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ABSTRACT

We consider the problem of synthesizing photorealistic, physically plausible com-
bustion effects in in-the-wild 3D scenes. Traditional CFD and graphics pipelines
can produce realistic fire effects but rely on handcrafted geometry, expert-tuned
parameters, and labor-intensive workflows, limiting their scalability to the real
world. Recent scene modeling advances like 3D Gaussian Splatting (3DGS) en-
able high-fidelity real-world scene reconstruction, yet lack physical grounding
for combustion. To bridge this gap, we propose FieryGS, a physically-based
framework that integrates physically-accurate and user-controllable combustion
simulation and rendering within the 3DGS pipeline, enabling realistic fire synthesis
for real scenes. Our approach tightly couples three key modules: (1) multimodal
large-language-model-based physical material reasoning, (2) efficient volumetric
combustion simulation, and (3) a unified renderer for fire and 3DGS. By unifying
reconstruction, physical reasoning, simulation, and rendering, FieryGS removes
manual tuning and automatically generates realistic, controllable fire dynamics
consistent with scene geometry and materials. Our framework supports complex
combustion phenomena—including flame propagation, smoke dispersion, and sur-
face carbonization—with precise user control over fire intensity, airflow, ignition
location and other combustion parameters. Evaluated on diverse indoor and outdoor
scenes, FieryGS outperforms all comparative baselines in visual realism, physical
fidelity, and controllability. We will release codes to facilitate future research.

Increasing time steps and rotating viewpoints

Fiery 
GS

Fiery 
GS

Multi-view Inputs

Figure 1: FieryGS synthesizes physically-grounded fire effects from multi-view image, enabling controllable
and realistic fire for in-the-wild scenes.

1 INTRODUCTION

Synthesizing realistic and controllable combustion effects grounded in in-the-wild 3D scenes is
critical for applications ranging from AR/VR, gaming, and film production to virtual fire drills,
heritage preservation, and robotics perception under adverse conditions, where fire must be visually
convincing, physically plausible, interactively controllable, and well-aligned with the real world.
Existing approaches, however, fall short of meeting these requirements (Table 1).

The most authentic option—full-scale fire experiments, such as burning life-sized structures
(Fig. 2)—is prohibitively expensive, risky, and irreproducible, making systematic exploration under
varying conditions infeasible. Alternatively, digital approaches like computational fluid dynamics
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Figure 2: Left: Real-world combustion in a live-fire drill (5280 Fire Science); Right:Full-scale combustion test
measuring flame spread time (Zhang et al., 2021)

Table 1: Applicability comparison of combustion approaches. FieryGS offers accessible fire simulation for
real-world scenes by combining scene-aligned physics, visual fidelity, efficiency, and user control.

Method Real-world
Applicability Visual Fidelity Physical Fidelity Parameter

Control
User
Friendliness Scalability

Full-scale Experiments ✓ ✓ ✓ × × ×
CFD Methods × sim-to-real gap ✓ ✓ expert-only ×
VFX Tools × sim-to-real gap ✓ ✓ expert-only ×
Commercial Software ✓ × pre-stored × ✓ ×
Large Video Models ✓ ✓ × × ✓ ✓
FieryGS (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Notes: Real-world Applicability indicates ease of use in real scenes, where CFD/VFX requires manual modeling. Visual Fidelity measures
perceptual realism, where CFD/VFX suffer sim-to-real gaps and commercial software overlays pre-computed results. Physical Fidelity checks
consistency with physics, where large video models are data-driven and commercial software uses pre-stored effects. Parameter Control
reflects the ability to vary conditions, where full-scale experiments are costly to repeat, large video models offer little precise control, and
commercial software is limited to pre-stored effects. User Friendliness considers usability, where full-scale experiments are dangerous and
CFD/VFX requires experts. Scalability is automatic adaptation to new scenes at low cost. Full-scale experiments are expensive, CFD/VFX
needs manual modeling, and commercial software is limited to pre-stored effects.

(CFD) or visual effect (VFX) software (e.g., Houdini, Blender) incorporate physics-based simulation
but depend on asset construction, detailed material annotation, carefully discretized geometry, and
brittle simulation–rendering pipelines (Lakkonen, 2024; Mahadika & Utami, 2025). Thus, targeting
real-world scenes demands impractical manual specification, and each step remains an incomplete
approximation, inevitably producing a pronounced sim-to-real gap that limits practical deployment.
With the rise of Large Video Models (LVM), it has become possible to add fire effects directly to
footage, but the results lack physical consistency and precise controllability. Due to these limita-
tions, current commercial software (SimsUshare, 2025; Digital Combustion, 2025) instead relies on
overlaying pre-stored fire effects onto scenes, without ensuring physical fidelity.

Recent advances in scene modeling present new opportunities. Methods such as Neural Radiance
Fields (NeRF)(Mildenhall et al., 2020) and 3DGS(Kerbl et al., 2023) enable high-fidelity 3D re-
construction from multi-view images, providing highly detailed surface information with strong
real-world alignment. Although primarily designed for static appearance capture, their visual fidelity
and rendering efficiency suggest potential for further material inference and physics-informed mod-
eling. Some prior works leverage such reconstructions to incorporate physical properties (Li et al.;
Cai et al., 2024; Li et al., 2023; Feng et al., 2024; Dai et al., 2025; Hsu et al., 2024) to model related
phenomena such as fluid dynamics or deformable objects. However, realistic combustion remains out
of reach, as it requires accurate scene-level material inference, complex simulation tightly coupled
with scene representation, and fine-grained controllability over fire behavior.

To bridge this gap, we introduce FieryGS, a physically based framework that integrates accurate and
controllable combustion simulation into the 3DGS pipeline. Our method automatically generates
photorealistic, dynamic fire in reconstructed scenes while allowing precise control over fire intensity,
airflow, ignition location, and other parameters. The framework tightly couples three components:

• Multimodal-large-language-model(MLLM)-based material reasoning, zero-shot inferring
combustion-relevant reliable properties from 3DGS reconstructions;

• Controllable volumetric combustion simulation with wood charring via a principled balance of
computational cost and visual realism;

• A novel unified renderer, combining fire, smoke, and 3DGS for seamless photorealistic emission
and illumination.

Tightly coupling these modules enables realistic fire effects to emerge directly from real-world data
without expert design or handcrafted inputs. FieryGS is, to our knowledge, the first framework that
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generates visually and physically realistic combustion in in-the-wild scenes, while being efficient and
supporting precise user controls over ignition location, fire intensity, airflow, and other parameters.
Experiments across tabletop, indoor, and outdoor scenarios show that FieryGS outperforms state-of-
the-art baselines in visual realism, physical fidelity, and user controllability, advancing fire synthesis
from labor-intensive, expert-heavy workflows to automatic, real-world aligned process.

2 RELATED WORK

Challenges in Combustion Simulation Combustion simulation has long been studied in both CFD
and computer graphics, with physically based models developed to replicate fire behavior (Husain
& Srivastava, 2018; Nguyen et al., 2002; Nielsen et al., 2022; Feldman et al., 2003; Kwatra et al.,
2010), material changes such as pyrolysis and charring of wood (Liu et al., 2024a), and volumetric
rendering of flames and smoke (Huang et al., 2014; Nguyen et al., 2002; Pegoraro & Parker, 2006).
While these methods excel in specific aspects, they rely heavily on manual inputs, such as detailed
geometry and material properties, and often require expert knowledge to combine multiple tools,
resulting in limited flexibility and sim-to-real gaps in diversity and fidelity. Existing commercial
software (SimsUshare, 2025; Digital Combustion, 2025) supports real-world case studies but relies
on pre-stored fire effects, lacking both physical consistency and control over fire parameters. These
limitations motivate a combustion framework that can automatically align with real-world scenes
while maintaining efficiency, controllability, and physical plausibility.

