© © N O O A W N =

20
21
22
23
24
25
26
27
28

29
30
31
32
33

ACODDC search: the winning solution to the
FlyWire ventral nerve cord matching challenge

Anonymous Author(s)
Affiliation
Address
email

Abstract

This papelﬂ describes the Alternating Continuous and Discrete Combinatorial
(AC®DC) optimizations behind the winning solution to the FlyWire Ventral
Nerve Cord Matching Challenge. The challenge was organized by the Prince-
ton Neuroscience Institute and held over three months, attracting research teams
with expertise in machine learning, high-performance computing, graph data min-
ing, biological network analysis, and quadratic assignment problems. The goal of
the challenge was to align the connectomes of a male and female fruit fly, and
more specifically, to determine a one-to-one correspondence between the neurons
in their ventral nerve cords. The connectomes were represented as large weighted
graphs, and the challenge was posed as a problem in graph matching, or finding a
permutation that maps the nodes of one graph onto the nodes of another. The win-
ning solution to the challenge alternated between two complementary approaches
to graph matching—the first, a combinatorial optimization over the symmetric
group of permutations, and the second, a continuous relaxation of this problem to
the space of doubly stochastic matrices that is amenable to Frank-Wolfe methods.
We provide a complete implementation of these methods in MATLAB; with only
a few hundred lines of code, it is able to obtain a winning score to the challenge
in less than 15 minutes on a laptop computer.

1 Introduction

The problem of graph matching is to find the best permutation that maps the nodes and edges of one
graph onto those of another. The problem arises in many areas of science and engineering where
graphs are used to encode similarity, co-dependence, or the flow of information (Conte et al., 2004
Mamano & Hayes|, [2017; Haller et al., 2022). The problem is solved in practice by maximizing
an objective function that scores each permutation by quantifying the similarity of nodes and edges
that it brings into correspondence. Graph matching is in general an NP-hard problem; one can find a
globally optimal solution by exhaustively considering all permutations, but this is only possible for
very small graphs. For larger problems, the best solvers rely on approximate search algorithms that
attempt to find a high-scoring match.

A particular instance of this problem was at the heart of a recent challengeE] posed by the FlyWire
consortium at the Princeton Neuroscience Institute. The goal of the challenge was to align the
connectomes of a male and female fruit fly, where each connectome was represented by a large
sparse graph. The nodes in these graphs represented neurons, and the edges indicated which neurons
were connected by synapses. These graphs were also directed and weighted: each edge counted the

'A longer version of this manuscript has been submitted to TMLR. Joint submission is permitted by both
the workshop and TMLR editorial policies.
*https://codex.flywire.ai/app/vnc_matching_challenge

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://codex.flywire.ai/app/vnc_matching_challenge

34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52

53
54
55
56
57

58
59
60
61
62
63
64
65
66

67
68
69
70

number of synapses observed in a particular direction between two neurons. The determination of
these connectomes—down to the level of individual synapses—was the culmination of many years
of painstaking research (Dorkenwald et al.,|2024; |Devineni, [2024), and the FlyWire consortium has
since issued a stream of open challenges to further process these results. This particular challenge
was posed in the winter of 2024, and its purpose was to study how gender differences in male and
female fruit flies are manifested in the connectomes of their ventral nerve cords (VNCs).

There were two features of this challenge that made for an especially compelling problem in graph-
matching. First was the problem size: each VNC connectome was represented by a graph with
n=18524 nodes, far larger than many previous problems in this space. By comparison, for example,
the hermaphrodite C. elegans connectome consists of only 302 neurons (Chen et al.|[2016; |Varshney
et al., 2011). At the same time, the graphs in the VNC challenge were small enough that soft
matches, represented by dense n x n matrices, could fit into the memory of a modestly equipped
computer. It was therefore possible to explore approaches that took advantage of this ability and did
not rely on purely combinatorial techniques.

The second distinguishing feature of the challenge was the particular way that different matches
were scored. Let 7 denote the permutation of the indices {1,2,...,n} that maps i to 7;, and let A
and B denote, respectively, the sparse matrices whose nonzero elements record edge weights in the
male and female connectomes. The alignment score for the VNC matching challenge was computed
as

S(m) = Zmin(Aij,Bm,rj) . (D
ij

Eq. (I) is a variant on the weighted Jaccard distance, and it was chosen by the challenge organizers
because it appeared to correlate better with known biological isomorphisms. In particular, they
found that eq. (I)) was more robust with respect to these isomorphisms than scores based on simple
correlation or cosine distance. The score in eq. can be computed efficiently by restricting the
sum to nonzero elements of A and B.

The challenge ran for three months, and it attracted teams of researchers with expertise in ma-
chine learning, high-performance computing, graph data mining, biological network analysis, and
quadratic assignment problems. The challenge organizers provided a baseline match that was de-
termined from neuron cell types, and this benchmark solution (though not the cell type metadata)
was made available for teams to use as a warm start. Nearly all teams continued to submit improved
solutions up to the deadline on January 31, 2025, and the scores of these submissions were indepen-
dently verified by the challenge organizers. Throughout the challenge, scores were not disclosed,
and different teams did not share code or details of their solutions. Table|l{shows the top ten scores
from the leaderboard for the challenge.

