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Abstract
High-resolution computed tomography (CT) scans require high doses of X-rays, posing
potential health risks to patients, including genetic damage and cancer. Conversely, low
doses of X-rays result in noise and artifacts in the reconstructed CT scans. Consequently, the
problemof denoising low-doseCT (LDCT) images has becomea critical yet challenging issue
in the field of CT imaging. However, existing deep learning-based LDCT image denoising
methods frequently result in the loss of high-frequency features, such as edges and textures,
due to the use of mean squared error loss. To address this issue, we propose a method
based on high-frequency feature learning to enhance the denoising performance of existing
models. Our method is designed to simultaneously learn the primary task of LDCT image
denoising and the auxiliary task of LDCT edge detection, thereby improving the denoising
performance without increasing the number of model parameters and the inference time.
Our method significantly improves the denoising performance of the RED-CNN model,
achieving competitive results compared to state-of-the-art denoising models on the AAPM
and Qin-LUNG-CT datasets.

Keywords Low dose CT · Image denoising · Edge detection · Multi task learning

1 Introduction

High-resolution computed tomography (HRCT) represents a pivotal tool in modern
medicine, offering detailed insights into the human body’s interior through the use
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of collimated X-rays and advanced image processing techniques. HRCT is employed in
both screening tests and disease diagnosis, allowing physicians to examine internal body
structures in detail and assess features such as density, size, shape, and texture. Despite its
widespread use, HRCT has prompted concerns regarding patient safety due to the potential
adverse effects of augmented X-ray radiation exposure.

While CT scans provide high-resolution structural information, they also expose patients
to cumulative X-ray radiation, which carries potential health risks, including an increased
risk of cancer [1]. Consequently, there is a compelling rationale for reducing radiation doses.
Nevertheless, this reduction in radiation dose may result in a degradation of image quality,
leading to the introduction of noise and artifacts in the reconstructed images [2–6]. This
necessitates the development of algorithms capable of denoising CT images obtained under
low-dose radiation, ensuring accurate diagnoses and correct CT examination outcomes.

A plethora of algorithms have been developed with the aim of enhancing the quality of
low-dose CT (LDCT) images. These can be broadly categorized into three groups: sinogram
filtering [7–10], iterative reconstruction [11–17], and image post-processing [2, 3, 18–28].

Sinogram filtering entails the processing of raw data prior to the application of the filtered
back-projection algorithm, which is used for image reconstruction. Commonly employed
methods include structural adaptive filtering [7], bilateral filtering [8], and penalizedweighted
least-squares techniques [9]. Recently, M. Patwari et al. [10] proposed a complex reconstruc-
tion and denoising framework based on the bilateral filter for LDCT images. In contrast,
iterative reconstruction algorithms reconstruct the CT image iteratively, using prior informa-
tion on noise and image content [11–15, 17]. Despite the efficacy of these two categories,
these algorithms are frequently constrained in clinical settings due to the challenge of acquir-
ing vendor-specific projection data. Furthermore, these methods are subject to inherent
limitations, including spatial resolution loss and substantial computational overhead costs.
Image post-processing algorithms operate directly on the reconstructed LDCT images. This
approach has gained popularity with the advent of deep learning technology inmedical image
denoising. Traditional image post-processing algorithms, such as block-matching 3D [18,
19], non-local means [20], dictionary learning-based algorithms [21, 22], and diffusion filters
[23], have been largely superseded due to their inability to effectively remove non-uniform
noise distributions in the reconstructed LDCT images. This results in over-smoothness and
structural distortion. Nevertheless, deep learning has demonstrated considerable potential in
addressing the limitations of traditional algorithms in various medical imaging tasks, includ-
ing segmentation [29–31], classification [32–34], and denoising [2, 3, 24, 35].

