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Abstract

Integrating natural language instructions and vi-
sual perception with decision-making is a crit-
ical challenge for embodied agents. Existing
methods often struggle to balance the concise-
ness of language commands with the richness of
video content. To bridge the gap between modal-
ities, we propose extracting key spatiotemporal
patterns from video that capture visual saliency
and temporal evolution, referred to as dynamic
representation. Building on this, we introduce
DynaMind, a framework that enhances decision-
making through dynamic reasoning. Specifically,
we design an adaptive FrameScorer to evaluate
video frames based on semantic consistency and
visual saliency, assigning each frame an impor-
tance score. These scores are used to filter re-
dundant video content and synthesize compact
dynamic representations. Leveraging these rep-
resentations, we predict critical future dynamics
and apply a dynamic-guided policy to generate
coherent and context-aware actions. Extensive
results demonstrate that DynaMind significantly
outperforms the baselines across several simula-
tion benchmarks and real-world scenarios.

1. Introduction
Natural language instructions provide an efficient interface
for human-computer interaction, enabling embodied agents
to make sequential decisions based on brief language de-
scriptions (Zhou et al., 2024; Liang et al., 2024). This
process requires the integration of language understanding,
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Language: turn the light on, pull the microwave door, and open the cabinet.
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turn the light on, pull the microwave door, and open the cabinet
 .

Figure 1. (a) The mismatch between the simplicity and singularity
of language and the diversity and complexity of videos. (b) In-
stead of directly mapping language to video content, DynaMind
bridges this gap by abstracting video into dynamic representations,
enabling high-level dynamic reasoning for decision-making.

visual perception, and action planning, along with the flexi-
bility to adapt to complex environments.

The Vision-Language-Action framework offers a promising
approach to this challenge by combining visual, linguistic,
and action modalities. It allows agents to connect language
instructions with visual contexts and generate task-specific
actions (Li et al., 2023; Wu et al., 2024; Chen et al., 2024).
Furthermore, advancements in language-to-video models
have opened new development opportunities. These models
generate image sequences visualizing detailed occurrences,
using generated frames as intermediate states to guide low-
level action control (Du et al., 2024; Liang et al., 2024).

However, these methods often rely on rigid mappings be-
tween language instructions and video content, failing to
bridge the gap between the abstract simplicity of language
and the detailed specificity of video. Generally, a single

1



DynaMind: Reasoning over Abstract Video Dynamics for Embodied Decision-Making

language instruction can correspond to multiple videos (see
Figure 1a), revealing limitations in handling vague seman-
tics and hindering generalization for real-world tasks. To
address these, prior research has focused on enhancing
language information to reduce underspecification in com-
mands. One approach extends semantic representations to
create a more flexible semantic space (Wang et al., 2024),
while another decomposes underspecified instructions into
finer-grained semantic skills, using these details to predict
future frames or actions (Garg et al., 2022; Liang et al.,
2024). Although these methods enhance the precision of
instruction interpretation, they remain limited by the in-
herent constraints of semantic expression. Furthermore,
approaches relying on predefined semantic skill libraries
constrain adaptability and generalization to novel tasks or
complex scenarios.

In response, we introduce a novel perspective: rather than
refining language information, the attention can be di-
rected toward abstracting video content (see Figure 1b
right). Building on this perspective, we propose the Dyna-
Mind framework. Guided by language instructions, Dyna-
Mind abstracts videos into high-level spatiotemporal fea-
tures that capture visual saliency and temporal evolution,
which we called dynamic representations. Unlike previous
frame-by-frame methods that generate continuous image
sequences, DynaMind focuses on dynamic reasoning. This
shift allows it to better capture essential content of videos
based on language instructions, enhancing cross-modal un-
derstanding and decision-making. DynaMind is structured
around three tightly integrated functional modules:

• Video Dynamic Abstraction. This module converts the
video into a sequence of high-level dynamic representa-
tions using an adaptive FrameScorer. The FrameScorer
evaluates the significance of each frame based on se-
mantic consistency and visual saliency. By prioritizing
critical frames and minimizing redundancy, this module
emphasizes essential spatiotemporal features, producing
a compact dynamic representation sequence that serves
as a reliable foundation for subsequent processing.

• Video Dynamic Reasoning. Using the abstract dynamic
representations, this module models temporal evolution
to predict future dynamics. It captures global temporal
dependencies, generating forward-looking predictions of
future developments. It is particularly beneficial for long-
horizon tasks that require complex reasoning.

• Dynamic-Guided Action Decision. Leveraging pre-
dicted future dynamics and historical context, this module
enables agents to execute context-aware actions through a
dynamic-guided policy. In contrast to methods that focus
on adjacent-frame motion (Liang et al., 2024; Zhou et al.,
2024), it models comprehensive relationships, ensuring
more coherent decision-making.

In summary, our study makes three key contributions: 1) We
introduce the DynaMind framework, which abstracts video
content into dynamic representations and aids decision-
making through dynamic reasoning, thus reducing the mis-
match between language and video. 2) We design a dynamic
abstraction module with an adaptive FrameScorer to con-
vert video into compact, expressive dynamic sequences,
followed by a generation module to generate future dynam-
ics and a decision module to predicts appropriate actions. 3)
We empirically demonstrate DynaMind’s effectiveness and
generalization capabilities across various simulation exper-
iments, provide visualizations of abstract video dynamics,
and confirm its effectiveness in real-world tasks.

