
Implicit Regularization via Feature Alignment

One important property of deep neural networks is their ability to generalize well on real data.1

Surprisingly, this is even true with very high-capacity networks without explicit regularization [42,2

61, 29]. This seems at odds with the usual understanding of the bias-variance trade-off [24, 41, 11].3

Solving this apparent paradox requires understanding the various learning biases induced by the4

training procedure, which can act as implicit regularizers [42, 44].5

In this paper, we help clarify one such implicit regularization mechanism, by examining the evolution6

of the neural tangent features [30] learned by the network along the optimization paths. Our results7

can be understood from two complementary perspectives: a geometric perspective – the (uncentered)8

covariance of the tangent features defines a metric on the model function class, akin to the Fisher9

information metric [e.g., 2]; and a functional perspective – through the tangent kernel and its RKHS.10

Our main observation is a dynamical alignment of the tangent features along a small number of task-11

relevant directions during training (Section 3), which can be interpreted as a combined feature selection12

and compression mechanism. The motivating intuition is that such a mechanism allows the model to13

adapt its capacity to the task and underpins the generalization abilities of heavily overparametrized14

models. Drawing upon intuitions from linear models, we motivate a new heuristic complexity measure15

which captures this phenomenon, and empirically show correlation with generalization (Section 4).16

Preliminaries Let F be a class of functions (e.g a neural network) parametrized by w ∈ RP . We17

restrict here to scalar functions fw : X → R to keep notation light.1 We define the tangent features18

as the function gradients w.r.t the parameters, Φw(x) := ∇wfw(x), which govern how small changes19

in parameter affect the function’s outputs,20

δfw(x) = 〈δw,Φw(x)〉+O(‖δw‖2) (1)

More formally, the (uncentered) covariance matrix gw = Ex∼ρ
[
Φw(x)Φw(x)>

]
acts as a metric21

tensor on F : assuming F ⊂ L2(ρ), this is the metric induced on F by pullback of the L2 scalar22

product (see Longer Version, Appendix A). It characterizes the geometry of the function class F .23

Metric (as symmetric matrices) and tangent kernels (as integral operators) share the same spectrum.24

The structure of the tangent features impacts the evolution of the function during training. Given25

n input samples, consider gradient descent updates δwGD =−η∇wL for some cost function L. The26

function updates δfGD(x) := 〈δwGD,Φw(x)〉 in the linear approximation (9), decompose as27

δfGD(x) =

P∑
j=1

δfjuwj(x), δfj = −ηλwj(u
>
wj∇fwL), (2)

where (uwj)
P
j=1 is the eigenbasis of the tangent kernel and uwj = [uwj(x1), · · ·uwj(xn)]>. From28

the point of view of function space, the metric/tangent kernel eigenvalues act as a mode-specific29

rescaling ηλwj of the learning rate. This is a local version of a well-known bias for linear models30

(see Longer Version, Appendix B.2), towards functions in the top eigenspaces of the kernel.31

As a first illustration of non-linear effects, Fig. 3 (Longer Version) shows visualizations of eigenfunc-32

tions of the tangent kernel of a MLP trained on a simple classification task: y(x) = ±1 depending on33

whether x ∼ Unif[−1, 1]2 is in the centered disk of radius
√

2/π. After a number of iterations, we34

observe (rotation invariant) modes corresponding to the class structure (e.g boundary circle) showing35

up in the top eigenfunctions of the learned kernel. We also note an increasing spectrum anisotropy –36

for example, the ratio λ20/λ1, which is 1.5% at iteration 0, has dropped to 0.2% at iteration 2000.37

The interpretation is that the tangent kernel stretches in the directions of the signal during training.38

1See Appendix A for the extension to vector-valued functions, along with further mathematical details.

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

101 103 105

250

500

eff
.

ra
n

k
0.0

0.5

1.0

a
cc

u
ra

cy

no random labels

train

test

104

la
m

b
d

a

max
average
median

101 103 105

250

500

eff
.

ra
n

k

0.0

0.5

1.0

a
cc

u
ra

cy

20% random labels

train

test

104

la
m

b
d

a

max
average
median

101 103 105

250

500

eff
.

ra
n

k

0.0

0.5

1.0

a
cc

u
ra

cy

50% random labels

train

test

103

la
m

b
d

a

max
average
median

sgd iterations
0.00

0.25

a
li
g
n
.

0

1

a
cc

u
ra

cy

no random labels

train

test

0.0

0.5

la
y
er

a
li
g
n
.

101 103 105

sgd iterations

0.0

0.5

la
y
er

a
li
g
n
.

sgd iterations
0.0

0.1

a
li
g
n
.

0

1

a
cc

u
ra

cy

20% random labels

train

test

0.00

0.25

la
y
er

a
li
g
n
.

101 103 105

sgd iterations

0.0

0.5

la
y
er

a
li
g
n
.

sgd iterations
0.00

0.05

a
li
g
n
.

0

1

a
cc

u
ra

cy

50% random labels

train

test

0.00

0.25

la
y
er

a
li
g
n
.

101 103 105

sgd iterations

0.00

0.25

la
y
er

a
li
g
n
.

Figure 1: Evolution the spectrum and effective rank of the tangent kernel (1st row) and CKA and layer-wise
CKA (2nd row) of a VGG19 on CIFAR10 with various ratios of random labels. For layer-wise alignment we
map layers to colors sequentially from input layer (-), through intermediate layers (-), to output layer (-).

1 Neural Feature Alignment39

We run experiments on MNIST [35] and CIFAR10 [33] with standard MLPs, VGG [55] and Resnet40

[28] architectures, using PyTorch [47] and NNGeometry [3] for efficient evaluation of tangent kernels.41

In multiclass settings, tangent kernels on n samples carry additional class indices y ∈ {1 · · · c} and42

are treated as nc× nc matrices. We evaluate them on mini-batches (train or test) of size n = 100.43

Spectrum Evolution. We report results (Fig. 1, 1st row) for tangent kernels evaluated on training44

examples (solid line) and test examples (dashed line). The main take away is an anisotropic increase45

of the kernel/metric spectrum during training. We quantify spectrum anisotropy through the various46

trace ratios Tk =
∑
j<k λj/

∑
j λj as measures of the relative importance of the top k eigenvalues ;47

and using a notion of effective rank based on spectral entropy [50] (Longer Version, Appendix D).48

We note an important decrease of the effective rank early in training, reaching a phase where only49

a few top eigenvalues account for most of the trace. This can be observed directly (Fig. 15) from50

the highlighted (in red) ratios T40, T80 and T160 (Fig. 15), e.g. T80 accounting for 50% of the total51

trace (over 1000 eigenvalues). Remarkably, in the presence of high label noise, the effective rank52

of the tangent kernel evaluated on training examples (anti)-correlates nicely with the test accuracy,53

decreasing or remaining low during the learning phase and rising when overfitting starts. This54

suggests that the effective rank already provides a good proxy for the network’s effective capacity.55

Alignment to class labels. We investigate the similarity of the tangent features with Y ∈ Rnc56

(concatenated one-hot vectors) through the centered kernel alignment (CKA) [19, 18] (Appendix57

D) CKA(Kw,KY) with the rank-one kernelKY := Y Y >. Intuitively, it is high whenKw has low58

(effective) rank, and is such that the angle between Y and its top eigenspaces is small.2 Maximizing59

such an index has been used as a criterion for kernel selection in the literature on learning kernels [18].60

We observe (Fig. 1, 2nd row) an increasingly high CKA as training progresses. The trend is similar61

for other architectures and datasets (Fig. 13 in Appendix E). Interestingly, in the presence of high62

level noise and during the learning phase, the CKA reaches a much higher value for test than for train63

kernels/labels (note that test labels are not randomized). Together with equation 11, this sheds lights64

on empirical observations that, in the presence of noise, deep networks ‘learn patterns first’ [5]65

2In the limiting case CKA(K,KY) = 1, the features are all aligned with each other and parallel to Y .

2

0.0

0.5

E
rr

or

MNIST MLP
varying label corruption

0.00

0.05

MNIST MLP
varying hidden size

0.0

0.2

CIFAR10 VGG19
varying #channels

Train
Test

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Our capacity measure

0.00 0.25 0.50 0.75

Proportion of corrupted labels

0

1

N
or

m
al

iz
ed

ca
pa

ci
ty

105 106

Number of parameters

0

1

107

Number of parameters

0

1

L3,1.5 Bound (Neyshabur et al. 2015)

Fisher-Rao
Frobenius Bound (Neyshabur et al. 2015)
L1 max Bound (Bartlett and Mendelson 2002)
Ney18 (Neyshabur et al. 2018)
Spec L1 (Bartlett et al. 2017)
Spec Fro Bound (Neyshabur et al. 2018)
VC (Harvey et al. 2017)

Figure 2: Normalized complexity measures on MNIST with a one hidden layer MLP (left) as we increase the
hidden layer size, (center) for a fixed hidden layer of 256 units as we increase label corruption and (right) for a
VGG19 on CIFAR10 as we vary the number of channels.

Hierarchical Alignment. A key aspect of the generalization question concerns the articulation66

between learning and memorization, in the presence of noise [61] or difficult examples [51]. In67

our next experiment, our setup is to augment 10.000 MNIST training examples with 1000 difficult68

examples of 2 types: (i) examples with random labels and (ii) examples from the dataset KMNIST69

[17]. Fig. 6 (Longer Version) shows that the (partial) CKA on the easy examples increases faster (and70

to a higher value) than that of the difficult examples. This suggests a hierarchy in the adaptation of the71

kernel, measured by the ratio between both alignments. This aspect of the non-linear dynamics favors72

a sequentialization of the learning (’easy patterns first’) (see [52, 34, 25] for deep linear networks.)73

Fig 16 (Appendix E) shows that this effect is magnified as depth increases.74

2 Measuring Complexity75

2.1 Insights from Linear Models76

Setup. We restrict here to functions fw(x)= 〈w,Φ(x)〉 linearly parametrized by w ∈ RP . In this77

setting, (tangent) kernel and geometry are constant. Given n input samples, the n featuresΦ(xi) ∈ RP78

yield a n× P feature matrix Φ. Our discussion is based on the Rademacher complexity showing79

up in generalization bounds [6]. It depends on the size (or capacity) of the function class.80

A standard approach for controlling capacity is in terms of the norm of the weight vector – usually81

the `2-norm. In general, given any invertible matrix A ∈ RP×P , we may consider the norm82

‖w‖A :=
√

w>gAw induced by the metric gA = AA>. ForMA > 0, let FAMA be the subclass of83

functions fw such that ‖w‖A ≤MA. The Rademacher complexity can be bounded as,84

R̂(FAMA) ≤ (MA/n)‖A−1Φ>‖F (3)

in terms of the Froebenius norm of the rescaled feature matrix. This raises the question of which of85

the norms ‖ · ‖A provide meaningful capacity measures. Recent works [10, 40] pointed out that the86

`2 norm is not coherently linked with generalization in practice. We discuss this issue in Appendix87

C.5, illustrating how meaningful norms critically depend on the geometry defined by the features.88

Feature Alignment as Implicit Regularization. The goal here is to illustrate in a simple setting how89

an adaptive geometry can act as implicit regularizer. In such setting, the idea is to learn a rescaling90

metric at each iteration of our algorithm, using a local version of the bounds (71). We consider91

functions fw =
∑
t δfwt written in terms of a sequence of updates3 δfwt(x) = 〈δwt,Φ(x)〉 (we set92

f0 to keep the notation simple), with local constraints on the parameter updates:93

FAm = {fw : x 7→∑
t〈δwt,Φ(x)〉 | ‖δwt‖At ≤ mt} (4)

3In order to not assume a specific upper bound on the number of iterations, we can think of the updates from
an iterative algorithm as an infinite sequence {δw0, · · · δwt, · · · } such that for some T , δwt = 0 for all t > T .