A plethora of deep learning models have been proposed to denoise LDCT images, each
employing a distinct loss function. Themajority of these algorithms are trained using themean
squared error (MSE) loss between the predicted normal-dose CT (NDCT) and the ground-
truth NDCT images [2, 4, 25, 36, 37]. Despite their impressive performance, methods based
on MSE or weighted-MSE loss often result in the attenuation of high-frequency compo-
nents, which can lead to overly smoothed images [5, 38]. To address this issue, alternative
loss functions, including adversarial, perceptual, and similarity losses, have been employed.
Adversarial loss can be employed to learn the mapping from LDCT to NDCT images. How-
ever, this approach may result in the loss of individual image content in certain instances.
Perceptual loss employs a pre-trained convolutional neural network (CNN) model on Ima-
geNet dataset to emulate the human visual system in recognizing images [39]. However, it is
not as effective as other loss functions in removing noise. Similarity loss serves as a substitute

123



Multimedia Tools and Applications

for perceptual loss, thereby preserving both structural and textual information. Q. Yang et al.
[3] proposed the use of the generative adversarial network (WGAN) with the wasserstein dis-
tance and perceptual loss to denoise LDCT images. The model was trained and validated on
the AAPM dataset, which consisted of 100K training and 2K validation image patches. The
model demonstrated efficiency in improving image quality and statistical properties, achiev-
ing a peak signal-to-noise ratio (PSNR) of 23.39 and structural similarity index (SSIM) of
0.79. H. Shan et al. [27] developed a convolutional encoder-decoder model based on con-
veying paths in 2D and 3D configurations in the GAN framework for LDCT denoising. The
model was trained and validated on the AAPM and MGH datasets, achieving a PSNR of
30.14 and SSIM of 0.9 on the AAPM test set. M. Li et al. [5] proposed a self-attention CNN
(SACNN) with a perceptual loss function for LDCT denoising. The model achieved a PSNR
of 27.74 and SSIM of 0.89. G. Wang et al. [40] proposed a progressive wasserstein GAN
with the weighted structurally-sensitive hybrid loss function (PWGAN-WSHL) to address
LDCT denoising. The model achieved a PSNR of 24.87, SSIM of 0.80, and RMSE of 0.06.
Y. Tang et al. [28] developed a content-noise complementary learning model with contrastive
learning (CCN-CL) to denoise LDCT images. The model achieved a PSNR of 44.98, SSIM
of 0.96, and RMSE of 0.01. J. Liu et al. [4] proposed a deviant feature sensitive noise estimate
network (DFSNE-Net) to address the LDCT denoising task. The model achieved a PSNR of
29.25, a SSIM of 0.89, and a RMSE of 0.03 on the AAPM test set.

The key question we address is: How can we design a model that effectively denoises
LDCT images while preserving high-frequency features?

We propose a novel architecture designed formedical image denoising, specifically target-
ing LDCT images. Our objective is to denoise these images while preserving high-frequency
features such as edges. To achieve this, we employed a dual-task training approach, wherein
the main task focuses on LDCT image denoising, while the auxiliary task centers on LDCT
image edge detection. We first integrated a low-frequency feature learning module in an
encoder-decoder architecture to extract low-frequency features from the deepest layer of the
model’s encoder part. Then we subtracted the low-frequency features from the predicted
NDCT image to obtain the high-frequency features (i.e., edges). In the main task, the opti-
mizer will minimize theMSE loss between the predicted NDCT images and the ground-truth
NDCT images. Concurrently, in the auxiliary task, the MSE loss between the output NDCT
edge and the ground-truthNDCT edgewill beminimized. In the inference phase, we removed
the low-frequency feature learning module from the model. This step ensures that the model
maintains the same number of parameters and inference time as the original model, thereby
optimizing its denoising performance without compromising efficiency. We evaluated our
method on the AAPM and Qin-LUNG-CT datasets with the RED-CNN model and obtained
SOTA denoising results compared to existing methods.

Our contributions are as follows: (1)We propose a novel architecture designed for medical
image denoising. (2) To the best of our knowledge, we are the first to introduce a method
for LDCT image denoising that is based on the learning of high-frequency features. (3)
Our method maintains the same inference time as the original model, thereby ensuring that
efficiency is not compromised.