In this paper, we reveal the methods behind the winning solution to the challenge. The solution com-
bined two complementary approaches to graph matching: the first was a combinatorial optimization
over the space of permutation matrices (Mamano & Hayes| |2017), and the second was a continuous
relaxation of this problem to the space of doubly stochastic matrices (Vogelstein et al., 2015). Both

Submitted Name Score

2025-02-18 |] | 5,853,925
2025-02-17 D. A. Bader, H. A. Sriram, S. Chinthalapudi, and Z. Du 5,853,910
2025-01-31 B (Vinner) 5,853,779
2025-01-31 D. A. Bader, H. A. Sriram, S. Chinthalapudi, and Z. Du 5,849,534
2025-01-31 Y. Ma, X. Zhu, and L. Zhu 5,842,347
2025-01-31 W. B. Hayes, M. Longo, and R. Longo 5,841,041
2025-01-31 Team FAQ 5,838,188
2025-01-31 D. Hashorva 5,837,872
2025-01-31 P.J. C. Duarte, C. Larsen, and R. Willemsen 5,834,246
2025-01-31 T. M. da Nébrega 5,824,339

Table 1: Top ten scores on the leaderboard of the VNC matching challenge as of the writing of this
paper. The winning score on 2025-01-31 was obtained using the methods in this paper, and the top
score on 2025-02-18 was obtained by combining the methods of the two leading teams.

71
72
73

74
75

76
7
78
79
80
81
82
83

84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100

101

102
103
104

106
107
108
109

110

111
112
113
114
115
116

17
118

of these approaches were pursued individually by other teams, but it was the combination of these
approaches that led to a winning solution. We refer to this alternation of continuous and discrete
combinatorial methods as ACODC search.

The continuous relaxation of this problem is obtained by extending the score in eq. (IJ) to the convex
set of doubly stochastic matrices. The relaxed objective is given by

S(P) = Zmin(AijaBkE>PikPjE7 (2)
ikt

where P is an n X n nonnegative matrix whose rows and columns sum to one. Note that the
objective in eq. ([2) is quadratic but not concave in its argument; also, when P is dense, it appears
naively to require O(n*) operations to perform its quadruple sum. The winning solution optimized
eq. (2) by adapting Frank-Wolfe methods for constrained convex optimization (Frank & Wolfel
1956) alongside a fast preconditioner to solve the linear assignment problem at each iteration. This
type of relaxation has been used successfully for other quadratic assignment problems (Vogelstein
et al.,|2015)). The main novelties described in this paper are highly optimized routines for computing
the gradient of eq. (2)) and projecting this gradient into the space of permutation matrices.

With these techniques, we show how to obtain a winning score to the challenge in under 15 minutes,
on a laptop computer, with a few hundred lines of code in MATLAB. Though not revealed at the
time—because teams on the leaderboard were listed by the date of their most recent submission—
the ACODC methods held the top score for the final forty days of the challenge. These methods
should be of direct interest to other researchers in biological network analysis, and they should also
be of general interest to researchers in machine learning whose problems require optimizations over
the permutation group.

The organization of this paper is as follows. In section [2] we describe a greedy search algorithm
for the combinatorial optimization of eq. (1) over the space of permutation matrices. This approach
has the advantage of simplicity, and it also directly optimizes the score in eq. (I). But it improves
the score slowly in the early stages of optimization, and in the later stages, it is prone to getting
stuck. In section 3] we describe a first-order method for the continuous optimization of eq. (2).
This method has the advantage that it makes rapid initial progress, but it does not converge to a
permutation matrix that maximizes eq. (I). In section i} we describe the winning solution that is
found by alternating these approaches, and additional techniques (albeit with diminishing returns)
for optimizing the scores in eqs. (I) and (2. Finally, in section[5] we conclude with a discussion of
open problems and directions for future work.

2 Discrete search

There are many ways to search for a permutation that maximizes the score in eq. (I). Arguably
the simplest is a hill-climbing approach that makes local moves in the space of n! permutations.
This approach can equivalently be viewed as an optimization over the space of n X n permutation
matrices—that is, matrices whose elements are equal to zero or one and whose rows and columns
sum to one. Within this approach, there are also many types of local moves that can be considered,
but the simplest are those that swap exactly one pair of indices (viewing permutations as shuffles) or
exactly one pair of rows (viewing them as matrices). In this section, we describe an efficient way to
evaluate these moves and illustrate the strengths and weaknesses of this approach.

2.1 Evaluation of pairwise swaps

Our first goal is to evaluate how the score in eq. is changed by single pairwise swaps. The
following notation will be useful. Let P™ denote the n X n permutation matrix corresponding to the
permutation 7, whose elements are given by P = 6(m;, k), where (-, -) is the Kronecker delta
function. Similarly, let o;; denote the permutation that swaps ¢ and j while leaving all other indices
intact, and let 7 o o;; denote the composition (from right to left) of these two permutations—that is,
the permutation obtained by first swapping ¢ and j and then permuting the indices according to 7.

We begin by computing the n X n symmetric matrix A™ whose elements record the difference in
scores between permutations that are related by a single pairwise swap of indices. In particular, let

Afy = 8(m o) — S(m), 3)

119
120
121

122
123
124

125
126
127

128
129

131
132
133

134
135

136
137
138

139
140
141

142
143
144
145

146
147
148
149
150

151

152
153
154

156

157

158
159

so that the diagonal elements of A™ are zero, while the nonzero elements indicate those local moves
in the space of permutations that change the score. Note that for this challenge, with n = 18524
nodes per graph, each matrix A™ records the effect of over 171 million pairwise swaps.