3

Theorem 1 (Complexity of Learning Flows). Given any sequencesA andm of invertible matrices94

At ∈ RP×P and positive numbersmt > 0, we have the bound95

R̂(FAm) ≤∑t(mt/n)‖A−1t Φ>‖F (5)

The same result can be formulated in terms of the sequence of feature maps Φt = A−1t Φ. By96

reparametrization invariance, the function class (16) can equivalently be written as FAm = FΦ
m where97

Φ = {Φt}t and the norm constraints are ‖δ̃wt‖2 ≤ mt}; then (17) reads98

R̂(FΦ
m) ≤∑t(mt/n)‖Φt‖F (6)

Thm. 3 suggests to include, at each iteration t, a reparametrization step with a suitable matrix99

Ãt giving a low contribution to the bound (17). Applied to gradient descent, this leads to100

the new update rule below, where the optimization in Step 2 is over a given class of matrices.101

SuperNat update (Ã0 = I , Φ0 = Φ,K0 = K):

1. Perform gradient step w̃t+1 ← wt + δwGD

2. Find minimizer Ãt+1 of ‖δwGD‖Ã‖Ã−1Φ>t ‖F
3. Reparametrize:

wt+1 ← Ã>t+1w̃t+1,Φt+1 ← Ã−1t+1Φt
0 2000 4000 6000 8000 10000

Training Iteration

6.1

6.2

6.3

6.4

6.5

6.6

m
ea

n
sq

ua
re

er
ro

rs

Validation standard gradient
Validation supernatural gradient

102

The successive reparametrizations yield a varying feature map Φt = A−1t Φ where At=Ã0 · · · Ãt. In103

the original feature representation Φ, SuperNat amounts to performing natural gradient updates with104

respect to the local metric gAt ; and by construction, we also have δfwt(x) = 〈δwGD,Φt(x)〉 where105

δwGD are standard gradient descent updates in the linear model with feature map Φt.106

As an example, consider matrices Ãν acting diagonally in the right singular basis of the feature matrix,107

i.e by rescaling the singular vectors λj → λj/νj . Step 2 can be computed analytically (Longer108

Version, Prop. 4): up to isotropic rescaling, this yields the update rule λj(t+1) = |u>j∇fwL|λjt for109

the singular values of Φt. This stretches (resp. contracts) the geometry in directions of large (resp.110

small) residual ∇fwL, thereby increases the alignment of the learned features to the signal. The111

working hypothesis in this paper, supported by the observations of Section 1, is that in the case of112

neural networks, such alignment of the features is dynamically induced as an effect of non-linearity.4113

The plot shows the training curves for a simple model with Gaussian features Φ = [ϕ,ϕnoise] ∈ Rd+1114

trained to regress y = ϕ + Pnoise(ε), with Gaussian noise is added in the direction of the noise115

features. SuperNat identifies dominant features (here ϕ) and stretches the metric along them, thereby116

slowing down and eventually freezing the dynamics in the orthogonal (noise) directions.117

2.2 A New Complexity Measure for Neural Networks118

Equ. (19) provides a bound of the Rademacher complexity for the function classes (16) specified by a119

fixed sequence of adaptive kernels (see Appendix C.4 for a generalization to the multiclass setting).120

By extrapolation to the case of non-deterministic sequences of kernels, we propose using121

C(fw) =
∑
t

‖δwt‖2‖Φt‖F (7)

where Φt is the tangent feature matrix5 at training iteration t, as a heuristic measure of complexity for122

neural networks. Following a standard protocol for studying complexity measures, [e.g., 43], Fig. 8123

shows its behaviour for MLP on MNIST and VGG19 on CIFAR10 trained with cross entropy loss,124

with (left) fixed architecture and varying level of corruption in the labels and (right) varying hidden125

layer size/number of channels up to 4 millions parameters, against other capacity measures proposed126

in the recent literature. We observe that it correctly reflects the shape of the generalization gap.127

4For a non-linear model, the updates of the tangent feature take the same form Φt = Ã−1
t Φt−1 as above, the

difference being that Ãt is no longer a matrix but a differential operator, e.g. at first order At = Id− δw>t ∂
∂wt

.
5In terms of tangent kernels, ‖Φt‖F =

√
TrKt where Kt is the tangent kernel matrix.

4

References128

[1] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via129

over-parameterization. volume 97 of Proceedings of Machine Learning Research, pp. 242–252,130

Long Beach, California, USA, 09–15 Jun 2019. PMLR.131

[2] Shun-Ichi Amari. Information Geometry and Its Applications, volume 194. Springer, 2016.132

[3] Anonymous. {NNG}eometry: Easy and fast Fisher information matrices and neural tangent133

kernels in pytorch. In Submitted to International Conference on Learning Representations, 2021.134

under review.135

[4] Sanjeev Arora, Sanjeev Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis136

of optimization and generalization for overparameterized two-layer neural networks. In ICML,137

2019.138

[5] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio,139

Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A140

closer look at memorization in deep networks. arXiv preprint arXiv:1706.05394, 2017.141

[6] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds142

and structural results. JMLR, 2002.143

[7] Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds144

for neural networks. In NIPS, 2017.145

[8] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in146

linear regression. arXiv preprint arXiv:1906.11300[stat.ML], 2019.147

[9] Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neural148

networks for learned functions of different frequencies. In Advances in Neural Information149

Processing Systems 32, pp. 4761–4771. 2019.150

[10] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to151

understand kernel learning. In ICML, 2018.152

[11] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-153

learning practice and the classical bias–variance trade-off. Proceedings of the National Academy154

of Sciences, 116(32):15849–15854, 2019.155

[12] Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. In Advances156

in Neural Information Processing Systems 32, pp. 12893–12904. 2019.157

[13] Mikio L Braun. Spectral properties of the kernel matrix and their relation to kernel methods in158

machine learning. PhD thesis, Universitäts-und Landesbibliothek Bonn, 2005.159

[14] Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding160

the spectral bias of deep learning. arXiv:1912.01198 [cs.LG], 2019.161

[15] Satrajit Chatterjee. Coherent gradients: An approach to understanding generalization in gradient162

descent-based optimization. In International Conference on Learning Representations, 2020.163

[16] L. Chizat and F Bach. A note on lazy training in supervised differentiable programming.164

arXiv:1812.07956[math.OC], 2018.165

[17] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and166

David Ha. Deep learning for classical japanese literature. 2018.167

[18] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels168

based on centered alignment. JMLR, 13(1):795–828, 2012. ISSN 1532-4435.169

[19] Nello Cristianini, John Shawe-Taylor, André Elisseeff, and Jaz S. Kandola. On kernel-target170

alignment. In NIPS. 2002.171

5

[20] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes172

over-parameterized neural networks. In International Conference on Learning Representations,173

2019.174

[21] Stanislav Fort, Pawel Krzysztof Nowak, Stanislaw Jastrzebski, and Srini Narayanan. Stiffness: A175

new perspective on generalization in neural networks. arXiv preprint arXiv:1901.09491, 2019.176

[22] Mario Geiger, Stephano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and177

lazy training in deep neural networks. arXiv:1906.08034 [cs.LG], 2019.178

[23] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,179

Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. arxiv180

preprint arXiv:2004.07780 [cs.CV], 2020.181

[24] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance182

dilemma. Neural Computation, 4(1):1–58, 1992. doi: 10.1162/neco.1992.4.1.1.183

[25] Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete184

gradient dynamics in linear neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer,185

F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing186

Systems 32, pp. 3202–3211. Curran Associates, Inc., 2019.187

[26] Arthur Gretton, Olivier Bousquet, Alexander Smola, and Bernhard Schölkopf. Measuring188

statistical dependence with hilbert-schmidt norms, 2005.189

[27] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:190

data mining, inference and prediction. Springer, 2009.191

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image192

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,193

pp. 770–778, 2016.194

[29] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: Closing the195

generalization gap in large batch training of neural networks. In NIPS, 2017.196

[30] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and197

generalization in neural networks. In NIPS, pp. 8571–8580. 2018.198

[31] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic199

generalization measures and where to find them. In ICLR, 2020.200

[32] D. Kopitkov and V. Indelman. Neural spectrum alignment: Empirical study. In International201

Conference on Artificial Neural Networks (ICANN), September 2020.202

[33] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.203

Technical report, Citeseer, 2009.204

[34] Andrew K Lampinen, Andrew K Lampinen, and Surya Ganguli. An analytic theory of205

generalization dynamics and transfer learning in deep linear networks. arXiv.org, 2018.206

[35] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs207

[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.208

[36] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes.209

Springer Science & Business, New York, 2013.210

[37] Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric,211

geometry, and complexity of neural networks. In Proceedings of Machine Learning Research,212

volume 89, pp. 888–896, 2019.213

[38] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.214

The MIT Press, 2012. ISBN 026201825X, 9780262018258.215

[39] Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless216

interpolation of noisy data in regression. arXiv preprint arXiv:1903.09139[cs.LG], 2019.217

6

[40] Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel Sahai,218

Hsu, and Anant Sahai. Classification vs regression in overparameterized regimes: Does the loss219

function matter? arXiv preprint arXiv:2005.08054 [cs.LG], 2020.220

[41] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-221

Julien, and Ioannis Mitliagkas. A modern take on the bias-variance tradeoff in neural networks.222

arXiv:1810.08591 [cs.LG], 2018.223

[42] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:224

On the role of implicit regularization in deep learning. ICLR workshop track, 2015.225

[43] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring226

generalization in deep learning. In Advances in Neural Information Processing Systems, pp.227

5949–5958, 2017.228

[44] Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry of229

optimization and implicit regularization in deep learning. arXiv:1705.03071 [cs.LG], 2017.230

[45] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro.231

Towards understanding the role of over-parametrization in generalization of neural networks.232

International Conference on Learning Representations (ICLR), 2019.233

[46] Jonas Paccolat, Leonardo Petrini, Mario Geiger, Kevin Tyloo, and Matthieu Wyart. Geometric234

compression of invariant manifolds in neural nets. arXiv preprint arXiv:2007.11471, 2020.235

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,236

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas237

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,238

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-239

performance deep learning library. In H.Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,240

E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.241

8024–8035. Curran Associates, Inc., 2019.242

[48] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,243

Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In Proceedings244

of the 36th International Conference on Machine Learning, 2019.245

[49] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NIPS,246

2007.247

[50] Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In248

2007 15th European Signal Processing Conference, pp. 606–610. IEEE, 2007.249

[51] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why250

overparameterization exacerbates spurious correlations. arXiv:2005.04345 [cs.LG], 2020.251

[52] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear252

dynamics of learning in deep linear neural network. In In International Conference on Learning253

Representations, 2014.254

[53] B. Schölkopf, S. Mika, C. J.C. Burges, P. Knirsch, K. R. Muller, G. Ratsch, and A. J. Smola.255

