
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SOLVING THE FUZZY JOB SHOP SCHEDULING PROB-
LEM VIA LEARNING APPROACHES

Anonymous authors
Paper under double-blind review

ABSTRACT

The fuzzy job shop scheduling problem (FJSSP) emerges as an innovative ex-
tension to the conventional job shop scheduling problem (JSSP), incorporating a
layer of uncertainty that aligns the model more closely with the complexities of
real-world manufacturing environments. This enhancement, while enhancing its
applicability, concurrently escalates the computational complexity of deriving so-
lutions. In the domain of traditional scheduling, neural combinatorial optimization
(NCO) has recently demonstrated remarkable efficacy. However, its application
to the realm of fuzzy scheduling has been relatively unexplored. This paper aims
to bridge this gap by investigating the feasibility of employing neural networks
to assimilate and process fuzzy information for the resolution of FJSSP, thereby
leveraging the advancements in NCO to enhance fuzzy scheduling methodologies.
To this end, we present a self-supervised algorithm for the FJSSP (SS-FJSSP).
This algorithm employs an iterative mechanism to refine pseudo-labels, progres-
sively transitioning from suboptimal to optimal solutions. This innovative ap-
proach adeptly circumvents the significant challenge of procuring true labels, a
common challenge in NCO frameworks. Experiments demonstrate that our SS-
FJSSP algorithm yields results on a par with the state-of-the-art methods while
achieving a remarkable reduction in computational time, specifically being two
orders of magnitude faster.

1 INTRODUCTION

The job shop scheduling problem (JSSP) is a well-established combinatorial optimization problem
(COP) that holds both theoretical significance and practical relevance (Zhang et al., 2024). The
traditional JSSP describes the processing time in the form of crisp number. However, in real-world
manufacturing scenarios, numerous uncertain factors, such as human variability (He et al., 2021)
and machine flexibility (Huang et al., 2024), often preclude the accurate specification of processing
times. To overcome this limitation, the fuzzy JSSP (FJSSP) has emerged and is attracting increas-
ing attention in the field (Abdullah & Abdolrazzagh-Nezhad, 2014; Lin, 2002). Specifically, in
the FJSSP, processing times are represented as fuzzy numbers. These uncertainties diminish the
practical applicability of the JSSP.

The existing algorithms for FJSSP are mainly heuristic algorithms (Gendreau & Potvin, 2005). Li
et al. (2023) developed a bi-population balancing multiobjective evolutionary algorithm for dis-
tributed flexible FJSSP. Gao et al. (2020) devised a differential evolution algorithm with an in-
novative selection mechanism to to more effectively tackle FJSSP. Li et al. (2020) engineered an
enhanced artificial immune system algorithm to address flexible FJSSP. Sun et al. (2019) crafted
an effective hybrid cooperative coevolution algorithm aimed at minimizing the fuzzy makespan of
flexible FJSSP. The integration of particle swarm optimization and genetic algorithms significantly
bolstered the convergence capabilities of the proposed algorithm. Wang et al. (2022) utilized fuzzy
relative entropy to transform a multiobjective optimization FJSSP into a single-objective optimiza-
tion problem and designed a hybrid adaptive differential evolution algorithm to resolve it. Pan et al.
(2021) concentrated on the energy-efficient flexible FJSSP and developed a bi-population evolution-
ary algorithm with feedback mechanisms to address it effectively.

The surge in deep learning has catalyzed the emergence of neural combinatorial optimization (NCO),
sparking a burgeoning interest in leveraging learning-based approaches to solve combinatorial op-
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timization problems (COPs) (Bengio et al., 2021; Chen & Tian, 2019; Falkner et al., 2022). Initial
forays into this domain focused on foundational COPs. Vinyals et al. (2015) were trailblazers with
the pointer network, a novel neural network architecture specifically designed for the traveling sales-
man problem (TSP), thereby underscoring the potential of neural networks in addressing COPs.
Bello et al. (2016) combined neural networks with reinforcement learning for the TSP, achieving
near-optimal results. This method, while computationally demanding, reduced reliance on intri-
cate engineering and heuristic design. Kool et al. (2018) further refined the pointer network by
incorporating attention mechanisms, resulting in significant enhancements in the performance of
both the TSP and the vehicle routing problem (VRP). Nazari et al. (2018) introduced a comprehen-
sive framework that utilized reinforcement learning for the VRP, surpassing traditional heuristics on
medium-scale capacitated VRP instances without a substantial increase in computational time. The
application of NCO has since expanded into the realm of scheduling problems. Zhang et al. (2020)
developed a deep reinforcement learning model that autonomously learned JSSP priority dispatch
rules. They also introduced a graph neural network (GNN) for encoding states, outperforming exist-
ing dispatch rules. Kotary et al. (2022) presented a deep learning strategy that yielded efficient and
accurate JSSP approximations; they integrated Lagrangian duality to manage problem constraints,
showcasing the potential for generating high-quality JSSP solutions with minimal computational
overhead. Corsini et al. (2024) explored a self-supervised training strategy for JSSP, training gen-
erative models on multiple solution samples and using the optimal solution as a pseudo-label, thus
eliminating the need for costly ground-truth solutions and overcoming challenges associated with
supervised learning. However, all these studies are predicated on deterministic environments, and
to date, no research has addressed the fuzzy scheduling problem using learning approaches. In this
paper, we aim to investigate whether neural networks can assimilate fuzzy information and apply it
to solve the FJSSP, thereby integrating the advancements of NCO into fuzzy scheduling.

The main contributions of this work are as follows:

• We propose a self-supervised algorithm for FJSSP (SS-FJSSP), which can learn fuzzy in-
formation and solve fuzzy scheduling problems in a learning approach.

• We employ an iterative refinement process to incrementally transform initially inaccurate
labels into authentic ones, effectively addressing the challenge of acquiring true labels in
the realm of NCOs.