The rest of the paper is organized as follows: We present the problem of LDCT denoising
and the proposed method in Section 2. In Section 3, we detail the experimental setup used to
validate our method. In Section 4, we present the results obtained from our experiments and
conduct an ablation study on the hyperparameters of our method. Finally, in Section 5, we
summarize the work and propose a direction for future development of the proposed method.
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2 Materials andmethods

This section presents the formulation of the LDCT denoising problem and provides an
overview of our proposed method. It includes an overview of multi-task learning, the pro-
posed architecture, the low-frequency feature generation module, and the employed loss
function.

2.1 LDCT denoising problem formulation

The problem of denoising LDCT images can be defined as a model designed to reduce noise
within the spatial domain of the image. To illustrate, consider that ILD denotes an LDCT
image, and IN D represents the corresponding NDCT image. A denoiser d is a model that
maps an LDCT image to a corresponding NDCT image:

d(ILD) = IN D (1)

2.2 Multi-task learning

Single-task learning (STL) is a training method that involves developing a model to perform
a single task at a time. The performance of such a model is influenced by a number of
factors, including the network architecture, loss function, optimizer, and dataset. However,
STL models face significant challenges, particularly in the medical field, due to the necessity
for a substantial amount of training data and the issue of data sparsity in different tasks where
labeled data is limited. Furthermore, the training of multiple STLmodels to perform different
tasks can be resource-intensive. In contrast, multi-task learning (MTL) can address these
challenges. MTL enables a model to learn from the shared knowledge of other tasks using
labeled data, thereby reducing the cost of manual data labeling and enabling the performance
of multiple tasks with a single model. MTL is a learning paradigm in machine learning
that aims to simultaneously learn different tasks in order to enhance the learning ability
of a model for each task. This is achieved by leveraging the knowledge contained in all
tasks. In comparison to their STL counterparts,MTLmodels frequently demonstrate superior
performance with a reduced risk of overfitting for each task. This is due to the fact that, with
a greater quantity of data from different tasks, the model is able to learn more robust and
universal representations for multiple tasks. Consequently, MTL represents a more efficient
and effective approach to machine learning [41].

In supervised learning tasks, a training dataset, denoted as Dt = {xti , yti }Nt
i=1, is associated

with a specific task, t ∈ T . Each training instance, xi , in Dt has a corresponding label,
yi , and Nt represents the total number of training samples. The notation xti signifies the
training sample for task t . In the context of MTL, the concept of shared knowledge can be
expressed in terms of features, instances, or parameters. Feature-based MTL is a method of
learning common features across different tasks. Instance-based MTL facilitates the transfer
of knowledge across tasks through instances, which are identified fromdata instances deemed
useful in another task. Parameter-based MTL facilitates the learning of model parameters in
different tasks by using the model parameters of another task. Among these, feature-based
and parameter-based MTL are the most commonly used methods.

Feature-based MTL is based on feature learning, whereby the model learns to identify
and use common feature representations for multiple tasks. These representations may be
either a subset or a transformation of the original feature representation. This approach can
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be divided into two categories based on the relationship between the original and learned
representations: the feature transformation approach and the feature selection approach. In the
feature transformation approach, the learned feature representation differs from the original
one and is a linear or nonlinear transformation of the latter. In the feature selection approach,
the learned representation is a subset of the original representation, selected by the model.
Subsequently, irrelevant feature representations are eliminated based on various criteria.

Recently, a plethora of MTmodels have been proposed for a multitude of computer vision
tasks [42–45]. This is due to the enhancedperformance that can be achievedby learning shared
feature representations from multiple supervisory tasks. In the context of image denoising,
the denoising performance can be enhanced by training a MT model on an auxiliary task.
In this work, we employed the feature-based MTL method in order to share low-frequency
features extracted from the model’s encoder with the decoder part, with the objective of
predicting the NDCT image and its associated edges.

2.3 Proposed architecture

To enhance the performance ofLDCT image denoising in deep learningmodels,we integrated
a low-frequency feature learning module in an encoder-decoder architecture to extract low-
frequency features from the deepest layer of the model’s encoder part. Then we subtracted
the extracted low-frequency features from the predicted NDCT image to obtain the high-
frequency features (i.e., edges).

