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Abstract

Tokens serve as the fundamental units in language
models (LMs) for processing input, generated
through the process of tokenization. Tokeniza-
tion can split a word into multiple subwords, a
process that differs significantly from how hu-
mans perceive words, particularly in phonology.
In this work, we examine two types of phonolog-
ical features: local phonological coherence and
prosodic structure. Using probing techniques, we
demonstrate that tokenization impairs LMs’ abil-
ity to capture phonological features. Furthermore,
we show that tokenization affects LMs’ inference
results, which is one of their primary applications.
Finally, we propose a data-efficient fine-tuning
approach for large language models (LLMs) that
leverages their pre-trained pronunciation knowl-
edge, significantly enhancing inference perfor-
mance on phonology-related tasks while preserv-
ing the model’s ability on other tasks.

1. introduction
With the rapid advancement of language models (LMs),
even those trained solely on text data, powerful models
like GPT-4o appear to exhibit nontrivial knowledge about
word pronunciations. This capability has led to their use in
poetry generation (Zhang & Eger, 2024; Yu et al., 2024) and
language learning (Hamaniuk, 2021; Bonner et al., 2023).
However, how text-only LMs represent and process word
sounds remains unclear.

In this work, we aim to provide insights into how phono-
logical information is encoded in LMs by analyzing their
performance on three related tasks, including: (1) Rhyming
Awareness, which determines whether two words share
the same ending sound; (2) Grapheme-to-Phoneme (G2P)
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Figure 1. Top: Character-based tokenization (e.g., ByT5) pro-
vides finer-grained segmentation than subword tokenization (e.g.,
Llama3), aiding LMs in capturing local phonological coherence,
such as rhyming patterns. Bottom: LMs exhibit better phonolog-
ical understanding when tokenization aligns with syllabification
(STAD = 0), whereas misalignment (STAD = 0.5) impairs perfor-
mance in prosodic structure tasks.

conversion, which transcribes a word into its ARPAbet rep-
resentation, a phonetic transcription system widely used
in text-to-speech tasks; and (3) Syllable Counting, which
identifies the number of syllables in a word. Through exper-
iments involving probing hidden states and direct inference
on these tasks, we find that tokenization, the first processing
step in every LM, plays a crucial role in how LMs under-
stand word sounds.

Common tokenization algorithms include Byte Pair Encod-
ing (BPE; Gage, 1994; Sennrich et al., 2015) and Uni-
gramLM (Kudo, 2018), where they segment the input into
subwords and assign IDs to these subwords, maintaining a
manageable vocabulary size. However, there are clear lim-
itations of this approach. First, prior work has challenged
subword tokenization in lexical and arithmetic tasks (Singh
& Strouse, 2024; Bunzeck et al., 2024), and alternative
models like ByT5 (Xue et al., 2022), which use character-
level tokenization, have demonstrated greater robustness to
noise and superior performance in spelling and pronuncia-
tion tasks. Second, generalizing to out-of-vocabulary words
remains challenging due to misalignment with morpheme
boundaries (Batsuren et al., 2024). In line with existing
work, our findings suggest that tokenization affects phono-
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logical understanding in two key ways: (1) finer-grained
tokenization methods, such as character-level tokenization,
improve the model’s ability to capture local phonological
coherence (e.g., rhyming awareness); and (2) tokenization
schemes that align with a word’s syllabification enhance
the model’s ability to learn prosodic structure, benefitting
tasks like G2P and syllable counting. To quantify the align-
ment between syllabification and tokenization, we introduce
a metric called the Syllabification-Tokenization Align-
ment Distance (STAD). A lower STAD score indicates bet-
ter alignment, with a score of 0 denoting perfect correspon-
dence between syllable boundaries and token boundaries.
Our results suggest that tokenization introduces systematic
biases: language models exhibit improved performance on
rhyming awareness tasks when words are tokenized at a finer
granularity, while tasks dependent on prosodic structures
benefit from words with low STAD scores.

To mitigate the phonological biases introduced by tok-
enization, we propose an efficient data creation method for
instruct-tuning large language models (LLMs) (>7B param-
eters). Leveraging the model’s existing knowledge of the
International Phonetic Alphabet (IPA), we fine-tune it to uti-
lize IPA for phonology-related tasks, leading to performance
improvements across all three evaluated tasks. Finally, we
analyze words with high and low STAD scores, providing
linguistic explanations for the observed differences. In sum-
mary, our contributions are:

• We identify potential issues in LMs’ tokenization that
hinder phonological understanding, as revealed through
probing hidden layers. We propose the Syllabification-
Tokenization Alignment Distance (STAD) metric to
quantify deviations between tokenization and syllabifi-
cation.

• We introduce a data augmentation strategy to fine-tune
LLMs for phonology-related tasks using IPA. This ap-
proach significantly enhances task performance with min-
imal data while preserving the model’s general perfor-
mance on other tasks.

2. Related Work
Probing. Probing (Ettinger et al., 2016) investigates the
internal representations of language models by training
lightweight classifiers on hidden states to predict specific
attributes, such as truthfulness (Azaria & Mitchell, 2023),
spatial understanding (Gurnee & Tegmark, 2023), sound per-
ception (Ngo & Kim, 2024), and sound symbolism (Alper
& Averbuch-Elor, 2024). Compared to performance-based
evaluation methods like accuracy, probing reveals more nu-
anced latent knowledge (i.e., competence; Chomsky, 1965)
embedded within a model’s internal activations (Burns et al.,
2022)—even when a model produces incorrect predictions,
it may still encode relevant information. In particular, Burns

et al. (2022) introduced contrast-consistent search (CSS),
a method that maps the hidden states of true and false
statements to probabilities and trains these probabilities to
achieve “contrast consistency.” In our work, probing allows
us to evaluate smaller LMs that lack question-answering
capabilities by measuring the performance of trained clas-
sifiers. Kaushal & Mahowald (2022) employed probing
methods to demonstrate LMs. In contrast, our work uses
probing to investigate how subword tokenization may ob-
scure the encoding of local phonological features. Prior
studies have advocated for the use of simple linear mod-
els in probing tasks (Alain & Bengio, 2018; Ettinger et al.,
2016; Hewitt & Manning, 2019), arguing that less expres-
sive classifiers provide more interpretable insights into the
representations learned by the model. Motivated by this, we
adopt simple linear models—specifically, logistic regression
and ridge regression—in our experiments to maintain a clear
separation between the model’s representational capacity
and the complexity of the probing classifier.

LM Phonology. Benchmarks for assessing the phonologi-
cal capabilities of LMs are still in an early stage. Recently,
Suvarna et al. (2024) introduced a benchmark specifically
designed to evaluate LLMs’ performance on phonologi-
cal tasks. They proposed three tasks: Rhyming Genera-
tion, G2P, and Syllable Counting to evaluate the phonology
ability of LLMs, our chosen tasks are inspired by their
design. Concurrently, using LMs for phonology task is
a promising direction, some phoneme-based models have
been tailored for lower-level phonological tasks. For in-
stance, PhonemeBERT (Sundararaman et al., 2021) was
fine-tuned on a dataset combining ASR transcripts and
phonemes, while Mix-Phoneme BERT (Zhang et al., 2022)
was pre-trained with phonemes and sub-phonemes as addi-
tional features to enhance text-to-speech performance. Fur-
thermore, (Qharabagh et al., 2024) demonstrated that LLMs
could significantly improve grapheme-to-phoneme conver-
sion, especially in low-resource languages, underscoring the
potential of LLMs to advance phonological processing in
linguistically underserved contexts.