• Experimental results indicate that the SS-FJSSP algorithm matches the performance of the
state-of-the-art methods and significantly reduces computation time, with speeds up to 100
times faster.

2 PRELIMINARIES

2.1 FUZZY NUMBER

Fuzzy numbers are used to represent the processing time for fuzzy scheduling, which is described
in this section.

In manufacturing environments, precise processing times are often elusive due to variables such as
the diverse skill levels of workers (Shao et al., 2024). While exact durations may not be predictable,
experts can often draw on historical data to provide estimated durations (Itoh & Ishii, 1999). To
address this unpredictability, a prevalent strategy involves estimating within confidence intervals.
When certain values are more likely, opting for a fuzzy interval or number becomes an appropriate
choice (Fortemps, 1997).

Assume S is a fuzzy set defined on R, with a membership function µS : R → [0, 1]. The α-cut of S
is defined as Sα = {x ∈ R : µS(x) ≥ α}, α ∈ (0, 1], and the support is S0 = {x ∈ R : µS(x) >

0}. A fuzzy interval is delineated by its α-cuts being confined, and a fuzzy number Ñ , with a
compact support and a pronounced modal value, is depicted by closed intervals Ñα = [nα, n̄α].

The triangular fuzzy number (TFN) (Zhu et al., 2020) is frequently utilized in fuzzy scheduling
problems. Let Ã be a TFN denoted as Ã = (a1, a2, a3), where a1 and a3 outline the range of
potential values and a2 signifies the modal value within this range. The membership function of Ã
is articulated as follows:
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µÃ(x) =


x−a1

a2−a1
, if a1 < x ≤ a2,

a3−x
a3−a2

, if a2 < x < a3,

0, otherwise.
(1)

Let Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) represent two TFNs. The operations on these TFNs are
defined as follows:

1. Additional Operation. According to (Nguyen et al., 2018), the sum of Ã and B̃ is as follows:

Ã+ B̃ = (a1 + b1, a2 + b2, a3 + b3) . (2)

2. Max Operation. According to (Lei, 2010a), the max operation of Ã and B̃ is as follows:

max(Ã, B̃) =

{
Ã, if Ã ≥ B̃,

B̃, otherwise.
(3)

This operation is grounded in a ranking method, and for this paper, we employ the method proposed
by (Heilpern, 1992). This method defuzzifies TFNs to crisp numbers, allowing the comparison of
these values to determine the relationship between the TFNs, as shown in the following formula:

Defuzz(Ã) =
a1 + 2a2 + a3

4
. (4)

In addition to the above well-defined operations, this paper also deals with subtraction, division, and
other operations on TFNs. Therefore, the defuzzification method defined in Eq. (4) is also applied
to these operations, ensuring that the neural network can effectively learn and process the relevant
information.

2.2 FJSSP

The FJSSP (Vela et al., 2020) involves a collection of jobs, machines, and operations. Specifically,
there are n jobs denoted by set J , m machines represented by set M, and N operations within set
O. Each operation i ∈ O is associated with a unique job Ji ∈ J , processed by a specific machine
Mi ∈ M, and has an uncertain processing time denoted by a TFN t̃i. The operations are linked by
a binary relationship → that forms chains for each job. If operation i precedes j (i → j), they share
the same job Ji = Jj , and no other operation x can exist such that i → x or x → j. Let S be the set
of scheduling scheme; The objective of FJSSP is to minimize the fuzzy makespan, i.e., to find the
fuzzy start time s̃i for each operation i ∈ O to minimize the following objective over all possible
schemes:

max
i∈O

s̃i + t̃i (5)

s.t. s̃i ≥ 0, ∀i ∈ O, (6)

s̃j ≥ s̃i + t̃i, if i → j, i, j ∈ O, (7)

s̃j ≥ s̃i + t̃i ∧ s̃i ≥ s̃j + t̃j , if Mi = Mj , i, j ∈ O. (8)

To enable the neural network to assimilate the intricate constraint information inherent in the FJSSP,
this paper deviates from the conventional mixed-integer linear programming models typically uti-
lized in heuristic algorithms, as referenced by (Tirkolaee et al., 2020). Instead, we adopt the disjunc-
tive graph approach, as introduced by (Van Laarhoven et al., 1992), to effectively model the FJSSP.
This methodological choice facilitates a more nuanced representation of the scheduling constraints,
enhancing the capacity of network to learn and optimize solutions within this complex domain.

The disjunctive graph G = (V,A,E) characterizes problems as follows:

• V = O∪{S, T}, where S and T denote the starting and ending virtual nodes, respectively,
each with a processing time of zero.

• A encompasses ordered pairs (i, j) for i, j ∈ O such that i → j, along with pairs (S, j) for
the first operations of all jobs and (i, T ) for the last operations, representing the directed
connections between operations within the jobs.

3
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(a) FJSSP instance (b) Directed solution

Figure 1: Disjunctive graph model. (a) illustrates a 3 × 3 FJSSP instance. The black solid lines
delineate set A, while the colored dashed lines enclose set E. Operations with the same frame color
must be executed on the same machine. (b) presents a solution for (a), where all undirected edges
have been directed.

• E includes pairs (i, j) where Mi = Mj , indicating undirected connections between opera-
tions assigned to the same machine.

For each pair of operations i, j ∈ O with i → j, the constraint in Eq. (6) is denoted as a directed
edge (i, j) in A. Similarly, for each pair of operations i, j ∈ O with Mi = Mj , the constraint in
Eq. (7) is denoted as an undirected edge (i, j) in E, and the two ways of solving the disjunction
correspond to the two possible orientations of the edge. Therefore, finding a solution of FJSSP is
equivalent to determining the direction of each undirected edge, resulting in a directed acyclic graph.
An example of a disjunctive graph for an FJSSP instance and its solution are shown in Figure 1.