Neural Scene Representations for Physically-Grounded Editing Recent NeRF and 3DGS repre-
sentations have enabled high-fidelity 3D reconstruction and inspired extensions to physical property
inference. Some estimate parameters like Young’s modulus, fluid viscosity, friction or stiffness from
videos (Li et al.; Cai et al., 2024; Cao et al., 2024; Zhong et al., 2024), while others (Zhang et al.,
2024; Huang et al., 2024a; Liu et al., 2024b; Lin et al., 2025; Liu et al., 2025) exploit dynamics
in video models to infer material properties. LLMs provide a complementary direction to physical
property reasoning, as in NeRF2Physics (Zhai et al., 2024), GaussianProperty (Xu et al., 2024), and
PUGS (Shuai et al., 2025). However, they remain object-centric and do not address combustion-
related attributes. Parallel efforts integrate explicit simulation with neural representations, including
deformable bodies via Material Point Method (MPM) (Xie et al., 2024; Zhang et al., 2024; Huang
et al., 2024a; Liu et al., 2024b), weather phenomena (Li et al., 2023), fluid–solid interactions (Feng
et al., 2024), and rainfall (Dai et al., 2025). AutoVFX (Hsu et al., 2024) supports flame effects
using Blender’s built-in physics, but its dynamics are driven by LLM-generated scripts rather than
spatiotemporal physical interactions, lacking physical consistency and control. We address this
gap by introducing the first framework that integrates combustion simulation with 3DGS, enabling
controllable and physically faithful fire synthesis.

3 METHODS

Given multi-view images, we reconstruct 3DGS scenes and infer combustion properties through
zero-shot MLLM reasoning (Sec. 3.1). The properties guide a physics-based combustion simulation
(Sec. 3.2), which is rendered together with the scene using unified volumetric rendering (Sec. 3.3).
Fig. 3 illustrates the pipeline.

3.1 SCENE MODELING WITH COMBUSTION PROPERTY REASONING

High-fidelity 3D modeling of appearance, geometry, and physical properties in in-the-wild scenes is
essential for realistic combustion simulation. We adopt PGSR (Chen et al., 2024), a recent 3DGS-
based method that jointly reconstructs photorealistic appearance and accurate geometry, for scene
reconstruction. To enable physically plausible fire simulation, we estimate combustion-relevant
material properties for each Gaussian in reconstructed 3DGS, including material type, burnability,
thermal diffusivity, and smoke color. Recent MLLMs have shown strong capabilities in inferring
material from 2D images. However, extending the capabilities to in-the-wild 3DGS scenes remains
challenging. Intuitively, nearby Gaussians with visual similarities are likely to share same material
properties. Inspired by recent work in 3DGS segmentation (Ye et al., 2024; Cen et al., 2025), we
first partition Gaussians into coherent 3D regions, each with a shared material. Then, each region is
rendered to 2D and passed to an MLLM for material inference. To ensure reliable MLLM prediction,
inference is performed from the viewpoint where the target 3D region has the highest visibility.
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Multi-View Input
Scene Modeling Synthesized Fire 

Output

Material Reasoning Burnability Reasoning

Combustion Property Reasoning

Combustion Simulation

User Control
Fire intensity, Airflow

Ignition location

Novel View Normal MapDepth Map

Fire Simulation

Charring Simulation

Combustion Rendering

Figure 3: Overall Pipeline of FieryGS. Given multi-view images as input, we first apply PGSR (Chen et al.,
2024) to reconstruct scenes with high-quality normal and depth. Next, we leverage MLLM to infer combustion-
related properties, such as material type and burnability. Based on these, we conduct combustion simulations,
enabling fire and charring effects with user control. A unified volumetric renderer seamlessly integrates 3DGS
and fire, accounting for smoke scattering, fire illumination, and charring, producing realistic fire results.

Preliminary of 3D Gaussian Splatting 3DGS (Kerbl et al., 2023) models a scene as a set of
anisotropic Gaussians, each parameterized by its center, covariance (Σ), opacity, and view-dependent
color encoded with spherical harmonics. During rendering, a Gaussian is projected into screen space
with covariance Σ′ = JV ΣV ⊤J⊤, where V is the camera extrinsic matrix and J the Jacobian of
the projection. Pixel colors are obtained by alpha blending over depth-sorted Gaussians.
3D Gaussian Segmentation Given a reconstructed 3DGS model, we first assign each Gaussian a
learnable feature vector fg ∈ RD, where D is the feature dimension. These features are rendered
into 2D feature maps via 3DGS alpha blending. We then apply SAM (Kirillov et al., 2023), a
foundation model for 2D segmentation, to obtain segmentation maps across multiple views. Following
SAGA (Cen et al., 2025), we adopt contrastive learning to train the feature vectors fg, encouraging
pixels within the same mask to share similar embeddings. After training, Gaussians associated with
the same 3D region exhibit similar features. We then apply HDBSCAN algorithm (McInnes et al.,
2017) to cluster these feature vectors into instance-level 3D segments, each assumed to correspond to
a distinct material region (See Appendix A.1.1 for hyperparameter details).

MLLM-based Combustion Property Reasoning For each segmented region in 3D Gaussians, we
rasterize it into 2D and perform material inference using an MLLM. In real-world scenes, complex
occlusions cause large visibility differences across viewpoints, and limited exposure to the target
region can degrade MLLM prediction accuracy. To address this, we select the viewpoint where
the target 3D region has the highest visibility, determined by counting the number of unoccluded
Gaussians based on rendered depth maps. We then feed GPT-4o (Hurst et al., 2024) a three-panel
image composite rendered from the selected viewpoint, including (1) the full scene rendering; (2)
the same rendering with the target region highlighted by a bounding box and mask overlay; and
(3) an isolated, zoomed-in view of the segmented region, along with a tailored prompt, to infer the
material type and combustion-relevant physical properties (See Appendix A.1.2 and Fig. 8 for prompt
details). The predicted attributes are projected back to 3D by directly assigning to all Gaussians in
the corresponding region. On average, GPT-4o API calls cost about $0.55 per scene, making our
pipeline highly economical (see Appendix B.2). We further validate the robustness and accuracy of
the material reasoning results (see Appendix B.3).

The result is a 3DGS augmented with physical and combustion-aware attributes (Fig. 4). An
occupancy grid is then constructed, where a voxel is labeled as occupied if it overlaps with one or
more 3D Gaussians whose opacity exceeds a given threshold, and further labeled as combustible if
any of these Gaussians are burnable. This grid defines the domain for combustion simulation, with
unoccupied voxels representing air regions and occupied voxels representing solid regions.