2. Related Work
Embodied Control under Language Instruction. Pre-
dicting robotic actions from language instructions is a key
focus in embodied control (Li et al., 2023; Zhou et al.,
2024; Liang et al., 2024; Wu et al., 2024; Chen et al., 2024).
One prominent class of approaches is the Vision-Language-
Action framework, which aligns visual, linguistic, and ac-
tion modalities (Brohan et al., 2022; Li et al., 2023; Wu et al.,
2024; Chen et al., 2024). They typically use a pretraining-
finetuning strategy, where vision-language models are first
pretrained on large video datasets and then fine-tuned with
task-specific video-action data. Another class of approaches
aims to improve cross-modal understanding by explicitly
aligning visual and linguistic information (Yao et al., 2022;
Chen et al., 2024; Mazzaglia et al., 2024; Kou et al., 2024;
Ma et al., 2024; Wu et al., 2024), typically using the multi-
modal contrastive learning objective. Recently, advances
in generative models have introduced new opportunities in
this field. These methods generate video based on language
instructions, using the generation as intermediate goals to
guide low-level action decision (Du et al., 2024; Ko et al.,
2024; Zhou et al., 2024; Luo & Du, 2024; Tian et al., 2024).
Specifically, some studies employ video diffusion models
to predict future visual frames and infer actions through
inverse dynamics models. Unlike previous methods, we
bridge the gap between different modalities by abstracting
dynamic representations from video, generating future dy-
namics, and using these as conditions to predict actions. In
contrast to the pretraining-finetuning paradigm, we employs
end-to-end training, reducing training complexity.

Language and Video Grounding for Embodied Control.
Language instructions are typically concise and abstract,
with a single instruction often corresponding to multiple
videos that convey detailed and diverse information (Gabeur
et al., 2020; Fang et al., 2023). This disparity in both the
quantity and nature poses significant challenges for current
research. To address this, recent studies have focused on
enriching language representations to better integrate the
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Figure 2. Overview framework of DynaMind. DynaMind begins with Video Dynamic Abstraction, which converts video into dynamic
representations. Then, Video Dynamic Reasoning predicts future dynamics. Finally, Dynamic-Guided Action Decision uses the predicted
dynamics to infer the corresponding action sequence. These modules are integrated for shared feature encoding, enabling end-to-end
training. During training, future frames and actions serve as supervision, while inference relies solely on historical information.

strengths of both video and language modalities, providing
more precise guidance to improve decision-making ability
(Wang et al., 2024; Garg et al., 2022; Liang et al., 2024).
A class of methods involves extending semantic represen-
tations to encompass a broader and more flexible semantic
space (Croitoru et al., 2021; Wang et al., 2024). While these
enhancements enable agents to interpret language in a more
concrete and nuanced manner, they remain constrained by
the inherent limitations of language representation. An-
other widely used class of methods decomposes instructions
into finer-grained semantic skills and generates correspond-
ing image sequences for each sub-skill (Garg et al., 2022;
Ju et al., 2024; Liang et al., 2024). However, these high-
level skills often lack precision when handling long-horizon
dependencies, which leads to error accumulation as the
complexity of skill combinations increases. Furthermore,
they typically rely on predefined skill libraries, limiting the
agent’s adaptability to novel tasks or complex scenarios.
In contrast, we adopt a video-centric perspective. By ab-
stracting video into dynamic representations, we balance
the contributions of both video and language modalities,
enhancing decision-making ability.

3. Method
Overview. In decision-making tasks, the objective is to
predict actions sequentially based on language instructions
in order to achieve a desired goal. A dataset consisting
of multiple sequences is provided, where each sequence
τi = (li, {(oi1, ai1), (oi2, ai2), . . . , (oiT , aiT )}) includes in-
structions li, images oit, and corresponding actions ait. We
introduce the DynaMind framework, which abstracts high-
level dynamic representations to forecast future develop-

ments for guiding the decision-making process. Unlike pre-
vious methods that focus on frame-by-frame video genera-
tion (Zhou et al., 2024; Liang et al., 2024), DynaMind shifts
its focus toward reasoning over dynamic representations
to address challenges arising from the mismatch between
concise language instructions and detailed video content.
Specifically, we extract dynamic representations from the
image sequence oi1:t and combine them with language in-
structions li using a generative model G to predict future
dynamics. To capture temporal dependencies and adapt
to environmental changes, predicted dynamic representa-
tions are periodically updated. Guided by these updated
dynamics, actions are inferred through a policy model Π.

To achieve this, DynaMind is structured around three mod-
ules, as shown in Figure 2. The first module, Video Dy-
namic Abstraction (§3.1), converts video inputs into high-
level dynamic representations. This module captures es-
sential spatiotemporal features and patterns, providing a
robust foundation for comprehending video content. The
second module, Video Dynamic Reasoning (§3.2), predicts
future video dynamics based on historical dynamics. This
component models the temporal evolution of the video, en-
abling the prediction of key transitions and patterns. Finally,
Dynamic-Guided Action Decision (§3.3) leverages the pre-
dicted future dynamics to determine the action sequence.

Input Representations. The language input consists of
a language instruction li, which is encoded into language
embeddings qi using a pre-trained DistilBERT model Φlang
(Sanh, 2019), which is frozen during training. The video
input is represented as an image sequence, where each im-
age frame is encoded into features eit using a CNN-based
encoder Φim, trained from scratch. This encoding reduces
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high-dimensional visual data into a lower-dimensional fea-
ture space, making it more manageable for the subsequent
processing stage.

3.1. Video Dynamic Abstraction

To abstract a video into high-level dynamic representations,
we propose an adaptive FrameScorer to evaluate frame im-
portance. The importance scores guide the merging of rele-
vant frames into compact dynamic representations.

Previous studies primarily utilize pre-trained models (Nair
et al., 2023; Ma et al., 2023) combined with contrastive
learning to extract visual embeddings for each frame. These
embeddings are then compared to language embeddings
from a predefined library of subtasks (Kou et al., 2024), and
the resulting similarity scores are used to identify the bound-
aries between subtasks in long-horizon videos. However,
we focus on identifying key frames that capture significant
spatiotemporal patterns within the video, rather than just
detecting transitions between subtasks. Additionally, while
prior methods often depend on predefined language annota-
tions for subtasks or supervision from ground-truth rewards
(Liu et al., 2023), these are not available in our study. In-
stead, our FrameScorer F(·) assigns an importance score
wt based on each frame’s semantic consistency and visual
saliency. It uses a two-layer fully connected network with
sigmoid activation to capture each frame’s contribution to
the overall video content.