Input space versus feature space in kernel-based methods. Trans. Neur. Netw., 10(5):1000–1017,256

September 1999. ISSN 1045-9227.257

[54] B. Schölkopf, J. Shawe-Taylor, AJ. Smola, and RC. Williamson. Kernel-dependent support258

vector error bounds. In Artificial Neural Networks, 1999. ICANN 99, volume 470 of Conference259

Publications, pp. 103–108. Max-Planck-Gesellschaft, IEEE, 1999.260

[55] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale261

image recognition. arXiv preprint arXiv:1409.1556, 2014.262

[56] Nati Srebro, Karthik Sridharan, and Ambuj Tewari. On the universality of online mirror descent.263

In Advances in Neural Information Processing Systems 24. 2011.264

7

[57] Sharan Vaswani, Reza Babanezhad, Jose Gallego, Aaron Mishkin, Simon Lacoste-Julien, and265

Nicolas Le Roux. To each optimizer a norm, to each norm its generalization. arxiv preprint266

arXiv:2006.06821[cs.LG], 2020.267

[58] Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay268

Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models.269

arXiv:2002.09277 [cs.LG], 2020.270

[59] Zhi-Qin John Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in271

frequency domain. In Tom Gedeon, Kok Wai Wong, and Minho Lee (eds.), Neural Information272

Processing, pp. 264–274, Cham, 2019. Springer International Publishing. ISBN 978-3-030-273

36708-4.274

[60] Greg Yang and Hadi Salman. A fine grained spectral perspective on neural networks. arxiv275

preprint arXiv:1907.10599[cs.LG], 2019.276

[61] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding277

deep learning requires rethinking generalization. ICLR, 2017.278

8

Implicit Regularization via Feature Alignment279

(Longer Version)280

We approach the problem of implicit regularization in deep learning from a281

geometrical viewpoint. We highlight a regularization effect induced by a dynamical282

alignment of the neural tangent features introduced by Jacot et al. [30], along a283

small number of task-relevant directions. This can be interpreted as a combined284

feature selection and compression mechanism. By extrapolating a new analysis285

of Rademacher complexity bounds for linear models, we propose and study a new286

heuristic measure of complexity which captures this phenomenon, in terms of287

sequences of tangent kernel classes along the learning trajectories.288

1 Introduction289

One important property of deep neural networks is their ability to generalize well on real data.290

Surprisingly, this is even true with very high-capacity networks without explicit regularization [42,291

61, 29]. This seems at odds with the usual understanding of the bias-variance trade-off [24, 41, 11]:292

highly complex models are expected to overfit the training data and perform poorly on test data [27].293

Solving this apparent paradox requires understanding the various learning biases induced by the294

training procedure, which can act as implicit regularizers [42, 44].295

In this paper, we help clarify one such implicit regularization mechanism, by examining the evolution296

of the neural tangent features [30] learned by the network along the optimization paths. Our results297

can be understood from two complementary perspectives: a geometric perspective – the (uncentered)298

covariance of the tangent features defines a metric on the model function class, akin to the Fisher299

information metric [e.g., 2]; and a functional perspective – through the tangent kernel and its RKHS.300

Our main observation, in standard supervised classification settings, is a dynamical alignment of301

the tangent features along a small number of task-relevant directions during training. We interpret302

this phenomenon as combining a feature selection and a compression mechanisms. The intuition303

motivating this work is that such mechanisms are what allows the model to adapt its capacity to the304

task, which in turn underpins the generalization abilities of heavily overparametrized models.305

Specifically, our main contributions are as follows:306

1. Through experiments with various architectures on MNIST and CIFAR10, we give empirical307

insights on how the tangent features and their kernel adapt to the task during training (Section308

3). We observe in particular an increasing similarity with the class labels, e.g. as measured by309

centered kernel alignment (CKA) [19, 18].310

2. Drawing upon intuitions from linear models (Section 4.1), we argue that such a dynamical311

alignment acts as implicit regularizer. We motivate a new heuristic complexity measure which312

captures this phenomenon, and empirically show better correlation with generalization compared313

to various measures proposed in the recent literature (Section 4).314

2 Preliminaries315

Let F be a class of functions (e.g a neural network) parametrized by w ∈ RP . We restrict here to316

scalar functions fw : X → R to keep notation light.6317

Tangent Features. We define the tangent features as the function gradients w.r.t the parameters,318

Φw(x) := ∇wfw(x) (8)
The corresponding kernel kw(x, x̃) = 〈Φw(x),Φw(x̃)〉 is the tangent kernel [30]. Intuitively, the319

tangent features govern how small changes in parameter affect the function’s outputs,320

δfw(x) = 〈δw,Φw(x)〉+O(‖δw‖2) (9)

6The extension to vector-valued functions, relevant for the multiclass classification setting, is presented in
Appendix A, along with more mathematical details.

9

Component 0 Component 20 Component 100 Component 1000

Figure 3: Evolution of eigenfunctions of the tangent kernel, ranked in nonincreasing order of the eigenvalues (in
columns), at various iterations during training (in rows), for the 2dDisk dataset. After a number of iterations, we
observe modes corresponding to the class structure (e.g. boundary circle) in the top eigenfunctions. Combined
with an increasing anistropy of the spectrum (e.g λ20/λ1 = 1.5% at iteration 0, 0.2% at iteration 2000), this
illustrates a stretch of the tangent kernel in the directions of the signal.

More formally, the (uncentered) covariance matrix gw = Ex∼ρ
[
Φw(x)Φw(x)>

]
w.r.t the input321

distribution ρ acts as a metric tensor on F : assuming F ⊂ L2(ρ), this is the metric induced on F322

by pullback of the L2 scalar product (see Appendix A). It characterizes the geometry of the function323

class F .324

Spectral Bias. The structure of the tangent features impacts the evolution of the function during train-325

ing. To formalize this, we introduce the covariance eigenvalue decomposition gw =
∑P
j=1 λwjvwjv

>
wj ,326

which summarizes the predominant directions in parameter space. Given n input samples (xi) and327

fw∈Rn the vector of outputs fw(xi), consider gradient descent updates δwGD =−η∇wL for some cost328

function L :=L(fw). The following elementary result (see Appendix B) shows how the corresponding329

function updates in the linear approximation (9), δfGD(x) := 〈δwGD,Φw(x)〉, decompose in the330

eigenbasis7 of the tangent kernel:331

uwj(x) =
1√
λwj

〈vwj ,Φw(x)〉 (10)

Lemma 2 (Local Spectral Bias). The function updates decompose as δfGD(x) =
∑P
j=1 δfjuwj(x)332

with333

δfj = −ηλwj(u
>
wj∇fwL), (11)

where uwj = [uwj(x1), · · ·uwj(xn)]> ∈ Rn and∇fw is the gradient w.r.t the sample outputs.334

This illustrates how, from the point of view of function space, the eigenvalues act as a mode-specific335

rescaling ηλwj of the learning rate. This is a local version of a well-known bias for linear models336

trained by gradient descent (e.g in linear regression, see Appendix B.2), which prioritizes learning337

functions within the top eigenspaces of the kernel. Several recent works [12, 9, 60] investigated such338

7The functions uwj , j ∈ {1 · · ·P} form an orthonormal family in L2(ρ), i.e. Ex∼ρ[uwjuwj′] = δjj′ ,
yielding the spectral decomposition kw(x, x̃) =

∑P
j=1 λwjuwj(x)uwj(x̃) of the tangent kernel as an integral

operator. Note that kernel and covariance share the same spectrum.

10

101 103 105

250

500

eff
.

ra
n

k
0.0

0.5

1.0

a
cc

u
ra

cy

no random labels

train

test

104

la
m

b
d

a

max
average
median

101 103 105

250

500

eff
.

ra
n

k

0.0

0.5

1.0

a
cc

u
ra

cy

20% random labels

train

test

104

la
m

b
d

a

max
average
median

101 103 105

250

500

eff
.

ra
n

k

0.0

0.5

1.0

a
cc

u
ra

cy

50% random labels

train

test

103

la
m

b
d

a

max
average
median

Figure 4: Evolution of tangent kernel spectrum and effective rank of a VGG19 trained by SGD with batch size
100, learning rate 0.01 and momentum 0.9 on CIFAR10 with various ratio of random labels. The small effective
rank of the kernel biases the training procedure towards a few top eigenvectors.

sgd iterations
0.00

0.25

a
li
g
n
.

0

1

a
cc

u
ra

cy

no random labels

train

test

0.0

0.5

la
y
er

a
li
g
n
.

101 103 105

sgd iterations

0.0

0.5

la
y
er

a
li
g
n
.

sgd iterations
0.0

0.1

a
li
g
n
.

0

1

a
cc

u
ra

cy
20% random labels

train

test

0.00

0.25

la
y
er

a
li
g
n
.

101 103 105

sgd iterations

0.0

0.5

la
y
er

a
li
g
n
.

sgd iterations
0.00

0.05

a
li
g
n
.

0

1

a
cc

u
ra

cy

50% random labels

train

test

0.00

0.25

la
y
er

a
li
g
n
.

101 103 105

sgd iterations

0.00

0.25

la
y
er

a
li
g
n
.

Figure 5: Evolution of kernel alignment and layer-wise kernel alignments of a VGG19 trained by SGD with
batch size 100, learning rate 0.01 and momentum 0.9 on CIFAR10 with various ratios of random labels. For
layer-wise alignment we map layers to colors sequentially from input layer (-), through intermediate layers (-), to
output layer (-). See Figure 13 and 16 in appendix for additional architectures/datasets.

bias for neural networks, in linearized regimes where the tangent kernel remains constant during339

training [30, 20, 1]. As a simple example, for a randomly initialized MLP on 1D uniform data,340

Fig. 10 (Appendix B) shows an alignment of the tangent kernel eigenfunctions with Fourier modes of341

increasing frequency, explaining prior empirical observations [48, 59] of a ‘spectral bias’ towards342

low-frequency functions.343

Tangent Features Adapt to the Task. By contrast, our aim in this paper is to highlight and discuss344

non-linear effects, in the (standard) regime where the tangent features and their kernel evolve during345

training [e.g., 22, 58].346

As a first illustration of such effects, Fig. 3 shows visualizations of eigenfunctions of the tangent347

kernel (ranked in nonincreasing order of the eigenvalues), during training MLP by gradient descent348

of the binary cross entropy loss, on a simple classification task: y(x) = ±1 depending on whether349

x ∼ Unif[−1, 1]2 is in the centered disk of radius
√

2/π (details in Appendix E). After a number of350

iterations, we observe (rotation invariant) modes corresponding to the class structure (e.g. boundary351

circle) showing up in the top eigenfunctions of the learned kernel. We also note an increasing352

spectrum anisotropy – for example, the ratio λ20/λ1, which is 1.5% at iteration 0, has dropped to353

0.2% at iteration 2000. The interpretation is that the tangent kernel stretches along a small number of354

directions that are highly correlated with the signal during training. We quantify and investigate this355

alignment effect in more detail below.356

3 Neural Feature Alignment357

In this section, we perform experiments showing a dynamical alignment of the tangent features along358

a small number of task-relevant directions during training. We show in particular that networks learn359

11

tangent features with increasing similarity with the class labels, as measured by centered kernel360

alignment (CKA) [19, 18]. We interpret this phenomenon as combining both a feature selection and361

a compression mechanism.362

3.1 Setup363

We run experiments on MNIST [35] and CIFAR10 [33] with standard MLPs, VGG [55] and Resnet364