3.2 COMBUSTION SIMULATION

Given the occupancy grid obtained in Section 3.1, we run combustion simulation in two parts. Fire
simulation is performed only in the air regions, with solid regions treated as boundary conditions to
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(a) RGB image input (b) Materials of 3D Gaussians

(c) Fire and smoke synthesized by FieryGS (d) Burnability of 3D Gaussians

Figure 4: Combustion Property Reasoning. Given an RGB input (a), our method reliably predicts material
types (b) and burnability (d). In a complex region with metal spoons inside a mug surrounded by various
materials, the method distinguishes the spoons and correctly infers their non-flammable metallic nature. These
results drive the combustion simulation and rendering, where material-specific behaviors are applied—for
instance, combustion produces white smoke for the wooden box and black smoke for the plastic Lego (c).

ensure that the velocity field does not penetrate into solid voxels. The implementation details of these
boundary conditions are provided in Appendix A.2. Charring simulation updates combustible regions
with the degree of charring, supporting the rendering of charred surfaces. Focusing on efficiency,
our method employs simplified physical models, primarily an incompressible formulation for fire
simulation and a basic charring model, along with several additional minor simplifications, while
maintaining visually plausible results. Compared to CFD and VFX methods, which require manual
geometry modeling and explicit specification of combustible regions, our pipeline leverages scene
modeling and material reasoning to automatically initialize geometry, infer material properties, and
identify combustible areas. Meanwhile, users retain flexible control over key parameters, making
the simulation workflow largely automated and easy to customize. In the following, we present fire
simulation, charring simulation, and user control, while further implementation details are provided
in Appendix A.2.

Fire Simulation We model flame dynamics using the following equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ f , s.t. ∇ · u = 0;

∂Y

∂t
+ u · ∇Y = −k. (1)

where u is the divergence-free velocity field, ρ and p denote density and pressure, and Y is the
reaction coordinate variable (Y = 1 for burning material, Y = 0 for unburnt material). At the
beginning of the simulation, all voxels are initialized with Y = 0. Only the voxels corresponding to
user-specified ignition points, which are also predicted as combustible in the occupancy grid, are set
to Y = 1, indicating the onset of combustion.

In this formulation, we choose an incompressible flow model (Nguyen et al., 2002) to balance
physical plausibility with computational simplicity, in contrast to compressible formulations (Liu
et al., 2024a) that provide higher physical fidelity but at the cost of greater complexity. Among the
external forces f in Eq. 1, we consider buoyancy force fbuo = α(T−Tair)z and vorticity confinement
force fvor (Nguyen et al., 2002). To further improve efficiency, the temperature T is approximated as
a quadratic function of reaction coordinate variable Y , rather than solved through PDE-based thermal
models (Nguyen et al., 2002; Nielsen et al., 2022). This simplification makes the simulation pipeline
more concise while still capturing the correlation between combustion progress and temperature.

Charring Simulation For combustible solids, we simulate temperature evolution by solving a
simplified heat transfer equation:

∂Tm

∂t
= β∇2Tm + γm(T 4

amb − T 4
m) + STm

, (2)

where Tm denotes the material temperature, β is the thermal diffusivity, and γm is the radiative
cooling coefficient. To avoid the high cost of explicitly modeling internal heat generation, STm is
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approximated by clamping Tm to Tburn once the ignition threshold Tign is exceeded. Based on the
simulated temperature, the relative char mass is computed as ∂Mc

∂t = εcξ(Tm), where Mc denotes the
relative char mass, with Mc = 1 representing a fully charred state and Mc = 0 indicating the opposite.
The parameter εc represents the charring rate, while ξ(Tm) equals 1 if Tm ≥ Tign and 0 otherwise.
Unlike prior work that incorporates more detailed mechanisms such as insulation-layer formation
or volatile release (Liu et al., 2024a), our formulation deliberately omits these processes. This
simplification makes the simulation more efficient while still capturing the visually dominant aspects
of charring. Subsequently, each 3D Gaussians directly inherits the Mc value from its containing grid
voxel, providing a simple mapping to guide charring visualization.

User Control Our combustion simulation framework provides users with a high degree of con-
trol over key aspects of the simulation, including ignition location, fire intensity, and airflow, as
demonstrated in Fig. 7. Specifically, users can accurately set the ignition point by assigning reaction
coordinate variable Y = 1 to the target ignition voxel. The perceived fire intensity can be adjusted by
increasing the buoyancy force coefficient α, which lifts the flames higher, and decreasing the reaction
rate k, which extends flame visibility—both contributing to a visually stronger fire effect. Airflow
can be flexibly controlled by adding an external wind force, enabling users to steer the fire as desired.
In addition to these core controls, all other combustion parameters such as thermal diffusivity β,
charring rate εc are also accessible, allowing users to fine-tune the simulation for customized effects.

3.3 COMBUSTION RENDERING

We introduce the first rendering framework that jointly integrates simulated fire, smoke, and recon-
structed 3DGS into a unified volumetric pipeline. It builds upon the reconstructed 3DGS and the
grids obtained from Section 3.2, including the reaction coordinate variable Y for fire and smoke and
the relative char mass Mc for charring. Using this information, the framework generates the final
rendered image that seamlessly combines combustion effects with scene geometry.

Our framework builds upon volumetric rendering (Fong et al., 2017) with targeted simplifications
tailored to combustion. Since fire is modeled as a blackbody radiator with negligible scattering,
and smoke is treated as a low-albedo medium, we omit scattering terms (Nguyen et al., 2002;
Pegoraro & Parker, 2006). The 3DGS is rendered as an opaque background where charring effects
are incorporated through Mc. Under these assumptions, the radiance L at each pixel is computed as:

L = Lfire + Lsmoke + T̂ (LGS + Lphong). (3)

Here, Lfire and Lsmoke are accumulated along the ray before reaching the 3DGS, T̂ is the transmittance
describing remaining energy, LGS is the 3DGS radiance with charring, and Lphong models fire
illumination on the geometry. The contribution of each term is visualized in Fig. 5. Their computation
is given in subsequent rendering passes, with details in Appendix A.3.

(a) Original view (b) Add charring effect (c) Add smoke

(d) Add fire (e) Phong illumination (f) Generative refinement

Figure 5: Rendering Components Breakdown. Starting with the original view (a), we first add the charring
effect (b). Next, we incorporate the simulated smoke (c), followed by the simulated fire (d). Finally, Phong
illumination enhances the ground lighting effect caused by the fire, allowing the originally dark shadow to be
brightened (e). An optional generative refinement can further enhance the ground reflection (f).
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Fire Rendering In fire rendering, the dominant visual effect arises from self-emission, which we
model based on Planck’s blackbody radiation law (Nguyen et al., 2002). The absorption coefficient
σa is set to a fixed positive value when the reaction coordinate Y > 0, indicating active combustion,
and zero otherwise. Spectral volumetric rendering is then performed by integrating the emission term
along the ray, and the resulting spectral distribution is converted to RGB color space with chromatic
adaptation, following the approach in (Nguyen et al., 2002), to obtain perceptually plausible colors.

Smoke Rendering Smoke becomes visible as the flame cools down during combustion. We render
the smoke when the reaction coordinate variable satisfies Y ≤ Ysmoke. The smoke color is determined
by the type of burning material from material reasoning in Section 3.1. For example, smoke from
wood combustion is white, while smoke of burning plastic is black (Fig. 4c). By incorporating this
model into the volume rendering pipeline, smoke can be presented along with the fire.

3DGS Rendering To implement the charring effect in 3DGS, we apply a scaling factor to the
color of 3DGS points where the relative char mass satisfies Mc ≥ M dark

c . Specifically, the color is
dimmed by rdark Mc−M dark

c

1−M dark
c

, where rdark is a user-defined factor (typically less than 1) that controls
the degree of color dimming when the char mass reaches its maximum (Mc = 1). This approach
allows the charred regions to progressively darken as the char mass increases, visually simulating the
accumulation of charring on the material surface.

