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ABSTRACT

Image fusion integrates complementary information from multiple sources to gen-
erate more informative results. Recently, the diffusion model, which demonstrates
unprecedented generative potential, has been explored in the context of image fu-
sion. During diffusion model generation, information emerges at unequal rates, so
the fusion should dynamically weight the source modalities. To address this issue,
we reveal a significant spatio-temporal imbalance in image denoising; specifi-
cally, the diffusion model produces dynamic information gains in different image
regions with denoising steps. Based on this observation, we dive into the Diffu-
sion Information Gains (DIG) and theoretically derive a diffusion-based dynamic
image fusion framework that provably reduces its upper bound of the general-
ization error. Accordingly, we introduce diffusion information gains to quantify
the information contribution of each modality at different denoising steps, thereby
providing dynamic guidance during the fusion process. Experiments on multiple
fusion scenarios confirm that our method outperforms existing diffusion-based
approaches in terms of both fusion quality and inference efficiency.

1 INTRODUCTION

Image fusion integrates complementary information from various sources to generate informative
fused images with high visual quality (Kaur et al., 2021; Liang et al., 2022), thus substantially im-
proving the performance of downstream vision tasks through enhanced scene representations and
enriched visual perception. Image fusion can be mainly grouped into three categories: multi-modal
image fusion, multi-exposure image fusion, and multi-focus image fusion. Multi-modal image fu-
sion (MMF) mainly encompasses Visible-Infrared Image Fusion (VIF) and Medical Image Fusion
(MIF) tasks. VIF aims to combine the highlighted thermal targets, especially under extreme condi-
tions, in infrared images and the textural details contributed by visible images (Zhang et al., 2020;
Ma et al., 2021). MIF incorporates the active regions of various medical imaging modalities, thereby
contributing to diagnostic capabilities (Basu et al., 2024). Different from MMF, MEF (Cao et al.,
2025a) reconciles the disparity between high- and low-dynamic range images in visual modality, en-
suring harmonious lighting appearance, while MFF (Kaur et al., 2021) produces all-in-focus images
by blending multiple images captured at different focal depths.

Deep learning-based image fusion techniques, such as CNNs, GANs, and Transformers, have
outperformed traditional methods; however, their generative capacity usually restricts the detail
and realism of the fused images.Later, diffusion models have emerged as a powerful generative
model (Dhariwal & Nichol, 2021), demonstrating unprecedented potential in image fusion (Zhao
et al., 2023b). Some works aim to generate fused images by extracting effective feature representa-
tions or incorporating diverse constraints (Cao et al., 2025b) into diffusion models. However, they
often employ fixed multi-modal fusion guidance to the denoising diffusion steps, overlooking the
structural dynamism of denoising and failing to produce qualified fusion results in complex scenar-
ios with changing image quality, highlighting the importance of performing dynamic fusion.

Recently, some studies (Tang et al., 2022b) have explored the dynamism in image fusion. For in-
stance, MoE-Fusion (Cao et al., 2023) introduced a dynamic fusion CNN framework with a mixture
of experts model, adaptively extracting comprehensive features from diverse modalities. Text-IF (Yi
et al., 2024) pioneered the dynamic controllability of image fusion utilizing various text guidance.
Furthermore, TTD (Cao et al., 2025a) first studied the theoretical foundation of dynamic image fu-
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Figure 1: The spatio-temporal imbalance of diffusion. We observe that diffusion models restore
different regions of an image at unequal rates. Throughout the denoising process, not only do in-
formation discrepancies exist between different modalities, but such spatio-temporal imbalance of
information gain also persists across various regions of the image. For clarity, the “information gain”
in this figure refers to the ℓ2 difference between the denoised image at timestep t and the image at
t = T/2 during the denoising process, which is slightly different from the DIG defined later.

sion during inference. Despite their notable empirical performance, these dynamic-oriented fusion
methods are mainly limited to CNN-based frameworks, and few works dive into the dynamism of
diffusion modeling. Furthermore, many of these techniques fundamentally rely on heuristic ap-
proaches that lack theoretical validation and clear interpretability, leading to unstable fusion results.