Tokenization Pitfalls. Subword-based tokenization algo-
rithms, such as BPE, are widely used in training contempo-
rary LLMs. Prior research has highlighted how tokeniza-
tion can introduce artifacts that impact model performance,
particularly in tasks involving phoneme and grapheme rep-
resentations. Shin et al. (2020) found that certain tokens
can negatively affect LMs’ performance. Additionally, tok-
enization consistency plays a crucial role in extractive QA
tasks (Sun et al., 2023). Singh & Strouse (2024) further ar-
gued that for numeric reasoning tasks, LLMs perform better
when numbers are tokenized from right to left. To mitigate
tokenization-induced issues, Deng et al. (2023) proposed a
rephrase-and-respond approach, which aligns with our IPA
fine-tuning strategy—incorporating additional information
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to circumvent tokenization pitfalls. Meanwhile, character-
level tokenization has been explored as an alternative to
subword-based methods to eliminate tokenization biases.
For instance, BERT has been shown to exhibit sensitivity
to misspellings due to its reliance on subword tokenization
(Sun et al., 2020). Bunzeck et al. (2024) retrained a smaller
language model using grapheme- and phoneme-based tok-
enization, demonstrating that these approaches can achieve
comparable performance on tasks such as lexical decision
and rhyme prediction. To address the limitations of sub-
word tokenization, character-level tokenization strategies
have been explored, including pre-training variants such as
CANINE (Clark et al., 2022) and ByT5 (Xue et al., 2022).
Our work highlights tokenizer pitfalls in phonological tasks,
extending these findings to phoneme and grapheme repre-
sentations.

3. How Tokenization Affects Phonological
Competence

To investigate how LMs represent the sound of words, we
employ probing to analyze their hidden state representa-
tions. Formally, given an LM f , we prompt it with text P ,
which can be tokenized into k subwords {w1, . . . , wk}, and
model f produces hidden states hil ∈ Rd for each subword
token i ∈ {1, . . . , k} at each layer ℓ, resulting in a hidden
state matrix Hℓ = [h1ℓ, . . . ,hkℓ]

T ∈ Rw×d, where d is
the hidden dimension. To derive a fixed-size representa-
tion for the prompt P , it is common to either use the final
layer hidden states or compute the average of the hidden
states across layers or tokens. In our experiment, we will
use the hidden state of the final token from the final layer,
denoted hℓ = hkℓ as the representation of the entire prompt
P . Given a dataset of n prompts with corresponding label
y ∈ Rn, we extract n such representations to construct our
probing dataset:

D = [h1ℓ, . . . ,hnℓ]
T ∈ Rn×d

We then train a classifier or regressor (i.e., a probe) on D to
predict the ground-truth labels y for downstream tasks, en-
abling us to analyze how well the LM encodes phonological
information.

In this section, we analyze LM performance on phonological
tasks that consist of one binary classification task—rhyming
awareness—and two regression tasks—G2P and syllable
counting—to examine the effect of tokenization on phono-
logical processing. Our experiments reveal that tokenization
influences how LMs encode phonology in two key ways:
for phonological features that rely on local phonological
coherence, finer-grained tokenization enhances model per-
formance (Section 3.1); for features dependent on prosodic
structure, alignment between tokenization and syllabifica-
tion is particularly a crucial factor (Section 3.2).

3.1. Local Phonological Coherence: Fine-Grained
Tokenization for Rhymes

Model Format Depth (Accuracy ↑)
Size 0% 20% 40% 60% 80% 100%

Subword Tokenization

BERT
110M Orig 56.0 67.6 68.3 70.9 71.0 70.5

Slash
∗∗∗
68.6

∗∗
74.5

∗∗
73.4

∗∗
77.5

∗∗
79.5

∗∗
78.1

GPT2
1.2B Orig 63.4 64.7 66.1 66.2 66.0 61.6

Slash
∗∗∗
71.7

∗∗∗
76.9

∗∗∗
77.2

∗∗∗
79.1

∗∗∗
78.5

∗∗∗
77.5

GPT-neo-2.7b
2.7B Orig 68.2 68.6 72.4 69.6 69.7 67.0

Slash 73.2
∗∗∗
82.5

∗∗∗
83.9

∗∗∗
82.5

∗∗∗
81.6

∗∗∗
82.4

Llama3-8b-Instruct
8B Orig 71.4 80.7 76.6 76.8 70.5 78.4

Slash 56.3
∗

85.4
∗∗

81.9 77.9 71.9 76.1

Llama3.1-8b-Instruct
8B Orig 72.5 79.8 79.0 77.9 77.3 74.9

Slash 56.3
∗∗

85.1
∗∗

84.0 80.0 78.9
∗∗

79.5

Mistral-7b-Instruct-v3
7B Orig 64.5 80.6 80.8 78.8 77.4 74.7

Slash 55.8 81.1
∗

82.7 79.5
∗

79.0
∗∗

77.6

Character Tokenization

ByT5-base
580M Orig 45.5 79.6 81.0 79.9 80.3 66.3

Slash - - - - - -

ByT5-small
300M Orig 45.5 75.5 80.1 77.6 72.7 71.8

Slash - - - - - -

Control Experiment

Random Embeddings
- - 48.8 48.7 51.7 49.3 50.2 50.8

Table 1. Accuracy of logistic regression trained on language mod-
els of varying depths, comparing performance with words con-
taining slash separators (Slash) vs. original words (Orig). The
reported values are the average accuracy over 10 runs. Bold indi-
cates that Slash outperforms Orig, while underlined values denote
the highest accuracy in each row. A t-test is conducted to assess
the hypothesis that Slash achieves higher accuracy than Orig, with
significance levels indicated as follows: p < 0.05 (*), p < 0.01
(**), and p < 0.001 (***). We also include the results of 32-layers
of randomized embeddings, and the results is almost random guess,
meaning that our linear prober is not overfitting to the task.

To evaluate local phonological coherence, we use the
rhyming awareness task, a fundamental phonological task
that serves as an early indicator of phonological develop-
ment in children with normal hearing (Bradley & Bryant,
1983) and a predictor of more complex phonological abil-
ities (Adams, 1994). Rhyming awareness requires deter-
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mining whether a given word pair (w1, w2) rhymes, using a
binary ground truth label y.

3.1.1. EXPERIMENT SETUP

Dataset. Since rhyming is often associated with grapheme
similarity—where rhyming words typically share the same
suffix—we aim to prevent LMs from taking shortcuts by re-
lying solely on word endings. To achieve this, we construct
a dataset consisting of 200-word pairs that rhyme but have
different three-letter ending suffixes as positive pairs, along
with 200 non-rhyming word pairs as negative pairs.