Phong Illumination We adopt the traditional Phong illumination model (Phong, 1998) to simulate
the lighting effect of fire on 3DGS. Specifically, we treat voxels with temperatures exceeding a
given threshold as volumetric light sources. For each 3D Gaussian, we consider only the diffuse and
specular components. The accumulated spectral radiance at each wavelength λ is:

Lλ =
∑

i
L
(i)
e,λ · [kd (n · li) + ks (ri · v)s] , (4)

where L
(i)
e,λ is the spectral radiance emitted by voxel i, n is the surface normal obtained from the

normal map rendered by the 3DGS in Section 3.1, li is the light direction, v is the view direction,
and ri is the reflection direction. kd and ks are the diffuse and specular reflection coefficients, and
s controls the sharpness of the specular highlight. Finally, the accumulated spectral radiance is
converted into RGB color space using the same way in fire rendering, resulting in the perceived
illumination effect on the 3DGS. To further enhance realism, we introduce a Perlin noise-based
fluctuation in the emitted light intensity, producing a natural flickering effect. This effect is clearly
observable in an additional experiment on the Firewood scene with reduced background brightness,
as shown in the supplementary video.

Optional Generative Refinement While our method captures key physical aspects of fire, real-
world combustion involves additional complexities such as indirect illumination, flickering, and
subtle light–material interactions, which remain difficult for physics-based pipelines. To enhance
realism, we introduce an optional generative refinement module based on Wan2.1 (Wang et al.,
2025), a diffusion video model supporting image and text conditioning. Inspired by SDEdit (Meng
et al., 2022) and PhysGen (Liu et al., 2024c), we encode the simulated video into the model’s latent
space, perturb it with noise, and then denoise it with the first frame as image condition, guided
by classifier-free guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022). This process adds
high-frequency details and more realistic illumination, as shown in Fig. 5f. However, it may also
alter background content and lacks strong 3D consistency, so we treat it as an optional refinement
step and provide further discussion in Appendix B.6.

4 EXPERIMENTS

In this section, we evaluate FieryGS across diverse scenes and compare it with baselines. We further
demonstrate the flexible user control of FieryGS. Results highlight FieryGS’s strengths in high-fidelity
rendering, physical plausibility, and controllable fire synthesis. Please refer to our supplementary
video for high-quality dynamic visualizations.

Experimental Details We evaluate FieryGS on 6 real-world scenes, including 4 custom-captured
scenes (Firewood, Kitchen, Chair, Stool) recorded with an iPhone, the Garden scene from the
MipNeRF360 dataset, and the Playground scene from the Tanks and Temples dataset. These scenes
cover both indoor and outdoor environments and feature diverse object geometries, materials, and
spatial arrangements, validating our method in complex, in-the-wild settings.
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Table 2: Quantitative comparisons.

Method Aesthetic
Quality↑

Imaging
Quality↑

DINO
Structure↓

AutoVFX 0.488 0.603 1.04
Runway-V2V 0.605 0.701 0.68

Instruct-GS2GS 0.451 0.394 0.66
Ours 0.624 0.702 0.38

Table 3: User Studies results.

Baseline Perceptual Realism Physical Plausibility

Image Video Image Video

vs AutoVFX 88.9 77.8 86.6 85.5
vs Runway-V2V 79.4 66.5 85.3 79.0

vs Instruct-GS2GS 85.5 63.0 83.2 84.5

Note: Values = % of cases where FieryGS is preferred.

We compare FieryGS against 3 representative baselines: an automatic VFX pipeline (AutoVFX (Hsu
et al., 2024)), a video-to-video generation model (Runway-V2V (Runway, 2024a;b)), and a text-
driven 3DGS editing method (Instruct-GS2GS (Vachha & Haque, 2024)). AutoVFX enables dynamic
editing in 3DGS scenes via language instructions using Blender’s physics engine. Runway-V2V
refers to the leading commercial model of Runway for video-to-video synthesis. Instruct-GS2GS
performs text-driven editing on 3DGS models via a 2D diffusion model. All support fire synthesis,
enabling a comprehensive comparison with our method. All prompts are in Appendix B.1.

Qualitative Evaluation Fig. 6 presents a comparison of FieryGS against baselines on Kitchen
scene, demonstrating dynamic fire synthesis over time. Runway-V2V produces visually appealing
fire videos, but significantly alters the original scene’s appearance and structure—for instance, a plate
originally placed on the table is transformed into a circular groove on the tabletop, and Lego bricks are
turned into a pile of wooden blocks. Furthermore, its fire lacks physical plausibility, failing to capture
core combustion dynamics such as flame propagation, and it cannot generate smoke colors that vary
with different burning materials. AutoVFX incorporates dynamic fire through Blender’s physics
engine. However, in complex indoor environments, the resulting flames fail to achieve a convincing
level of realism. Instruct-GS2GS cannot localize fire edits and supports only static modifications of
3DGS models. In contrast, FieryGS generates temporally coherent fire effects that are both visually
authentic and physically grounded, faithfully reproducing the evolution of ignition, flame spread, and
scene illumination. More qualitative comparisons are presented in Appendix B.1.

Quantitative Evaluation We report Aesthetic Quality and Imaging Quality scores from
VBench (Huang et al., 2024b) to assess visual fidelity, and DINO Structure Score (Parmar et al.,
2024) to evaluate structure preservation. As shown in Table 2, our method achieves the highest scores
in both visual quality metrics and the lowest DINO Structure Score among all baselines, indicating
that it produces visually compelling results while faithfully preserving the input scene structure.

User Studies We conducted two user studies to evaluate both the perceptual realism and physical
plausibility. In the first study (86 participants), users compared 31 randomly sampled image or video
pairs and selected the one with more realistic fire that better preserved the background scene. The
second study (88 participants) followed the same setup but asked users to judge which result appeared
more physically plausible. Results in Table 3 demonstrate a consistent preference for our method.
Additional setup details are provided in Appendix B.5.

Runtime The average runtime of FieryGS during the simulation and rendering stage is 2.37 seconds
per frame on an NVIDIA RTX 4090D GPU. A detailed timing breakdown and comparisons with
baselines are provided in Appendix B.4.

User Control Analysis A key advantage of FieryGS is its fine-grained user controllability over
combustion behavior. Users can adjust the full combustion-related physical parameters—ignition
location, airflow, fire intensity, thermal diffusivity, charring rate, and more. Fig. 7 illustrates how
varying these parameters produces semantically meaningful and physically consistent changes in
fire behavior. For example, altering the ignition location results in different flame propagation paths,
while adjusting airflow direction directs the spread of flames accordingly. These controls enable
precise authoring of dynamic fire effects without manual 3D modeling or complex simulation setup.
Compared to baselines, which either lack explicit control (Runway-V2V), or support only limited,
coarse-grained edits (AutoVFX, Instruct-GS2GS), FieryGS offers a significantly more flexible and
intuitive editing workflow for physically plausible fire synthesis.