[28] architectures, trained by stochastic gradient descent (SGD) with momentum, using cross-entropy365

loss. We use PyTorch [47] and NNGeometry [3] for efficient evaluation of tangent kernels.366

In multiclass settings, tangent kernels evaluated on n samples carry additional class indices y ∈367

{1 · · · c} and thus are nc× nc matrices, (Kw)yy
′

ij := kw(xi, y; xj , y
′). In all our experiments, we368

evaluate tangent kernels on mini-batches (either from the train or the test set) of size n = 100. For369

c = 10 classes, this yields kernel matrices of size 1000 × 1000. We report results obtained from370

centered tangent features Φw(x) → Φw(x) − ExΦw(x), though we obtain qualitatively similar371

results for uncentered features (see plots in Appendix E.2).372

3.2 Spectrum Evolution373

We first investigate the evolution of the tangent kernel spectrum for a VGG19 on CIFAR 10, trained374

with and without label noise (Fig. 4). The main take away is an anisotropic increase of the spectrum375

during training. We report results for kernels evaluated on training examples (solid line) and test376

examples (dashed line).8377

The first observation is a significant increase of the spectrum, early in training (note the log scale for378

the number of iterations). By the time the model reaches 100% training accuracy, the maximum and379

average eigenvalues have gained more than 2 orders of magnitude.380

The second observation is that this evolution is highly anisotropic. We quantify spectrum anisotropy381

using a notion of effective rank based on spectral entropy [50]. Given a kernel matrixK inRr×r with382

(strictly) positive eigenvalues λ1, · · · , λr, let µj = λj/
∑r
i=1 λj be the trace-normalized eigenvalues.383

The effective rank is defined as erank = exp(H(µ)) where H(µ) is the Shannon entropy,384

H(µ) = −
r∑
j=1

µj log(µj) (12)

This effective rank is a real number between 1 and r, upper bounded by rank(K), which measures385

the ‘uniformity’ of the spectrum through the entropy. We also track the various trace ratios386

Tk =
∑
j<k λj/

∑
j λj as measures of the relative importance of the top k eigenvalues (see Fig. 15387

in Appendix E.3).388

We note an important decrease of the effective rank early in training (third row in Fig. 4), reaching a389

phase where only a few top eigenvalues account for most of the trace. This can be observed directly390

from the highlighted (in red) ratios T40, T80 and T160 (Fig. 15), e.g. T80 accounting for 50% of the391

total trace (over 1000 eigenvalues). Remarkably, in the presence of high label noise, the effective rank392

of the tangent kernel evaluated on training examples (anti)-correlates nicely with the test accuracy,393

decreasing or remaining low during the learning phase (increase of test accuracy) and rising when394

overfitting starts (decrease of test accuracy). This suggests that the effective rank of the tangent kernel395

(and hence that of the metric) might already provide a good proxy for a measure of the effective396

capacity of the network.397

3.3 Alignment to class labels398

We now include the evolution of the eigenvectors in our analysis. We investigate the similarity of399

the learned tangent features with the class label through a similarity index called centered kernel400

alignment. Given two kernel matricesK andK ′ in Rr×r, it is defined as401

CKA(K,K ′) =
Tr[KcK

′
c]

‖Kc‖F ‖K ′c‖F
∈ [0, 1] (13)

8The striking similarity of the plots for train and test kernels suggests that the spectrum of empirical tangent
kernels is robust to sampling variations in our setting.

12

0.0

0.1

0.2

al
ig

nm
en

t easy
difficult

101 102 103 104

sgd iterations

10

20

30
ra

tio
al

ig
nm

en
t

ea
sy

/d
iffi

cu
lt

0.5

1.0

ac
cu

ra
cy

MNIST + 1000 random labels

test easy
test diff

train easy
train diff

0.00

0.05

0.10

al
ig

nm
en

t easy
difficult

101 102 103 104

sgd iterations

2.5

5.0

7.5

ra
tio

al
ig

nm
en

t
ea

sy
/d

iffi
cu

lt

0.5

1.0

ac
cu

ra
cy

MNIST + 1000 KMNIST examples

test easy
test diff

train easy
train diff

Figure 6: Alignment easy versus difficult: We augment a dataset composed of 10.000 easyMNIST examples
with 1000 difficult examples from 2 different setups: (left) 1000 MNIST examples with random label (right)
1000 KMNIST examples. We train a MLP with 6 layers of 80 hidden units using SGD with learning rate=0.02,
momentum=0.9 and batch size=100. We observe that the NTK aligns faster to the easy examples in the beginning.

where the c subscript denotes the feature centering operation, i.e. Kc = CKC whereC = Ir− 1
r11T402

is the centering matrix. CKA is a normalized version of the Hilbert-Schmidt Independence Criterion403

[26] designed as a dependence measure for two sets of features. The normalization by the Froebenius404

norms makes CKA invariant under isotropic rescaling.405

Let Y ∈ Rnc be the vector resulting from the concatenation of the one-hot label representations406

Yi ∈ Rc of the n samples. Similarity with the labels is measured through CKA with the rank-one407

kernelKY := Y Y >. Intuitively, CKA(K,KY) is high whenK has low (effective) rank and such408

that the angle between Y and its top eigenspaces is small.9 Maximizing such index has been used as409

a criterion for kernel selection in the literature on learning kernels [18].410

In the same setup as in Section 3.2, we observe (Fig. 5 an increasingly high CKA between tangent411

kernel and the labels as training progresses. The trend is similar for other architectures and datasets412

(Fig. 13 in Appendix E show CKA plots for MLP on MNIST and Resnets 18 on CIFAR10).413

Interestingly, in the presence of high level noise and during the learning phase (increase of test414

accuracy), the CKA reaches a much higher value for kernels evaluated on test inputs than for kernels415

evaluated on training inputs (note that test labels are not randomized). Together with equation 11, the416

alignment of the tangent kernel along clean labels sheds lights on empirical observations that, in the417

presence of noise, deep networks ‘learn patterns first’ [5] (see Section 3.4 for additional insights).418

We also report the alignments of the layer-wise tangent kernels K`
w, obtained from the function419

gradients w.r.t parameters of layer `. By construction, the tangent kernel is the sum of the layer-wise420

kernels over all layers of the network,Kw =
∑L
`=1K

`
w. We observe a high CKA (reaching more421

than 0.5), especially for the intermediate layers10, suggesting the key role of depth in the overall422

alignment of the tangent kernel (see also Section 3.5).423

3.4 Hierarchical Alignment424

A key aspect of the generalization question for deep networks concerns the articulation between425

learning and memorization, in the presence of noise [61] or difficult examples [51]. Motivated by426

this, we would like to probe the evolution of the tangent features separately in the directions of both427

type of examples in such settings. To do so, our strategy is to measure partial CKA on examples from428

two subsets of the same size in the dataset – one with ‘easy’ examples, the other with ‘difficult’ ones.429

Our setup is to augment 10.000 MNIST training examples with 1000 difficult examples of 2 types: (i)430

examples with random labels and (ii) examples from the dataset KMNIST [17]. KMNIST images431

present similar features than MNIST digits (grayscale handwritten characters) but represent Japanese432

characters.433

9In the limiting case CKA(K,KY) = 1, the features are all aligned with each other and parallel to Y .
10We were expecting to see a gradually increasing CKA with `; we do not have any intuitive explanation for

the relatively low alignment observed for the very top layers.

13

The results are shown in Fig. 6. As training progresses, the CKA on the easy examples increases434

faster (and to a higher value); in the case of the (structured) difficult examples from KMNIST, we435

observe an increase of the CKA later in training. This demonstrates a hierarchy in the adaptation of436

the kernel, measured by the ratio between both alignments. From the intuition developed in the paper437

(see Section 2), this aspect of the non-linear dynamics favors a sequentialization of the learning (’easy438

patterns first’), a phenomenon analogous to one pointed out in the context of deep linear networks439

[52, 34, 25].440

3.5 Ablation441

In order to study the influence of depth on alignment and test the robustness to the choice of seeds,442

we reproduce the experiment of the previous section for MLP with different depths, while varying443

parameter initialization and minibatch sampling. Our results, shown in Fig 16 (Appendix E), suggest444

that the alignment effect is magnified as depth increases. We also observe that the ratio of the445

maximum alignment between easy and difficult examples is increased with depth, but stays high for a446

smaller number of iterations.447

4 Measuring Complexity448

In this section, drawing upon intuitions from linear models, we illustrate on a simple setting how449

the alignment effect highlighted in the previous section can act as implicit regularization. We also450

motivate a new complexity measure for neural networks and compare its correlation to generalization451

against various measures proposed in the recent literature.452

4.1 Insights from Linear Models453

Setup. We restrict here to functions fw(x) = 〈w,Φ(x)〉 linearly parametrized by w ∈ RP . Such454

function class defines a constant (tangent) kernel and has a constant geometry, as defined in Section 2.455

Given n input samples, the n features Φ(xi) ∈ RP yield a n× P feature matrix Φ.456

Our discussion will be based on the Rademacher complexity, which shows up in generalization457

bounds [6]. It measures how well F correlates with random noise on the sample set S:458

R̂S(F) = Eσ∈{±1}n

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
(14)

The Rademacher complexity depends on the size (or capacity) of the class F . Constraints on the459

capacity, such as those induced by some implicit bias of the training algorithm, can reduce the460

Rademacher complexity and lead to sharper generalization bounds.461

A standard approach for controlling capacity is in terms of the norm of the weight vector – usually462

the `2-norm. In general, given any invertible matrix A ∈ RP×P , we may consider the norm463

‖w‖A :=
√

w>gAw induced by the metric gA = AA>. ForMA > 0, let FAMA be the subclass of464

functions fw such that ‖w‖A ≤ MA. A direct extension of standard bounds for the Rademacher465

complexity (see Appendix C) yields,466

R̂S(FAMA) ≤ (MA/n)‖A−1Φ>‖F (15)

where ‖A−1Φ>‖F is the Froebenius norm of the rescaled feature matrix.467

This freedom in the choice of rescaling matrix A, due to linear reparametrization invariance, raises468

the question of which of the norms ‖ · ‖A provides meaningful measures of the model’s capacity.469

Recent works [10, 40] pointed out that using `2 norm is not coherently linked with generalization in470

practice. We discuss this issue in Appendix C.5, illustrating how meaningful norms critically depend471

on the geometry defined by the features.11472

11Analysis of the relation between capacity and feature geometry can be traced back to early work on kernel
methods [53]

14

SuperNat update (Ã0 = I , Φ0 = Φ,K0 = K):

1. Perform gradient step w̃t+1 ← wt + δwGD

2. Find minimizer Ãt+1 of ‖δwGD‖Ã‖Ã−1Φ>t ‖F
3. Reparametrize:

wt+1 ← Ã>t+1w̃t+1,Φt+1 ← Ã−1t+1Φt

0 2000 4000 6000 8000 10000
Training Iteration

6.1

6.2

6.3

6.4

6.5

6.6

m
ea

n
sq

ua
re

er
ro

rs

Validation standard gradient
Validation supernatural gradient

Figure 7: (left) SuperNat algorithm and (right) validation curves obtained with standard and SuperNat
gradient descent, on the noisy linear regression problem. At each iteration, SuperNat identifies
dominant features and stretches the kernel along them, thereby slowing down and eventually freezing
the learning dynamics in the noise direction. This naturally yields better generalization than standard
gradient descent on this problem.