We demonstrated the effectiveness of our method using the RED-CNN model, a potent
LDCT image denoising algorithm with an encoder-decoder architecture. A schematic repre-
sentation of the proposed architecture is illustrated in Fig. 1.

Fig. 1 Summary of our proposed architecture
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The RED-CNNmodel, an encoder-decoder CNN comprising 10 layers, generates the low-
frequency feature maps of the LDCT images as the output of the ReLU function following
the final convolutional layer. The output of the ReLU function following the penultimate
deconvolutional layer is responsible for generating the feature maps of the predicted NDCT
image. Subsequently, a 1×1 deconvolutional layer with a ReLU activation function is applied
to these feature maps, thereby generating the predicted NDCT image. [2]. The LDCT images
contain both low- and high-frequency components. The edges, which are high-frequency
features, can be computed by subtracting the low-frequency features from the whole features
of the predicted NDCT image. To facilitate the extraction of low-frequency features of the
input LDCT image from the model’s encoder, we used a low-frequency feature generation
module (LFFGM) [46]. Then we subtracted the output of the LFFGM from the feature maps of
the predicted NDCT images to obtain the high-frequency features of the NDCT images. Sub-
sequently, we applied a convolutional layer with a 1×1 kernel size and a sigmoid activation
function to the high-frequency features in order to generate the predicted NDCT edges.

During the training phase, we trained themodel on both the primary (LDCT image denois-
ing) and auxiliary (LDCT edge detection) tasks using the corresponding ground truths. In the
inference phase, we removed the LFFGM from the model, maintaining the same inference
time as the original model.

2.3.1 Low-frequency feature generation module

The LFFGM, proposed by L. Liu et al. [46], is designed to enhance the extraction of low-
frequency features in the brain stroke lesion segmentation task. As illustrated in Fig. 2, the
LFFGM is comprised of a U-shaped structure with skip connections.

Fig. 2 Architecture of the LFFGM [46]
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In our architecture, the input to the LFFGM is the low-frequency feature maps extracted
from the encoder of the RED-CNNmodel. The initially is first processed by two blocks, each
comprising a 2×2 max-pooling layer with a stride of 2, a 3×3 convolutional layer, a batch
normalization layer, and a ReLU activation function. This sequence effectively reduces the
size of the feature map by a factor of four. Subsequently, two blocks, each comprising a 2×2
up-sampling layer with a stride of two, a 3×3 convolutional layer, a batch normalization
layer, and a ReLU activation function, are employed to restore the input size. Subsequently,
the output of these blocks is then concatenated with the original LFFGM input using a
concatenation layer. Finally, a 1×1 convolutional layer is applied to the concatenated output
in order to reduce its size to match that of the feature maps of the predicted NDCT image.
The final output, designated as Flow, represents the low-frequency features of the NDCT
image.

2.3.2 Loss function

As detailed in Section 2.3, we designed the model architecture to learn two tasks: denoising
and edge detection of LDCT images. To assess the influence of the proposed architecture on
the selected RED-CNNmodel, we employed the loss function proposed in the original paper
[2]. The loss function employed in the LDCT image denoising task is the MSE, denoted as
Ldenoising . For the LDCT edge detection task, the same loss function, denoted as Ledge, is
employed to minimize the error between the predicted and ground-truth NDCT image edges.
The total loss function of our method is the weighted sum of the two losses, Ldenoising and
Ledge, with a weighting coefficient, α. Here, α represents the relative importance of the two
tasks. Ledge is multiplied by α to control the influence of the auxiliary task on the main task.
The proposed robust loss function, therefore, can be defined by the following equation:

Ltotal = Ldenoising + α · Ledge

= 1

N

N∑

i=1

(Yi − Ŷi )
2 + α · (Zi − Ẑi )

2 (2)

where Ŷi and Ẑi represent the NDCT ground truths of the image and edge, respectively.
The total number of training samples is denoted by N . Yi and Zi correspond to the pre-
dicted NDCT image and edge, respectively. The weighting parameter, α, is adjusted through
experimentation to minimize the value of the loss function.