5 LIMITATIONS AND CONCLUSIONS

While FieryGS demonstrates strong performance in multi-object scenes, it incorporates several
simplifications for efficiency. Specifically, the framework does not explicitly model mass loss or
thermal degradation, simplifies certain fire dynamics, and focuses more on multi-object scenes rather

8
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Figure 6: Fire synthesis results over time on Kitchen scene. AutoVFX shows limited fire realism in complex
indoor environments. Runway-V2V generates visually plausible flames but significantly alters the scene and
omits ignition dynamics. Instruct-GS2GS produces static, low-fidelity edits without temporal evolution. In
contrast, FieryGS synthesizes physically grounded, time-evolving fire with realistic ignition, spread, and scene
illumination.
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Figure 7: Controllability of FieryGS. Rows vary ignition location: under (Bottom), behind (Behind), and in
front of the table (Front). Columns show simulation settings: baseline (Original), increased intensity via stronger
buoyancy (↑ α) and lower reaction rate (↓ k) (Intensified), and added rightward wind (Airflow). FieryGS enables
intuitive control over ignition, intensity, and airflow.
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than modeling large-scale conflagrations. In addition, the uneven distribution of reconstructed 3DGS
points can introduce artifacts, and misclassifications in material reasoning may lead to incorrect
combustion behavior. Despite these limitations, FieryGS provides an automated pipeline for in-the-
wild fire synthesis, with broad potential for simulation, safety training, and immersive content. Code
and data will be released upon acceptance. For a more detailed discussion of limitations and potential
directions for future work, we refer readers to Appendix C.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. We conducted two user studies on Amazon Mechanical
Turk to evaluate perceptual realism and physical plausibility. The studies followed platform guidelines,
and no personally identifiable information was collected. Beyond these studies, no human subjects or
animal experiments were involved. All datasets used in this work were either publicly available or
captured in controlled environments, ensuring no violation of privacy or copyright.

One potential societal risk of this research is the misuse of fire synthesis for misinformation or mali-
cious visual manipulation. We explicitly acknowledge this risk and strongly encourage responsible
and ethical use. At the same time, we believe that high-quality fire synthesis has significant positive
applications. It can benefit a wide range of domains, from AR/VR, gaming, and film production
to virtual fire drills, heritage preservation, and robotics perception under adverse conditions, by
providing controllable, safe, and realistic fire effects without requiring real-world flame generation,
thereby reducing potential risks. We are committed to transparency, integrity, and the responsible
dissemination of research outcomes.
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APPENDIX OVERVIEW

This appendix provides supplementary materials to support and extend the main content of FieryGS.
Section A elaborates on implementation specifics for each core component of FieryGS, including
scene modeling with combustion property reasoning, combustion simulation, and rendering. Section B
presents extended experimental results and analyses, covering additional qualitative comparisons,
cost and accuracy analyses of combustion property reasoning, runtime and resource usage, user study
setup, and the discussion of optional generative refinement. Section C discusses the current limitations
and future directions of our method. We further include a supplementary video, showcasing the
dynamic fire synthesis results generated by FieryGS.

A METHOD DETAILS

A.1 SCENE MODELING WITH COMBUSTION PROPERTY REASONING

As outlined in Section 3.1 of the main paper, we first reconstruct a high-quality 3DGS model from
multi-view images, accurately capturing both the appearance and geometry of the scene. We then
segment the 3D Gaussians and infer combustion-relevant physical properties for each segmented
region using a multimodal large language model (MLLM). Below, we provide further implementation
details on segmentation and prompt design.

A.1.1 HDBSCAN HYPERPARAMETER SETUP

To obtain instance-level 3D segments, we employ HDBSCAN (McInnes et al., 2017) to cluster the fea-
ture vectors of 3D Gaussians. We adopt the HDBSCAN parameter settings used in SAGA (Cen et al.,
2025), including a minimum cluster size of 10 and an epsilon of 0.01. Inspired by GARField (Kim
et al., 2024), we further construct a hierarchy of 3D clusters by recursively applying HDBSCAN
at multiple affinity feature scales—specifically 0.9, 0.5, and 0.1. These parameters were selected
through empirical validation and remain fixed across all experiments. We found this configuration to
generalize well across the diverse scenes in our dataset.

A.1.2 PROMPTS FOR COMBUSTION PROPERTY REASONING

A carefully crafted combination of visual and textual prompts is critical to enable accurate material
reasoning by the MLLM.

Inspired by previous work (Xu et al., 2024), we design a specialized prompt for GPT-4o tailored to
combustion property inference (see Fig. 8). The visual prompt includes a three-panel image composite,
ranging from global to local perspectives: (1) a full-scene rendering, (2) the same rendering with the
target region highlighted using a bounding box and mask overlay, and (3) an isolated and zoomed-in
view of the segmented region. This visual hierarchy encourages the MLLM to reason about each part
in relation to its global spatial context.

The textual prompt guides the model through a step-by-step reasoning process: it first generates a
brief caption describing the segmented region, then selects the most appropriate material type from a
predefined material library, and finally infers physical combustion attributes such as burnability and
thermal diffusivity. This prompt design enables the MLLM to connect local and global visual cues,
and incrementally construct semantic understanding of the scene, facilitating more accurate physical
property inference.

A.2 COMBUSTION SIMULATION

We implement our simulation framework from scratch using the Taichi programming language (Hu
et al., 2019), where all variables—including the velocity field u, reaction coordinate Y , material
temperature Tm, and relative char mass Mc—are stored at the center of the grid with a resolution of
256× 256× 256, following the convention in (Fernando et al., 2004). Based on the operator splitting
method (Stam, 2023) for time discretization, the combustion simulation within a single time step ∆t
can be summarized as follows:
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Provided a picture composed of three images arranged from left to right:
1. Original Image: The original photo of the entire scene.
2. Mask Overlay: A segmentation overlay highlighting the part of interest in blue, with 
a red bounding box. (This may be either the object or the background.)
3. Part Image: A cropped and centered view showing only the segmented part.

You may use all three images to understand what the part is and identify whether the 
segmented part is an object or the background. The third image (Part Image) provides 
the clearest visual of the target part, but context from the first and second images 
may also be useful for identification.

Based on the picture, firstly provide a brief caption of the part.
Secondly, describe what the part is made of (provide the major one).
Thirdly, we combine what the scene is and the material of the part to determine 
whether the part is burnable.
Finally, you must provide: the thermal diffusivity ratio (i.e., the material's thermal 
diffusivity divided by that of wood);

Format Requirement:
You must provide your answer as a 4-part tuple:
(caption of the part, material of the part, burnable/unburnable, thermal diffusivity 
ratio vs. wood)

Do not include any other text in your answer, as it will be parsed by a code script later.

common material library: {wood, sand, metal, plastic, glass, fabric, foam, food, ceramic, 
paper, leather, plant, stone, cement, concrete, soil, clay, composite}.

yellow toy dump truck bucket, plastic, burnable, 0.2

Original Image Mask Overlay Part Image

Figure 8: Visual and textual prompts used in the MLLM-based combustion property reasoning. The visual
input is a three-panel composite rendered from the reconstructed 3DGS: from left to right, a full-scene view,
the same view with the target region highlighted using a bounding box and semi-transparent mask, and an
isolated, zoomed-in view of the segmented region. The accompanying text prompt guides the MLLM through a
step-by-step reasoning process: it first generates a brief caption describing the segmented region, then selects the
most likely material from a predefined material library, and finally infers combustion-relevant physical properties
such as burnability and thermal diffusivity.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Origin (b) Add Brick

Figure 9: Effect of solid-voxel geometry constraints on fire behavior. Left (a) shows the original simulation
without a brick. Right (b) shows the simulation with a virtual brick placed above the campfire, causing the fire to
split into two streams and demonstrating that obstacle boundaries are properly enforced.