Model. We evaluate LMs with different architectures, sizes,
and tokenization strategies: BERT (Koroteev, 2021), GPT-
2 (Saphra & Lopez, 2019), GPT-neo-2.7B (Black et al.,
2021), Llama3-8B, Llama3.1-8B (Grattafiori et al., 2024),
Mistral-7B-v3 (Jiang et al., 2023). To compare against the
character tokenization strategy, we also include ByT5-base
and ByT5-small (Xue et al., 2022).

Evaluation. Since most tokenizers either retain a word
as a single token or split it into multi-character subwords,
they may fail to capture subtle intra-word features such as
rhyme. We hypothesize that a more fine-grained tokeniza-
tion approach improves an LM’s capability to encode local
phonological coherence. To test this, we modify the input
words by inserting slashes between each consecutive pair
of characters to enforce finer-grained tokenization. For ex-
ample, while most tokenizers represent the word w = “boy”
as a single token, the transformed word w′ = “b/o/y” is to-
kenized as [‘b’, ‘/’, ‘o’, ‘/’, ‘y’] for most
tokenizers. This finer-grained segmentation lets the lan-
guage models attend to pronunciation cues at a sub-word
level. To ensure the effect is not tied to the slash delimiter
alone, we reran the experiment with alternative punctuation
marks (comma and period); see Appendix F for the results.

We split the dataset into 80% training and 20% test sets. To
obtain hidden states, we construct two prompts: the original
tokenization P = “w1, w2” and finer-grained tokenization
P ′ = “w′

1, w
′
2”, then extract the corresponding hidden states

hℓ = f(P ) and h′
ℓ = f(P ′) from each layer ℓ of the LM.

For each layer ℓ, we train two logistic regression classifiers
on hℓ and h′

ℓ, respectively, and compare their performance
on the test set. We present our results in Table 1.

3.2. Prosodic Structure: Alignment of Tokens and
Syllables

Syllabification, also known as hyphenation, refers to di-
viding a word into its constituent syllables. A syllable is
a unit of pronunciation that typically consists of a vowel
sound, often accompanied by consonants, following linguis-
tic rules that determine where natural breaks occur in spoken
language. For instance, the word decide is syllabified as

[‘de’, ‘cide’]. Understanding syllabification is es-
sential for accurate pronunciation, linguistic analysis, and
poetry. The rules governing syllable division vary across
languages and depend on phonetic and morphological struc-
tures (Selkirk, 1986). The tokenization strategies of LMs,
however, do not explicitly consider phonological princi-
ples. This discrepancy can lead to misalignment between
tokenization and syllable boundaries, potentially hindering
LMs’ ability to capture prosodic structure—the broader
phonological properties of words, including rhythm and
syllable organization.

3.2.1. THE STAD SCORE

To quantify the deviation between tokenization and syllabi-
fication, we introduce a metric, syllabification-tokenization
alignment distance (STAD). For a given word consisting
of n + 1 characters w = a1a2 . . . an+1, there are n possi-
ble positions to make a split. We use two binary vectors
vtok = [b1, b2, . . . , bn] and vsyl = [c1, c2, . . . , cn] to encode
the splits. Here, bi, ci ∈ {0, 1}, where bi = 1 indicates a to-
kenization split after the i-th character, and ci = 1 indicates
a syllabification split after the i-th character. For exam-
ple, consider the word musical. According to syllabification
rules, it splits into [‘mu’, ‘si’, ‘cal’], represented
as vsyl = [0, 1, 0, 1, 0, 0]. Meanwhile, the tokenizer splits
it as [‘mus’, ‘ical’], yielding vtok = [0, 0, 1, 0, 0, 0].
The deviation between tokenization and syllabification is
measured using the normalized Hamming distance (HD)
between vtok and vsyl:

STAD(w) = HD(vtok,vsyl) =

∑n
i=1 |bi − ci|

n
.

Therefore, in the above example, the STAD score for musi-
cal is 0.5.

3.2.2. EXPERIMENT SETUP

Dataset. For each LM, we create two splits of words, the
token-syllable aligned (A) split and the token-syllable mis-
aligned (M) one. The words are sampled from google-
10000-English,1 which includes the 10,000 most frequent
English words. For each LM, we sample 1,000 words with
high STAD (> 0.25) as misaligned words and 1,000 aligned
ones with 0 STAD. To probe the phonological understand-
ing of LMs on different words, we consider two tasks: G2P
and syllable counting.

Models. Similarly to Section 3.1, we experiment with vari-
ous models. For this experiment, we add in BLOOM-560M
(BigScience Workshop, 2022), Yi-6B (Young et al., 2024),
Falcon-7B (Almazrouei et al., 2023), but exclude the two
byte-level tokenization models.

1https://github.com/first20hours/
google-10000-english
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Model STAD Syllable Counting (R2 ↑) Grapheme-to-Phoneme (R2 ↑)
Align 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

BERT

A 0.000
∗∗∗

0.999
∗∗∗

0.952 0.009 0.022 0.129 0.054 0.004 0.056 0.001 0.002 0.030 0.009
M 0.290 0.404 0.626 0.068 0.074 0.264 0.143 0.009 0.085 0.001 0.002 0.024 0.010