Abstraction Process. Using the FrameScorer, the abstrac-
tion process consists of the following steps:

• Importance scoring with the FrameScorer. For a video
with T frames, where each frame ot ∈ R3×H×W , it is
processed by the image encoder Φim to generate frame
embeddings: e1:T = [e1, e2, . . . , eT ], et = Φim(ot),
where et ∈ RD. The FrameScorer F(·) then assigns an
importance score wt to each frame:

wt = F(et), wt ∈ [0, 1]. (1)

Here, F(·) evaluates both the frame’s visual saliency and
semantic consistency, as described in Equation 3.

• Transformation with Sliding Window Fusion. A video
is divided into non-overlapping windows of C frames.
Within each window, features et are fused using impor-
tance scores wt to form a dynamic representation:

hn =

∑nC
t=(n−1)C+1 wtet∑nC
t=(n−1)C+1 wt

, n = 1, . . . , ⌈T/C⌉, (2)

where hn ∈ RD represents the dynamic feature of the
n-th window. These window-level dynamics are ag-
gregated into a global sequence of dynamics: H =
[h1,h2, . . . ,h⌈T/C⌉], which captures the global dynam-
ics sequence of the video.

Training. We train F(·) by optimizing the entire dynamic
sequence, minimizing two components of the loss: the se-
mantic consistency loss Lconsistency and the visual saliency
loss Lsaliency. The overall objective is:

Lfs = Lconsistency + λLsaliency, (3)

where λ is a hyperparameter balancing the two losses. In
our experiments, λ is set to 1 for simplicity.

The semantic consistency loss ensures that the dynamic
sequence is closely matched with the language instruction,
maintaining task relevance. It is defined as:

Lconsistency = − 1

N

N∑
i=1

D
(
Hi,qi

)
, (4)

where N is the batch size, Hi represents the dynamic repre-
sentation sequence for the i-th trajectory, qi is the language
embedding, and D(·, ·) measures cosine similarity.

To avoid representation collapse, we also focus on high-
saliency (high-variance) frame features, which provide dis-
tinctive visual information for differentiating video content.
The visual saliency loss Lsaliency ensures that the correlation
between the dynamic representation sequence and the lan-
guage embedding surpasses the correlation involving the
high-variance frame sequence. It is defined as:

Lsaliency =
1

N

N∑
i=1

max
(
0, D

(
Vi

var,q
i
)
−D

(
Hi,qi

))
,

(5)
where Vi

var represents the high-variance frame sequence,
constructed as: Vi

var = [vi
1,v

i
2, . . . ,v

i
⌈T/C⌉], with each vi

n

being the feature of the frame with the highest variance in
the n-th window. Notably, during training, the subsequent
modules receive the dynamic representations as fixed inputs,
without influencing the optimization of F(·).

By minimizing Lfs, F(·) is trained to assign importance
scores, enabling prioritization of key information while sup-
pressing redundant details. During inference, historical
image frames are fed to F(·), which computes importance
scores to abstract them into dynamic representations, serv-
ing as input for subsequent modules. Importantly, the above
objectives are not enforced as strict constraints. Instead, they
are introduced as soft loss terms in a broader end-to-end
supervised training framework, which also includes direct
supervision from executed actions. These components act
as flexible, task-driven guidance, encouraging the model to
attend to relevant features while maintaining adaptability
and avoiding over-reliance on auxiliary signals.

3.2. Video Dynamic Reasoning

To predict future development trends based on historical
dynamic information, dynamic reasoning is achieved using
an autoregressive transformer, which is well-known for its
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capability in temporal modeling (Janner et al., 2021; Han
et al., 2021; Micheli et al., 2022). For training, after ab-
stracting each video in the dataset into a dynamic sequence,
represented as Hi

1:⌈T/C⌉ = [hi
1,h

i
2, . . . ,h

i
⌈T/C⌉]. The his-

torical dynamic sequence Hi
1:n−1, where 1 ≤ n ≤ ⌈T/C⌉,

is combined with the language embedding qi and temporal
positional encoding fpos, and fed into the temporal trans-
former model (Tformer) to predict the future dynamic se-
quence H̃i

2:n. Formally, the prediction process is expressed
as: H̃i

2:n = Tformer
(
[qi,Hi

1:n−1] + fpos
)
. By employing

an autoregressive mechanism, this approach incrementally
predicts the future dynamic evolution.

Training. By minimizing the mean squared error (MSE)
loss function, we reduce the discrepancy between the gener-
ated dynamic sequence H̃i

2:n and the true dynamic sequence
Hi

2:n, where H̃i
2:n = [h̃i

2, . . . , h̃
i
n], and Hi

2:n is derived
from the abstraction process described earlier. This opti-
mization enables the model to progressively learn temporal
dependencies and predict future dynamic evolution. During
inference, the predicted dynamic representation h̃i

n guides
the downstream action decision module.

Network. Our transformer model comprises two key com-
ponents: the transformer block and the prediction head.
The transformer block captures temporal dependencies
among input embeddings, while the prediction head pro-
duces module-specific outputs based on these embeddings.
The transformer block integrates two complementary atten-
tion mechanisms: self-attention and cross-attention. Self-
attention, with causal masking, encodes temporal order and
causal relationships. Cross-attention enables multimodal
integration to produce task-relevant predictive representa-
tions. These mechanisms alternate across transformer layers,
resulting in enriched temporal representations.

3.3. Dynamic-Guided Action Decision

Previous action decision methods based on generative mod-
els typically map adjacent frames to corresponding actions
(Liang et al., 2024; Zhou et al., 2024). These approaches are
not compatible with our framework, as they predict single-
step actions based on generated adjacent image frames,
whereas our focus is on using generated high-level dynamic
representations for action decision-making.

Different from them, we propose a solution that utilizes
an action transformer to predict action sequences that tran-
sition from current state to future dynamics. Our action
transformer follows the same structure as described in §3.2,
but with a different input formulation. Unlike those methods
that solely rely on image frames for action prediction (Liang
et al., 2024; Zhou et al., 2024), we integrate historical in-
formation integration and multi-source information fusion.
This includes historical frame sequences, historical action

sequences, and predicted future dynamic representations,
enabling the capture of long-horizon dependencies.