1. Advection. The velocity field u and the reaction coordinate variable Y are advected using
the semi-Lagrangian method (Staniforth & Côté, 1991):

u∗ := SemiLagrangian(un,∆t,un), (5)
Y ∗ := SemiLagrangian(Y n,∆t,un). (6)

2. External Forces and Reaction. We then account for external forces f acting on the velocity
field u, and for the reaction consumption on Y :

u∗ := u∗ + f∆t, (7)

Y n+1 := Y ∗ − k∆t. (8)

3. Pressure Projection. To enforce the incompressibility condition (∇ · un+1 = 0), we solve
the Poisson equation ∇2p = ∇ · u∗ using Gauss-Seidel iteration to obtain the pressure field
p. The velocity field is then updated as:

p := GaussSeidel(u∗), (9)

un+1 := u∗ − ∆t

ρ
∇p. (10)

For boundary conditions, we apply open boundary condition on the simulation bounding
box. For obstacles, open boundary conditions are used when velocity points outward, while
no-through (Neumann) boundary conditions are enforced when velocity points inward. This
encourages fluid to flow out of obstacles freely but prevents it from entering them. As shown
in Fig. 9, placing a virtual brick above the campfire in the Firewood scene splits the fire
into two streams, producing behavior markedly different from the original simulation and
confirming that solid-voxel geometry constraints are correctly enforced.

4. Charring Effect. The material temperature Tm and relative char mass Mc are updated
explicitly. Since the thermal diffusion term in the update of Tm corresponds to solving a
Poisson equation, we subdivide the time step into smaller sub-steps to ensure stability. In
this way, our formulation allows us to capture temperature exchange between objects and
enables fire propagation between adjacent combustible solids, as illustrated in Fig. 10

To evaluate the validity of the physical simplifications introduced in our simulator, we conducted
a comparison with the expert-level VFX tool Blender Blender Online Community. In this experi-
ment, Blender was provided with the same occupancy grid obtained from our 3DGS reconstruction
combined with MLLM-based material reasoning, ensuring that both systems start from identical
scene geometry and material properties. Both simulations were run at the same spatial resolution
(256× 256× 256) and under identical ignition conditions. The output of Blender’s simulation was
rendered using our renderer with consistent lighting and camera settings, allowing for a direct visual
comparison.

As shown in Fig. 11, our simplified simulation produces flame behavior comparable to Blender’s,
with only minor deviations in highly turbulent regions. These deviations remain within an acceptable
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Figure 10: Fire propagation between contacting combustible objects. The three images (left to right) show the
gradual spread of fire across different objects. They demonstrate that our model accurately captures thermal
diffusion, which enables realistic flame transmission between neighboring flammable materials.

accuracy range, indicating that the simplifications do not substantially compromise realism. In
addition, our method is significantly more efficient, requiring 1.27 seconds per frame on average,
compared with 5.25 seconds per frame for Blender at the same resolution. Furthermore, Blender
does not model heat conduction inside the wood or the resulting flame spread, leading to a stationary
flame. In contrast, our framework naturally captures internal heat transfer and flame propagation.

(a) Ours (b) Blender

Figure 11: Comparison between our fire simulation and Blender’s fire simulation for the Firewood scene. Both
simulations use the same reconstructed geometry and inferred material properties from our 3DGS and MLLM
pipeline, and are rendered with consistent lighting and camera settings. Our method (a) produces dynamic
flame behavior with internal heat conduction and flame propagation. Blender’s simulation (b) does not model
heat transfer within the wood, resulting in stationary flames. The comparison demonstrates that our simplified
simulation achieves comparable visual realism while being more efficient (1.27 s/frame vs. 5.25 s/frame at
256× 256× 256 resolution).

Overall, this comparison demonstrates that the physical simplifications in our simulator have a limited
effect on visual realism, while enabling higher computational efficiency and supporting physical
processes not available in existing open-source tools.

A.3 COMBUSTION RENDERING

To render fire in a physically accurate manner, we first integrate its self-emission spectrum and
convert the result into the RGB color space following the approach in (Nguyen et al., 2002; Pegoraro
& Parker, 2006). Specifically, the emitted spectral radiance at a given wavelength λ is modeled using
Planck’s blackbody radiation law:

Le,λ(T ) =
2hc2

λ5

1

e
hc

λkT − 1
, (11)

where T denotes the local temperature, and h, c, and k are the Planck constant, the speed of light,
and the Boltzmann constant, respectively.

To reduce computational cost, the spectral radiance is first converted to the CIE XYZ color space using
the standard tristimulus curves defined by the Commission Internationale de l’Éclairage (CIE), prior
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to volume rendering integration (Nguyen et al., 2002; Pegoraro & Parker, 2006). The integrated XYZ
values are then transformed into the LMS cone response space using the M_CAT02 transformation
matrix. Chromatic adaptation is applied in this space based on the maximum temperature present in
the fire (Nguyen et al., 2002). Finally, the result is converted back to the RGB color space, followed
by gamma correction for display.

To further enhance the quality of volume rendering, we adopt a coarse-to-fine sampling strategy (Park
et al., 2021). We first sample 128 points along each ray uniformly, followed by 1024 points via
importance sampling based on the reaction coordinate variable Y . Both sets of samples are used for
the joint rendering of fire and smoke. To address potential exposure issues when compositing their
RGB outputs, we apply ACES tone mapping curve (Narkowicz, 2016) to remap the colors into the
[0, 1] range. All these rendering procedures are implemented from scratch in PyTorch (Paszke et al.,
2019).

Figure 12: Larger specular coefficient ks produces clear reflection effects on the 3DGS geometry. Left to right:
temporal evolution showing pronounced specular highlights under our Phong illumination model.

In addition to the physically based volume emission, we account for the lighting of the surrounding
3DGS geometry using the Phong illumination model. To better demonstrate that this formulation
supports both diffuse and specular components, we increase the specular reflection coefficient ks in
the Chair scene. As shown in Fig. 12, this produces pronounced specular highlights, confirming that
our lighting model can generate reflection effects rather than only diffuse shading.

B EXTENDED EXPERIMENTAL DETAILS AND RESULTS

B.1 MORE QUALITATIVE COMPARISONS ACROSS DIVERSE SCENES

Datasets and Baselines We provide additional qualitative comparisons across 6 real-world scenes:
4 custom-captured scenes (Firewood, Kitchen, Chair, Stool), the Garden scene from MipNeRF360,
and the Playground scene from Tanks and Temples. For comparison, we consider 3 baselines:
AutoVFX (Hsu et al., 2024), a language-driven automatic VFX pipeline; Runway-V2V (Runway,
2024a;b), a commercial video-to-video generation model; and Instruct-GS2GS (Vachha & Haque,
2024), an instruction-based 3DGS editing method.

Prompt Design For Runway-V2V, the prompt is “Add fire to the {Target}, showing a full burning
process — from ignition to full blaze to smoldering ashes. Flames gradually grow, engulf the object,
then slowly fade as smoke rises and embers glow.”; for AutoVFX and Instruct-GS2GS, we use a
shared prompt: “The {Target} in the scene is engulfed in roaring flames. The firelight illuminates
the surroundings. The smoke billows into the air.” In both cases, {Target} refers to the manually
specified object to be ignited.

More Qualitative Evaluation Beyond the kitchen scene comparison shown in the main paper
(Fig. 6), we present qualitative results for the remaining 5 scenes in Figs. 17– 21. Runway-V2V
generates visually appealing fire effects but significantly alters the rest of the scene—including geom-
etry and appearance of both the background and the burning object—and fails to depict physically
plausible combustion dynamics such as ignition, spread, and dissipation. Although AutoVFX is
based on Blender’s built-in physics engine, it is not specifically designed for fire synthesis and lacks
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Table 4: GPT-4o API call counts per scene for combustion property reasoning

Scene Firewood Stool Chair Kitchen Garden Playground Avg.
Times 26 9 46 46 209 169 84

fine-grained control over combustion behavior, resulting in limited visual realism. Instruct-GS2GS
performs only coarse, static global edits and is not capable of producing realistic dynamic flames.