4.1.1 Feature Alignment as Implicit Regularization473

The goal here is to illustrate in a simple setting how an adaptive geometry along optimization474

trajectories can act as an implicit regularizer. In such setting, the idea is to learn a rescaling metric at475

each iteration of our algorithm, using a local version of the bounds (71).476

Complexity of Learning Flows. Since we are interested in functions fw that result from an iterative477

algorithm, we can assume they are written as fw = f0 +
∑
t δfwt

in terms of a sequence of updates478

δfwt
(x) = 〈δwt,Φ(x)〉.12 We set f0 = 0 to keep the notation simple. Instead of considering classes479

of functions with direct constraints on the parameter, we consider functions resulting from a learning480

flow with local constraints on the parameter updates:481

FAm = {fw : x 7→∑
t〈δwt,Φ(x)〉 | ‖δwt‖At ≤ mt} (16)

The result (71) extends as follows.482

Theorem 3 (Complexity of Learning Flows). Given any sequencesA andm of invertible matrices483

At ∈ RP×P and positive numbersmt > 0, we have the bound484

R̂S(FAm) ≤∑t(mt/n)‖A−1t Φ>‖F (17)

Equ. 17 provides us with bounds written in terms of local contributions at each iteration t. Note485

that the same result can be formulated in terms of the sequence of feature maps Φt = A−1t Φ. By486

reparametrization invariance, the function class (16) can equivalently be written as FAm = FΦ
m where487

Φ = {Φt}t and488

FΦ
m = {fw : x 7→∑

t〈δ̃wt,Φt(x)〉 | ‖δ̃wt‖2 ≤ mt} (18)
In this formulation, the result (17) reads:489

R̂S(FΦ
m) ≤∑t(mt/n)‖Φt‖F (19)

Optimizing the Feature Scaling. To obtain learning flows with low complexity, Thm. 3 suggests to490

include, at each iteration t, a reparametrization step with a suitable matrix Ãt giving a low contribution491

to the bound (17). Applied to gradient descent (GD), this leads to a new update rule sketched as in492

Fig 7 (left), where the optimization in Step 2 is over a given class of reparametrization matrices. As493

an example, we consider the class of matrices Aν acting diagonally in the right singular basis of the494

feature matrix Φ =
∑n
j=1

√
λjujv

>
j ; which amounts to rescaling the singular vector λj → λj/νj .495

12In order to not assume a specific upper bound on the number of iterations, we can think of the updates from
an iterative algorithm as an infinite sequence {δw0, · · · δwt, · · · } such that for some T , δwt = 0 for all t > T .

15

0.0

0.5

E
rr

or

MNIST MLP
varying label corruption

0.00

0.05

MNIST MLP
varying hidden size

0.0

0.2

CIFAR10 VGG19
varying #channels

Train
Test

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Our capacity measure

0.00 0.25 0.50 0.75

Proportion of corrupted labels

0

1

N
or

m
al

iz
ed

ca
pa

ci
ty

105 106

Number of parameters

0

1

107

Number of parameters

0

1

L3,1.5 Bound (Neyshabur et al. 2015)

Fisher-Rao
Frobenius Bound (Neyshabur et al. 2015)
L1 max Bound (Bartlett and Mendelson 2002)
Ney18 (Neyshabur et al. 2018)
Spec L1 (Bartlett et al. 2017)
Spec Fro Bound (Neyshabur et al. 2018)
VC (Harvey et al. 2017)

Figure 8: Complexity measures on MNIST with a one hidden layer MLP (left) as we increase the hidden layer
size, (center) for a fixed hidden layer of 256 units as we increase label corruption and (right) for a VGG19 on
CIFAR10 as we vary the number of channels. All networks are trained until cross-entropy loss reaches 0.01.
Our proposed complexity measure and the one proposed by Neyshabur et al. 2018 are the only ones to correctly
reflect the shape of the generalization gap.

Proposition 4. For the class of rescaling matrices Aν defined above, any minimizer in Step 2 in Fig496

7, where δwGD = −η∇wL is a GD updates w.r.t a loss L, takes the form497

ν∗jt = κ
1

|u>j∇fwL|
(20)

where∇fw denotes the gradient w.r.t fw := [fw(x1), · · · fw(xn)]>, for some constant κ > 0.498

The successive reparametrizations yield a varying feature map Φt = A−1t Φ where At= Ã0 · · · Ãt.499

In the original representation Φ, SuperNat amounts to natural gradient descent with respect to the500

local metric gAt = AtA
>
t . In the context of Proposition 4, this yields the following update rule, up to501

isotropic rescaling, for the singular values of Φt:502

λj(t+1) = |u>j∇fwL|λjt (21)

In this illustrative setting, we see how the feature map (or kernel) adapts to the task, by stretching503

(resp. contracting) its geometry in directions uj along which the residual ∇fwL has large (resp.504

small) components. Intuitively, if a large component |u>j∇fwL| corresponds to signal and a small505

one |u>k∇fwL| corresponds to noise, then the ratio λjt/λkt of singular values gets rescaled by the506

signal-to-noise ratio, thereby increasing the alignment of the learned feature matrix to the signal.507

Fig 7 in Appendix ?? (right) shows results for the following regression setup. We consider Gaussian508

features Φ = [ϕ,ϕnoise] ∈ Rd+1 where ϕ ∼ N (0, 1) and ϕnoise ∼ N (0, 1dId). Given n training509

features, we assume the label vector takes the form y = ϕ + Pnoise(ε), where Gaussian noise510

ε ∼ N (0, σ2In) is projected onto the noise features through Pnoise = ϕnoiseϕ
>
noise. The model is511

trained by gradient descent of the mean square loss and its SuperNat variant, where Step 2 uses the512

analytical solution of Proposition 4. We set d = 10, σ2 = 0.1 and use n = 50 training points. At513

each iteration, SuperNat identifies dominant features (feature selection, here ϕ) and stretches the514

metric along them, thereby slowing down and eventually freezing the dynamics in the orthogonal515

(noise) directions (compression).516

4.2 A New Complexity Measure for Neural Networks517

Equ. (19) provides a bound of the Rademacher complexity for the function classes (16) specified by a518

fixed sequence of adaptive kernels (see Appendix C.4 for a generalization to the multiclass setting).519

By extrapolation to the case of non-deterministic sequences of kernels, we propose using520

C(fw) =
∑
t

‖δwt‖2‖Φt‖F (22)

16

where Φt is the tangent feature matrix13 at training iteration t, as a heuristic measure of complexity for521

neural networks. Following a standard protocol for studying complexity measures, [e.g., 43], Fig. 8522

shows its behaviour for MLP on MNIST and VGG19 on CIFAR10 trained with cross entropy loss,523

with (left) fixed architecture and varying level of corruption in the labels and (right) varying hidden524

layer size/number of channels up to 4 millions parameters, against other capacity measures proposed525

in the recent literature. We observe that it correctly reflects the shape of the generalization gap.526

5 Related Work527

Capacity and Geometry. In the context of linear models, analysis of the relation between capacity528

and feature geometry can be traced back to early work on kernel methods (Schölkopf et al. [53]),529

leading to data-dependent error bounds in terms of the eigenvalues of the kernel Gram matrix530

(Schölkopf et al. [54]). Recent analysis of the minimum norm interpolators in overparametrized linear531

regression emphasized the impact of feature geometry – through the spectrum of the data covariance –532

on generalization performance [8, 39].533

Specifically, these works illustrate the key role of feature anisotropy, combined to a high correlation534

of the few dominant features with the signal [see also e.g. 13], in the generalization performance535

[39]. Both feature anisotropy and high correlation of the dominant features are conditions for a high536

alignment between kernel and labels. Our results in this paper emphasizes the key role of the training537

dynamics in favouring such conditions.538

Generalization Measures. There has been a large body of work on generalization measures for539

neural networks (see Jiang et al. [31] and references therein), some of which theoretically motivated540

by norm or margin based bounds (e.g Neyshabur et al. [45], Bartlett et al. [7]). Liang et al. [37]541

proposed using the Fisher-Rao norm to measure capacity in a geometrical invariant manner. Our542

approach aims at taking into account the geometry along the whole optimization trajectories. Closely543

related perspectives in the recent literature are the notion of stiffness [21] and coherent gradients [15],544

tied to the structure of tangent kernels for the loss class.545

Spectral Bias and Tangent Kernels. A recent line of work on the so-called spectral bias [48, 59],546

relying on Fourier analysis, suggested that neural networks prioritize learning the lowest complexity547

components of the data during training. In linearized regimes where the training dynamics can be548

described by a fixed kernel [30, 20, 16], this can be understood in terms of the standard learning bias549

along the kernel principal components in linear regression [4, 9, 14]. Several other works [12, 9, 60]550

investigated implicit bias of neural networks through a spectral analysis in such regimes. In this paper,551

we highlight and discuss non-linear effects, in the feature learning regime where the tangent kernel552

evolves during training [22, 58].553

Independent concurrent works highlight alignment phenomena similar to the one we study here554

[32, 46]. We offer various complementary empirical insights, and frame the alignment mechanism555

from the point of view of implicit regularization.556

6 Conclusion557

Through experiments on modern architectures, we highlighted an alignment effect of the tangent558

features and their kernel along a small number of task-dependent directions, quantified by centered559

kernel alignment. We interpret this phenomenon as combining a feature selection mechanism and a560

compression of the model around the dominant features.561

We argued that such a dynamical alignment can act as implicit regularization. By extrapolating562

Rademacher complexity theory from linear models to learning flows, we introduced a new heuristic563

complexity measure for neural networks, and showed that it correlates with the generalization gap564

when varying the number of parameters, and when increasing the proportion of corrupted labels.565

The results of this paper open several avenues for further investigation. The type of complexity566

measure we propose suggests a principled way to rescale the geometry in which to perform gradient567

descent [56, 44]. Whether a procedure such as SuperNat, which optimizes a preconditioning matrix so568

13In terms of tangent kernels, ‖Φt‖F =
√

TrKt where Kt is the tangent kernel matrix.