GPT2

A 0.000 0.027
∗∗∗

0.980
∗∗∗

0.980
∗∗∗

0.969
∗∗∗

0.952
∗∗∗

0.929
∗∗∗

0.198
∗∗∗

0.229
∗∗∗

0.232
∗∗∗

0.217
∗∗∗

0.185
∗∗∗

0.194
M 0.388 0.589 0.740 0.732 0.728 0.714 0.684 0.081 0.148 0.146 0.124 0.080 0.119

bloom-560m

A 0.000 0.476
∗∗∗

0.947
∗∗∗

0.966
∗∗∗

0.950
∗∗∗

0.936
∗∗∗

0.922 0.058
∗∗

0.238
∗

0.231 0.222 0.214
∗∗

0.193
M 0.376 0.489 0.766 0.753 0.711 0.674 0.608 0.096 0.196 0.215 0.215 0.199 0.168

GPT-neo-2.7b

A 0.000
∗∗∗

0.945
∗∗∗

0.953
∗∗∗

0.967
∗∗∗

0.942
∗∗∗

0.930
∗∗∗

0.914
∗∗∗

0.179
∗∗

0.219
∗∗∗

0.211
∗∗∗

0.148
∗∗∗

0.078
∗∗∗

0.004
M 0.388 0.555 0.787 0.758 0.692 0.634 0.539 0.072 0.169 0.111 0.005 -0.124 -0.219

gemma-7b

A 0.000 0.383
∗∗∗

0.921
∗∗∗

0.934
∗∗∗

0.976
∗∗∗

0.946
∗

0.782
∗∗∗

0.168
∗

0.279 0.247 0.260
∗

0.312 0.193
M 0.303 0.640 0.773 0.769 0.772 0.758 0.672 0.054 0.229 0.231 0.226 0.284 0.183

Llama3.1-8b-Instruct

A 0.000 0.188
∗∗∗

0.936
∗∗∗

0.939
∗∗∗

0.921
∗∗∗

0.898
∗∗∗

0.859 0.033
∗

0.325
∗∗

0.321
∗∗

0.387
∗∗

0.357 0.166
M 0.372 0.211 0.783 0.789 0.769 0.754 0.723 0.029 0.304 0.285 0.349 0.317 0.157

Llama3-8b-Instruct

A 0.000 0.152
∗∗∗

0.931
∗∗∗

0.935
∗∗∗

0.923
∗∗∗

0.899
∗∗∗

0.860
∗∗∗

0.034
∗∗∗

0.349
∗∗∗

0.356
∗∗∗

0.370
∗∗∗

0.366
∗∗∗

0.325
M 0.372 0.165 0.769 0.795 0.769 0.749 0.717 0.023 0.295 0.297 0.333 0.308 0.276

Mistral-7b-Instruct-v3

A 0.000 0.028
∗∗∗

0.800
∗∗∗

0.913
∗∗∗

0.911
∗∗∗

0.854
∗∗∗

0.816 0.001 0.212 0.301 0.314 0.297 0.239
M 0.348 0.045 0.708 0.804 0.806 0.789 0.762 0.000 0.214 0.283 0.317 0.282 0.261

Falcon3-7b-Instruct

A 0.000 0.419
∗∗∗

0.974
∗∗∗

0.977
∗∗∗

0.975
∗∗∗

0.975
∗∗∗

0.977
∗∗∗

0.100
∗∗

0.209
∗∗

0.192
∗∗∗

0.153
∗∗∗

0.151
∗∗∗

0.149
M 0.337 0.618 0.776 0.769 0.734 0.728 0.729 0.050 0.148 0.155 0.054 0.004 0.025

Yi-1.5-6B-Chat

A 0.000 0.252
∗∗

0.925
∗∗∗

0.937
∗∗∗

0.940
∗∗∗

0.941
∗∗∗

0.936 0.056 0.240 0.269
∗

0.245
∗∗

0.210
∗∗

0.189
M 0.326 0.624 0.852 0.825 0.783 0.746 0.737 0.082 0.231 0.228 0.190 0.148 0.117

Control Experiment

Randomized Embedding
- - -0.082 -0.073 0.001 -0.115 -0.097 -0.022 -0.07 -0.101 -0.043 -0.073 -0.066 -0.082

Table 2. R2 of the ridge regression probe trained on hidden layers of varying depths for the G2P and syllable counting tasks, comparing
performance between words with aligned syllables and tokens (A) and misaligned syllables and tokens (M). The reported values represent
the average R-squared over 10 runs. Bold indicates that A outperforms M, while underlined values denote the highest R-squared in
each row. A t-test is conducted to evaluate the hypothesis that words in group A achieve higher R-squared than those in group M, with
significance levels indicated as follows: p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). We also include the control experiment where
we randomly generate 32 layers of the embeddings.

Evaluation. For G2P task, we use the CMU Pronunciation
Dictionary 2 as our reference standard. The library provides
phoneme transcript for English words and the phonemes are
given in ARPAbet, which consists of 39 different phonemes

2http://www.speech.cs.cmu.edu/cgi-bin/
cmudict

to describe the pronunciation of a word. Compared to the
International Phonetic Alphabet (IPA), ARPAbet offers a
more practical representation for computational modeling:
IPA contains a large set of symbols, many of which are diffi-
cult to encode consistently across systems, while ARPAbet
uses a limited set of ASCII characters and is widely adopted
in speech processing research. We encode the ARPAbet
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transcript using indices 0 to 39, where index 0 is reserved
for padding the encoded vector to make all encoded vector
has the same length of 8, the maximum number of syllables
in our dataset. For a word w, we form the prompt P =
‘w’, and extract the hidden states hℓ = f(P ) for each layer
ℓ. We represent the ARPAbet phoneme encoding of each
word as a vector yw ∈ R8, where each entry corresponds
to the index of a phoneme in the padded sequence. To map
hidden state representations to phoneme sequences, we train
a multi-label ridge regression model using the hidden states
as input features and the phoneme indices as targets. We
choose ridge regression over multi-class classification for
this task because the latter requires training a separate clas-
sifier for each position with a 40-class output space, which
is both computationally intensive and prone to overfitting
given the limited size of training data. In contrast, ridge
regression offers a simpler and more stable alternative that
performs well in high-dimensional settings and provides
smooth predictions suitable for downstream phoneme de-
coding.

For syllable counting, we use the same hidden states as the
G2P task, and represent a label with an integer yw ∈ Z+

indicating the number of syllables in the word w. Similarly,
we fit the ridge regression on hidden states and the labels.
We present the results for both experiments in Table 2.

3.3. Observations

In the rhyming awareness task (Table 1), we observe that
a finer-grained tokenization strategy, achieved by insert-
ing slashes within words, significantly enhances the local
phonological coherence captured by LMs. Probes trained on
hidden states from slash-inserted words exhibit substantially
stronger predictive power across all layers beyond the word
embedding layer for all tested LMs. Additionally, models
employing character-level tokenization produce consider-
ably more informative hidden states compared to similarly
sized subword-tokenized models and achieve performance
comparable to much larger subword-based models.

Furthermore, phonological features are more closely tied
to morphosyntactic structures than to word semantics. Our
findings resonate with that by Saphra & Lopez (2019), who
suggest that early LM layers primarily encode syntactic fea-
tures, while deeper layers capture semantic properties. No-
tably, in all three tasks, we found that phonology-related fea-
tures were most expressively encoded in mid-range layers,
typically spanning 20%–60% of the overall depth. Beyond
this range, performance declined as deeper layers became
increasingly associated with semantic processing.

To guard against the pitfall identified by Hewitt & Liang
(2019)—namely, that an expressive probe can memorize
the target function even when the representation lacks the
relevant information—we replicate their “control” protocol

for all three of our tasks (rhyming awareness, grapheme-to-
phoneme, syllable counting): keeping the model’s hidden
states unchanged, we shuffle the labels to preserve marginal
statistics and train the same linear probe on this nonsense
task. As detailed in Appendix A, the probe’s accuracy falls
to chance on the binary task and its R2 becomes zero or neg-
ative on the regression tasks across every layer and model,
confirming that our linear prober is not powerful enough
to invent the mapping on random data and that the positive
results reported in the main paper genuinely reflect informa-
tion encoded in the representations rather than overfitting
by the probe itself.

4. How Tokenization Affects Inference
The probing experiments (Section 3) only demonstrate how
LMs encode the phonology features of words, and our ex-
periments suggest that tokenization plays an important role
in LMs encoding those features. Currently, LMs are more
used in scenarios where users directly get answers from the
output of the LMs. In this section, we present experiments
that suggest tokenization may affect the results of inference,
but keeping the input in an appropriate format is more im-
portant in terms of the inference results. Also, we find that
most LMs with large parameter sizes (> 7B) have a solid un-
derstanding of the IPA of the word, but the models will fail
to adapt that knowledge in phonology-related tasks; there-
fore, we propose a data-efficiency way to fine-tune language
models to improve the capability in phonology-related tasks.