In contrast, FieryGS produces photorealistic and physically grounded fire effects that faithfully
capture the full progression of combustion, including ignition, flame spread, surface carbonization,
and eventual burnout.

B.2 COST ANALYSIS OF COMBUSTION PROPERTY REASONING

As described in Section 3.1 of the main paper, we employ GPT-4o (Hurst et al., 2024) to perform
zero-shot material property reasoning. In our pipeline, the number of API calls corresponds to the
number of segmented regions. As summarized in Table 4, FieryGS requires between 9 and 209 calls
per scene, depending on scene complexity.

We adopt the ChatGPT-4o-Latest API, which is officially priced at $5 per million input tokens and
$15 per million output tokens. On average, each query uses 1,282 input tokens and generates 18
output tokens, resulting in a cost of approximately $0.0066 per call. For a typical scene (mean = 84
calls), the total cost amounts to approximately $0.55.

Overall, our GPT-4o-based reasoning pipeline is highly cost-efficient and substantially more econom-
ical than manual annotation.

B.3 ACCURACY ANALYSIS OF COMBUSTION PROPERTY REASONING

Accurate and robust combustion property reasoning is essential for physically plausible fire simulation.
Here, we quantitatively and qualitatively evaluate the accuracy and robustness of our approach.

Since no public scene-level benchmark currently offers reliable ground-truth labels for combustion-
relevant materials, we perform a manual evaluation on our 6 test scenes. Specifically, we annotated
the material type for each segmented region and compared these annotations against predictions
from the MLLM-based material reasoning module. A prediction is deemed correct if it matches the
ground-truth label. As summarized in Table 5, our method achieves an average accuracy of 89.31%
across six diverse scenes, demonstrating strong material reasoning capability.

Most material reasoning errors occur in (i) distant background regions or very small objects that
are difficult to discern, (ii) heavily occluded areas where the initial segmentation is unreliable, and
(iii) occasional reconstruction artifacts in 3DGS that distort texture under the GPT-4o inference
view. These limitations are consistent with those of current 3DGS segmentation and vision–language
models—limitations shared by current 3DGS segmentation methods and vision–language models.
Nevertheless, the overall accuracy is sufficient to support downstream combustion simulation with
minimal human intervention.

Choice of MLLM GPT-4o yields the best performance and is therefore our default choice, while
other frontier MLLMs can also follow our text–visual instructions and work well within our pipeline.
To evaluate model dependence, we also evaluate the material reasoning accuracy of Qwen3-VL-Plus
under exactly the same text–visual instructions. As shown in Table 5, Qwen3-VL-Plus achieves a
respectable average accuracy of 82.73%, confirming that our text–visual prompting is robust and
generalizes well to other frontier MLLMs. However, GPT-4o still provides a clear advantage (89.31%)
and shows more reliable material reasoning. Given that GPT-4o is already highly cost-effective
(∼ $0.55 per scene; see Sec. B.2) and offers the highest accuracy for physics simulation, we use it as
the optimal choice, while remaining compatible with future MLLMs.

MLLM Robustness on Challenging Materials Beyond standard household and outdoor scenes, we
further evaluate the MLLM-based reasoning on additional real-world examples containing uncommon
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Original Image Mask Overlay Part Image

(a) Uncommon and composite materials. GPT-4o prediction: {car exhaust diffuser, composite, unburnable}.

Original Image Mask Overlay Part Image

(b) Objects with unusual textures. GPT-4o prediction: {barbed wire, metal, unburnable}.

Figure 13: MLLM-based material reasoning on challenging materials. For each example, we
show the original image, the segmentation mask overlay, and the cropped part image fed to GPT-4o,
together with its prediction. The model correctly infers the car diffuser as composite and unburnable
and the barbed wire as metal and unburnable.

Table 5: Accuracy(%) of MLLM-based material reasoning across test scenes.

Scene Firewood Stool Chair Kitchen Garden Playground Avg.
GPT-4o (Default) 88.46 88.89 82.61 91.30 89.95 89.94 89.31
Qwen3-VL-Plus 88.46 77.78 76.09 84.78 79.90 89.35 82.73

materials and unusual textures (Fig. 13). Representative cases include (1) a car exhaust diffuser,
whose surface is a mixture of carbon fiber and hard plastic, and (2) barbed wire, which exhibits
dense, repetitive geometric patterns. In these examples, GPT-4o correctly maps the diffuser region
to the “composite” class and infers it as unburnable, and identifies the barbed wire as metal and
unburnable. These results indicate that the MLLM reasoning generalizes well to challenging materials
and textures, providing a robust basis for downstream combustion simulation.

B.4 RUNTIME AND COMPUTATIONAL RESOURCES

In our pipeline, 3DGS reconstruction and combustion property reasoning are performed offline, after
which pre-frame combustion simulation and rendering are executed. As summarized in Table 6,
we report a detailed runtime breakdown of key components, including combustion simulation,
Gaussian splatting rendering, and fire and smoke rendering, on a single NVIDIA RTX 4090D GPU.
On average, the simulation and rendering stage runs at 2.37 seconds per frame, with peak GPU
memory usage below 10.0 GB, demonstrating that our method is both computationally efficient and
hardware-friendly.

Comparison with Baselines Compared to existing baselines, our method offers a favorable balance
of speed and visual quality: AutoVFX Hsu et al. (2024) relies on Blender Blender Online Commu-
nity for simulation and rendering and requires approximately 4–10 minutes per frame, making it
significantly slower than our method. Instruct-GS2GS Vachha & Haque (2024), which directly edits
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Table 6: Runtime breakdown (s/frame) of key components in FieryGS across different scenes.

Scene Firewood Stool Chair Kitchen Garden Playground Avg.

Simulation 1.27 1.33 1.31 2.56 1.30 1.34 1.52
GS Render 0.010 0.0045 0.0077 0.0043 0.034 0.013 0.012

Fire & Smoke Render 0.75 0.90 0.86 0.69 0.45 1.37 0.84

3DGS, runs at a fast speed comparable to vanilla 3DGS. However, it produces only coarse, static edits,
making it unsuitable for synthesizing realistic dynamic flames. Runway-V2V Runway (2024a;b)
is a closed-source model, preventing direct runtime comparisons; according to its official website,
generating a 10-second video takes about 30 seconds, but while it produces vivid flame effects, it
often alters the background content and lacks both physical plausibility and parameter controllability.

B.5 USER STUDY SETUP DETAILS

We conduct two user studies on Amazon Mechanical Turk to assess the key aspects of our method:
perceptual realism and physical plausibility. Both studies use an A/B comparison setup, where
participants were shown 31 randomly sampled image or video pairs. Each pair included one result
from FieryGS and one from a baseline, with randomized left–right placement to avoid positional bias.
An example of the evaluation interface is shown in Fig. 14.

Study 1: Perceptual Realism This study involved 86 participants. In each trial, users were asked
to select the result that exhibited more visually realistic fire effects while maintaining the integrity of
the original scene. Results are summarized in Table 3 under “Perceptual Realism” (Image/Video).

Study 2: Physical Plausibility We recruited 88 participants using the same evaluation protocol.
This time, participants were instructed to choose the version that appeared more physically plausible,
based on how consistent the fire behavior was with real-world expectations, while also preserving
scene structure. Results are reported in Table 3 under “Physical Plausibility” (Image/Video).