Training. To align with dynamic reasoning, we extract
multiple temporal windows of size C from the image-action
sequence as training data. Following feature extraction, the
input comprises the historical frame features et−C+1:t−1,
corresponding actions, and the goal condition gt. These
inputs are augmented using positional encoding fpos and
subsequently processed by the action transformer. The train-
ing objective Laction is designed to minimize the discrep-
ancy between the predicted action sequence ãt−C+1:t−1 and
the ground-truth action sequence at−C+1:t−1. For discrete
action predictions, binary cross-entropy loss is employed,
while MSE is used for continuous action predictions.

Hybrid Assignment. During early training, instability
in the dynamic reasoning module can hinder the action
prediction’s performance. To mitigate this issue, a hybrid
assignment strategy is introduced. Specifically, the goal gt
is stochastically selected from two distinct sources: 1) the
future dynamics forecasted by the dynamic reasoning mod-
ule, or 2) the ground-truth frame features et derived from
the training data, which correspond to the frame immedi-
ately succeeding the historical frame sequence et−C+1:t−1.
During the early stages of training, the incorporation of et
serves to stabilize the learning process. As training pro-
gresses, there is a progressive shift towards relying more on
the predicted dynamics for end-to-end optimization.

During inference, this module processes historical frame fea-
tures, updated action sequence, and predicted future dynam-
ics. It autoregressively predicts the current action, which is
then appended to the action sequence for subsequent predic-
tions, ensuring both coherence and accuracy.

4. Experiments
Environments. We validate our method on simulation
benchmarks and real-world scenarios, with simulation
benchmarks including robotic manipulation tasks: LOReL
Sawyer (Nair et al., 2022) and Franka Kitchen (Gupta et al.,
2020), and a navigation task, BabyAI (Chevalier-Boisvert
et al., 2018). A summary can be found in §A.

Baselines. We use the following baselines, detailed in §B.

• Vanilla Imitation Learning Methods: Vanilla BC (Step-
puttis et al., 2020) and DT (Chen et al., 2021).

• Multimodal Alignment Methods:

GR-1 (Wu et al., 2024): A transformer model designed for
predicting videos under language conditions, fine-tuned
to align actions with both videos and language.

MT-R3M (Wu et al., 2024): An advanced model of GR-1
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Table 1. Task-wise success rates on LOReL Sawyer. DynaMind outperforms all other methods in terms of average performance. The
results are calculated over 3 seeds. Best methods and those within 10% of the best are highlighted in bold.

Task Random Vanilla BC RL DT LISA SkillDiffuser DynaMind (ours)

closer drawer 52% 50% 58% 10% 100% 95% 100%
open drawer 14% 0% 8% 60% 20% 55% 80%
turn faucet left 24% 12% 13% 0% 0% 55% 57%
turn faucet right 15% 31% 0% 0% 30% 25% 26%
move black mug right 12% 73% 0% 20% 60% 18% 39%
move while mug down 5% 6% 0% 0% 30% 10% 20%
Average over tasks 20% 29% 13% 15% 40% 43% 53.67%

Method Success Rate

DT
LISA
GR-1
MT-R3M

28.63%
28.69%
32.94%
30.50%

DynaMind 39.81%
0.8

0.9

1
0.15

0.35

0.55

2
0

0.05

0.1

3
0

0.03

0.06

4

DT
LISA
GR-1
MT-R3M
DynaMind

Su
cc

es
s R

at
e

Figure 3. Success rates on Franka Kitchen. The four plots on the right illustrate the success rates of completing 1 to 4 subtasks within a
single episode, while the left plot shows the average success rate across all tasks. The evaluation is repeated 100 times.

that explicitly aligns video and language using a pre-
trained vision encoder, R3M (Nair et al., 2023).

• Language-Decomposed Methods:

LISA (Garg et al., 2022): A method that decomposes
language instructions into fine-grained semantic skills
and executes them via behavior transformer.

SkillDiffuser (Liang et al., 2024): A method for predicting
skills from language, integrating skill-conditioned video
generation and an inverse dynamics model.

4.1. Performance Comparison

Performance on LOReL Sawyer. We evaluate the per-
formance of various methods on the LOReL Sawyer dataset,
which consists of 50,000 trajectories, all generated in a
robot manipulation environment built on the MetaWorld
(Yu et al., 2020). To ensure a fair comparison, our method
is designed to maintain a similar parameter count to the
baseline models and adopts the same visual and language
encoder architecture as in SkillDiffuser (Liang et al., 2024).
Table 1 summarizes the quantitative results across tasks,
demonstrating that our method outperforms others, includ-
ing language-decomposed approaches such as LISA (Garg
et al., 2022) and SkillDiffuser. These methods tackle the
mismatch between brief language instructions and complex
video content by decomposing and refining the instructions.
In contrast to these methods, our DynaMind abstracts key
content from the video, reduces redundancy, and enhances
adaptability to variations in scene dynamics and task com-
plexity, leading to superior task performance.

DynaMind (ours)

BC

LISA

“open drawer and turn faucet right”

Figure 4. Qualitative Results in LOReL Sawyer. We visualize the
performance of different methods on a composite task, where the
agent is required to open the drawer and turn the faucet to the right.
Due to space limitations, only a subset of video frames is shown.

Qualitative results are presented in Figure 4. DynaMind suc-
cessfully completes the task. Although LISA successfully
opens the drawer, it fails to turn faucet right, likely due to
errors in language instruction decomposition that prevent
it from providing the correct guidance for the subsequent
task. We also evaluate DynaMind’s ability to follow new
language instructions that were not seen during training, but
convey the same meaning. As shown in Table 2, the results
demonstrate its strong language understanding and general-
ization by narrowing the gap between video and language.
Detailed results for each instruction type are in §D.1.

Performance on Franka Kitchen. We evaluate the per-
formance of DynaMind in Franka Kitchen, which presents
significant challenges due to its complex interactions and
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Figure 5. Visualization of our method in adaptive scoring image frames. The top row displays critical frames within an episode. The
bottom row shows the importance score of the frame at each time step. This allows DynaMind to extract relevant information from the
video while filtering out redundant content, effectively bridging the gap between complex video and concise language instructions.