4.1. Inference Using IPA

The International Phonetic Alphabet (IPA) is a more widely
used and standardized representation of word pronunciation
compared to the ARPAbet. LMs tend to exhibit a signifi-
cantly better understanding of IPA than ARPAbet, making
IPA a valuable tool for phonology-related tasks such as
rhyme detection and G2P conversion. For example, con-
sider the words tough and though. They share the same
orthographic ending, ”-ough,” which might mislead an LM
into classifying them as rhyming words. However, from
their IPA transcriptions, /t2f/ and /DoU/, LMs can easily
reveal that they do not rhyme. Despite possessing knowl-
edge of IPA, LMs often fail to leverage it effectively in
phonology-related tasks (Suvarna et al., 2024).

To address this limitation, we propose a data augmentation
method to fine-tune LMs, ensuring they better utilize IPA
representations in phonological tasks. Additionally, we care-
fully construct the QA training dataset to prevent the issue of
catastrophic forgetting (Kirkpatrick et al., 2017), which can
arise when models are fine-tuned on a specific domain, such
as phonology, without maintaining generalization across
broader linguistic tasks.
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Figure 2. Performance comparison of three language models (Llama3.1-8B, Llama3-8B, and Mistral-7B) and the LoRA-fine-tuned
Llama3.1-8B-IPA model on three phonology-related tasks. The left figure corresponds to the Rhyming Awareness task (higher accuracy is
better), the middle figure corresponds to the Syllable Counting task (higher accuracy is better), and the right figure corresponds to the
Grapheme-to-Phoneme (G2P) task (lower phoneme error rate (PER) is better). The fine-tuned Llama3.1-8B-IPA model achieves the
highest accuracy in Rhyming Awareness and Syllable Counting while also attaining the lowest PER in the G2P task, demonstrating the
effectiveness of IPA fine-tuning for phonological reasoning.

For a given general QA conversation, we augment it by
randomly selecting 0–2 words in the question and wrapping
the word using IPA token. And in the beginning of the
answer, we add one sentence giving the IPA of the chosen
words. If no word is chosen, we do not add anything to
the original data. For the domain-specific data, we also
conversationally create the data, where questions are a series
of possible prompts, and answers are an inference process
using the IPA (see Appendix B for an example).

Data Type Number of Examples

Conversation 3000

Rhyming Awareness 200

Syllable Counting 500

G2P 500

Table 3. Number of fine-tuning examples from each source.

4.2. Experiment Setup

Dataset. Our dataset consists of two sources: (1) high-
quality general instruction-tuning conversation data sampled
from OpenHermes2.5 (Teknium, 2023), and (2) phonology-
related tasks, where we select words outside the Google-
10000-English dataset as training examples. We summarize
the data statistics in Table 3, and present the detailed data
construction template in Appendix B.

Models. We evaluate three tasks using the dataset de-
scribed in Section 3, conducting zero-shot inference, with
prompt templates provided in the appendix. We assess three
instruction-tuned LLMs: Llama3.1-8B, Llama3-8B, and
Mistral-7B-v3. Furthermore, we fine-tune the Llama3.1-8B

model using LoRA (Hu et al., 2021) on our constructed
instruction-tuning dataset (see Table 3).

Evaluation. For the rhyming awareness task, we extract
the model’s true/false predictions and compute the accu-
racy. For the syllable counting task, we evaluate the model’s
predicted syllable count against the ground truth, and also
report the accuracy. For the G2P task, we compute the
Phoneme Error Rate (PER), defined as the Levenshtein
distance between the predicted and reference phoneme se-
quences (both in ARPAbet), normalized by the number of
phonemes in the reference pronunciation. A lower PER in-
dicates better transcription quality. The results for all three
tasks are presented in Figure 2. We present the prompt used
for evaluation in Appendix C.

To ensure there is no catastrophic forgetting in our fine-tuned
model, we also evaluate it on two widely used benchmarks:
GSM8K (Cobbe et al., 2021) and MMLU (Hendrycks et al.,
2021). We employ a chat-style zero-shot evaluation to simu-
late real-world user interactions. For MMLU, we randomly
sample three subjects from each major category (STEM,
social sciences, humanities, and other), totaling 12 subjects.

4.3. Results

As presented in Figure 2, for the rhyming awareness task,
we find that simply inserting slashes into words does not
necessarily improve performance; instead, it decreases in-
ference accuracy. We hypothesize that this occurs because
the slashes disrupt the tokenization structure of the input,
leading to incorrect predictions. This observation suggests
that tokenization is not the sole factor influencing model
decisions in rhyming tasks—other factors, such as the statis-
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Model GSM8K MMLU

Llama3.1-8B-Instruct 70.4 65.3

Llama3.1-8B-IPA (Ours) 67.9 64.4

Table 4. Performance comparison between the Llama3.1-8B-
Instruct model and the fine-tuned Llama3.1-8B-IPA model on
non-phonology tasks. The reported metrics are accuracy for both
GSM8K (math reasoning) and MMLU (general knowledge and
understanding). Fine-tuning with IPA results in only a minor per-
formance drop in general tasks, indicating effective knowledge
retention.

tical distribution of words in the training corpus, may also
play a role. However, by incorporating IPA representations,
model performance improves significantly, achieving nearly
90% accuracy on our rhyming awareness dataset.

For the two prosodic structure tasks, LMs perform consider-
ably better on words with low STAD scores, indicating that,
beyond learned representations, tokenization structure also
affects inference quality. Our fine-tuned IPA model signifi-
cantly enhances performance on the G2P task. However, the
improvement in syllable counting for low-STAD words re-
mains relatively minor, as the baseline Llama3.1-8B-Instruct
model already demonstrates strong proficiency in this task.
On the other hand, the improvement for high-STAD words
is more pronounced, suggesting that fine-tuning with IPA
reduces the bias introduced by tokenization. Nevertheless,
despite fine-tuning the model for phonology-related tasks
using IPA, some degree of bias introduced by tokenization
remains.

Due to the way we curated the dataset, our model maintains
strong performance in phonology-related tasks while largely
preserving its capabilities in other domains (Table 4). The
evaluation of GSM8K and MMLU shows that the fine-tuned
model, Llama3.1-8B-IPA, retains most of its general rea-
soning and knowledge abilities. Specifically, compared to
the original Llama3.1-8B-Instruct model, the accuracy drop
is minimal—only 2.5 percentage points on GSM8K and
0.9 percentage points on MMLU. This demonstrates that
our fine-tuning approach effectively enhances phonology-
related reasoning without significantly compromising per-
formance on broader language understanding and reasoning
tasks.

5. Cognates Based Analysis
Having identified the potential biases that tokenization intro-
duces to language models (LMs) in phonology-related tasks,
we now investigate the underlying causes and the types of
words most susceptible to such tokenization discrepancies.
Most modern tokenization algorithms, such as BPE and Sen-
tencePiece, optimize subword segmentation to maximize

corpus frequency or model likelihood. Consequently, words
whose tokenization misaligns with their natural syllabifica-
tion often exhibit significant orthographic variability in the
training corpus, arising from historical processes such as
lexical borrowing and etymological divergence.