3 Experimental setup

This section outlines the employed dataset, the techniques employed for image preprocessing,
the training details, and the performance evaluation metrics.

3.1 Dataset

We used two datasets for experimental comparison: the AAPM dataset [47] and the Qin-
LUNG-CT dataset [48].

The AAPM dataset, a publicly accessible LDCT dataset developed as part of the 2016
NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge. The dataset comprises full-dose
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Fig. 3 Sample of images from the AAPM dataset [47]. On the left: LDCT images. On the right: the corre-
sponding NDCT images

two-dimensional abdominal CT slices from 10 anonymized patients, along with their corre-
sponding LDCT slices. The full-dose slices were captured at 120 kV and 200 effective mAs.
The low-dose slices were generated by introducing Poisson noise to the projection data for
each case, resulting in a noise level equivalent to 25% of the full dose. The CT images were
reconstructed using both the medium smooth kernel (B30 kernel) and the medium sharp
kernel (B45 kernel). Each reconstructed slice has a thickness of either 1 mm or 3 mm. In
this study, we used the reconstructed scans (as illustrated in Fig. 3) of the B30 kernel with
a thickness of 1mm. In accordance with the data division approach previously employed in
related studies [4, 25], we selected a total of 2886 pairs of CT images from the scans of five
patients in the dataset for model training. We designated the remaining 3050 pairs of CT
images for model evaluation. The data division is detailed in Table 1.

The Qin-LUNG-CT dataset contains CT scans of 47 studies, which were obtained on
patients diagnosed with non-small cell lung cancer with mixed stage and histology from
the H. Lee Moffitt Cancer Center and Research Institute. The scans were obtained from
patients who underwent surgical resection and had corresponding pre-surgery diagnostic
CTs. The dataset comprises 3954 CT images of 512×512 pixels in the digital imaging and
communications in medicine (DICOM) format. We used the CT images with subject IDs of
R0273 and R0274 as the validation and test sets, respectively, while the remaining images
constituted the training set.
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Table 1 Division of the AAPM
dataset [47]

Division Case # of images

L067 560

L096 823

Train L109 318

L143 585

L192 600

L286 525

L291 856

Test L310 533

L333 310

L506 526

3.2 Image preprocessing

The LDCT images in the AAPM dataset were generated by adding Poisson noise, which is
confined to a window of Hounsfield units (HU) between -1231 and 1192, to the projection
data. In accordancewith thewindowing technique described in [4], we employed awindow of
[-160, 240] HU to truncate the LDCT images. In order to speedup the model training process,
we normalized the AAPM images to the range of [0, 1]. The dimensions of the AAPM images
are 512×512 pixels. In order to increase the number of training images and thereby enhance
the learning capability of the model, we applied data augmentation techniques, including
rotation and flipping. Subsequently, we partitioned each image pair into smaller patches of
size 64×64 pixels. This process facilitates the detection of perceptual differences in local
regions, which are crucial for optimal denoising.

In order to generate the corresponding LDCT images of the NDCT images in the Qin-
LUNG-CT dataset, we adhered to the image preprocessing methodology outlined in [49].
We first converted the images into the PNG format. Subsequently, we introduced artificial
Gaussian noise with standard deviations of 15, 30, 45, and 60 to the converted images. This
process was undertaken to simulate four distinct doses of LDCT images. Furthermore, we
applied the same windowing and augmentation techniques we used in the AAPM dataset to
the Qin-LUNG-CT dataset.

3.3 Training details

The AAPM dataset does not include corresponding segmentation masks or ground truths for
the edges of the NDCT images. The process of annotating these images is a labor-intensive
one that requires the expertise of radiologists. To address this challenge, we applied theCanny
edge detector to the NDCT images in order to generate edges.