Let P denote the convex set of doubly stochastic nxn matrices. Since the score in eq. (2)) is quadratic
in the matrix P € P, the differences in eq. can also be expressed in terms of the gradient and
Hessian of this score. The gradient of eq. (2) is given by the n x n matrix with elements

[(VS(P)] =3 [min(Ay, Bye) +min(Ajq, Boy)| P “
ik
and it is generally a dense matrix even when the matrices A, B, and P in eq. are sparse. Of
particular interest is the form of this gradient at the permutation matrix P™. We denote this gradient
by G™=VS(P™), and its elements are given by

= Z {min(Aij, Br,¢) + min(4;;, Bgm)] 5

K2

The gradient in eq. can be computed in O(n?) operations by exploiting the sparsity of the con-
nectome weights in the matrices A and B. In particular, for the matrices of size n = 18524 in this
challenge, this gradient takes about 15 seconds to compute on a Macbook Pro (M1 Max) laptop.

Next we consider the way in which the Hessian of the score in eq. () enters into the calculation of
differences in eq. (3)). To this end, we introduce a new matrix B™, whose elements are obtained by
permuting the rows and columns of B according to the permutation 7; in particular,

BT, = Brr,- (6)

The elements of B™ appear in certain combinations of Hessian elements that arise repeatedly in the
calculation of the matrix A™. As further shorthand, we define the functions

hi;(a) = min(a, Bf;) + min(a, B};) — min(a, Bj;) — min(a, BY;), 7

where in practice we will take the argument a to be a particular connectome weight from the ma-
trix A. For example, when a = A;;, the right side of eq. (7) expresses a particular linear combination
of elements from the Hessian of eq. (Z) evaluated at the matrix P™.

With the above definitions, we can express the effects of swaps in eq. (3) in terms of the connectome
weights and the gradient and Hessian of the score. In terms of these quantities, the elements of A™
are given by

Al =G + Gl -G =Gl + hi;(Aii) + R (Aj;) — hi;(Aig) — hiz(Azi), (8)
and again, all n? matrix elements in this equation can be computed in O(n?) operations for a given
permutation 7. For the matrices of size n = 18524 in this challenge, it takes about 8 additional
seconds to compute the elements in eq. (§) on top of the gradient in eq. (5)). We provide pseudocode
for a procedure (EVALUATESWAPS) to compute these elements in the Appendix as Algorithm [I]

It is possible for none of the matrix elements A7; in eq. (8) to be positive. When this is the case,
it indicates that the permutation 7 cannot be improved by a single pairwise swapping of indices.
Otherwise, the largest (i.e., most positive) element of A™ indicates the pairwise swap that most
improves the scoring function in eq. (I). This suggests a simple algorithm for greedy local search
which we describe in the next section.

2.2 Greedy search with pairwise swaps

Starting from an initial permutation 7, one can attempt to optimize the score in eq. (1) by alternating
two procedures; the first evaluates the effect of each pairwise swap by computing its corresponding
element in A™, and the second performs those swaps that seem likely to increase the score by the
largest amount. We give the pseudocode for a greedy search based on these two procedures in the
Appendix as Algorithm[2] The search terminates when the first procedure returns a matrix A” with
no positive elements.

We use a threshold 7 to adjust the balance of time spent in these two procedures. The MAKESWAPS
procedure in Algorithm [2| performs up to 7 swaps that increase the score while skipping over

160
161
162
163
164
165
166
167
168

169
170
171
172
173
174
175

176
177
178
179
180
181

182
183
184
185
186
187

discrete search continuous relaxation

5900K 5900K
5700K 5700K
o o
ol 5500K 3 5500K
1) 7] 0 10 20 30
minutes
20
minutes
5300K 5300K 1
- 7 =200
o =400 -e- doubly stochastic
=800 -A- permutation
[o r=1600 T
5100K I . 5100K . i
0 10 20 30 0 3 6 9
minutes minutes

Figure 1: Alignment scores in egs. (THZ)) versus wall clock time starting from the benchmark solution
at score 5154247. Left. Greedy discrete search utilizing up to 7 pairwise swaps per iteration. Right.
Frank-Wolfe updates in eqs. (IT)) and (T3] to optimize the continuous relaxation in eq. (2)). Neither
method converges to a winning score for the challenge (indicated by the dashed line at 5850K).

swaps that do not. The threshold is only needed in the early stages of optimization, when the
permutation 7 is very far from optimal; in this case, the matrix A™ returned by the first procedure
(EVALUATESWAPS) may have an inordinately large number of positive elements. The MAKESWAPS
procedure considers pairwise swaps in descending order of their corresponding elements in A™. If
the maximal element of A™ is positive, then the first such swap is guaranteed to yield a permutation
with a higher score. However, successive swaps are not guaranteed to increase the score, even if
they correspond to positive elements of A™, due to possible interference with previously executed
swaps. (A trivial example of such interference arises from the symmetry of the matrix A™: a swap
7 <> will exactly negate the gain from an immediately preceding swap ¢ <> j.)

The left panel of Fig. [T|shows results from the greedy search in Algorithm 2] for different thresholds
on the maximum numbers of pairwise swaps per iteration. All of these runs were initialized from
the benchmark solution with score 5154247 provided by the challenge organizers. The algorithm
converges to different solutions for different thresholds 7, but all of these solutions have scores
around 5818K. These solutions are evidence of the large number of local maxima in this problem:
there are many permutations whose scores cannot be improved by any pairwise swaps of indices
(and there are over 171 million possible pairwise swaps).

There are many ways to augment the greedy search so that it discovers higher-scoring permutations.
One is to introduce an element of randomness, sometimes performing a pairwise swap that decreases
the score, as is done in simulated annealing (Mamano & Hayes, 2017). Another is to evaluate and
perform higher-order moves that swap three or more indices at a time. While these approaches may
require more resources, one can also optimize them aggressively, in faster languages than MATLAB,
while exploiting opportunities for parallelism (e.g., multi-core, GPUs) (Koblentz, 2025)).