Moreover, since the directed edges give constraints on the processing order of all the operations
in each job, in decision making, we only need to determine which job (rather than which op-
eration) needs to be processed. For example, Figure 1(b) corresponds to a scheduling scheme
[1, 3, 2, 3, 1, 2, 1, 2, 3], and the objective of the algorithm proposed in this paper is to decide on
scheduling schemes such as this one and make their fuzzy makespan as small as possible.

3 SS-FJSSP

The SS-FJSSP framework is comprised of two main components, namely an encoder and a de-
coder. The role of encoder is to assimilate and comprehend the FJSSP information from a holistic
standpoint, capturing the broader context and constraints. Subsequently, the decoder leverages the
insights gleaned by the encoder to make informed, sequential decisions, breaking down the complex
scheduling problem into manageable steps. Moreover, it is essential to preprocess the features of the
raw data prior to encoding to enhance the learning process. Each component is described in detail
below.

3.1 FEATURE EXTRACTION AND ENCODER

In the disjunctive graph model, the data information, specifically the fuzzy processing times, is
stored at the vertices representing the operations, while constraints are defined by the edges. How-
ever, the raw data at these vertices, which includes only the individual fuzzy processing times, is
insufficient for making accurate decisions. To achieve this, we require more comprehensive infor-
mation. This is because, in addition to its own numerical magnitude, its role (relative numerical
magnitude) in the job and machine to which it belongs is also important. To address this, we employ
a feature vector xi ∈ R18, associated with operation i, to encapsulate the data information for the
entire disjunctive graph. The feature vector xi contains the following entries:

t̃i = (t1, t2, t3) ∈ R3, (9)

Defuzz
(
t̃i
)
∈ R, (10)∑i

j=St(i) Defuzz
(
t̃j
)∑End(i)

j=St(i) Defuzz
(
t̃j
) ∈ R, (11)
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∑End(i)
j=i+1 Defuzz

(
t̃j
)∑End(i)

j=St(i) Defuzz
(
t̃j
) ∈ R, (12)

Quartile (Ji) ∈ R3, (13)

Quartile (Mi) ∈ R3, (14)

Defuzz
(
t̃i
)
−Defuzz (Quartile (Ji)) ∈ R, (15)

Defuzz
(
t̃i
)
−Defuzz (Quartile (Mi)) ∈ R, (16)

where St(i) and End(i) denote the the first and last operation of the job that operation i belongs,
respectively. Quartile(·) calculates the quartiles. Eqs. (9) and (10) describe local information and
represent the fuzzy processing time and the defuzzified processing time of Oi, respectively. Other
equations describe global information. Eqs. (11) and (12) describe how much of the job to which it
belongs has been completed and how much is left after processing Oi, respectively. Eqs. (13) and
(14) describe the quartiles of fuzzy processing time for the job and machine to which Oi belongs,
respectively. Eqs. (15) and (16) describe the difference of the defuzzified fuzzy processing time of
Oi and Eqs. (13) and (14), respectively.

Subsequently, a two-layer Graph Attention Network (GAT) (Brody et al., 2021) is employed to ex-
tract and learn valuable information from the disjunctive graph, which transforms 18-dimensional
xi into a h-dimensional ei. The primary advantage of ei over xi is that it complements the rela-
tionship between edges. Furthermore, in order not to weaken the information of the vertices, at each
layer of the GAT, the output is concatenated with the original feature vector xi. The formulation of
encoder is detailed as follows:

ei = [xi∥ReLU (GAT2 ([xi∥ReLU (GAT1 (xi, G))] , G)] , (17)

where “∥” is the concatenation operation.

3.2 DECODER

The decoder is composed of two parts: a state network and a decision network. The former is respon-
sible for updating state, and the latter is responsible for making decisions based on the information
provided by the decoder and memory network. The two networks are described below.

1. The state network. The SS-FJSSP makes decisions step by step, and each decision impacts
the future. Therefore, after each decision, it is necessary to update the state and convey it to the
SS-FJSSP to enhance the accuracy of subsequent decisions.

First, we generate an 11-dimensional context vector ci (i = 1, 2, . . . , n) for each job to describe its
information. Assuming that ot,i denotes the ready operation of job J i at step t, and its predecessor
is ot,i − 1. The context vector ci ∈ R11 contains the following entries:

Defuzz (CT(ot,i − 1))−Defuzz
(
CT(Mot,i)

)
∈ R, (18)

Defuzz (CT(ot,i − 1))

Defuzz (maxi=1,...,n CT(Ji))
∈ R, (19)

Defuzz (CT(ot,i − 1))−
Defuzz (

∑n
i=1 CT(Ji))

n
∈ R, (20)

Defuzz (CT(ot,i − 1))−Defuzz (Quartile(J )) ∈ R3, (21)

Defuzz
(
CT(Mot,i)

)
Defuzz (maxi=1,...,m CT(Mi))

∈ R, (22)

Defuzz
(
CT(Mot,i)

)
−

Defuzz (
∑m

i=1 CT(Mi))

m
∈ R, (23)

Defuzz (CT(ot,i − 1))−Defuzz (Quartile(M)) ∈ R3, (24)
where CT(·) calculate the fuzzy completion time. Eq. (18) describes the relationship between two
factors that affect the processing of ot,i: whether the predecessor operation is complete and whether
the required machine is idle. Eq. (19) measures how close the fuzzy completion time of Jot,i is to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the current fuzzy makespan. Eq. (20) measures how early or late the fuzzy completion time of Jot,i
is compared to the average fuzzy completion time of all jobs in the current state. Eq. (21) describes
the relative fuzzy completion time of Jot,i w.r.t. other jobs. Eq. (22) measures how close the fuzzy
completion time of Mot,i is to the current fuzzy makespan. Eq. (23) measures how early or late the
fuzzy completion time of Mot,i is compared to the average completion time of all machines in the
current state. Eq. (24) describes the relative fuzzy completion time of Mot,i w.r.t. other machines.