17

as to minimize a generalization bound14, can produce meaningful practical results for neural networks,569

remains to be seen.570

One of the consequences one can expect from alignment effect highlighted here is to encourage571

learning from a small number of highly predictive features. While this feature selection ability572

might explain in part the performance of neural networks on a range of supervised tasks, it may also573

might underpin their notorious sensitivity to spurious correlations [51] and weakness to generalize574

out-of-distribution [23]. Resolving this tension is a fascinating challenge.575

A Geometry and Tangent Kernels576

We describe in more formal detail the notion of geometry we consider in the paper for parametric577

function classes. Formally, specifying such a geometry relies on a choice a distance measure or metric578

on the function space, which is then pulled back to parameter space. We will consider general classes579

of predictors:580

F = {fw : X → Rc | w ∈ W}, (23)
where the parameter spaceW is a finite dimensional manifold of dimension P (typically RP). For581

multiclass classification, fw outputs a score fw(x)[y] for each class y ∈ {1 · · · c}. Each function can582

also be viewed as a scalar function on X × Y where Y = {1 · · · c} is the set of classes.583

We assume that w → fw is a smooth mapping fromW to L2(ρ,Rc), where ρ is some input data584

distribution. The inclusion F ⊂ L2(ρ,Rc) equips F with the L2 scalar product and corresponding585

norm:586

〈f, g〉ρ := Ex∼ρ[f(x)>g(x)], ‖f‖ρ :=
√
〈f, f〉ρ (24)

The parameter spaceW inherits a metric tensor gw by pull-back of the scalar product 〈f, g〉ρ on F .587

That is, given ζ, ξ ∈ TwW ∼= RP on the tangent space at w,588

gw(ζ, ξ) = 〈∂ζfw, ∂ξfw〉ρ (25)
where ∂ζfw = 〈dfw, ζ〉 is the directional derivative in the direction of ζ. Concretely, in a given basis589

of RP , the metric is represented by the matrix of gradient second moments:590

(gw)pq = Ex∼ρ

[(
∂fw(x)

∂wp

)>
∂fw(x)

∂wq

]
(26)

where wp, p = 1, · · ·P denote the parameter coordinates. The metric shows up by spelling out the591

line element ds2 := ‖dfw‖2ρ, since we have,592

‖dfw‖2ρ =

P∑
p,q=1

〈∂fw

∂wp
dwp,

∂fw

∂wq
dwq〉ρ =

P∑
p,q=1

(gw)pq dwpdwq (27)

This geometry has a dual description in function space in terms of kernels. The idea is to view593

the differential at each w as a map dfw : X × Y → T ∗wW ∼= Rp defining (joined) features in the594

(co)tangent space. Thus, in a given basis, the tangent features are given by the function derivatives595

with respect to the parameters596

Φwp(x)[y] :=
∂fw(x)[y]

∂wp
(28)

The tangent feature map Φw can be viewed as a function mapping each pair (x, y) to a vector in RP .597

It defines the so-called tangent kernel through the Euclidean dot product in RP :598

kw(x, y; x̃, y′) =

P∑
p=1

∂fw(x)[y]

∂wp

∂fw(x̃)[y′]
∂wp

(29)

Given n input samples x1, · · ·xn, we represent the sample output scores fw(xi)[y] as flattened in599

a single vector fw ∈ Rnc and the tangent features Φwp(xi)[y] as a nc × P matrix Φw. Using this600

notation, (26) and (29) yield the sample covariance P ×P matrix and kernel (Gram) nc×ncmatrix:601

Gw = Φw
>Φw, Kw = ΦwΦw

> (30)
14See the recent work by [57] for further empirical investigations of this problem in the context of linear

models.

18

10 20 30 40 50 60 70 80 90

Directions vj

-1.0

-0.5

0.0

0.5

1.0

P
er

tu
rb

a
ti

o
n

sc
a
li

n
g
ε

0.2

0.4

0.6

0.8

‖
fw

+
δ
w
−

fw
‖

2

Figure 9: Variations of fw (evaluated on a test set) when perturbing the parameters in the directions
given by the right singular vectors of the Jacobian (first 50 directions) or in randomly sampled
directions (last 50 directions) on a VGG11 network trained for 10 epochs on CIFAR10. We observe
that perturbations in most directions have almost no effect, except in those aligned with the top
singular vectors.

The eigenvalue decompositions ofGw andKw follow from the (SVD) of Φw. Assuming P > nc,602

we can write this SVD by indexing the singular values by a pair J = (i, y) with i = 1, · · ·n and603

y = 1 · · · c as Φw =
∑nc
J=1

√
λJuJv

>
J . Such decompositions summarize the predominant directions604

both in parameter and feature space, in the neighborhood of w. Indeed, A small variation δw around605

w induces the first order variation δfw of the function given by606

δfw := Φwδw =

nc∑
J=1

√
λJ(vTJ δw)uJ (31)

Fig.9 illustrates this ‘hierarchy’ for a VGG11 network [55] trained for 10 epoches on CIFAR10 [33].607

We observe that perturbations in most directions have almost no effect, except in those aligned with608

the top singular vectors. This is reflected by a strong anisotropy of tangent kernel spectrum.609

B Spectral Bias610

We spell out some more detail for the content of Section 2.611

B.1 Proof of Lemma 2612

We consider parameter updates δwGD := −η∇wL for gradient descent w.r.t the loss L. Using the613

chain rule, we can also write,614

δwGD =−ηΦw
>(∇fwL) (32)

Theorem 5 (Lemma 2 restated). The gradient descent function updates in first order Taylor615

approximation, δfGD(x) := 〈δwGD,Φw(x)〉, decompose as,616

δfGD(x) =

n∑
j=1

δfj ũwj(x), δfj = −ηλwj(u
>
wj∇fwL) (33)

in terms of the kernel principal components ũwj defined by (10).617

Proof. This follows immediately from (32), the SVD of Φw, and the definition (10):618

δfGD(x) = −η〈(∇fwL)>Φw,Φw(x)〉 =

n∑
j=1

δfj ũwj(x) (34)

619

B.2 The case of linear regression620

In this case L = 1
2‖fw−y‖2 with fw = 〈w,Φ(x)〉 (setting of Section 4.1), we can make the ‘spectral621

bias’ more explicit. A straightforward consequence of (9) is that the linear system governing the622

training dynamics in function space decouple in the basis of kernel principal components.623

19

0 10 20 30 40

Eigenvector Idx

0

5

10

15

20

Fo
ur

ie
rF

re
qu

en
cy

Fourier decomposition

0 10

0.0

0.1

0.2

0.3

0.4

Spectrum

0.0 0.5 1.0

−0.2

0.0

0.2

Eigenvectors

j = 0, λ0 = 0.4587

j = 5, λ5 = 0.0072

j = 20, λ20 = 0.0005

2

4

Figure 10: Eigendecomposition of the tangent kernel matrix of a random 6-layer deep 256-unit wide MLP on
1D uniform data (50 equally spaced points in [0, 1]). (left) Fourier decomposition (y-axis for frequency, colorbar
for magnitude) of each eigenvector (x-axis). We observe that eigenvectors with increasing index j correspond to
modes with increasing Fourier frequency. (middle) Plot of the j-th eigenvectors with j ∈ {0, 5, 20} and (right)
distribution of eigenvalues ranked in nonincreasing order. We note the fast decay (e.g λ10/λ1 ≈ 4‰).

Gradient descent yields the function iterates,624

fwt
= fw∗ + (id− ηK)t(fw0

− fw∗) (35)

where id is the identity map and K is the operator acting on functions as (Kf)(x) =625 ∑n
i=1 k(x,xi)f(xi) in terms of the kernel k(x, x̃) = 〈Φ(x),Φ(x̃)〉.626

Proof. The updates (32) induce the functional updates δfGD =fwt+1
− fwt

given by627

δfGD(x) = −η
n∑
i=1

k(x,xi)(fwt
(xi)− yi) (36)

Substituting yi = fw∗(xi) gives fwt+1
− fw∗ = (id − ηK)(fwt

− fw∗). Equ. 35 follows by628

induction.629

The operatorK has eigenvalues λ1, · · · , λn with eigenfunctions ũj(x) given by (10).630

Proof. We can write ũj(x) =
∑n
i=1 k(x,xi)uji where uj = [uj1 · · ·ujn]> are the eigenvectors of631

K. Observe that (Kũj)(x)=
∑n
i=1 k(x,xi)(Kuj)i =

∑n
i=1 k(x,xi)(λjuji)=λj ũj . Conversely,632

if λ is an eigenvalue ofK with eigenfunction ũ, consider the vector u = [ũ(xi) · · · ũ(xn)]>. Since633

λui = ũ(xi)=(Kũ)(xi) = (Ku)i, u is an eigenvector ofK and λ is one of the λj .634

[Spectral Bias for Linear Regression] By initializing w0 = Φ>α0 in the span of the features, the635

function iterates in Equ.35 uniquely decompose as fwt
(x) =

∑n
j=1 fjtũj(x) with636

fjt − f∗j = (1− ηλj)t (fj0 − f∗j) (37)

where f∗j are the coefficients of the (mininum norm) interpolating solution.637

C Complexity Bounds638

C.1 Rademacher Complexity639

Given a family G ⊂ RZ of real-valued functions on a probability space (Z, ρ), the empirical640

Rademacher complexity of G with respect to a sample S = {z1, · · · zn} ∼ ρn is defined as [38]:641

R̂S(G) = Eσ∈{±1}n

[
sup
g∈G

1

n

n∑
i=1

σig(zi)

]
, (38)

where the expectation is over n i.i.d uniform random variables σ1, · · ·σn ∈ {±1}. For any n ≥ 1,642

the Rademacher complexity with respect to samples of size n is thenRn(G) = ES∼ρnR̂S(G).643

20

C.2 Generalization Bounds644

Generalization bounds based on Rademacher complexity are standard [7, 38]. We give here one645

instance of such a bound, relevant for classification task.646

Setup. We consider a family F of functions fw : X → Rc that output a score or probability fw(x)[y]647

for each class y ∈ {1 · · · c} (we take c = 1 for binary classification). The task is to find a predictor648

fw ∈ F with small expected classification error, which can be expressed e.g. as649

L0(fw)=P(x,y)∼ρ {µ(fw(x), y) < 0} (39)

where µ(f(x), y) denotes the margin,650

µ(f(x), y) =

{
f(x)y binary case
f(x)[y]−maxy′ 6=y f(x)[y′] multiclass case

(40)

Margin Bound. We consider the margin loss,651

`γ(fw(x), y)) = φγ(µ(fw(x), y)) (41)
where γ > 0, and φγ is the ramp function: φγ(u) = 1 if u ≤ 0, φ(u) = 0 if u > γ and652

φ(u) = 1−u/γ otherwise. We have the following bound for the expected error (39). With probability653

at least 1− δ over the draw S = {zi = (xi, yi)}ni=1 of size n, the following holds for all fw ∈ F [38,654

Theorems 4.4.and 8.1]:655

L0(fw) ≤ L̂γ(fw) + 2R̂S(`γ(F , ·)) + 3

√
log 2

δ

2n
(42)

where L̂γ(fw) = 1
n

∑n
i=1 `γ(fw(xi), yi) is the empirical margin error and `γ(F , ·) is the loss class,656

`γ(F , ·) = {(x, y) 7→ `γ(fw(x), y) | fw ∈ F} (43)
For binary classifiers, because φγ is 1/γ-Lipschitz, we have in addition657

RS(`γ(F , ·)) ≤ 1

γ
RS(F) (44)

by Talagrand’s contraction lemma [36] (see e.g. Mohri et al. [38, lemma 4.2] for a detailed proof).658

C.3 Complexity Bounds: Proofs659

We first derive standard bounds for the linear families (70) of scalar functions (c = 1):660

FAMA = {fw : x 7→ 〈w,Φ(x)〉 | ‖w‖A ≤MA} (45)

Theorem 6. The empirical Rademacher complexity of FAMA is bounded as,661

R̂S(FAMA) ≤ (MA/n)
√

TrKA (46)

where (KA)ij = kA(xi,xj) is the kernel matrix associated to the rescaled features A−1Φ.662