Multiple teams experimented with these ideas in the days and weeks leading up to the deadline.
But even with considerably longer runs, these more elaborate forms of discrete search were not able
to reach the dashed line in Fig.[I} indicating a score (at 5850K) that was high enough to win the
challenge. As mentioned earlier, however, this winning score can be obtained in under 15 minutes
by combining discrete and continuous approaches to the optimization of eq. (I). With this goal in
mind, we now turn to the latter approach.

188

189
190
191
192
193
194
195
196
197

198

199
200
201
202

204
205

206
207

208
209
210
211
212
213

214
215

216
217
218
219

220
221
222

223
224
225

226

227
228
229

3 Continuous relaxation

In this section we describe a complementary approach to this problem in graph-matching, one based
on a continuous optimization over the convex set of doubly stochastic matrices. This type of relax-
ation has been studied previously for quadratic assignment problems (Vogelstein et al.| [2015), but
for the best results in the challenge this approach must be tailored specifically to the alignment score
in eq. (2). This score is a quadratic function of P, but it is not concave, and therefore an iterative
hill-climbing procedure is not guaranteed to find its global maximum. Here we show that an itera-
tive procedure, based on the Frank-Wolfe algorithm for constrained convex optimization (Frank &
'Wolfel |1956)), can be adapted to this problem with extremely competitive results. One crucial part
of this procedure, described below, is the efficient calculation of a projected gradient.

3.1 Frank-Wolfe updates

The Frank-Wolfe iterative procedure alternates between three steps: the first step computes the
gradient in eq. (). As mentioned previously, it takes about 15 sec to compute this gradient at a
permutation matrix of size n=18524. For this iterative procedure, we need to compute the gradient
at doubly stochastic matrices, which in general can take much longer. As we shall see, however, the
procedure converges very quickly, so that in practice—if the search is initialized by a permutation
matrix—we only need to compute gradients for doubly stochastic matrices that are highly sparse.
When this is the case, it takes only slightly longer to compute the gradient in eq. ().

The second step of the iterative procedure projects this gradient back into the convex set of doubly
stochastic matrices. In particular, this step computes

Q: = arérg%x (trace [VS (Pt)TQ}) 9)

Note that eq. (9) defines a linear program whose solution always lies at a vertex of the set P; in other
words, its solution); is not merely a doubly stochastic matrix, but also a permutation matrix. The
optimization in eq. (9) is most commonly known as the linear assignment problem, or the problem
of perfect matching in a complete bipartite graph. It can be solved by the so-called Hungarian
method (Kuhnl [1955) in polynomial time (Munkres| [1957; [Edmonds & Karp} |1972; Tomizawa,
1971). We will discuss this step in more detail later.

The third step of the iterative procedure is to find the convex combination of P; and (); that maxi-
mizes the score in eq. (2). In particular, the update is given by

o = ar&gem[o?f]([S((l—a)Pt + aQt)}, (10)
P = (1—ay) P 4 Q. (11

In practice, it is not necessary to perform a line search to compute the optimal convex combination
in eq. (I0). Instead one can simply calculate the point where the gradient of the score vanishes along
the line connecting P; and Q;. Since the score in eq. is quadratic in its argument, this gradient
vanishes at some point (1—A)P; + AQ; where A €R. In particular, A satisfies the linear equation

(1-X) trace [(Q¢— P;) " VS(P;)] = Atrace[(Q:— P:) T VS(Qy)]. (12)

If A € [0, 1], then the weight «; in eq. is simply equal to A. If X ¢ [0, 1], then there are two
possibilities: either the score along the line from P, to Q); is concave with a maximum at A>1, or it
is convex with a minimum at A < 0. In both these cases, eq. yields a; =1.

Pseudocode for all three steps of this algorithm is given in the Algorithm 3]of the Appendix. Finally,
we note that the updates in egs. (OHII)) converge monotonically to a doubly stochastic matrix that is
a stationary point (where the gradient has no component inside P) of this procedure.

3.2 Application to graph-matching

While the Frank-Wolfe updates lead to monotonic improvement in the score of eq. (2), they converge
in general to a doubly stochastic matrix and not a permutation matrix. But it is the latter that is
needed to align two graphs with a score given by eq. (I)). To rectify this problem, we also compute a

230
231

232
233
234
235
236
237

238

240
241
242
243

244
245
246
247
248
249
250
251

252

253
254
255
256
257
258
259

264

274

permutation matrix IT; at each iteration of the updates in eqs. (OHII). This is done by projecting the
doubly stochastic matrix P; into the space of permutation matrices:

II; = ar%%lgx (trace [PtTH}) (13)

Eq. is a linear program whose solution is the closest-matching permutation matrix to P;. Again
this can be solved by the Hungarian method or any other algorithm for perfect matching in a com-
plete bipartite graph. In practice the linear program in eq. (I3) is much faster to solve than the one
in eq. (9); the reason is that the doubly stochastic matrix P; in eq. is highly sparse—expressible
as a convex combination of a small number of permutation matrices—whereas the gradient VS(P;)
in eq. (9) is dense.