A key factor contributing to such variation is the presence
of cognates and loanwords across languages. To systemati-
cally examine this phenomenon, we use CogNet (Batsuren
et al., 2019), a comprehensive database of cognate words
and loanwords, to identify potential cognates associated
with a given lexical item.

To empirically test whether the presence of cognates corre-
lates with deviations in syllabification-aligned tokenization,
we analyze the average number of cognate words for aligned
words (A) and misaligned words (M) across six different
tokenizers, as discussed in Section 3.2. The results, reported
in Figure 3, indicate that words in group M systematically
exhibit a higher number of cognate variants than those in
group A across all evaluated tokenizers. This finding sug-
gests that words with extensive cross-linguistic cognacy are
more likely to undergo non-standard tokenization.

From a linguistic perspective, this correlation can be ex-
plained by the fact that words with a greater number of cog-
nates tend to be semantically and morphologically richer.

Such words often undergo multiple layers of phonologi-
cal and orthographic adaptation across languages, leading
to greater variability in their written forms. This variabil-
ity increases the likelihood that tokenization algorithms
will segment them in ways that diverge from their natural
phonological structure. Additionally, because tokenization
algorithms prioritize frequency-based segmentation, highly
polysemous or widely borrowed words may be tokenized
in ways that reflect corpus-level distribution rather than
phonological intuition.
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Figure 3. Average number of cognates of token-syllable aligned
words (A) and token-syllable misaligned words (M) for different
tokenizers.
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6. Conclusion and Discussion
We have evaluated three phonology-related tasks centered
on local phonological coherence and prosodic structure,
demonstrating that the tokenization techniques used by LMs
can introduce biases in word representation, thereby limiting
their performance on these tasks. To address this challenge,
we have proposed an efficient approach that leverages a
small amount of data and computational resources to en-
hance LM performance. Additionally, we identify a correla-
tion between tokenization bias and the linguistic variability
of words, though the causal relationship remains an open
question.

Insights from this work may also benefit the development
of joint speech and text language models (e.g., Chou et al.,
2023, inter alia), by enabling better text tokenization that
preserves nuanced phonological information.

Finally, it is worth noting that our experiments have been
focused on English, a representative alphabetic language.
Findings in this work need significant work to be possibly
adaptable to logographic languages. We leave the explo-
ration of a broader range of modal architectures and addi-
tional languages for future work.
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A. Controlled-Experiment of the Probing
To verify that our linear probes do not artificially inflate
performance, we repeat every probing experiment with ran-
domly generated targets. For rhyming awareness, we assign
a random binary label to each word-pair; for grapheme-to-
phoneme (G2P) prediction we draw a random integer in
the range [0, 39] for every phoneme slot; and for syllable
counting, we sample a random integer between 0 and 8. We
train the same logistic- and ridge-regression probes as in
the main study on GPT-2 and Llama-3.1-7B using these
synthetic labels.

As summarised in Figure 4, the control probes behave ex-
actly as expected: accuracy hovers around the chance rate
of 0.5 for the binary classification task, and all R2 values for
the two regression tasks are zero or negative across layers.
This confirms that the probes themselves lack the capacity
to memorize arbitrary labellings and that the positive results
reported in the main paper genuinely stem from information
encoded in the models’ hidden representations rather than
from overfitting artefacts.

B. Phonology-related Task Training Template

Algorithm 1 Conversation Data Creation with IPA Annota-
tions
Require: Dataset D with question-answer pairs (q, a), IPA sen-

tence template L. Function fill(T,w) to fill a template T
using word w. Function get IPA to get IPA.

Ensure: Modified dataset D′ with IPA-annotated questions and
answers

1: D′ ← ∅
2: for each (q, a) ∈ D do
3: Split q into words: W ← split(q)
4: Sample k ∼ Uniform({0, 1, 2})
5: Uniformly sample S ⊂W with |S| = k
6: for each selected word wi ∈ S do
7: Replace wi in q with ⟨IPA⟩ wi ⟨/IPA⟩.
8: Obtain IPA transcription of wi: I = get IPA(wi)
9: end for

10: filling in words from S into L, l = fill(L, S)
11: Prepend sentence l indicating IPA representation to a:

a′ ← a+ l
12: Add modified pair (q′, a′) to D′

13: end forreturn D′

Here, we demonstrate the detailed training template we used
for constructing the training dataset for each problem. We
demonstrate how we construct 4 categories of QA pairs as
our fine-tuning dataset.

Conversation.We used OpenHermes2.5 (Teknium, 2023) as
the source of the conversation dataset, it involves all kinds
of conversational datasets consisting of question and answer.
In the question, we randomly select 0 - 2 words and wrap
the words with an IPA token to indicate that we want the
IPA of the word, and in the answer, we add one sentence

Algorithm 2 Dataset Creation for Rhyming Awareness Task
Require: Word pair list with IPA transcriptions, possible tem-

plates P1, . . . , P5. Positve answer template AP , negative
answer template AN . Function fill(T,w) to fill a template
T using word w.

Ensure: Dataset with question-answer pairs
1: for each (word1, word2) pair do
2: Sample i ∼ Uniform({0, 1, 2, 3, 4, 5})
3: P ← fill(P, (word1, word2)).
4: Extract IPA endings of word1 and word2
5: if IPA endings match then
6: response← fill(AP , (word1, word2))
7: else
8: response← fill(AN , (word1, word2))
9: end if

10: Store (Pi, response) in dataset
11: end for

Algorithm 3 Dataset Creation for Grapheme-to-Phoneme
(G2P) Task
Require: Word list with IPA transcriptions, possible templates

P1, . . . , P5. Answer template A. ARPAbet-to-phoneme dic-
tionary M . Function fill(T,w) to fill a template T using
word w.

Ensure: Dataset with question-answer pairs
1: for each word w in dataset do
2: Sample i ∼ Uniform({0, 1, 2, 3, 4, 5})
3: P ← fill(Pi, w)
4: Obtain IPA transcription of w: I = get IPA(w)
5: IPA phonemes to ARPAbet: A = [M [p] for p ∈ I]
6: response← fill(A, (w, I,A))
7: Store (P, response) in dataset
8: end for

Algorithm 4 Dataset Creation for Syllable Counting Task
Require: Word list with IPA transcriptions, possible templates

P1, . . . , P5. Answer template A. Function fill(T,w) to fill
a template T using word w.

Ensure: Dataset with question-answer pairs
1: for each word w in dataset do
2: Sample i ∼ Uniform({0, 1, 2, 3, 4, 5})
3: P ← fill(Pi, w)
4: Obtain IPA transcription of w: I = get IPA(w)
5: Identify vowels and diphthongs in I
6: Compute syllable count: S = count syllables(I)
7: Format response using S: response← fill(A, (w, S))
8: Store (P, response) in dataset
9: end for

indicating the IPA of the words. We present the process of
data creation in Algorithm 1 and show an example in Figure
5a.