Second, the context vectors are advancedly integrated through Eq. (25) to derive the state vectors
si ∈ Rd(i = 1, 2, . . . , n). These vectors serve as a pivotal input to the decision network, enabling it
to make informed decisions effectively.

si = ReLU

([
ciW1 + MHA

j=1,...,n
(cjW1)

]
W2

)
, (25)

where W1 and W2 are learnable parameter matrices, and MHA denotes the multi-head attention
layer (Vaswani, 2017).

2. The decision network. This network combines the eot,i generated by the encoder that contains
global information about the FJSSP, and the si generated by the memory network that contains local
state information, to generate the probability of choosing a job for the current decision step. More
specifically,

zi = FNN
([
eot,i∥si

])
∈ R, (26)

where FNN denotes the feedforward neural network (Glorot & Bengio, 2010). Then, the proba-
bilities pi for processing the job J i in the current step can be obtained by applying the Softmax
function to zi.

Next, a complete scheduling scheme can be generated based on the probability vector p =
[p1, p2, . . . , pn]

T , denoting the probability that each job is selected. Specifically, first, at step 1,
a job is randomly selected based on p as the decision for this step. Then, the context vectors and
state vectors are updated. Finally, based on the new context vectors and state vectors, the proba-
bility vector p for next step is generated. Thus, an autoregressive process is formed until all jobs
have completed. Moreover, if a job has completed, its probability is set to 0 by a mask operation at
subsequent steps.

3.3 TRAINING STRATEGY

Since the FJSSP is an NP-Hard problem (Vela et al., 2020), obtaining true labels is impractical, and
this results in the difficulty of solving this problem with a learning approach. Inspired by the work of
(Corsini et al., 2024), we overcome this difficulty in the following ways. For each FJSSP instance,
we generate α solutions through α parallel decision-making processes and select the appropriate
solution as the pseudo-label to minimize the following loss function:

L(π, π̂) = − 1

mn

mn∑
t=1

log(pt,yt
), (27)

where π and π̂ denote the scheduling scheme of the pseudo-label and the predicted scheduling
scheme of the algorithm, respectively. yt denotes the t-th job of π, and pt,yt denotes the probability
of the t-th job of π is yt.

Let Pp represent the perturbation probability. In deviation from the conventional approach of se-
lecting an optimal solution that minimizes the makespan, as proposed by (Corsini et al., 2024), we
implement an alternative methodology for determining the suitable solution.

Case 1: If rand(0, 1) ≥ Pp. Similar to (Corsini et al., 2024), we select the optimal solution as the
pseudo-label.

Case 2: If rand(0, 1) < Pp. Instead of selecting the optimal solution, we randomly select one of
the α parallel solutions (which are suboptimal) as the pseudo-label.

The original method anticipates that as the algotirhm learns over time, its predictions will progres-
sively refine, with the pseudo-labels it generates increasingly approximating the true labels, ulti-
mately converging upon them. However, this ideal is unattainable, as depicted in the schematic
diagram in Figure 2 (a). For the sake of clarity, we shall assume that the algorithm requires only
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(a) Learning without perturbation (b) Learning with perturbation

Figure 2: Illustration of the learning process. (a) illustrates the learning process without the influ-
ence of perturbations. initially at step 0, the algorithm is anchored at the blue point, using the orange
point as the initial pseudo-label for learning. By step 1, the focus shifts to the green point, which
the algorithm adopts as the new pseudo-label for further learning. This process continues, with the
algorithm progressively converging towards a local optimum, represented by the red point. (b) illus-
trates the learning process with the influence of perturbations. With the introduction of perturbation
at step 1, the algorithm is diverted from the peak associated with the local optimum. It opts for a
green point, which is not the best option, but it is at the peak where the global optimum is located.
As learning progresses, the algorithm moves towards the blue and grey points, ultimately settling at
the globally optimal red point.

a single learning iteration to accomplish the acquisition of pseudo-labels. Initially, the algorithm
gravitates toward a pseudo-label that approximates a local optimum. While this learning process en-
hances the predictive capability of algorithm for generating better pseudo-labels, it remains confined
to the vicinity of the local optimum, failing to explore the broader landscape for a global optimum.
Eventually, the pseudo-label tends to converge towards a local optimum, guiding the learning of
algorithm in the same direction. This phenomenon is prevalent due to the solution space being a
complex, multi-modal function, where it is nearly impossible to obtain solutions close to the global
optimum within a single iteration (LeCun et al., 2015). Thus, we introduce a perturbation, as illus-
trated in Figure 2 (b). This perturbation enables the algorithm to escape the local optimum during
the second learning phase, steering it towards peaks that are closer to the global optimum, and ulti-
mately leading to convergence at the global optimum (true label). It is evident that the perturbation
significantly enhances the probability of discovering the true label.

3.4 FURTHER ANALYSIS

Every COP can be envisioned as a decision-making process occurring on a graph (Korte et al., 2011),
a foundational concept for the SS-FJSSP algorithm. This algorithm iteratively refines its decision-
making skills on such graphs. The process is analogous to human decision-making: once the prob-
lem is understood, decisions are made incrementally, with each subsequent decision informed by
the consequences of its predecessors to enhance accuracy. In this framework, comprehending the
problem is the role of the encoder, considering the impact of previous decisions is the function of
the state network, and the act of making decisions is the task of the decision network.

Next, the crux of the challenge is teaching the SS-FJSSP algorithm to learn the correct scheduling
strategy, enabling it to identify the optimal solution once the problem is understood. This is a feat
that humans are currently unable to achieve. The primary obstacle is the NP-Hard nature of the
problem, which means an insufficient number of correct labels for the SS-FJSSP to learn from. To
overcome this, we draw on the idea of genetic algorithm (Mitchell, 1998): instead of learning the
true labels directly, we start with suboptimal labels and gradually approximate the true labels. The
core of what makes this strategy work is that even though we do not know if a solution is a true
label, for any two solutions, we can distinguish which of them is better (according to the magnitude
of the fuzzy makespan).