Since the updates for P; in eqs. (OHII)) converge to a point inside the convex set of doubly stochastic
matrices, it is also true that their projections to II; in eq. converge to a permutation matrix at
a vertex of this set. But while the scores {S(P;)}7_, of these doubly stochastic matrices increase
monotonically as a result of these updates, the same is not true for the scores {S(I1;)}7Z_ of their
closest-matching permutation matrices. The right panel of Fig.[I| plots the scores from these updates
starting from the benchmark solution with score 5154247.

From the results in Fig. (1, we make several observations of interest. First, at the outset of the
optimization, the continuous updates in the convex set of doubly stochastic matrices (shown right)
increase the score much more rapidly than the discrete search based on pairwise swaps (shown
left). Second, the scores of the permutation matrices II; in eq. (I3)) generally track the scores of the
doubly stochastic matrices P; in eq. (TI), but the latter increase monotonically while the former do
not. Third, the scores of the doubly stochastic matrices P; saturate around 5856K, while those of
the permutation matrices II; saturate just below 5850K. In particular, these updates by themselves
do not obtain a handily winning score for the challenge.

4 A winning solution

It is possible to combine the methods for search in the last two sections and reap the advantages of
both. The discrete swaps in section [2]lead to slow but steady improvement until they reach a local
maximum from which they cannot escape. The continuous Frank-Wolfe updates in section [3|1ead to
rapid improvement in the alignment score, but they plateau when the high-scoring doubly stochastic
matrices in eq. (2) do not project to high-scoring permutation matrices in eq. (I). A winning solution
can be quickly obtained by alternating these approaches, using each to offset the weaknesses of the
other. This is the method of alternating continuous and discrete combinatorial (AC®DC) search.

Fig. [J] shows the results from this alternating approach. First, we use ten Frank-Wolfe updates to
climb from the benchmark score at 5154K to a score above 5845K in less than 10 minutes. Then we
apply pairwise swaps until the score can no longer be further improved; in five additional minutes,
these swaps produce a solution whose score exceeds 5850K, higher than all but the winning entry to
the challenge. As shown in the figure, the score can be further improved by alternating these different
types of search, with the Frank-Wolfe updates jumping out of the local maximum reached by the
pairwise swaps, and the pairwise swaps reaching higher scores from wherever they are subsequently
initialized. This combined approach reaches a score over 5852K in under one hour.

Fig. [2] also highlights the different role played by the continuous Frank-Wolfe updates in the later
stages of optimization. In the first few iterations, before the five-minute mark, there is a high degree
of correlation between the scores of the doubly stochastic matrices in eq. (IT)) and their closest-
matching permutation matrices in eq. (I3): when the former increase (shown in blue), so do the
latter (shown in red). But this relationship no longer holds past the five-minute mark in Fig. (2). In
this regime, we see that higher-scoring interior solutions often project to lower-scoring permutation
matrices. Nevertheless these continuous updates still play a crucial role: they re-initialize the next
stage of discrete updates in a basin of attraction where pairwise swaps can reach a higher maximum
of the score in eq. (I). The overall result is the seesaw pattern of improvement between the red and
yellow curves that we see in Fig. (2).

278

279
280
281
282

284
285

287
288
289
290
291
292
293
294
295
296

297

298
299
300
301

5855K

A &

5850K N eI d

score

5845K

-e- doubly stochastic
-4~ permutation (projected) 1

permutation (swaps)
1 1 1 1

20 30 40 50 60
minutes

5840K

Figure 2: Alignment scores for AC®&DC search in egs. versus wall clock time starting from
the benchmark solution at score 5154247. The scores were obtained by alternating updates for
continuous and discrete combinatorial search—in particular, Frank-Wolfe updates (in batches of
ten) for the former and greedy pairwise swaps (repeated until no further swaps improved the score)
for the latter. It takes less than 15 minutes for this method to produce a winning score for the
challenge (indicated by the dashed line at 5850K).

5 Discussion

In this paper we have described the ACPDC optimizations behind the winning solution to the VNC
Matching Challenge. The graphs in this challenge were large enough to foil exhaustive methods,
but small enough to experiment with many different approaches on a modestly equipped computer.
The highest-scoring solution was obtained by combining continuous relaxations, additive and mul-
tiplicative updates, bespoke graph decompositions, and higher-order swaps. But most of the work
was done by alternating simple (but aggressively optimized) methods for continuous and discrete
combinatorial search and exploiting the particular structure of the alignment score in eq. (IJ).

We mention several directions for future work. First, not all of the methods in this paper scale
gracefully to larger graphs with n >> 10* nodes. For such graphs, it seems necessary to develop
divide-and-conquer methods that do not require the storage of n X n matrices. Second, we expect
the linear assignment problem in eq. (9) to remain a crucial subroutine for higher-order assignment
problems (or at least for any problem whose score function can be linearized). We need to under-
stand better why certain heuristics such as preconditioning lead to faster solutions, and then perhaps
we can use this understanding to develop even faster approaches. Third, the winning solution to
the VNC matching challenge was implemented in MATLAB, a relatively high-level programming
language, but it is surely possible to produce faster implementations that are better at exploiting
sparsity, managing high-speed memory, and harnessing GPUs. Indeed, to solve larger problems in
graph matching, we are likely to need further progress in all of these directions.

Acknowledgements

302

303
304

305
306

307

308
309
310
311
312
313
314

315
316

317
318

319
320

321
322
323
324

325
326

327
328

329
330

331
332

333
334

335
336
337

338
339

340
341

342
343
344

345
346
347

References

L. Chen, J. T. Vogelstein, V. Lyzinski, and C. E. Priebe. A joint graph inference case study: the c.
elegans chemical and electrical connectomes. Worm, 5(2):e1142041, 2016.