Table 2. Performance on instruction generalization.
Method DT LISA SkillDiffuser DynaMind
Success Rate 18.07% 30.14% 39.71% 53.73%

long-horizon tasks. It consists of seven interactive objects.
During evaluation, the agent sequentially completes four
subtasks according to the language instructions, with each
subtask involving interaction with a different object. We
compare DynaMind with several baselines, including LISA
(a language-decomposed method), GR-1 (Wu et al., 2024),
and MT-R3M (Wu et al., 2024) (both multi-modal alignment
methods). As shown in Figure 3, DynaMind outperforms
the baseline methods, showing particularly strong perfor-
mance when handling more subtasks. These findings further
reinforce the foundation of our method: direct alignment be-
tween video and language is often ineffective, as video data
frequently contains redundant information, and language
is inherently abstract. Additional qualitative results can be
found in the §E.2. We also assess DynaMind’s performance
under varying amounts of training data. Results in §E.1
show our method generalizes better than others even with
limited data and maintains superior scalability as the amount
of training data increases.

Performance on BabyAI. Additionally, we evaluate the
performance of our method on another long-horizon task,
BabyAI navigation, which requires the sequential execution
of multiple subtasks, as shown in Table 3. We specifically
assess performance under low-data conditions, where only
1k randomly sampled trajectories from the dataset are used
for training. The results demonstrate that our method is able
to extract more valuable information from the limited data.

Table 3. Performance on BabyAI.
Task Vanilla BC DT LISA DynaMind
GoToSeq 33.3% 49.3% 59.4% 72.7%
SynthSeq 12.9% 42.3% 46.3% 50.7%
BossLevel 20.7% 44.5% 49.1% 52.3%

4.2. Ablation Study

Ablation on dynamic abstraction. We conduct ablation
studies to assess the role of dynamic abstraction using the
adaptive FrameScorer. We explore how different frame
weighting and selection strategies affect dynamic abstrac-
tion and model performance. We replace the FrameScorer
with: i) Equal weighting (all frames weighted equally); ii)
Random weighting (random weights for each frame); iii)
Random frame selection (one randomly selected frame per
window). The results in Figure 6 show a significant per-
formance drop across all configurations. Both Equal and
Random weighting hinder the model’s ability to identify
key frames, while Random frame selection demonstrates
that a single frame cannot capture the dynamics. Notably,
the contribution of FrameScorer is more pronounced in the
Kitchen environment compared to BabyAI. This discrep-
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Figure 6. Ablation on dynamic abstraction.
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ancy can be attributed to differences in environmental com-
plexity: Kitchen features rich visual content and temporal
redundancy, where adaptive frame selection offers greater
benefits, whereas the relatively simple structure of BabyAI
reduces the necessity for such abstraction. It is worth noting
that FrameScorer is only one part of the full method. The
performance gains observed in BabyAI, despite the weaker
role of FrameScorer, underscore the effectiveness of the
other modules in DynaMind.

Ablation on dynamic reasoning. We evaluate the impact
of reasoning interval on performance in Video Dynamic
Reasoning. In the BabyAI experiments, the default interval
hyperparameter C is set to 30. To evaluate its impact, we
test values of 5, 10, and 100. The results in Figure 7 (a)
demonstrate that moderate intervals lead to good perfor-
mance, while both excessively small and large values result
in performance degradation. Specifically, a small interval
results in frequent reasoning steps, leading to cumulative er-
rors, while a large interval causes to miss important dynamic
representations, negatively impacting performance.
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Figure 7. (a) Ablation on dynamic reasoning. (b) Ablation on
dynamic-guided action decision.

Ablation on action decision. We analyze the impact of
Dynamic-Guided Action Decision by evaluating different
configurations. We replace dynamic-guided component
with language-guided (LG) and dynamic & language-guided
(D&LG) configurations for comparison. We also evaluate
the contribution of historical actions by removing this (de-
noted as w/o Action). The results in Figure 7 (b) show that
our configuration performs best, especially in more com-
plex tasks. This indicates that dynamic reasoning provides
more effective decision-making information than language
instructions, as well as the rationality of the information
we use for decision-making. Additionally, we provide addi-
tional studies in §E.3, including architecture configurations.

4.3. Comparison of Computational Cost

To quantitatively assess training efficiency, we compare our
method with two representative baselines, SkillDiffuser and
LISA. All models are trained on the LOReL Sawyer task

suite (batch size 64) using identical hardware and settings
(NVIDIA A800 GPU). The number of trainable parameters
and GPU memory usage for each method is reported in
Table 4. As shown in the table, our method achieves a favor-
able balance between computational cost and task success
rate. These results demonstrate that DynaMind provides an
effective trade-off between training efficiency and perfor-
mance, yielding improved outcomes without introducing
substantial computational overhead.

Table 4. Comparison of training efficiency.
Method Params(M) GPU Memory(MiB) Success Rate
LISA 7.52 690 40.0%
SkillDiffuser 60.29 1136 43.0%
DynaMind 7.84 854 53.7%

4.4. Analysis Results

Abstracted dynamic representations convey key video in-
formation. We demonstrate the adaptive scoring of image
frames by the FrameScorer to visualize the information cap-
tured in the abstracted dynamic representations, as shown in
Figure 5. As training progresses, our method achieves two
key outcomes: 1) it effectively captures the progression of
events throughout the video, and 2) it better distinguishes
between different image frames, assigning higher impor-
tance to those that are more relevant for task execution.
This demonstrates that our method can indeed abstract key
dynamic information from videos by focusing on frames
that contain task-relevant content, effectively filtering out
redundant or irrelevant information.