Specifically, initially, the SS-FJSSP starts without any prior knowledge, randomly generating solu-
tions as potential alternative labels. From these, the most optimal solution is chosen as the pseudo-
label, allowing the algorithm to learn. Subsequently, armed with the knowledge acquired previously,
the algorithm shows a tendency to predict better alternative labels, leading to the selection of an
improved pseudo-label. Repeating this process, ideally, the true label will be selected as the pseudo-
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label, and the algorithm will eventually learn to make decisions that correspond to it. However, the
ideal scenario described above is so perfect that it is nearly unattainable in practice without intro-
ducing perturbations. The rationale behind this is that the aforementioned process is essentially akin
to a genetic algorithm that employs only crossover without any mutation. Ideally, we anticipate that
a superior solution would consistently generate new solutions that are at least as good as the existing
ones, thus eventually leading to the global optimum. However, this ideal condition is met if and only
if the solution space possesses particularly advantageous properties. In reality, the solution spaces
of COPs or neural networks are often complex and multi-modal (LeCun et al., 2015). Consequently,
we introduce a perturbation to emulate the role of mutation, which aids the algorithm in escaping
local optima and identifying the global optimum, or the true label, as the pseudo-label.

Finally, it becomes evident that with minimal adjustments, this algorithm can be extended to other
COPs. This adaptability stems from the fact that any COP can be effectively solved using GNNs
once the problem is understood. In terms of decision-making, for any given COP, we are capable
of determining the superior label, thereby approximating the true label as outlined in our strategy.
Thus, this approach can be regarded as an innovative paradigm for addressing COPs, complement-
ing existing methodologies such as mathematical methods (Ku & Beck, 2016), heuristic methods
(Van Laarhoven et al., 1992), and reinforcement learning methods (Zhang et al., 2020).

4 NUMERICAL RESULTS AND COMPARISON

The SS-FJSSP algorithm is developed using Python 3.9 and PyTorch 1.3.1, and is executed on an
Ubuntu 22.04 PC. The hardware setup includes an Intel Platinum 8358P processor and an NVIDIA
GeForce RTX 4090 with 24GB of memory.

4.1 DATASET AND TEST INSTANCES

We randomly generated 30000 instances as the training set by following (Li et al., 2021). The size
(m × n) of the training set is 10 × 10, 15 × 10, 15 × 15, 20 × 10, 20 × 15, and 20 × 20, each with
5000 instances. The validation set is generated in the same way as the training set, except that the
number of each size is 100. In order to test the performance of SS-FJSSP, we select 2 benchmarks: S
(Sakawa & Mori, 1999; Sakawa & Kubota, 2000), and FT (Palacios et al., 2016). We also conducted
the experiments for other popular benckmarks such as La (Palacios et al., 2016). The corresponding
experimental results are deferred to Appendix.

4.2 ARCHITECTURE AND TRAINING

In the encoder, we utilize two GATs, each equipped with 3 attention heads and a LeakyReLU slope
of 0.15. In GAT1, the size of each head is set to 64 and their outputs are concatenated. In GAT2, the
size of each head is set to 128 and their outputs are averaged. Therefore, h = 18 + 128 = 146 and
ei ∈ R146. In the state network, the size of each head in MHA layer is set to 64 and their outputs are
concatenated. This results in parameter matrices W1 ∈ R11×192 and W2 ∈ R192×128. Therefore,
d = 128 and si ∈ R128. In the decision network, the FNN is implemented by a dense layer of 128
neurons, with a final layer of 1 neuron and Leaky-ReLU (slope = 0.15) activation function.

We utilize the Adam optimizer (Kingma, 2014) for training the SS-FJSSP algorithm. The training
parameters are set as follows: the number of epochs to 30 and the learning rate to 0.0002. The batch
size is configured at 16. Regarding the number of parallel solutions, denoted by α, we set it to 128
during training and increase it to 2048 for testing. Additionally, the perturbation probability, Pp, is
established at 0.05.

4.3 PERFORMANCE ON BENCKMARKS

In our evaluation, we have compared our SS-FJSSP with the state-of-the-art method in the field:
Constraint Programming (CP), as detailed by (Afsar et al., 2023). As the code for CP is not open-
source, our comparison is solely based on the results presented in (Afsar et al., 2023). Their exper-
imental setup included the use of IBM ILOG CP Optimizer version 12.9 on a PC equipped with an
Intel Xeon Gold 6132 processor, which operates at 2.6 GHz and is supported by 128 GB of RAM.
The operating system utilized was Linux CentOS version 6.9.
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Table 1: The comparison results of S-benchmark between SS-FJSSP and CP

Size Instance SS-FJSSP CP
FMS RT FMS RT

6 × 6

S6.1 (56,80,103) 0.06 (56,80,103) 5
S6.2 (51,70,86) 0.06 (51,70,86) 2
S6.3 (51,65,84) 0.06 (51,65,84) 3
S6.4 (27,36,45) 0.07 (27,36,45) 3

10 × 10

S10.1 (93,135,137) 0.21 (96,129,161) 36
S10.2 (92,122,161) 0.21 (92,120,163) 140
S10.3 (85,116,143) 0.21 (85,116,143) 43
S10.4 (28,47,64) 0.36 (28,47,64) 87

Table 2: The comparison results of FT-benchmark between SS-FJSSP and CP

Size Instance SS-FJSSP CP
FMS RT FMS RT

6 × 6

FT06 F (54,55,56) 0.06 (54,55,56) 55.00
FT06 G (52,55,61) 0.06 (52,55,61) 55.75
FT06 L (44,57,73) 0.06 (44,57,73) 56.25
FT06 T (42,55,69) 0.06 (42,55,69) 55.25