Proof. We use the notation of Section ??. For given Rademacher variables σ ∈ {±1}n, we have,663

sup
f∈FAMA

n∑
i=1

σif(xi) = sup
‖w‖A≤MA

n∑
i=1

σi〈w,Φ(xi)〉

= sup
‖A>w‖2≤MA

n∑
i=1

σi〈A>w, A−1Φ(xi)〉

= sup
‖w̃‖2≤MA

〈w̃,
n∑
i=1

σiA
−1Φ(xi)〉

= MA

∥∥∥∥∥
n∑
i=1

σiA
−1Φ(xi)

∥∥∥∥∥
2

= MA

√
σ>KAσ (47)

21

From (47) and the definition (38) we obtain:664

R̂S(FAMA) =
MA

n
Eσ
[√
σ>KAσ

]
≤ MA

n

√
Eσ [σ>KAσ]

≤ MA

n

√
TrKA (48)

where we used Jensen’s inequality to pass Eσ under the root, and the properties that E[σi] = 0 and665

σ2
i = 1 for all i.666

We now extend the result to the families (16) of learning flows:667

FAm = {fw : x 7→∑
t〈δwt,Φ(x)〉 | ‖δwt‖At ≤ mt} (49)

Theorem 7 (Theorem 3 restated). The empirical Rademacher complexity of FAm is bounded as,668

R̂S(FAm) ≤∑t(mt/n)
√

TrKAt (50)
where (KAt)ij = kAt(xi,xj) is the kernel matrix associated to the rescaled features A−1t Φ.669

Proof. This is simple extension of the previous proof:670

sup
f∈FA

m

n∑
i=1

σif(xi) = sup
‖δwt‖At≤mt

n∑
i=1

σi
∑
t

〈δwt,Φ(xi)〉

=
∑
t

sup
‖δ̃wt‖2≤mt

〈δ̃wt,

n∑
i=1

σiA
−1
t Φ(xi)〉

=
∑
t

mt

√
σ>KAtσ (51)

and we conclude as in (48).671

Finally, we note that the same result can be formulated in terms of an evolving feature map Φt = A−1t Φ672

with kernel kt(x, x̃) = 〈Φt(x),Φt(x̃)〉 In fact by reparametrization invariance, the function updates673

can also be written as δfwt
(x) = 〈δ̃wt,Φt(x)〉 where δ̃wt = A>t δwt. The function class (16) can674

equivalently be written as FAm = FΦ
m where Φ denotes a fixed sequence of feature maps, Φ = {Φt}t675

and676

FΦ
m = {fw : x 7→∑

t〈δ̃wt,Φt(x)〉 | ‖δ̃wt‖2 ≤ mt} (52)

In this formulation, Theorem 3 becomes:677

Theorem 3bis. The empirical Rademacher complexity of FΦ
m is bounded as,678

R̂S(FΦ
m) ≤∑t(mt/n)

√
TrKt (53)

where (Kt)ij = kt(xi, x̃j) is the kernel matrix associated to the feature map Φt.679

C.4 Bounds for Multiclass Classification680

The generalization bound (42) is based on the margin loss class (43). In this section, we show how681

to bound R̂S(`γ(F , ·)) in terms of tangent kernels for the original class F of functions fw : X → Rc682

instead. Although the proof is adapted from standard techniques, to our knowledge Lemma C.4 and683

Theorem 8 below are new results. In what follows, we denote by µF the margin class,684

µF = {(x, y)→ µ(fw(x), y) | fw ∈ F} (54)
where µ(fw(x), y)) is the margin (40). We also define, for each y ∈ {1 · · · c},685

Fy = {x 7→ fw(x)[y] | fw ∈ F}, µF,y = {x 7→ µ(fw(x), y) | fw ∈ F} (55)
The following inequality holds:686

R̂S(`γ(F , ·)) ≤ c

γ

c∑
y=1

R̂S(Fy) (56)

687

22

Proof. We first follow the first steps of the proof of Mohri et al. [38, Theorem 8.1] to show that688

R̂S(`γ(F , ·)) ≤ 1

γ

c∑
y=1

R̂S(µF,y) (57)

We reproduce these steps here for completeness: first, it follows from the 1/γ-Lipschitzness of the689

ramp loss φγ in (41) and Talagrand’s contraction lemma [38, lemma 4.2] that690

R̂S(`γ(F , ·)) ≤ 1

γ
R̂S(µF) (58)

Next, we write691

R̂S(µF) :=
1

n
Eσ

[
sup
fw∈F

n∑
i=1

σiµ(fw(xi), yi)

]

=
1

n
Eσ

[
sup
fw∈F

n∑
i=1

σi

c∑
y=1

µ(fw(xi), y) δy,yi

]

=
1

n

c∑
y=1

Eσ

[
sup
fw∈F

n∑
i=1

σiµ(fw(xi), y) δy,yi

]
(59)

where δy,yi = 1 if y = yi and 0 otherwise; the second inequality follows from the sub-additivity of692

sup. Substituting δy,yi = 1
2 (εi + 1

2) where εi = 2δy,yi − 1 ∈ {±1}, we obtain693

R̂S(µF) ≤ 1

2n

c∑
y=1

Eσ

[
sup
fw∈F

n∑
i=1

(εiσi)µ(fw(xi), y)

]
+

1

2n

c∑
y=1

Eσ

[
sup
fw∈F

n∑
i=1

σiµ(fw(xi), y)

]

=

c∑
y=1

1

n
Eσ

[
sup
fw∈F

n∑
i=1

σiµ(fw(xi), y)

]

=

c∑
y=1

R̂S(µF,y) (60)

Together with (58), this leads to (57).694

Now, spelling out µ(fw(xi, y)) gives695

R̂S(µF,y) =
1

n
Eσ

[
sup
fw∈F

n∑
i=1

σi(fw(xi)[y]−max
y′ 6=y

fw(xi)[y
′])

]

= R̂S(Fy) +
1

n
Eσ

[
sup
fw∈F

n∑
i=1

(−σi) max
y′ 6=y

fw(xi)[y
′]

]

= R̂S(Fy) +
1

n
Eσ

[
sup
fw∈F

n∑
i=1

σi max
y′ 6=y

fw(xi)[y
′]

]
≤ R̂S(Fy) + R̂S(Gy) (61)

whereGy = {max{fy′ : y′ 6= y} | fy′ ∈ Fy′}. NowMohri et al. [38, lemma 8.1] show that R̂S(Gy) ≤696 ∑
y′ 6=y R̂S(Fy′). This leads to697

c∑
y=1

R̂S(µF,y) ≤
c∑

y=1

R̂S(Fy) +

c∑
y=1

c∑
y′=1
y′ 6=y

R̂S(Fy′)

=

c∑
y=1

R̂S(Fy) + (c− 1)

c∑
y=1

R̂S(Fy)

= c

c∑
y=1

R̂S(Fy) (62)

Substituting in (57) finishes the proof.698

23

In the linear case, this results leads to analogous theorems as in C.3 in the multiclass setting. For699

example, considering the linear families of functions X → Rc,700

FAMA = {x 7→ fw(x)[y] := 〈w,Φ(x)[y]〉 | ‖w‖A ≤MA} (63)

where (x, y) 7→ Φ(x)[y] is some joint feature map, we have the following701

Theorem 8. The emp. Rademacher complexity of the margin loss class `γ(FAMA , ·) is bounded as,702

R̂S(`γ(FAMA , ·)) ≤ (c3/2MA/γn)
√

TrKA (64)

where (KA)yy
′

ij is the kernel nc× nc matrix associated to the rescaled features A−1Φ(x)[y].703

Proof. Eq.56, and Theorem 8 applied to each linear family Fy of (scalar) functions leads to704

R̂S(`γ(FAMA , ·)) ≤
c

γ

c∑
y=1

MA

n

√
TrKyy

A (65)

where TrKyy
A :=

∑n
i=1(KA)yyii is computed w.r.t to the indices i = 1, ..., n for fixed y. Passing the705

average 1
c

∑c
y=1 under the root using Jensen inequality, we conclude:706

R̂S(`γ(FAMA , ·)) ≤ c2MA

γn

√√√√1

c

c∑
y=1

TrKyy
A

=
c3/2MA

γn

√
TrKA (66)

707

C.5 Linear models: Which Norm for Measuring Capacity?708

We consider a family F of scalar functions fw(x)= 〈w,Φ(x)〉 linearly parametrized by w ∈ RP ,709

where Φ is a fixed mapping of the input space X into RP . Given a training set S of size n, we denote710

by Φ = [Φ(x1), · · ·Φ(xn)]> the n× P feature matrix and by y = [y1 · · · yn]> the label vector. We711

are interested in the ‘overparametrized’ regime: we assume P ≥ n. We write the SVD of the feature712

matrix as Φ =
∑n
j=1

√
λjujv

>
j , where λ1 ≥ · · · ≥ λn are ranked in nonincreasing order. We will713

consider the minimum `2 norm interpolators [27],714

w∗ = Φ>K−1y =

n∑
j=1

u>j y√
λj
vj (67)

A standard approach is to measure capacity in terms of the `2 norm the weight vector. Considering715

FM = {fw : x 7→ 〈w,Φ(x)〉 | ‖w‖2 ≤M} , (68)

the Rademacher complexity of FM can be bounded as [6, Lemma 22]:716

R̂S(FM) ≤ (M/n)‖Φ‖F (69)

where ‖Φ‖F is the Froebenius norm of the feature matrix.15717

Is the `2 norm a good capacity measure, even for algorithms biased towards low `2 norm solutions?718

If the distribution of solutions w∗S , where S ∼ ρn, is reasonably isotropic, taking the smallest `2 ball719

containing them (with high probability) gives an accurate description of the class of trained models.720

However for very anisotropic distributions, the solutions do not fill any such ball so describing trained721

models in terms of `2 balls is wasteful [53]. For the minimum `2 norm interpolators (67), the solution722

distribution typically inherits the anisotropy of the features. For example, if yi = ȳ(xi) + εi where723

εi ∼ N (0, σ2), the covariance of the solutions with respect to noise is covε[w∗,w∗] =
∑
j
σ2

λj
vjv
>
j ,724

which scales as 1/λj along vj .725

15Note that ‖Φ‖F =
√

TrK where K = ΦΦ> is the kernel matrix.

24

−2 0 2
w1 − w̄1

−25

0

25

w
1
0
−
w̄

1
0

c = 0.4

−2 0 2
w1 − w̄1

c = 0.6

−2 0 2
w1 − w̄1

c = 0.8

−2 0 2
w1 − w̄1

c = 0.9

0.0 0.5 1.0

value of c

0.0

0.1

0.2

0.3

0.4

L
os

s

0-1 Test Loss

0.0 0.5 1.0

value of c

0.4

0.5

0.6

0.7

0.8

op
tim

al
bo

un
d

Complexity Bound

2

4

6

8

`2
bo

un
d

Figure 11: Left: 2D projection of the minimum-`2-norm interpolators w∗S , S ∼ ρn, for linear models
fw = 〈w,Φc〉, as the feature scaling factor varies from 0 (white features) to 1 (original, anisotropic features).
For larger c, the solutions scatter in a very anisotropic way. Right: Average test classification loss and complexity
bounds (69) (blue plot) for the solution vectors w∗S , as we increase the scaling factor c. As feature anisotropy
increases, the bound becomes increasingly loose and fails to reflect the shape of the test error. By contrast, the
bound (71) optimized as in Proposition 9 (red plot) does not suffer from this problem.