D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pattern recogni-
tion. International Journal of Pattern Recognition and Artificial Intelligence, 18:265-298, 2004.

A. V. Devineni. A complete wiring diagram of the fruit-fly brain. Nature, 634:35-36, 2024.

S. Dorkenwald, A. Matsliah, A. R. Sterling, P. Schlegel, S.-C. Yu, C. E. McKellar, A. Lin, M. Costa,
K. Eichler, Y. Yin, W. Silversmith, C. Schneider-Mizell, C. S. Jordan, D. Brittain, A. Halageri,
K. Kuehner, O. Ogedengbe, R. Morey, J. Gager, K. Kruk, E. Perlman, R. Yang, D. Deutsch,
D. Bland, M. Sorek, R. Lu, T. Macrina, K. Lee, J. A. Bae, S. Mu, B. Nehoran, E. Mitchell,
S. Popovych, J. Wu, Z. Jia, M. A. Castro, N. Kemnitz, D. Th, A. S. Bates, N. Eckstein, J. Funke,
F. Collman, D. D. Bock, G. S. X. E. Jefferis, H. S. Seung, M. Murthy, and The Fly Wire Consor-
tium. Neuronal wiring diagram of an adult brain. Nature, 634:124—138, 2024.

I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse matrix.
SIAM Journal on Matrix Analysis and Applications, 22(4):973-996, 2001.

J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow
problems. Journal of the ACM, 19(2):248-264, 1972.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quar-
terly, 3(1-2):95-110, 1956.

S. Haller, L. Feineis, L. Hutschenreiter, F. Bernard, C. Rother, D. Kainmiiller, P. Swoboda, and
B. Savchnynskyy. A comparative study of graph matching algorithms in computer vision. In
Proceedings of the 17th European Conference on Computer Vision (ECCV-2002), pp. 636—653,
2022.

E. Koblentz. Fruit fly research led NJIT scientists and Edison teens to better Al habits on supercom-
puters. https://davidbader.net/post/20250303-njit/, 2025. Accessed: 2025-06-11.

H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quar-
terly, 2:83-97, 1955.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401:788-791, 1999.

N. Mamano and W. B. Hayes. Simulated annealing far outperforms many other search algorithms
for biological network alignment. Bioinformatics, 33(14):2156-2164, 2017.

J. Munkres. Algorithms for the assignment and transportation problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1):32-38, 1957.

L. Saul and F. Pereira. Aggregate and mixed-order markov models for statistical language process-
ing. In Proceedings of the 2nd Conference on Empirical Methods in Natural Language Process-
ing, pp. 81-89, 1997.

R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21:343-348, 1967.

N. Tomizawa. On some techniques useful for solution of transportation network problems. Net-
works, 1(2):173-194, 1971.

L. R. Varshney, B. L. Chen, E. Paniagua, D. H. Hall, and D. B. Chklovskii. Structural properties
of the caenorhabditis elegans neuronal network. PLoS Computational Biology, 7(2):e1001066,
2011.

J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T. Harley, D. E. Fishkind,
R.J. Vogelstein, and C. E. Priebe. Fast approximate quadratic programming for graph matching.
PLOS ONE, 10(4):1-17, 2015.

https://davidbader.net/post/20250303-njit/

us A Algorithms

349 In this section, we provide detailed pseudocode for the algorithms discussed in the main paper.

ss0 A.1 Pairwise swaps

35t Below is pseudocode for evaluating pairwise swaps as described in Sec. 2.1}

Algorithm 1 Given connectome weights A, B € R"*™ and a base permutation 7, evaluate the score
differences in eq. (8)) obtained by a single pairwise swap of indices.

procedure A = EVALUATESWAPS(A,B,m)
> Compute gradient at m and permute rows and columns of B
for i < 1tondo
for j < 1tondo
Gij = 3 j—1 min(Ag;, Br, ;) + min(Ax, Bjr,)]
B, < Br;r;
end for
end for
> Evaluate difference in scores due to pairwise swaps
for i < 1tondo
for j < 1ton do

hA;; + Inin(A“7 B + min(A;;, BT,) min(A;;, B“) min(A;;, B’T)
hA;; < min(A;;, B,)—i—min(AJj,B) - mln(AN,B) - mm(Aj],B ~)
hA;; < min(A;;, B)—i—min(A”,B) min(A;;, B];) mln(AZj,B)
hAj; < min(A,;, Bf,)—|—m1n(A]L,B ;) — min(Aj;, Bf;) — min(A;;, BY;)
A Gt G = Gom, — Gy P + by, — Ay — hA,;
end for
end for

end procedure

352 A.2 Greedy pairwise search

353 Below is pseudocode for the greedy discrete combinatorial search using pairwise swaps as described
354 in Sec.2.2

Algorithm 2 Given connectome weights A, B € R™*™ and an initial permutation 7y, perform a
greedy search with up to 7 pairwise swaps (per iteration) to find a local optimum in the alignment
score of eq. (I).

procedure m = GREEDYSEARCH(A,B,m,7) procedure m = MAKESWAPS(A,B,m,A,T)

T <+ T S E” min(A;j, Br,x;)
A < EVALUATESWAPS(A, B, 7) while ((7>0) AND (max;;(A;;)>0)) DO
while (maxij(Aij) > 0) do (i,7) + argmaxij(Aij)
m < MAKESWAPS(A, B, 7, A, T) 7! Too
A < EVALUATESWAPS(A, B,) S 3. njnn(A”,Bwl,r,)
end while if (S’ > S) then
end procedure (7,8,7) « (x/, 8, 7—1)
end if
(Aij,Aji) < (0,0)
end while

end procedure

355 A.3 Frank-Wolfe updates

ss6 Below is pseudocode for the continuous optimization using Frank-Wolfe updates as described in