We trained the proposed model for 50 epochs with a mini-batch size of 16. We employed
theAdamoptimizer to update themodel parameters, with the following values for the relevant
parameters: beta_1, beta_2, and epsilon, which are set to 0.9, 0.999, and 1e-8, respectively.
The initial learning rate is set to 1e-4, and it is decreased by a factor of 0.1 every two epochs.
We used the TensorFlow framework for the implementation, and conducted the experiments
on a computer equipped with the following specifications: an Intel® CoreTM i7-7800X CPU
@ 3.50 GHz processor, 64 GB of RAM, and an RTX 2080 TI GPU.
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3.4 Performance evaluationmetrics

We employed two commonly used metrics for image quality assessment to quantitatively
evaluate the performance of models. The metrics employed include the Peak Signal-to-Noise
Ratio (PSNR) [50] and the Structural Similarity Index Measure (SSIM) [51].

The PSNR is a metric that quantifies the distortion in a noise-free image that has been
corrupted by noise. The PSNR is defined as follows:

PSN R = 20 · log10
(
MAXY

RMSE

)
(3)

where RMSE is defined by:

RMSE =
√√√√ 1

mn

m∑

i=1

n∑

j=1

(Yi j − Ŷi j )2 (4)

In these equations, Ŷ and Y represent the noise-free image of size m×n and its predicted
output, respectively. MAXY represents the maximum possible pixel value of the image. A
higher PSNR value (in decibels) indicates a greater degree of image denoising quality.

The SSIM is a metric that correlates well with perceived visual quality. The metric mea-
sures the degree of similarity between the noise-free image and the corresponding denoised
image. The SSIM is defined by the following equation:

SSI M(Ŷ , Y ) = (2μŶμY + C1)(2σŶ Y + C2)

(μ2
Ŷ

+ μ2
Y + C1)(σ

2
Ŷ

+ σ 2
Y + C2)

(5)

where μŶ , μY , σŶ , σY , and σŶ Y represent the means and variances of Ŷ and Y , respectively,

as well as the covariance between Ŷ and Y . The symbols C1 and C2 are constants. The SSIM
values lie between -1 and 1, with 1 indicating perfect similarity between Ŷ and Y images.

Table 2 Loss functions of LDCT
denoising methods

Model Loss

CNN [24] MSE

RED-CNN [2] MSE

Q-AE [25] MSE

DFSNE-NET [4] MSE, BCE

EDCNN [37] MSE, Multi-scales perceptual

WGAN-VGG [3] Adversarial, Wasserstein, Perceptual

CPCE-2D [27] Adversarial, Perceptual

DUGAN [53] Least-squares adversarial, Gradient

Uformer [54] Charbonnier

CTformer [55] MSE

MT-RED-CNN (ours) MSE
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LDCT K-SVD BM3D CNN

RED-CNN Q-AE MT-RED-CNN Full-dose CT

Fig. 4 L506 270th image before and after denoising using different methods

4 Results and discussion

We evaluate our method both subjectively and objectively, comparing it to several existing
methods: K-SVD [20], BM3D [19], CNN [24], RED-CNN [2], Q-AE [25], DFSNE-Net [4],
DnCNN [52], EDCNN [37],WGAN-VGG [3], CPCE-2D [27], DUGAN [53], Uformer [54],
and CTformer [55]. The loss functions for these methods are summarized in Table 2.

4.1 Qualitative comparison

Weassess the denoising performance of themodels subjectively through a qualitative compar-
ison. In accordance with the methodology outlined in [25], we selected two representative

LDCT K-SVD BM3D CNN

RED-CNN Q-AE MT-RED-CNN Full-dose CT

Fig. 5 Zoomed ROI of the L506 270th image
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LDCT K-SVD BM3D CNN

RED-CNN Q-AE MT-RED-CNN Full-dose CT

Fig. 6 L310 340th image before and after denoising using different methods

LDCT images for the illustration of the model’s denoising performance. The images, the
270th and 340th images from L506 and L310, respectively, feature low-attenuation lesions
and blood vessels.

The denoising results are presented in Figs. 4 and 6. To facilitate a more detailed visual-
ization and comparison of the denoising results, the regions of interest (ROIs), highlighted
by red circles, were magnified and are presented in Figs. 5 and 7. The display window for
these figures is [-160, 240].