To visualize this on a simple setting, consider P random Fourier features [49], fit on 1D data x726

modelled by N equally spaced points in [−a, a]. In this setting, the (true) feature map is represented727

by a N × P matrix with SVD Φ =
∑
j

√
ljψjϕ

>
j . The labels are given by y(x) = sign(ψ1(x)). To728

highlight the effect of feature anisotropy, we further rescale the singular values as lcj = 1+ c(lj−1) so729

as to interpolate between whitened features (c=0) and the original ones (c=1). We setP =N=1000.730

Fig 11 (left) shows 2D projections in the plane (ϕ1,ϕ10) of (centered) solutions w∗S − ESw∗S , for731

a pool of 100 (sub)samples S of size n = 50, for increasing values of the scaling factor c. As c732

approaches 1, the solutions begin to scatter in a very anisotropic way in parameter space; as shown in733

Fig 11 (right), the complexity bound (69) (blue plot) becomes increasingly loose and fails to reflect734

the shape of the test error.735

We emphasize that this issue is about the choice of norm and not about complexity-based bounds per se.736

In fact, note that anisotropies can in principle be compensated by a suitable linear reparametrization737

w 7→ A>w, Φ 7→ A−1Φ. Any such A can be viewed as defining a new norm ‖w‖A :=
√

w>gAw738

induced by the metric gA = AA>. The following classes739

FAMA = {fw : x 7→ 〈w,Φ(x)〉 | ‖w‖A ≤MA}, (70)

define a much richer set of complexity classes than (68), represented by ellipsoids of all shapes in740

parameter space. A direct extension of the standard result (69) yields:741

R̂S(FAMA) ≤ (MA/n)‖A−1Φ>‖F (71)

in terms of the Froebenius norm of the rescaled feature matrix.16. More meaningful norms than742

the `2 norm can be found by optimizing the bound (71) withMA = ‖w∗‖A, over a given class of743

reparametrization matrices A. We give an example of this in the following Proposition.744

Proposition 9. Consider the class of reparametrization matrices Aν =
∑n
j=1

√
νjvjv

>
j +745

1span{v1,···vn}⊥ , which act as mere rescaling λj → λj/νj of the singular values of the feature746

matrix. Any minimizer of (71) for the mininum `2-norm interpolator takes the form747

ν∗j = κ

√
λj

|v>j w∗| = κ
λj
|u>j y|

(72)

where κ > 0 is a constant independant of j.748

Note that in the context of Proposition 9, the optimal norm ‖ · ‖Aν∗ depends both on the feature749

geometry – through the singular values – and on the task – through the labels –. As shown in Fig 1750

(right, red plot), in the random Fourier feature setting, the corresponding bound has a much nicer751

behaviour than the standard bound (69) based on the `2 norm.752

16We also have ‖A−1Φ>‖F =
√

TrKA whereKA = Φg−1
A Φ> is the rescaled kernel matrix.

25

D CKA and Spectral Entropy753

We make explicit a couple of metrics used in Section 3.754

Centered kernel alignment (CKA). We used CKA [18] to measure the similarity between tangent755

features and labels. Given two kernel matricesK andK ′ in Rr×r, it is defined as756

CKA(K,K ′) =
Tr[KcK

′
c]

‖Kc‖F ‖K ′c‖F
∈ [0, 1] (73)

where the c subscript denotes the feature centering operation, i.e. Kc = CKC whereC = Ir− 1
r11T757

is the centering matrix. The normalization by the Froebenius norm makes CKA invariant under758

isotropic rescaling.759

Let Y ∈ Rnc be the vector resulting from the concatenation of the one-hot label representations760

Yi ∈ Rc of the n samples. Similarity with the labels is measured through CKA with the rank-one761

kernelKY := Y Y >,762

CKA(K,KY) =
Y >KcY

‖Kc‖F ‖KY c‖F
(74)

Effective rank. We used a notion of effective rank based on spectral entropy [50]. Given a kernel763

matrixK with (strictly) positive eigenvalues λ1, · · · , λn, let764

µj = λj/TrK, TrK =

n∑
i=1

λj (75)

be the trace-normalized eigenvalues. The effective rank is defined as [50]:765

erank = exp(H(µ1, · · ·µn)) (76)

where H(µ) is the Shannon entropy given by766

H(µ1, · · ·µn) = −
n∑
j=1

µj log(µj) (77)

This effective rank is a real number between 1 and n, upper bounded by rank(K), which measures767

the ‘uniformity’ of the spectrum through the entropy.768

E Experiments: Details and Additions769

E.1 Synthetic Experiment of Fig 3770

Figure 12: Disk dataset. Left: Training set of n = 500 points (xi, yi) where x ∼ Unif[−1, 1]2,
yi = 1 if ‖xi‖2 ≤ r =

√
2/π and −1 otherwise. Right: Large test sample (2500 points forming

a 50 × 50 grid) used to evaluate the tangent kernel. In our experiment, we trained a 6-layer deep
256-unit wide MLP by full batch gradient descent of binary cross entropy.

26

101 102 103 104

sgd iterations

0.0

0.1

al
ig

nm
en

t
0.0

0.5

1.0

ac
cu

ra
cy train

test

MNIST, 6 layers MLP

101 102 103 104

sgd iterations

0.0

0.1

0.2

al
ig

nm
en

t

0.0

0.5

1.0

ac
cu

ra
cy train

test

CIFAR10, VGG19

101 102 103 104

sgd iterations

0.0

0.1

0.2

al
ig

nm
en

t

0.0

0.5

1.0

ac
cu

ra
cy train

test

CIFAR10, Resnet18

Figure 13: Evolution of the CKA between the tangent kernel and the class label kernelKY = Y Y T measured
on a held-out test set for different architectures: (left) 6 layers of 80 hidden units MLP on MNIST (middle)
VGG19 on CIFAR10 (right) Resnet18 on CIFAR10. We observe an increase of the alignment to the target
function.

101 102 103 104

sgd iterations

0.00

0.05

al
ig

nm
en

t

0.0

0.5

1.0

ac
cu

ra
cy train

test

MNIST, 6 layers MLP

101 102 103 104

sgd iterations

0.0

0.1

al
ig

nm
en

t

0.0

0.5

1.0

ac
cu

ra
cy train

test

CIFAR10, VGG19

101 102 103 104

sgd iterations

0.0

0.1

al
ig

nm
en

t

0.0

0.5

1.0

ac
cu

ra
cy train

test

CIFAR10, Resnet18

Figure 14: Same as figure 13 but without centering the kernel. Evolution of the uncentered kernel alignment
between the tangent kernel and the class label kernelKY = Y Y T measured on a held-out test set for different
architectures: (left) 6 layers of 80 hidden units MLP on MNIST (middle) VGG19 on CIFAR10 (right) Resnet18
on CIFAR10. We observe an increase of the alignment to the target function.

E.2 More alignment plots771

E.3 More plots on spectra772

E.4 Ablation: Effect of depth on alignment773

In order to study the influence of the architecture on the alignment effect, we measure the CKA774

for different networks and different initialization as we increase the depth. The results in Fig 16775

suggest that the alignment effect is magnified as depth increases. We also observe that the ratio of the776

maximum alignment between easy and difficult examples is increased with depth, but stays high for a777

smaller number of iterations.778

27

250

500

eff
.

ra
n

k

0.0

0.5

1.0

a
cc

u
ra

cy

no random labels

train

test

104

la
m

b
d

a

max
average
median

sgd iterations

0.0

0.5

1.0

tr
a
ce

ra
ti

o
s

tr
a
in

T40, T80, T160

101 102 103 104 105

sgd iterations

0.0

0.5

1.0

tr
a
ce

ra
ti

o
s

te
st

T40, T80, T160

250

500

eff
.

ra
n

k

0.0

0.5

1.0

a
cc

u
ra

cy

50% random labels

train

test

104

la
m

b
d

a

max
average
median

sgd iterations

0.0

0.5

1.0

tr
a
ce

ra
ti

o
s

tr
a
in

T40, T80, T160

101 102 103 104 105

sgd iterations

0.0

0.5

1.0

tr
a
ce

ra
ti

o
s

te
st

T40, T80, T160

Figure 15: Evolution of tangent kernel spectrum, effective rank and trace ratios of a VGG19 trained by SGD
with batch size 100, learning rate 0.003 and momentum 0.9 on dataset (left) CIFAR10 and (right) CIFAR10
with 50% random labels. We highlight the top 40, 80 and 160 trace ratios in red. The small effective rank of the
kernel biases the training procedure towards a few top eigenvectors, as can also be observed by remarking that
the trace ratio T40 account for ∼ 50% of the total trace.

28

de
pt

h
3

0.00

0.05

al
ig

n. easy
difficult

101 102 103 104

sgd iterations

5

10

15

ra
tio

0.5

1.0

ac
cu

ra
cy test easy

test diff
train easy
train diff

de
pt

h
4

0.00

0.05

al
ig

n.

101 102 103 104

sgd iterations

10

20

ra
tio

0.5

1.0

ac
cu

ra
cy

de
pt

h
5

0.0

0.1

al
ig

n.

101 102 103 104

sgd iterations

10

20

ra
tio

0.5

1.0

ac
cu

ra
cy

de
pt

h
6

0.0

0.1

al
ig

n.

101 102 103 104

sgd iterations

20

40

ra
tio

0.5

1.0

ac
cu

ra
cy

de
pt

h
7

0.0

0.1

al
ig

n.

101 102 103 104

sgd iterations

10
20
30

ra
tio

0.5

1.0

ac
cu

ra
cy

0.00

0.05

101 102 103 104

sgd iterations

5

10

15

0.5

1.0

0.00

0.05

101 102 103 104

sgd iterations

10

20

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10
20
30

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10
20
30

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10

20

0.5

1.0

0.00

0.05

101 102 103 104

sgd iterations

5

10

0.5

1.0

0.00

0.05

101 102 103 104

sgd iterations

10

20

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10
20
30

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10
20
30

0.5

1.0

0.0

0.1

101 102 103 104

sgd iterations

10
20
30

0.5

1.0

Figure 16: Effect of depth on alignment. 10.000 MNIST examples with 1000 random labels MNIST examples
trained with learning rate=0.01, momentum=0.9 and batch size=100 for MLP with hidden layers size 60 and (in
rows) varying depths (in columns) varying random initialization/minibatch sampling. As we increase the depth,
the alignment starts increasing later in training and increases faster; and the ratio between easy and difficult
alignments reaches a higher value.

29

	Neural Feature Alignment
	Measuring Complexity
	Insights from Linear Models
	A New Complexity Measure for Neural Networks

	Introduction
	Preliminaries
	Neural Feature Alignment
	Setup
	Spectrum Evolution
	Alignment to class labels
	Hierarchical Alignment
	Ablation

	Measuring Complexity
	Insights from Linear Models
	Feature Alignment as Implicit Regularization

	A New Complexity Measure for Neural Networks

	Related Work
	Conclusion
	Geometry and Tangent Kernels
	Spectral Bias
	Proof of Lemma 2
	The case of linear regression

	Complexity Bounds
	Rademacher Complexity
	Generalization Bounds
	Complexity Bounds: Proofs
	Bounds for Multiclass Classification
	Linear models: Which Norm for Measuring Capacity?

	CKA and Spectral Entropy
	Experiments: Details and Additions
	Synthetic Experiment of Fig 3
	More alignment plots
	More plots on spectra
	Ablation: Effect of depth on alignment