10 × 10
FT10 F (917,967,1017) 0.21 (882,930,989) 932.75
FT10 G (892,962,1079) 0.21 (865,930,1058) 945.75
FT10 S (873,960,1074) 0.20 (844,930,1047) 937.75

20 × 5
FT20 F (1157,1232,1307) 0.33 (1094,1165,1238) 1165.50
FT20 G (1129,1223,1141) 0.33 (1074,1165,1356) 1190.00
FT20 T (1176,1231,1288) 0.33 (1112,1165,1216) 1164.50

Table 1 presents the experimental results on the S-benchmark, with FMS denoting the fuzzy
makespan and RT signifying the running time. Notably, in six of the eight instances, our SS-FJSSP
algorithm achieves a fuzzy makespan equivalent to that of CP, while significantly reducing the run-
ning time. Furthermore, in instances S10.1 and S10.2, the difference in fuzzy makespan between
SS-FJSSP and CP is minimal, less than 3%, and the running time of SS-FJSSP is markedly superior,
exceeding that of CP by more than 170 times. Table 2 illustrates the experimental results from the
FT-benchmark, with notable findings highlighted. Specifically, in the 6 × 6 instances, the SS-FJSSP
algorithm matches the fuzzy makespan of CP while operating at an impressive 900 times faster
speed. For all other instances, the fuzzy makespan of SS-FJSSP exceeds that of CP by a maximum
of 6%, and it runs at least 3000 times more quickly.

In conclusion, SS-FJSSP is a competitive algorithm despite the differences in experimental settings.
Its significant advantage in terms of running time is mainly because it has effectively learned a col-
lection of scheduling rules. For every new operation, SS-FJSSP merely needs to apply the rule once
more, ensuring that the running time scales linearly with the complexity of problem. This is an
advantage of learning-based approaches. On the other hand, methods such as CP solve problems
through an iterative approach. As the problem size escalates, the solution space expands exponen-
tially, a phenomenon known as combinatorial explosion. This exponential growth in the solution
space typically results in prolonged running time for these methods.

5 CONCLUSION

In this paper, we introduce the SS-FJSSP, a self-supervised algorithm tailored to solve the FJSSP.
Our in-depth analysis of its workings positions this approach as an innovative paradigm for address-
ing COPs. Exrensive experiments have demonstrated the effectiveness of the algorithm proposed
in this paper. We believe that our proposed algorithm can be extended to other fuzzy scheduling
problems, such as the fuzzy flow shop scheduling problem (Deng et al., 2023), and we regard this
as a promising avenue for future research.
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APPENDIX FOR THE PERFORMANCE OF SS-FJSSP ON BENCHMARKS

A PERFORMANCE ON LA-BENCHMARK

The La-benchmark, as introduced in (Palacios et al., 2016), is derived from the JSSP by applying
various fuzzification techniques, which are denoted by the final letter of the sample identifier. The
corresponding experimental outcomes are presented in Table 3, with a noteworthy upper limit of
21600 seconds set for the running time by the CP method.

The data clearly demonstrates that the SS-FJSSP algorithm possesses a significant advantage in run-
ning time, consistently surpassing the CP method by a factor of at least two orders of magnitude
across all instances. This superiority is especially pronounced in complex scenarios, such as the
LA21 F benchmark, where the SS-FJSSP’s performance is significantly enhanced, reaching a re-
markable four orders of magnitude faster. Moreover, it is worth highlighting that in almost one-third
of the cases, SS-FJSSP matched CP in terms of fuzzy completion time. This not only highlights the
algorithm’s speed but also its effectiveness, showcasing its competitive edge in both aspects.

Table 3: The comparison results of La-benchmark between SS-FJSSP and CP

Size Instance SS-FJSSP CP
FMS RT FMS RT

10 × 5

La01 G (625,666,739) 0.10 (625,666,739) 9
La01 L (473,666,862) 0.10 (501,666,862) 9
La02 S (614,677,743) 0.10 (601,655,713) 41
La03 G (557,604,706) 0.10 (549,597,708) 36
La05 G (548,593,665) 0.10 (548,593,665) 11

15 × 5
La06 L (667,926,1186) 0.34 (667,926,1186) 76
La07 G (821,890,1003) 0.19 (821,890,1003) 18
La09 G (869,951,1065) 0.19 (869,951,1065) 20

20 × 5

La11 F (1164,1222,1280) 0.33 (1164,1222,1280) 41
La12 F (975,1039,1103) 0.33 (975,1039,1103) 88
La12 G (968,1039,1204) 0.33 (968,1039,1204) 104
La13 F (1072,1150,1326) 0.33 (1072,1150,1228) 86
La13 G (1070,1150,1326) 0.33 (1070,1150,1326) 102
La14 F (1203,1292,1381) 0.33 (1203,1292,1381) 106
La14 G (1197,1292,1522) 0.33 (1197,1292,1522) 118

10 × 10 La19 S (765,856,941) 0.21 (752,842,948) 1097
La20 Z (821,916,1053) 0.21 (816,902,1036) 394

15 × 10

La21 F (1046,1122,1198) 0.39 (977,1046,1128) 5187
La21 S (997,1031,1264) 0.39 (943,1046,1167) 4123
La21 Z (1010,1123,1285) 0.39 (943,1046,1196) 2427
La22 Z (856,965,1100) 0.39 (833,927,1065) 282
La24 F (911,983,1055) 0.39 (871,937,1010) 2608
La24 S (878,983,1089) 0.39 (840,938,1053) 1533
La25 F (954,1016,1078) 0.39 (913,978,1045) 4223
La25 S (926,1029,1154) 0.39 (882,977,1111) 18561