LDCT K-SVD BM3D CNN

RED-CNN Q-AE MT-RED-CNN Full-dose CT

Fig. 7 Zoomed ROI of the L310 340th image
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Table 3 Quantitative comparison on the AAPM dataset. Best results are highlighted in bold

Model PSNR SSIM
L286 L291 L310 L333 L506 L286 L291 L310 L333 L506

LDCT 24.43 22.17 21.63 22.56 24.47 0.81 0.80 0.72 0.82 0.87

K-SVD [20] 24.46 23.14 24.04 24.02 24.16 0.81 0.78 0.76 0.81 0.83

BM3D [19] 27.97 25.98 26.30 26.69 27.97 0.87 0.85 0.82 0.87 0.90

CNN [24] 28.89 26.69 26.75 27.64 28.69 0.89 0.86 0.83 0.89 0.91

RED-CNN [2] 29.29 27.00 26.97 27.95 29.00 0.90 0.87 0.84 0.89 0.92

Q-AE [25] 28.85 26.64 26.66 27.68 28.80 0.89 0.86 0.83 0.89 0.92

DFSNE-Net [4] 29.25 27.11 27.11 27.72 29.11 0.89 0.87 0.83 0.88 0.92

MT-RED-CNN (ours) 29.32 27.02 27.00 27.97 29.03 0.90 0.87 0.84 0.89 0.92

In general, all methods denoise LDCT images to varying degrees. From the zoomed ROIs
in Figures 5 and 7, we observe the following: (1) Deep learning methods outperform classical
methods (K-SVD and BM3D) in denoising LDCT images. (2) LDCT images denoised by
classical methods appear blurred and show stripe artifacts. (3) LDCT images denoised with
deep learning methods are smoothed by using MSE loss. CNN-denoised LDCT images
show some blurring, while RED-CNN-denoised LDCT images are less smooth than those
processed by CNN due to the increased number of convolution filters. Q-AE-denoised LDCT
images are similar to those ofRED-CNN.MT-RED-CNNdenoisedLDCT images are visually
similar to those of RED-CNN, but with reduced image noise and better fidelity for small
structures.

Since radiologists rely on ROIs in scans to diagnose diseases, it is critical to preserve
the edges of these ROIs after denoising to improve diagnostic accuracy. Furthermore, the
quality of denoised LDCT images using our proposed MT-RED-CNN model can be further
improved by learning the edges of ROIs rather than the entire NDCT edges.

4.2 Quantitative comparison

To objectively analyze the denoising performance of the methods, we quantitatively compare
their performance using the PSNR and SSIM metrics. The computed metrics are shown in
Tables 3 and 4.

Table 3 presents the results of methods evaluated on the AAPM dataset. In accordance
with the qualitative analysis, deep learning-based denoising methods demonstrate superior
performance compared to classical methods, with an improvement of at least 0.72% in PSNR
and 0.01% in SSIM. Among the deep learning methods, RED-CNN demonstrates superior
performance to CNN and Q-AE, with further improvements observed in the proposed MT-
RED-CNNmodel in terms of PSNR.The proposedmodel demonstrates superior performance
compared to existing methods, achieving results that are comparable to those of DFSNE-Net.

Table 4 presents the results of existing methods evaluated on the Qin-LUNG-CT dataset
across four different noise levels. In general, our MT-RED-CNN model consistently demon-
strates superior performance compared to existing methods methods. For example, our
MT-RED-CNN outperforms RED-CNN by 2.29% in PSNR and 0.03% in SSIM at σ=15, and
by 2.21% in PSNR and 0.07% at σ=45. Nevertheless, RED-CNN achieves superior PSNR
at σ=60.
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Table 4 Quantitative comparison on the Qin-LUNG-CT dataset across different noise levels

Model σ = 15 σ = 30 σ = 45 σ = 60
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

