

√
qm+1−qm. (23)

Note that each connectome component is a sparse matrix in its own right, one that is at least as450

sparse as the connectome from which it is derived. Finally, combining eqs. (21–23), we rewrite the451

score in eq. (2) as452

S(P ) =
∑
ijkl

min(Aij , Bkl)PikPjl (24)

=
∑
ijkl

[∑
m

A
(m)
ij B

(m)
kl

]
PikPjl (25)

=
∑
m

trace
[(

A(m)P
)(

PB(m)
)⊤]

. (26)

Note that this final expression for the score in eq. (26) can be computed in O(Mn3) as opposed to453

O(n4). This savings is significant when M≪n, and it is also inherited by the computation of the454

gradient. For the VNC matching challenge, there are M=617 graph components that arise from the455

nonzero connectome weights of the male and female fruit fly. With this savings, and using a GPU, it456

takes less than 2 minutes to compute the gradient of eq. (26) and perform each multiplicative update457

in eq. (20).458

C.3 Final results459

The official winning score to the challenge was 5853779. This score was submitted on January460

31, 2025 and achieved by alternating the additive updates for sparse doubly stochastic matrices in461

eq. (11) with the multiplicative updates for dense doubly stochastic matrices in eq. (20). A score of462

5853925, higher by 0.0025%, was obtained on February 18, 2025 by combining the methods of the463

two top-scoring teams. Table 1 in the main text shows the top ten scores on the leaderboard as of the464

writing of this paper.465

13


	Introduction
	Discrete search
	Evaluation of pairwise swaps
	Greedy search with pairwise swaps

	Continuous relaxation
	Frank-Wolfe updates
	Application to graph-matching

	A winning solution
	Discussion
	Algorithms
	Pairwise swaps
	Greedy pairwise search
	Frank-Wolfe updates

	Acceleration by preconditioning
	Further improvements
	Higher-order swaps
	Multiplicative updates
	Final results