DynaMind capture the correlation between dynamics
and language. To further narrow the gap between video
and language, we combine DynaMind with the language-
decomposed method LISA. However, the result does not
yield the expected performance improvement (see Figure
8 (top)). To investigate the cause, we plot the evolution of
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Figure 8. Top: Results of the combined method. Bottom: Mutual
information over training.
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mutual information during training in the Franka Kitchen
environment. As shown in Figure 8 (bottom), the mutual
information between dynamics and language in our method
steadily increases throughout training. However, the mu-
tual information between the decomposed language and
the video in LISA does not exhibit a significant improve-
ment. This indicates that the introduction of LISA does not
further enhance mutual information, and may even lead to
information loss during the decomposition process, nega-
tively impacting overall performance. This phenomenon is
consistent with our experimental results.

The learned dynamic representations can be used to per-
form new tasks. We evaluate DynaMind’s ability to lever-
age the abstracted dynamics learned from simpler tasks to
tackle more complex ones. In the BabyAI Navigation envi-
ronment, DynaMind is trained on the simpler GoToSeq task
and tested on more challenging tasks such as SynthSeq and
BossLevel. As shown in Table 5, our method outperforms
the baselines, demonstrating its ability to transfer abstracted
dynamic representations and adapt to more complex ones.

Table 5. Performance on unseen tasks.
Unseen Task DT LISA DynaMind
SynthSeq 31.0% 33.1% 40.0%
BossLevel 31.2% 32.4% 35.7%

Additionally, we assess DynaMind’s performance in execut-
ing compositional tasks by leveraging the abstracted dynam-
ics it has learned from simpler, shorter tasks. Specifically,
we test its ability to handle novel combinations of language
instructions that it has not encountered during training. As
shown in Table 6, DynaMind significantly outperforms base-
line algorithms, demonstrating its effectiveness in managing
tasks with long-term dependencies and showcasing the gen-
eralization ability of the abstracted dynamic representations
on unseen compositional tasks.

Table 6. Performance on unseen compositional tasks on LOReL
Sawyer.

Method DT LISA SkillDiffuser DynaMind
Success Rate 13.33% 20.89% 25.21% 36.67%

4.5. Real-World Experiment

To validate the effectiveness of DynaMind in real-world
scenarios, we train and test in a real-world setup using a
Franka Research 3 arm. We design five tasks: pressing
a button, picking up a milk box, pushing a box to a tar-
get location, placing a snack into a basket, and folding a
towel. As shown in Figure 9, results from 10 trials demon-
strate that DynaMind can effectively complete tasks in real-
world settings. Furthermore, it outperforms the language-

decomposed method LISA, highlighting the effectiveness of
our approach in abstracting dynamic representations from
video, which helps reduce the modality gap.
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Figure 9. Left: Success rate averaged over 5 tasks. Right: Quali-
tative results of DynaMind for 2 tasks in real-world experiments.
More results and details can be found in §F.

5. Limitation and Future Work
While our method transitions from frame-by-frame video
generation to dynamic reasoning, substantially enhancing
decision-making for embodied agents, it also presents sev-
eral limitations that suggest promising directions for future
work. For instance, DynaMind, similar to many existing
approaches, uses fixed dynamic reasoning intervals. While
effective in most cases, such a rigid schedule can be subop-
timal for tasks requiring more adaptive temporal reasoning.
One potential solution is to learn task-specific reasoning trig-
gers that activate dynamic reasoning at critical points during
task progression, rather than depending on predetermined
intervals. Another promising direction is to adaptively in-
crease the frequency of reasoning in response to significant
changes in multimodal information, thereby ensuring rapid
adaptation to evolving conditions. These directions high-
light promising avenues for future work.

6. Conclusion
In conclusion, we introduce DynaMind, a framework that
shifts from video generation to dynamic reasoning, effec-
tively bridging the gap between multimodal information.
By transforming videos into high-level dynamic sequences,
DynaMind captures critical patterns, enabling agents to per-
form dynamic reasoning for decision-making. To achieve
this, we design an adaptive FrameScorer that identifies key
frames, abstracting dynamics, and a dynamic reasoning
module to predict future dynamics. Additionally, a dynamic-
guided action decision module is incorporated to guide the
decision process. Experimental results demonstrate that Dy-
naMind outperforms existing methods in both performance
and generalization. Our work showcases the feasibility of
abstracting video into dynamics, thereby significantly en-
hancing the decision-making abilities of embodied agents.
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A. Environment

Figure 10. Environments.

LOReL Sawyer LOReL (Nair et al., 2022) is a robot manipulation environment built on the MetaWorld (Yu et al., 2020),
set in a tabletop scenario where a Sawyer robot interacts with objects such as a faucet, a drawer, and two cups of different
colors. The dataset consists of 50,000 trajectories generated from pseudo-expert data and plays data collected from the
replay buffer of a reinforcement learning policy and annotated with crowdsourced, post-hoc language instructions. Although
the trajectories fulfill the language instructions, they are not necessarily optimal. This dataset is relatively inexpensive to
collect in real-world settings (Lynch et al., 2020), making it relevant for training algorithms that need to be robust to such
noisy and random data. However, the inherent randomness in the trajectories makes them challenging for training. Despite
these challenges, we evaluate our approach on the six tasks used in the original paper: closing the drawer, opening the
drawer, turning the faucet right, turning the faucet left, moving the black mug to the right, and moving the white mug down.
These tasks are evaluated using partially observed image data.

Franka Kitchen To highlight the complexity of executing long-horizon sequential tasks, the Franka Kitchen (Gupta et al.,
2020) environment is employed, where a Franka robot operates within a kitchen setting. Experiments are conducted using
the Relay Policy Learning dataset, which contains demonstrations collected by human participants wearing VR headsets.
Each demonstration consists of a sequence of four object interaction subtasks, selected from a set of seven interactive objects:
a microwave, a kettle, a sliding cabinet, a hinged cabinet, a switch, and two stove burners. The experimental design involves
selecting four-subtask combinations from these seven objects, with N demonstrations sampled for each combination during
training. This setup explores how the number of demonstrations affects the method’s effectiveness. During the evaluation
phase, all tasks include randomized environmental variations. Performance is measured by counting the number of subtasks
successfully completed within a fixed horizon of 280 time steps, averaged over 100 evaluation runs. The input to the model
is limited to a single-view RGB image, ensuring that the evaluation focuses on the method’s effectiveness under constrained
visual input conditions.