LDCT 33.76 0.93 27.76 0.84 24.28 0.79 21.86 0.76

DnCNN [52] 33.68 0.93 32.05 0.90 31.80 0.88 30.35 0.86

EDCNN [37] 36.38 0.95 33.43 0.91 31.23 0.88 30.28 0.86

RED-CNN [2] 36.38 0.95 34.74 0.93 31.74 0.89 32.00 0.90

WGAN-VGG [3] 33.73 0.93 32.44 0.90 30.89 0.88 29.96 0.87

CPCE-2D [27] 33.60 0.93 28.34 0.85 29.58 0.86 27.50 0.83

DUGAN [53] 38.10 0.96 34.65 0.93 33.13 0.91 31.80 0.89

Uformer [54] 35.96 0.96 32.90 0.92 31.67 0.90 30.54 0.88

CTformer [55] 36.02 0.95 32.12 0.91 30.26 0.88 29.05 0.86

MT-RED-CNN (ours) 38.67 0.98 35.57 0.97 33.95 0.96 30.25 0.92

This analysis provides empirical support for the hypothesis that leveraging the correlation
between LDCT image denoising and LDCT edge detection enhances denoising performance.

4.3 Effect of hyperparameter˛

The hyperparameter α controls the contribution of the edge loss to the total loss, as defined
in (2). A larger α value indicates that the model will prioritize the learning of the task
of NDCT edge detection over the task of NDCT image denoising. Conversely, a smaller
α value directs the model’s attention towards the learning of NDCT image denoising. To
determine the optimal α value that balances the model’s learning on NDCT image denoising
and edge detection tasks, we evaluate the denoising performance of the proposed MT-RED-
CNNmodel on the AAPM dataset using four distinct α values: 10−1, 10−2, 10−3, and 10−4.
Table 5 indicates that the optimal α value is 10−3.

4.4 Model efficiency

We assess the efficiency of the proposed model in comparison to existing methods in the
inference phase, based on the number of parameters, floating point operations (FLOPs), and
the inference time, as illustrated in Table 6. FLOPs represent the computational complexity of
the model, quantifying the number of floating-point operations executed during the inference
phase. Conversely, the inference time represents the duration of the forward pass in themodel.

Table 6 indicates that CNN has the fewest parameters due to its use of only three convolu-
tional layers. Q-AE has fewer parameters than RED-CNN and MT-RED-CNN. RED-CNN
shares the same number of parameters as our MT-RED-CNN. With regard to the number of

Table 5 Effect of the hyperparameter α on denoising performance with the AAPM Dataset

Model α = 10−1 α = 10−2 α = 10−3 α = 10−4

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MT-RED-CNN 27.70 0.88 27.64 0.87 28.07 0.88 27.64 0.87
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Table 6 Efficiency comparison of existing methods

Model # of parameters FLOPS (B) Inference time (s)

CNN [24] 24513 10 0.319

RED-CNN [2] 1848865 505 0.562

Q-AE [25] 49818 72.87 0.58

MT-RED-CNN (ours) 1848865 505 0.562

FLOPs, CNN exhibits the lowest number of operations, followed by Q-AE. RED-CNN and
MT-RED-CNN exhibit comparable FLOPs. We measured the inference time for processing
the same 512×512 LDCT image. CNN produces the predicted NDCT image more rapidly
than RED-CNN, Q-AE, and MT-RED-CNN. The inference times for RED-CNN and MT-
RED-CNN are identical. For traditional methods, K-SVD and BM3D have inference times
of 60 seconds and 4.139 seconds, respectively.

5 Conclusion

We hypothesized that the correlation between the tasks of LDCT image denoising and LDCT
edge detection could be exploited to enhance the LDCT denoising results. Consequently,
we proposed a novel architecture for LDCT image denoising. Our architecture incorpo-
rates a high-frequency learning module within the model, enabling concurrent training on
both the primary and secondary tasks of LDCT image denoising and LDCT edge detec-
tion, respectively. Our experiments yielded evidence supporting the hypothesis, indicating
an improvement in the performance of the RED-CNN model for LDCT denoising, while
maintaining the same number of parameters and inference time. In the future, we intend to
extend the applicability of our method to address the challenges faced by the medical image
denoising community.
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