357 Sec.

10

358

359
360
361
362

363
364
365

366
367
368
369
370
371

372
373
374
375
376
377

379

380

382
383

Algorithm 3 Given connectome weights A, B € R”*"™ and an initial doubly stochastic matrix P,
perform T' Frank-Wolfe updates to optimize the score in eq. (2)), then return the doubly stochastic
matrix Pr and permutation matrix I[I7 found from these updates.

procedure (Pr,II7) = DOFRANKWOLFE(A,B,Py,T)
P+ P()
fort < 1toT do
> Compute gradient
fori < 1tondo
for j « 1tondo
Gij — Zk@ [min(Aki, ng) + min(Aik, ng)] Py
end for
end for
> Project gradient, compute step size, and interpolate
Q + argmaxgep trace[G' Q]
o < argmaxaeo,1) [S((1—a)P + aQ)]
P+ (1-a)P+ aQ
> Compute closest-matching permutation matrix
II - argmaxpep trace [PTH]
end for
PT «— P
HT +— II
end procedure

B Acceleration by preconditioning

In this section we describe how the winning entry to the challenge solved the linear program in
eq. (O). As mentioned previously, this problem is equivalent to one of perfect matching, and it is
more typically posed in terms of a cost matrix C' € R™*", where the goal is to find the permutation
7 that minimizes the linear assignment cost

trace(C'TP™) = ZC“”' (14)

There is an internal (though not especially well-documented) routine in MATLAB that solves this
problem by permuting large entries to the diagonal of a sparse matrix (Duff & Koster, 2001). It
assumes that C' is stored as a dense matrix, and it is called as

m = matlab.internal.graph.perfectMatching(C). (15)

We used this internal routine to solve the linear programs in egs. (9) and (I3) whose cost matrices
had n = 18524 rows and columns. The routine is based on a polynomial-time algorithm, but it
can be very slow if called in the above manner when C' is a dense matrix. For example, when
C = —VS&(P,), this routine requires 10-15 minutes per call on a MacBook Pro (M1 Max) with 64
GB of RAM. Of course it would not be possible to obtain a winning solution in less than 15 minutes
if each iteration of Algorithm [3|required this much computation.

We discovered a heuristic that greatly accelerates this routine for perfect matching when it is called
with the gradients VS(F;) that appear in eq. @]) The heuristic is based on three observations. First,
the result in eq. is unaffected if we shift any row or column of the cost matrix by a constant
value. Second, the result is trivially equal to the identity permutation if C' has negative elements on
the diagonal and nonnegative elements off the diagonal. Third, suppose that an approximate solution
w can be be guessed for eq. (I3)), where w is a permutation that nearly solves the linear assignment
problem. Then the matrix product C - (P*)T should be closer than C' to a matrix whose smallest
entries appear on the diagonal.

Based on these observations, we discovered something akin to a preconditioner for the routine in
eq. when C' = —VS(P;). We describe this preconditioner in detail because it yielded a sig-
nificant speedup, reducing the time per call by a factor of 50-60x, or from minutes to seconds. As
shorthand, let 1 € R™ denote the column vector of all ones, and let diag(-) denote the column vector

11

384
385
386

387
388
389
390
391

392

393
394
395
396
397
398
399
400
401

402

403
404
405
406
407

409
410
411
412
413
414
415

416

417
418
419
420
421
422
423

424
425
426

of diagonal elements from its matrix argument. We start by observing that IT; in eq. (T3) provides
an approximate guess for Q; in eq. (9). With this and the previous observations in mind, we solve
eq. (9) in the following way:

(PERMUTE) A = VS(P)I/, (16)
(SHIFT) Q= A +diag(A)1" + L diag(A)" — 11 TA — ATLT, (17)
(MATCH) w = matlab.internal.graph.perfectMatching(—2), (18)
(UNPERMUTE) @ = P“II;. (19)

Intuitively, the first of these steps (PERMUTE) ensures that A has positive elements on the diagonal,
the second (SHIFT) makes it more likely that {2 has negative elements off the diagonal, and the third
(MATCH) is fastest when €2 has positive elements on the diagonal and none elsewhere, in which case
w is close to the identity permutation. We do not have a formal justification for this heuristic, but in
practice it was essential, removing eq. (9) as the main bottleneck in Algorithm 3]

C Further improvements

For the VNC matching challenge, we have shown that a score of over 5852K can be reached in
under one hour by combining simple methods for discrete and continuous search. In this section, we
give a brief overview of additional methods to further improve the score. At the outset, we note that
above 5852K the optimization appears to enter a regime of diminishing returns. As shown in Fig.[2]
it takes only a few minutes to improve the benchmark score by nearly 700K, and then another
hour after that to improve the score by an additional 10K. But beyond this regime it takes many
additional hours—even for the more elaborate methods we discuss next—to obtain improvements
that are orders-of-magnitude less. In light of this, we only provide a high-level sketch of these
methods.