Across both studies, FieryGS consistently outperforms all baselines in user preference for both images
and videos. These results indicate that our method produces fire effects that are not only visually
compelling but also more aligned with human perception of physical realism.

B.6 DISCUSSION OF OPTIONAL GENERATIVE REFINEMENT

To balance efficiency and realism, we simplify our combustion simulation and rendering pipeline by
omitting certain computationally intensive modules. As a result, our method struggles to capture some
high-frequency visual effects, such as complex lighting interactions (e.g., multi-bounce reflections),
fine-scale flame textures, and realistic charring patterns.

To address these limitations, we introduce a video refinement module based on a pre-trained diffusion-
based generative model (Wan2.1 (Wang et al., 2025)), as described in Section 3.4. Rather than
replacing physics-based simulation, this model is used to complement it—enhancing visual fidelity
while preserving physically grounded motion. In practice, we find that this refinement leads to more
natural lighting, sharper flame boundaries, and a more compelling overall appearance.

While the refinement model improves visual quality in many aspects, it can introduce two notable side
effects that warrant further investigation. First, selectively enhancing fire effects without affecting
the background is inherently difficult. Generative models tend to alter surrounding areas along with
the target region, and due to the complex and diffuse nature of flame boundaries, masking proves
unreliable. Second, as illustrated in Fig. 15, maintaining temporal and 3D consistency remains a
challenge, especially for long videos—a limitation rooted in the current capabilities of generative
video models themselves.

In summary, while generative refinement opens up new possibilities for achieving photorealistic
fire videos, it is still a complementary step that must be carefully integrated with physically-based
simulation. We view this as a promising direction for future research, particularly as generative video
models continue to evolve in quality and controllability.
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Figure 14: Visualization of interface for user study.

Figure 15: Temporal inconsistency in generative refinement across a fire sequence. While the fire visually
improves realism, the underlying table texture—occluded during peak fire—changes after the flame dissipates,
revealing the diffusion model’s limitations in preserving scene consistency over longer time spans.

C DISCUSSION OF LIMITATIONS

Although FieryGS performs effectively on object-level scenes, it also exhibits several limitations that
affect both the physical realism of simulated fire and the generality of the framework.

Figure 16: Fire consumption results on the Chair scene. The three images (left to right) illustrate the material
being gradually consumed. This demonstrates that implementing voxel consumption is straightforward within
our simulation framework.
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Material Degradation and Mass Loss To maintain efficiency, we do not simulate thermal degrada-
tion such as shrinkage, crumpling, or disintegration. Prior works (Liu et al., 2024a; Larboulette et al.,
2013) attempt to capture these effects, but doing so requires high computational cost and complex,
manually intensive frameworks. Accurately modeling structural changes with unknown internal
material properties (e.g., weakening or collapse) also remains extremely challenging (Lakkonen,
2024; Xu & Nan, 2024).

We have also experimented with enabling mass loss, i.e., allowing fire to consume material in the voxel
grid. As shown in Fig. 16, consuming the lower crossbeam of the wooden chair is straightforward
to implement within our simulation framework. However, this introduces several limitations. First,
removing surface voxels exposes interior regions reconstructed using 3DGS. While 3DGS provides
high-quality surface geometry, it does not model meaningful internal volume. As a result, the newly
revealed interior often contains artifacts and produces visually implausible results. Second, mass loss
alters scene geometry in ways that significantly affect shadows and illumination, which our current
renderer cannot model reliably.

For these reasons, neither thermal degradation nor mass loss is incorporated into our main pipeline.
Developing robust treatments for them is an important direction for future work.

Simplified Flame and Charring Behavior While our model captures turbulent flames and smoke,
it simplifies detailed physical processes for efficiency. For example, we do not model how flames
ignite surrounding materials, and more physically grounded approaches such as the thin flame
model (Nguyen et al., 2002) could better capture dynamic fire behavior. These are important
directions for improving the physical fidelity of the simulation.

Limitations in Scene Scale FieryGS is currently tailored to object-level scenes and cannot be
directly applied to large-scale scenarios, such as forest or building fires. Extending the framework
would require redesigning the fire modeling pipeline and solving new governing equations (Hädrich
et al., 2021).

Non-Uniform 3DGS Distribution The reconstructed 3DGS points are unevenly distributed, pri-
marily concentrated on obstacle surfaces, which can introduce artifacts in volumetric simulation and
rendering. Achieving a more uniform distribution throughout obstacle volumes is therefore another
important direction for improvement.

Misclassifications in Material Reasoning As discussed in Section B.3, while FieryGS achieves
high accuracy in material property reasoning, misclassifications occur in (i) tiny or distant background
objects with limited visual cues, (ii) heavily occluded regions where segmentation quality degrades,
and (iii) occasional 3DGS reconstruction artifacts that distort appearance in the GPT-4o inference
view; these issues are inherent limitations of current 3DGS segmentation and vision–language models,
and future work will focus on improving robustness and reliability under low visibility and occlusion,
as well as resilience to reconstruction imperfections.

Despite these limitations, FieryGS provides an automated approach for fire synthesis in complex
scenes, enabling applications in simulation, safety, and immersive content creation. Future work will
aim to address these constraints to enhance both physical fidelity and scene generalization.
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Figure 17: Fire synthesis results over time on Firewood scene. AutoVFX produces unrealistic fire and smoke.
Runway-V2V generates visually realistic fire, but it completely alters the scene and lacks a gradual ignition
process, showing only fully developed flames. Instruct-GS2GS produces static and unrealistic results. In contrast,
FieryGS generates realistic, time-evolving fire with a natural ignition and growth process.
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Figure 18: Fire synthesis results over time on Stool scene. AutoVFX yields visually implausible results, with
exaggerated flames and smoke. Runway-V2V produces realistic-looking fire, but heavily distorts the scene
geometry and skips the ignition phase, showing only fully developed flames. Instruct-GS2GS outputs blurry,
static edits without dynamic behavior. In contrast, FieryGS produces physically plausible, temporally coherent
fire that evolves naturally from ignition to flame spread and decay.
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Figure 19: Fire synthesis results over time on Chair scene. AutoVFX exhibits exaggerated and implausible
fire behavior, with little integration into the scene. Runway-V2V produces visually plausible flames but
significantly modifies the scene’s appearance and omits the ignition phase. Instruct-GS2GS yields static,
glowing effects lacking realistic dynamics. In contrast, FieryGS produces physically grounded fire that evolves
naturally—capturing ignition, spread, and burnout—while preserving the underlying scene.
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Figure 20: Fire synthesis results over time on Garden scene. AutoVFX produces unrealistic, oversized flames
and dense smoke that fail to integrate with the environment. Runway-V2V generates visually compelling fire but
alters scene details and skips the ignition phase, displaying only intense, fully developed flames. Instruct-GS2GS
results in static, overly saturated outputs with no temporal dynamics. In contrast, FieryGS produces physically
plausible fire that evolves naturally over time—capturing ignition, spread, and gradual decay—while preserving
the original scene context.
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Figure 21: Fire synthesis results over time on Playground scene. AutoVFX generates exaggerated fire and
dense smoke that appear detached from the physical structure. Runway-V2V produces high-quality flames
but drastically alters the geometry and texture of the playground, lacking any notion of progressive ignition.
Instruct-GS2GS results in temporally static and visually distorted outputs. In contrast, FieryGS synthesizes
physically realistic fire that evolves smoothly over time, preserving scene structure while capturing natural
ignition, flame spread, carbonization, and decay.
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