Rhyming Awareness. In the rhyming awareness, we pre-
pare 5 possible question templates P1, P2, . . . P5 to mimic
the possible users’ questions. In the answer, we first give
the IPA of the word as in Conversation. Then, from the
IPA, we extract the same part of the IPA if two words are
in rhyme, or state two words are not in rhyme if the IPA
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Figure 4. Control-label sanity check. Probing performance with random targets for GPT-2 (upper block) and Llama-3.1-7B (lower block).
Left-to-right: (i) Rhyming awareness––accuracy; (ii) G2P––R2; (iii) syllable counting––R2. Solid lines reproduce the original probes,
dashed lines the corresponding control probes. All curves collapse to chance (accuracy ≈ 0.5) or sub-chance (R2 ≤ 0), demonstrating
that the linear probes do not overfit when the target carries no linguistic signal.

does not have the same ending. We present the process of
rhyming awareness data creation in Algorithm 0 and we
show the question templates and example answer in Figure
5b.

G2P. In the G2P task, we also prepare 5 possible ques-
tion templates. In the answer, we break the IPA transcript
phoneme by phoneme and use the map from phoneme to
ARPAbet to convert the IPA to ARPAbet. We present the
process of G2P data creation in Algorithm 0 and the ques-
tion templates and an example answer in Figure 5c.

Syllable Counting. In the syllable counting, there are also 5
possible questions as before, in the solution, we first identify
the vowels and diphthongs in the IPA transcript and add up
the number of vowels and diphthongs, which will give the
total number of syllables. We present the process of syllable
counting data creation in Algorithm 0 and the question
templates and an example answer in Figure 5d.

C. Evaluate Prompt For Phonology Inference
To assess phonological competence in a controlled, model-
agnostic manner, we rely on three single-turn, zero-shot
prompts, one for each task shown in Figure 6. Each tem-
plate first frames the task in plain English—defining either
the ARPAbet symbol inventory, the notion of rhyme, or the
meaning of a syllable—before requesting an answer in an un-
ambiguous stub such as ARPAbet: . . . , Answer: True/False,
or Answer: <number>. By stipulating the permissible sym-
bol set and response syntax up front, the prompts eliminate
formatting variance and allow us to grade outputs with exact
matching rather than heuristics. The resulting protocol iso-
lates the models’ ability to map orthography to phonological
structure, guaranteeing that any performance differences re-
ported in the main paper stem from representational content
rather than prompt interpretation or output-parsing artefacts.
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A: word Every has IPA /ˈɛv.(ə.)ɹi/ and leaves has IPA /liːvz/.
Here's the logic behind this:\n\n1. We know that February has 28 days in a 
non-leap year.
2. If the tree drops 7 leaves every day, then over the course of February, it would 
drop:  Leaves dropped in February = Leaves per day * Days in February = 7 leaves 
* 28 days = 196 leaves.
So, the tree would drop 196 leaves in February in a non-leap year

Q:<IPA>Every</IPA> day, a tree drops 7 leaves. How many <IPA>leaves</IPA> 
would it drop in a month of February in a non-leap year? Include your logic.

(a) An example of how we construct QA data from OpenHer-
mes2.5.

P1: Consider words <IPA>{word1}</IPA> and <IPA>{word2}</IPA>. Do they rhyme?
P2: Are the following words in rhyme? <IPA>{word1}</IPA>, <IPA>{word2}</IPA>?
P3: Does word <IPA>{word1}</IPA> rhyme with word <IPA>{word2}</IPA>?
P4: Is word <IPA>{word1}</IPA> and <IPA>{word2}</IPA> in rhyme?
P5: Rhyming words are words that have the same ending sound. Is word 
<IPA>{word1}</IPA> in rhyme with word <IPA>{word2}</IPA>?

Example Answer 1: cat has IPA /kæt/ and hat has IPA /hæt/.
From the IPA transcriptions, cat and hat have the same ending sound /æt/, therefore they are in 
rhyme.
Answer: Yes
Example Answer 2 : rain has IPA /ɹeɪn/ and bloom has IPA /bluːm/.
From the IPA transcriptions, rain and bloom have different ending sounds, therefore they are not in 
rhyme.
Answer: No

(b) All possible questions and example answers fo rhyming aware-
ness task.

P1: Give the ARPAbet transcription of the following word.
Word: <IPA>{word}</IPA>"
P2: Convert the following word into ARPAbet.
Word: <IPA>{word}</IPA>
P3: ARPAbet is a phonetic transcription system used to represent the pronunciation of words. 
Below are the ARPAbet symbols:
Vowels:
AA, AE, AH, AO, AW, AY, EH, ER, EY, IH, IY, OW, OY, UH, UW
Consonants:
B, CH, D, DH, F, G, HH, JH, K, L, M, N, NG, P, R, S, SH, T, TH, V, W, Y, Z, ZH
Provide ARPAbet transcriptions using only the symbols above, add space between each 
phoneme.
Now, transcribe the following word, output the answer as 'ARPAbet: <phoneme sequence>' 
and stop generating after the answer.
Word: <IPA>{word}</IPA>
P4: ARPAbet is a phonetic transcription system used to represent the pronunciation of words. 
for example, if the word is 'cat', the ARPAbet transcription is 'K AE T'. If the word is 'university', 
the ARPAbet transcription is 'Y UW N AH V ER S AH T IY'. What is the ARPAbet transcription 
of the following word?
Word: <IPA>{word}</IPA> 
P5:ARPAbet is a phonetic transcription system used to represent the pronunciation of words.
For example:
Word: cat
ARPAbet: K AE T
Word: dog
ARPAbet: D AW G
What is the ARPAbet transcription of the following word?
Word: <IPA>{word}</IPA>

Example Answer: 
ideology has IPA /aɪdiɑlʌdʒi/.
From the IPA transcription, we can 
look at each phoneme and find the 
corresponding ARPAbet 
transcription:
aɪ corresponds to AY
d corresponds to D
i corresponds to IY
ɑ corresponds to AA
l corresponds to L
ʌ corresponds to AH
dʒ corresponds to JH
i corresponds to IY
ARPAbet: AY D IY AA L AH JH IY

(c) All possible questions and an example answer for G2P task.

P1: How many syllables does the word <IPA>{word}</IPA> have?
P2: How many syllables does the word <IPA>{word}</IPA> have?
Example:
Word: cat
Answer: 1
Word: take
Answer: 1
Word: <IPA>{word}</IPA>
Answer:
P3: Count the number of syllables in the word <IPA>{word}</IPA>.
Example:
Word: cat
Answer: 1
Word: take
Answer: 1
Word: <IPA>{word}</IPA>
Answer: 
P4: Count the number of syllables in the word <IPA>{word}</IPA>.
Give the answer in the format:
Answer: <number of syllables>
P5: Count the number of syllables in the word <IPA>{word}</IPA>.
The give the answer as 'Answer: <number of syllables>

Example Answer: 
struggling has IPA /ˈstrʌɡlɪŋ/.  
From the IPA transcription, the 
vowels are /ʌ/ and /ɪ/
The number of syllables in the 
word is 2  
Answer: 2

(d) All possible questions and an example answer for syllable
counting task.