20 × 10

La27 F (1226,1321,1416) 0.67 (1154,1235,1316) 6196
La27 S (1195,1330,1437) 0.67 (1132,1248,1366) 21600
La29 F (1146,1237,1328) 0.67 (1081,1154,1238) 21600
La29 S (1162,1311,1457) 0.67 (1052,1171,1319) 21600

15 × 15

La36 S (1176,1305,1443) 0.59 (1160,1275,1416) 2931
La37 S (1351,1499,1625) 0.59 (1262,1399,1560) 979
La38 F (1187,1272,1357) 0.59 (1128,1196,1284) 21600
La38 S (1171,1276,1433) 0.59 (1091,1205,1342) 21600
La39 S (1162,1311,1457) 0.59 (1112,1233,1387) 825
La40 F (1199,1285,1371) 0.59 (1146,1224,1313) 1013
La40 S (1177,1290,1406) 0.59 (1119,1228,1357) 3458
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Table 4: The comparison results of the benchmarks of Lei and LP between SS-FJSSP and CP

Size Instance SS-FJSSP CP
FMS RT FMS RT

15 × 10 Lei01 (145,211,280) 0.39 (136,200,259) 9977
Lei02 (129,178,226) 0.55 (118,164,214) 234

16 × 16 LP01 (150,196,250) 0.69 (145,190,246) 21600

Table 5: The comparison results of the benchmarks of ABZ and ORB between SS-FJSSP and CP

Size Instance SS-FJSSP CP
FMS RT FMS RT

10 × 10

ABZ5 Z (1139,1253,1434) 0.21 (1111,1239,1414) 876
ABZ6 G (882,952,1118) 0.20 (876,943,1068) 287
ABZ6 Z (858,954,1097) 0.21 (842,945,1085) 363

ORB01 Z (1036,1146,1327) 0.34 (961,1060,1215) 1415
ORB02 Z (803,901,1023) 0.45 (784,889,1022) 507
ORB03 Z (962,1082,1251) 0.30 (900,1005,1151) 1218
ORB04 Z (961,1080,1233) 0.30 (894,1006,1154) 238
ORB05 Z (823,914,1049) 0.31 (800,887,1018) 260

20 × 15
ABZ7 F (660,710,760) 1.00 (628,660,703) 21600
ABZ8 F (682,723,764) 1.00 (645,681,726) 21600
ABZ9 F (719,758,797) 1.15 (668,704,758) 21600

B PERFORMANCE ON THE BENCHMARKS OF LEI AND LP

The Lei-benchmark (Lei, 2010b) and the LP-benchmark (Li & Pan, 2013) are specifically developed
for fuzzy scheduling purposes, rather than being derived from fuzzifying crisp problems. These
benchmarks, despite their compact size, offer a high degree of complexity, often requiring consider-
able computational resources for the CP method to find solutions. Although the SS-FJSSP algorithm
does not always match the solution quality of CP, it provides nearly identical solutions with remark-
able efficiency. The experimental findings are detailed in Table 4.

The slightly inferior solution quality produced by SS-FJSSP may be due to the fact that the training
set, which is randomly generated, does not fully capture the intricacies of these carefully designed
instances. It is expected that with an improved training set that more accurately reflects the com-
plexity of these benchmarks, SS-FJSSP will be able to produce more satisfactory results.

C PERFORMANCE ON THE BENCHMARKS OF ABZ AND ORB

Both the ABZ-benchmark (Palacios et al., 2016) and the ORB-benchmark (Zheng et al., 2011) orig-
inate from the fuzzification of highly intricate original problems, retaining their inherent complexity
in the fuzzified versions. As depicted in Table 5, while no instance of SS-FJSSP have been able
to match the results of CP, the discrepancy is minimal, and the SS-FJSSP still holds a significant
advantage in terms of running time. The suboptimal performance in solution quality is also likely
attributable to the training set’s insufficient complexity, which fails to encapsulate the full intricacy
of these benchmarks.

D PERFORMANCE ON THE TA-BENCHMARK

The Ta-benchmark (Afsar et al., 2023), derived from a fuzzy approach, comprises an extensive col-
lection of instances, totaling 80. The corresponding experimental results are meticulously detailed
across two tables: Table 6 and Table 7. These results corroborate the characteristics previously
discussed, offering further insight into the performance of the evaluated methods.
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Table 6: The comparison results of Ta-benchmark between SS-FJSSP and CP in Part I

Size Instance SS-FJSSP CP
FMS RT FMS RT

15 × 15

Ta01 F (1204,1336,1468) 0.89 (1149,1231,1344) 450
Ta02 F (1220,1313,1406) 0.90 (1152,1245,1342) 1562
Ta03 F (1196,1295,1394) 0.89 (1147,1219,1307) 2099
Ta04 F (1145,1226,1307) 0.89 (1083,1175,1275) 1831
Ta05 F (1201,1290,1379) 0.89 (1158,1224,1319) 21600
Ta06 F (1195,1281,1367) 0.89 (1174,1246,1335) 21600
Ta07 F (1181,1284,1387) 0.89 (1147,1228,1322) 15011
Ta08 F (1201,1285,1396) 0.89 (1134,1218,1327) 18619
Ta09 F (1245,1370,1495) 0.89 (1181,1274,1393) 11445
Ta10 F (1206,1317,1428) 0.89 (1163,1243,1326) 1882

20 × 15

Ta11 F (1337,1460,1583) 1.62 (1290,1387,1488) 21600
Ta12 F (1349,1464,1579) 1.62 (1279,1377,1488) 21600
Ta13 F (1360,1452,1544) 1.62 (1312,1413,1536) 21600
Ta14 F (1323,1409,1495) 1.62 (1248,1345,1442) 1544
Ta15 F (1328,1452,1576) 1.62 (1279,1373,1470) 21600
Ta16 F (1355,1480,1605) 1.62 (1283,1381,1492) 21600
Ta17 F (1474,1582,1690) 1.61 (1352,1464,1593) 1468
Ta18 F (1411,1538,1665) 1.62 (1367,1474,1593) 21600
Ta19 F (1351,1446,1541) 1.62 (1250,1378,1507) 21600
Ta20 F (1346,1456,1566) 1.62 (1278,1368,1471) 21600