BabyAI Navigation The BabyAI (Chevalier-Boisvert et al., 2018) dataset includes various environment configurations,
where the difficulty of levels and the complexity of navigation instructions gradually increase. Each level is set within a grid
world, where the agent observes a partially visible 7x7 square region from an egocentric perspective. In this environment,
synthetic natural language instructions guide the agent to perform navigation tasks under partial observability (e.g., unlocking
doors) and move objects to specified locations. At simpler levels, the instructions are straightforward, while at higher
difficulty levels, they become more complex, often involving multiple sequential subtasks. The dataset contains one million
expert trajectories for each level, but only 0.1% are used for training, allowing evaluation under limited data conditions. The
method is tested with 100 distinct instruction sets from the Gym environment, covering a variety of unseen layouts and
language instructions, further assessing its generalization in data-constrained scenarios.
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B. Baselines
• Vanilla Imitation Learning Methods:

These methods serve as baselines to assess how well our method improves upon vanilla methods.

Vanilla BC (Stepputtis et al., 2020): A classic supervised learning approach that replicates expert actions.

Decision Transformer (DT) (Chen et al., 2021): A transformer-based behavior cloning method that capturing long-term
dependencies in trajectory sequences.

• Multimodal Alignment Methods:

They align information across modalities, either implicitly or explicitly. We use them as baselines to evaluate the
rationale of extracting critical information from videos, rather than enforcing strict modality alignment.

GR-1 (Wu et al., 2024): A pre-trained transformer model designed for predicting videos under the language instruction,
fine-tuned to align actions with videos and language.

MT-R3M (Wu et al., 2024): An advanced model of GR-1 that explicitly aligns video and language using a pre-trained
vision encoder, R3M (Nair et al., 2023).

• Language-Decomposed Methods: They break down concise language instructions into finer-grained semantic skills.
We compare them with our method to demonstrate the advantage of abstracting critical dynamic information directly
from the video.

LISA (Garg et al., 2022): A method that decomposes language instructions into fine-grained semantic skills and
executes them via behavior transformer.

SkillDiffuser (Liang et al., 2024): A method using a transformer to generate high-level semantic skills from concise
instructions, combined with a diffusion model for next-frame prediction and a inverse dynamics model for single-step
action prediction.

C. Additional Descriptions of Method
C.1. Additional Details of the Video Dynamic Abstraction Module

In the video dynamic abstraction module, we introduce an adaptive FrameScorer to evaluate the importance of individual
frames and abstract raw video sequences into high-level dynamic representations. At its core, FrameScorer is implemented
as a 2-layer fully connected network with sigmoid activation, designed to assign soft importance scores to each frame.

FrameScorer operates in a lightweight manner and is supervised through two global yet semantically grounded objectives:
1) Semantic consistency loss encourages the weighted dynamic representation, produced by FrameScorer, to align with
the language embedding, guiding the model to attend to frames that reflect the task goal; 2) Visual saliency loss penalizes
visually salient frames that lack semantic relevance, preventing the model from focusing on distractive yet functionally
irrelevant content. These implicit supervision signals allow the model to discover semantically meaningful frames without
relying on explicit annotations. In practice, both loss terms are assigned equal weights (1.0) and jointly optimized during
training.

Moreover, the abstraction process is not solely guided by the aforementioned objectives. Since the model is trained in an
end-to-end manner, FrameScorer also receives direct supervision from executed actions. Specifically, the importance scores
it generates affect downstream action predictions and are optimized through the action loss. This behavioral grounding
ensures that the learned abstractions are not only semantically aligned but also functionally effective for task execution,
particularly in complex or instruction-conditioned scenarios. In practice, the action supervision loss is weighted by 1.0 in
the overall training objective.

While video sequences are utilized during training to provide temporal and semantic context, the scoring mechanism remains
frame-local. At inference time, FrameScorer evaluates each frame independently, enabling efficient online processing and
ensuring scalability to long-horizon sequences.
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C.2. Additional Details of the Video Dynamic Reasoning Module

The dynamic reasoning module is designed to predict future developments based on historical dynamics. It is implemented
as a 1-layer, 4-head Transformer and operates within the broader observe–abstract–reason–act–reobserve cycle of our
framework.

During training, the video dynamic reasoning module receives as input a dynamic representation abstracted from ground-
truth observation sequences. It is trained to predict the dynamic representation of future steps, which is also abstracted from
future ground-truth frames. The predicted and target representations are compared using a mean squared error loss, enabling
the module to learn temporally grounded reasoning patterns based on real trajectories. At inference time, the module reasons
over the current dynamic representation to produce a predicted one, which guides the subsequent action decision. After
the predicted action is executed in the environment, a new observation is obtained and abstracted into an updated dynamic
representation, which is then used for the next reasoning step.

Throughout both training and inference, the reasoning module operates on dynamic representations generated from real
observed frames. This avoids recursive usage of model predictions, thereby preventing error accumulation and improving
the stability and robustness of the inference process.

C.3. Additional Details of the Dynamic-Guided Action Decision Module

We use a 1-layer, 4-head Transformer for action decision in our implementation. The module takes three types of input: 1)
Historical visual features: a sequence of image embeddings extracted from past frames. 2) Historical actions: a sequence of
past actions, each projected into the same latent space as the visual features. 3) Goal token gt: a special conditioning token
encoding the target dynamics. This token is prepended to the sequence and is either derived from ground-truth or predicted
future representations, depending on the training phase.

The fusion of these inputs proceeds in the following steps: 1) Each visual and action embedding is augmented with a
learned timestep embedding to encode temporal order. 2) The state and action tokens are interleaved by timestep to form a
temporally aligned sequence. 3) The goal token gt is prepended to the full sequence, enabling the model to condition its
attention on the future target. 4) The final sequence is normalized via LayerNorm and processed with an attention mask
before being fed into the Transformer.

This design enables the model to jointly reason over historical state–action trajectories while dynamically grounding its
decision-making in predicted future dynamics. The unified representation captures both temporal dependencies and future
intent, thereby improving the policy’s ability to make coherent and goal-directed decisions in long-horizon tasks.