Figure 5. Examples of our question templates and some example
answers. The yellow part is the common part of the fine-tuning
dataset, which helps the model to identify which word to consider
IPA and give the IPA explicitly.

G2P Prompt

ARPAbet is a phonetic transcription system used to represent the pronunciation of 
words Below are the ARPAbet symbols

Vowels:
AA, AE, AH, AO, AW, AY, EH, ER, EY, IH, IY, OW, OY, UH, UW

Consonats:
B, CH, D, DH, F, G, HH, JH, K, L, M, N, NG, P, R, S, SH, T, TH, V, W, Y, Z, ZH

Provide ARPAbet transcription using only the symbols above, add space between each 
phoneme. Transcribe the following word, output the answer as ‘ARPAbet: <phoneme 
sequence>’.
Word: {word}

(a) The prompt template we used to evaluate the G2P task.

Rhyming words are words that have the same ending sound. Determine if the following 
two words are in Rhyme.
{word1}, {word2}
Give the answer as “Answer: True” if they rhyme and “Answer: False” if they do not.

Rhyming Awareness Prompt

(b) The prompt template we used to evaluate the rhyming aware-
ness task.

Count the number of syllables in the word: '{word}'
Give the answer in the format “Answer: <number of syllables>”

Syllable Counting Prompt

(c) The prompt template we used to evaluate the syllable counting
task.

Figure 6. Zero-shot prompt templates for (a) G2P transcription,
(b) rhyme judgement, and (c) syllable counting, each with a fixed
answer stub for scoring.

D. Probing Details
If we have n words/pairs of words as input, after prompting
them to LMs, for each layer l, we will get a matrix of
Hl ∈ Rn×d, where d is the dimension of the hidden states.
Then, if we have the ground truth y, we can train models
using Hl and y, and we will discuss the details of our
probing for each task. For the model we trained, we used
scikit-learn (Pedregosa et al., 2011) implementation. For
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each experiment, we ran 10 times with seeds 0 - 9, and did
an 80 - 20 train-test split, reporting the metrics on the test
set. We only selected a linear model for evaluation, since
the goal of our work is not for achieving high performance
on the downstream task but to illustrate the bias introduced
by the tokenizers. Also, Hewitt & Liang (2019) illustrated
that using a complex model like Neural Network may cause
the probing result unreliable since the model will learn the
feature, and our evaluated tasks are not a very hard task,
thus, the linear model is enough to reveal the representation
quality of different words.

Rhyming Awareness. For the rhyming awareness task, the
input is a pair of words, and ground truth y ∈ Rn is a binary
label indicating if the words pair is rhyming. Then we used
logistic regression LogisticRegression, and we set
the max iterations to 1000, and Inverse of regularization
strength C = 10, other hyperparameters are set as default.
We trained two logistic regression classifiers on both original
words and words with slash inserted.

G2P. For the G2P task, the label is the categorical encoding
of the ARPAbet symbols (0 - 39), we either truncated or
padded the label with 0. Therefore, we have Y ∈ Rn×8.
We used the Cross-validation Ridge regression RidgeCV
to regress the label and set the alphas to be chosen from
{10, 100, 500, 1000, 2000}, other hyperparameters are set
as default. We train two ridge regressors on both syllable-
token aligned and misaligned groups.

Syllable Counting. For the syllable counting task, the label
is the number of syllables in the word. Therefore, we have
y ∈ Rn. We also used Cross-validation Ridge regression
RidgeCV to regress the label and set alphas to be chosen
from {10, 100, 500, 1000, 2000}, other hyperparameters are
set as default. We train two ridge regressors on both syllable-
token aligned and misaligned groups.

E. Fine-tuning & Evaluation Details
For the evaluation, we used the chat template of the corre-
sponding model to form the QA. And we used vllm (Kwon
et al., 2023) and set the decoding strategy to greedy.

For the fine-tuning, we leveraged the Hugging Face
transformers library along side Parameter-Efficient
Fine-Tuning (PEFT) to integrate LoRA (Hu et al., 2021).
We specifically targeted the query (q proj) and value (v proj)
projection layers for adaptation. We set the LoRA Rank (r)
to 8, LoRA scaling factor (α) to 16, LoRA Dropout to 0.1.

For multi-GPU training, we employed Hugging Face Ac-
celerate, which facilitated seamless distributed training
across the two GPUs using Pytorch Distributed Data Paral-
lel (DDP). The model and dataset were automatically parti-
tioned and synchronized, ensuring efficient computation.

Model Delimiter Depth (Accuracy ↑)
Size 0% 20% 40% 60% 80% 100%

Sub-word Tokenization

BERT-110M
110M None 56.0 67.6 68.3 70.9 71.0 70.5

Slash 68.6 74.5 73.4 77.5 79.5 78.1
Comma 68.6 75.7 71.8 77.8 80.3 79.2

Dot 68.6 74.7 73.6 80.8 79.8 78.4

GPT-2-1.2B
1.2B None 63.4 64.7 66.1 66.2 66.0 61.6

Slash 71.7 76.9 77.2 79.1 78.5 77.5
Comma 71.7 77.6 77.1 78.8 77.9 77.3

Dot 72.3 77.3 77.6 79.5 78.4 76.9

Llama-3.1-8B-Instruct
8B None 72.5 79.8 79.0 77.9 77.3 74.9

Slash 56.3 85.1 84.0 80.0 78.9 79.5
Comma 56.8 86.7 83.7 79.3 78.5 77.4

Dot 56.7 85.2 82.0 79.8 77.8 76.3

Mistral-7B-Instruct-v3
7B None 64.5 80.6 80.8 78.8 77.4 74.7

Slash 55.8 81.1 82.7 79.5 79.0 77.6
Comma 55.8 81.7 85.4 82.1 80.3 79.5

Dot 55.8 80.5 81.7 79.1 77.9 77.2

Table 5. Ablation study of delimiter formats (“None”, “Slash”,
“Comma”, “Dot”) across different depths of the hidden states.

F. Rhyming probing using Different Delimiters
In the rhyming awareness probing experiment, we initially
used the slash (\”) as a delimiter to split word pairs, enabling
more structured and representative hidden states. To assess
the robustness of this delimiter choice—and to test whether
performance gains stem from improved tokenization gran-
ularity rather than the specific symbol—we conducted an
ablation study using alternative delimiters: the comma (“,”)
and the dot (“.”).

We evaluated probing performance across four language
models—BERT, GPT-2, LLaMA3.1-8B, and Mistral-
7B—and report results in Table 5. Across all models, the
probers trained with any delimiter (slash, comma, or dot)
yield comparable performance throughout the depth of the
hidden layers. Importantly, all delimiter-based variants con-
sistently outperform the baseline where no delimiter is used
(None), confirming that the performance gains are primarily
due to the introduction of fine-grained structure in the input
rather than the specific choice of delimiter.
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