20 × 20

Ta21 F (1672,1792,1912) 2.16 (1596,1697,1824) 21600
Ta22 F (1589,1731,1873) 2.16 (1546,1666,1809) 21600
Ta23 F (1589,1708,1827) 2.17 (1526,1614,1726) 21600
Ta24 F (1663,1788,1913) 2.16 (1579,1708,1847) 21600
Ta25 F (1602,1718,1834) 2.16 (1524,1632,1765) 21600
Ta26 F (1640,1769,1898) 2.30 (1643,1742,1865) 21600
Ta27 F (1736,1844,1952) 2.16 (1664,1780,1914) 21600
Ta28 F (1611,1733,1855) 2.17 (1561,1662,1770) 21600
Ta29 F (1593,1726,1859) 2.16 (1554,1660,1780) 21600
Ta30 F (1593,1726,1859) 2.17 (1545,1647,1756) 21600

30 × 15

Ta31 F (1794,1944,2094) 3.26 (1682,1805,1938) 21600
Ta32 F (1872,1994,2116) 3.27 (1690,1824,1979) 21600
Ta33 F (1859,2006,2153) 3.27 (1706,1853,2008) 21600
Ta34 F (1858,1995,2132) 3.26 (1709,1866,2023) 21600
Ta35 F (1895,2067,2239) 3.27 (1847,2007,2167) 2367
Ta36 F (1859,2000,2141) 3.26 (1720,1847,1987) 21600
Ta37 F (1837,1972,2107) 3.26 (1647,1796,1967) 21600
Ta38 F (1692,1839,1986) 3.27 (1575,1692,1847) 21600
Ta39 F (1810,1963,2116) 3.27 (1711,1822,1933) 21600
Ta40 F (1743,1876,2009) 3.27 (1600,1714,1858) 21600
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Table 7: The comparison results of Ta-benchmark between SS-FJSSP and CP in Part II

Size Instance SS-FJSSP CP
FMS RT FMS RT

30 × 20

Ta41 F (2169,2311,2453) 0.89 (1958,2090,2222) 21600
Ta42 F (2011,2167,2323) 0.90 (1862,2032,2205) 21600
Ta43 F (1936,2085,2234) 0.89 (1809,1949,2090) 21600
Ta44 F (2103,2219,2335) 0.89 (1933,2044,2173) 21600
Ta45 F (2058,2191,2324) 0.89 (1928,2036,2170) 21600
Ta46 F (2087,2230,2373) 0.89 (1949,2066,2215) 21600
Ta47 F (1959,2087,2215) 0.89 (1828,1973,2120) 21600
Ta48 F (2036,2199,2362) 0.89 (1881,2012,2160) 21600
Ta49 F (2040,2175,2310) 0.89 (1897,2030,2177) 21600
Ta50 F (2061,2221,2381) 0.89 (1902,2032,2172) 21600

50 × 15

Ta51 F (2804,3052,3300) 1.62 (2549,2760,2971) 21600
Ta52 F (2696,2942,3188) 1.62 (2581,2756,2931) 21600
Ta53 F (2628,2852,3076) 1.62 (2521,2717,2915) 21600
Ta54 F (2628,2863,3098) 1.62 (2605,2839,3073) 21600
Ta55 F (2726,2935,3144) 1.62 (2497,2679,2880) 21600
Ta56 F (2707,2921,3135) 1.62 (2574,2781,2994) 21600
Ta57 F (2852,3097,3342) 1.61 (2719,2943,3167) 21600
Ta58 F (2777,3025,3273) 1.62 (2682,2885,3128) 21600
Ta59 F (2683,2900,3117) 1.62 (2469,2655,2865) 21600
Ta60 F (2614,2828,3042) 1.62 (2525,2723,2927) 21600

50 × 20

Ta61 F (2857,3099,3341) 2.16 (2691,2868,3072) 21600
Ta62 F (2921,3144,3367) 2.16 (2729,2904,3085) 21600
Ta63 F (2745,2973,3201) 2.17 (2529,2755,2987) 21600
Ta64 F (2601,2823,3045) 2.16 (2495,2702,2909) 21600
Ta65 F (2795,3013,3231) 2.16 (2559,2725,2948) 21600
Ta66 F (2813,3040,3267) 2.30 (2625,2845,3094) 21600
Ta67 F (2753,2994,3235) 2.16 (2606,2826,3083) 21600
Ta68 F (2657,2886,3115) 2.17 (2609,2784,2971) 21600
Ta69 F (2992,3233,3474) 2.16 (2850,3071,3292) 21600
Ta70 F (2991,3273,3555) 2.17 (2792,2995,3219) 21600

100 × 20

Ta71 F (5263,5613,5963) 3.26 (5089,5464,5839) 21600
Ta72 F (4901,5264,5627) 3.27 (4822,5181,5540) 21600
Ta73 F (5392,5777,6162) 3.27 (5195,5568,5941) 21600
Ta74 F (4972,5351,5730) 3.26 (4950,5339,5739) 21600
Ta75 F (5342,5710,6078) 3.27 (4959,5392,5830) 21600
Ta76 F (5175,5560,5945) 3.26 (5022,5342,5736) 21600
Ta77 F (5128,5462,5796) 3.26 (5050,5436,5822) 21600
Ta78 F (5137,5498,5859) 3.27 (4980,5394,5808) 21600
Ta79 F (5006,5392,5778) 3.27 (4974,5358,5744) 21600
Ta80 F (4922,5341,5760) 3.27 (4833,5183,5533) 21600
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