During training, the model learns from ground-truth action sequences provided as supervision. During inference, the
model generates actions step by step, conditioning each prediction on the previously generated actions and the accumulated
observation history.

D. Additional Results on LOReL Sawyer
D.1. Instruction Generalization

We evaluate the generalization capability of DynaMind on language instructions, requiring it to understand and execute new
instructions not encountered during training. We assess its performance in the LoReL using rephrased instructions outside
the training data. As shown in Table 7, the results demonstrate that our method effectively adapts to unseen instructions,
showcasing strong language understanding and generalization abilities.

D.2. Qualitative results in LOReL Sawyer

Qualitative results are presented in Figure 11. DynaMind successfully completes the entire task, whereas DT fails to open the
drawer in test scenarios with random initializations, likely due to overfitting to the training data. Although LISA successfully
opens the drawer, it fails to turn faucet right, likely due to errors in language instruction decomposition that prevent it from
providing the correct guidance for the subsequent task.
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Table 7. Performance on instruction generalization.

Instruction DT LISA SkillDiffuser DynaMind

seen 15% 40% 43.65% 57.78%
unseen noun 13.33% 33.33% 36.01% 54.45%
unseen verb 28.33% 30% 36.70% 50.00%
unseen verb+none 6.7% 20% 42.02% 53.34%
human 26.98% 27.35% 40.16% 53.08%

Average 18.07% 30.14% 39.71% 53.73%

DynaMind (ours)

DT

LISA

“open drawer and turn faucet right”

Figure 11. Qualitative Results in LOReL Sawyer. We visualize the performance of different methods on a composite task, where the agent
is required to open the drawer and turn the faucet to the right. Due to space limitations, only a subset of video frames is shown.

E. Additional Results on Franka Kitchen
E.1. Performance on Different Date Scale.
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Figure 12. Performance on date scale.

We further assess DynaMind’s performance under varying amounts of training data to test its robustness in data-scarce
conditions. We provide datasets with 5, 10, and 25 trajectories for each task. As shown in Figure 12, our method generalizes
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better than others even with limited data and maintains superior scalability as the amount of training data increases.

E.2. Qualitative Results in Franka Kitchen

We visualize the performance of different methods on composite tasks. Figure 13 and Figure 14 show that our method
successfully completes the task, while the language-decomposed method, LISA, and the multi-modal alignment method,
GR-1, all fail due to their inability to bridge the gap between video and language.

push box into goal

DynaMind (ours)

LISA

GR-1Start Obs

DynaMind (ours)

LISA

GR-1

“open microwave door, activate the bottom burner, 
and activate the top burner, open the cabinet door”

Figure 13. Qualitative results in the Franka Kitchen. The agent is required to perform four subtasks, including opening the microwave
door, activating the top and bottom burners, and opening the cabinet door.

push box into goal

DynaMind (ours)

LISA

GR-1

“open microwave door, activate the bottom burner, 
and activate the top burner, open the cabinet door”

“move kettle to topleft burner, activate the bottom 
burner and turn on light switch, open slide cabinet”

DynaMind (ours)

LISA

GR-1

Figure 14. Qualitative results in the Franka Kitchen. The agent is required to perform four subtasks, including moving the kettle to the
top-left burner, activating the bottom burner and turning on the light switch, and sliding open the cabinet door.
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E.3. Ablation of Architecture Configurations

We evaluate the following three configurations made in the architecture:

• Shared-Tr: Shares Transformer parameters between the Dynamic Reasoning and Action Prediction components.
• R3M: Uses a large-scale pretrained encoder (R3M) with frozen parameters, replacing our original language and image

encoders.

Table 8. Ablation on architecture configurations.

Method Shared-Tr R3M DynaMind (ours)

Success Rate 33.72% 13.44% 39.81%

The results in Table 8 show that while the Shared-Tr configuration performs slightly worse than non-shared configurations,
it still significantly outperforms baseline methods. This suggests that the shared design has some limitations in adapting to
the unique needs of individual tasks but strikes a good balance between performance and computational efficiency, making
it suitable for resource-constrained environments. In the R3M configuration, the static alignment between language and
vision ignores the inherent contradictions between these modalities, resulting in lower performance than our proposed
configuration.

F. Real-World Experiment
To demonstrate the effectiveness of DynaMind in real-world scenarios, we train and test the model in a real-world setup
equipped with a Franka Research 3 (FR3) robotic arm. The experimental assets and environment are shown in Figure 15.
A statically mounted RGB camera captures observations from a third-person perspective. We design five tasks: pressing
button, picking up a box of milk, pushing a box to a destination, placing a snack into a basket, and folding a towel. These
tasks involve various interactive objects and actions. For each task, we collect 20 demonstrations, all performed by human
demonstrators. The trajectories are recorded at 20 fps. To evaluate the performance of our method, all experiments are
conducted over 10 trials, and the average success rate is calculated. As shown in Table 9, the results demonstrate that
DynaMind can make real-time predictions and effectively complete tasks in real-world settings, outperforming both DT,
which does not address the language-video gap, and LISA, which attempts to resolve it through language composition.
Figure 17 shows the qualitative results of DynaMind in real-world experiments, while Figure 16 illustrates that our method
successfully completes the folding towel task, whereas LISA fails. This highlights the effectiveness of our approach in
abstracting dynamic representations from video and validates its capability in real-world environments.

Figure 15. Real-world scenario. The assets and environment configured for the real-world experiments.
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Table 9. Results in the real world.
Success out of 10 trials DT LISA DynaMind

press button 100% 100% 100%
pick up milk 100% 100% 100%
push box to goal 100% 100% 100%
place into basket 60% 60% 90%
fold towel 40% 50% 80%

Average over tasks 80% 82% 94%

press button pick up milk

push box into goal

place snack 
into basket fold towelpush box

 into goal

LISA

DynaMind (ours)

Figure 16. Success and failure in folding towel.

press button

pick up milk

push box into goal

pick up snack and 
place it into basket

fold towel

Figure 17. Qualitative results of DynaMind in real-world experiment.
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