C.1 Higher-order swaps

The discrete search in Algorithm [2] quickly finds a solution that cannot be improved by further
pairwise swaps. This search over permutation matrices can be extended by considering higher-order
swaps that permute more than two indices at a time. For higher-order swaps, however, it is no
longer feasible to evaluate all possible local moves before considering which ones to perform; there
are, for instance, over one trillion different three-node swaps that can be performed in a graph with
n = 18524 nodes. Instead one can evaluate a subset of higher-order moves that seem most likely
to yield improvements. For example, we considered the subset of three-cycles {(i — j — k — 1)}
where the index k was chosen greedily for all pairwise swaps {(i <> j)} that did not reduce the score
by a certain threshold. We also devised similar strategies for considering many different types of
higher-order swaps. In total, our most sophisticated discrete search considered not only pairwise
swaps, but also 3-cycles, 4-cycles, and 5-cycles, as well as 2x2, 3x2, 3x3, 4x2, 5x2, 2x2x2, 3x2x2,
and 2x2x2x2 swaps. With these higher-order swaps, it takes another dozen hours to boost the score
from 5852K to 5853K (amounting to a gain of less than 0.01%).

C.2 Multiplicative updates

The Frank-Wolfe updates in Algorithm |3| produce a sequence of doubly stochastic matrices that
improve the score in eq. (Z). When these updates are initialized from a permutation matrix, they
produce a sequence of sparse doubly stochastic matrices. This sparsity has certain computational
advantages: for example, it can be exploited to compute the gradient in eq. (@) much more efficiently.
But it also has potential disadvantages; in particular, an optimization restricted to sparse solutions
may not fully leverage the continuous search that is afforded by the relaxation to doubly stochastic
matrices.

Recall that the updates in eq. are additive updates in which the existing solution P is linearly
interpolated with the projected gradient ();. We also experimented with multiplicative updates that
use the gradient in eq. (4) quite differently. These updates take the form

(VS (Bl

Piyalij = [Prlij -
Pl = [Py -)

) (20)

12

444

446
447
448
449

450
451
452

453
454
455

457
458

459

460
461
462

464
465

where in the numerator of eq. appear the elements of the gradient VS(P;) and in the denomi-
nator appear Lagrange multipliers u, v € R™. This multiplicative update can be derived as a gener-
alization of those for nonnegative and (singly) stochastic matrix factorization (Lee & Seung, |1999;
Saul & Pereira, [1997). The main generalization is to introduce two sets of Lagrange multipliers
into the update; one of these is to enforce sum-to-one constraints on the rows of doubly stochastic
matrices, and the other is to enforce sum-to-one constraints on the columns. The resulting update
is similar but not equivalent to the Sinkhorn-Knopp procedure for projecting a nonnegative matrix
onto the set of doubly stochastic matrices (Sinkhorn & Knopp, [1967).

The multiplicative updates in eq. (20) can be used to optimize the score in eq. (2)), and unlike the
Frank-Wolfe updates, they do not involve the expense of computing a projected gradient, as in
eq. (9). But to use these updates on dense doubly stochastic matrices, it is necessary to compute the
score in eq. (2) and the gradient in eq. when P is dense. Naively this appears to require O(n*)
operations, a prohibitive scaling for matrices of size n=18524.

We devised a faster way to compute these gradients by exploiting the fact that the connectome
weights are quantized. In particular, each nonzero weight records a positive number of synapses,
and therefore not only are the elements of A and B quantized, but so are the possible values of
min(A;;, Bi) in eq. . Let Q@ = {qo,4q1,---,qn} denote the set of these quantized values, with
go=0and ¢; < ¢;+1, and let ©(-) denote the step function defined by ©(z)=1if z>0and ©(z) =0
otherwise. Then it follows that

M-1

min(A;;, Br) = Z O(Aij —qm) O(Bri—qm) (¢m+1—qm) 21
m=0

for all connectome weights A;; and By;. Note how this identity expresses the minimum as a sum
over M components. We now use this identity to more efficiently compute the score in eq. () and
the gradient in eq. . To do so, for each interval (¢, ¢m+1), we define connectome components
with weights

AGY = O(Ai;=m) /a1~ 22)
B = ©(Bij—qm) \/am 1~ 23)

Note that each connectome component is a sparse matrix in its own right, one that is at least as
sparse as the connectome from which it is derived. Finally, combining eqs. (21H23)), we rewrite the
score in eq. (2 as

S(P) =" min(A;j, By) P P (24)
ijkl
=3 1> ALBY | PPy (25)
ikl L m

= Ztrace [(A(m)P) (PB(m))T}) (26)

Note that this final expression for the score in eq. can be computed in O(Mn?) as opposed to
O(n*). This savings is significant when M < n, and it is also inherited by the computation of the
gradient. For the VNC matching challenge, there are M =617 graph components that arise from the
nonzero connectome weights of the male and female fruit fly. With this savings, and using a GPU, it
takes less than 2 minutes to compute the gradient of eq. (26)) and perform each multiplicative update

in eq. (20).
C.3 Final results

The official winning score to the challenge was 5853779. This score was submitted on January
31, 2025 and achieved by alternating the additive updates for sparse doubly stochastic matrices in
eq. (IT) with the multiplicative updates for dense doubly stochastic matrices in eq. (20). A score of
5853925, higher by 0.0025%, was obtained on February 18, 2025 by combining the methods of the
two top-scoring teams. Table[T)in the main text shows the top ten scores on the leaderboard as of the
writing of this paper.

13

	Introduction
	Discrete search
	Evaluation of pairwise swaps
	Greedy search with pairwise swaps

	Continuous relaxation
	Frank-Wolfe updates
	Application to graph-matching

	A winning solution
	Discussion
	Algorithms
	Pairwise swaps
	Greedy pairwise search
	Frank-Wolfe updates

	Acceleration by preconditioning
	Further improvements
	Higher-order swaps
	Multiplicative updates
	Final results