To address these issues, we reveal the objective of image fusion and dig into diffusion informa-
tion gains for denoising image fusion with theoretical guarantee. Intuitively, image fusion aims to
maximize information retention across all modalities (Li et al., 2017; Liu et al., 2024). Given that
multi-source images jointly determine the fusion result at each step of the diffusion process, the
more incremental information of one modality gains at the denoising step contributes more to the
overall fusion result, and vice versa. As illustrated in Figure 1, each modality involved in the fusion
process demonstrates a distinct denoising pace within the diffusion framework. Specifically, re-
gions with salient structures converge during the early denoising steps, whereas texture-rich details
are recovered only in later iterations. This spatio-temporal heterogeneity reveals that the informa-
tion contribution of each modality is uneven across denoising steps. This highlights the dynamic
guidance strength of different modalities to effectively preserve and integrate the complementary in-
formation offered by each modality. The information recovery speed of the fused image also shows
a similar pattern. Building on this insight, we revisit the generalized form of denoising image fusion
from the perspective of generalization error, and for the first time prove that the key to enhancing
generalization in denoising diffusion fusion lies in the positive correlation of the modality fusion
weight and the residual modality information. Consequently, we derive the Diffusion Information
Gains (DIG) as the dynamic fusion weight, which quantifies the contribution of each modality, the-
oretically enhancing the generalization of the image fusion model, and dynamically highlights the
informative regions of different sources. Extensive experiments on multiple datasets and diverse
image fusion tasks demonstrate our superiority in terms of fusion quality and efficiency.

• We introduce Dig2DIG, a simple yet effective dynamic denoising fusion framework. By
taking DIG as the dynamic fusion weight, our approach enhances the generalization of the
image fusion model while adaptively integrating informative regions from each source.

• We theoretically prove that dynamic denoising image fusion outperforms static denoising
fusion from the generalization error perspective provably, the key of which lies in the pos-
itive covariance between the fusion weight and the residual modality information.

• We compute per-modality, per-region Diffusion Information Gain (DIG) at each reverse-
denoising step and use these gains as fusion weights to inject only the currently informa-
tive regions from each modality; information-deficient regions are automatically down-
weighted. Guided by DIG, steps with less information gain can be skipped, saving 70%
of time consumption. This differs from conventional fusion that enforces proximity to all
inputs at every step with fixed or heuristic weights, which can bias the fused result toward
weak modalities and uninformative regions.
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2 RELATED WORKS

2.1 IMAGE FUSION

Image fusion aims to integrate complementary information from various sources, such as visible-
infrared images, multi-exposure images, and multi-focus images, into a single fused image, thereby
improving its visual appearance and downstream task performance. Traditional approaches often
employ wavelet transforms, multi-scale pyramids, or sparse representations to perform fusion in
a transform domain (Wang et al., 2005), while deep learning-based methods (e.g., CNN-, GAN-
, or Transformer-based models) learn end-to-end fusion mappings directly in data-driven scheme,
which significant enhances the fusion quality compared to traditional methods (Archana & Jeevaraj,
2024). Recently, several fusion approaches based on diffusion models have emerged. For example,
DDFM (Zhao et al., 2023b) frames the fusion problem as conditional generation within a DDPM
framework, utilizing an unconditional pretrained model and expectation-maximization (EM) infer-
ence to generate high-quality fused images. CCF (Cao et al., 2025b) introduces controllable con-
straints into a pretrained DDPM, allowing the fusion process to adapt to various requirements at
each reverse diffusion step, thereby enhancing versatility and controllability. Moreover, Text-IF (Yi
et al., 2024) incorporates textual semantic guidance into the fusion process, enabling joint image
restoration and fusion interactively. Although some studies have explored dynamic image fusion,
the absence of theoretical foundations may yield unstable and unreliable performance in practice.

2.2 CONDITIONAL GUIDANCE

Conditional guidance (Ho & Salimans, 2022) in diffusion models typically involves injecting addi-
tional priors (such as multi-modal features or textual semantics) at each denoising step, providing
a flexible way to steer the final generation or editing outcome. Existing studies (Tumanyan et al.,
2023; Xu et al., 2024) have shown that the guidance on different denoising stages can produce
substantially different results, highlighting the importance of dynamic guidance within denoising
steps (Cao et al., 2025b). Recently, some dynamic fusion methods were proposed not only for im-
age fusion, but also for more general multi-modal learning. For instance, Xue & Marculescu (2023)
employ a Mixture-of-Experts mechanism to integrate multiple experts for multimodal fusion. Han
et al. (2022) assign the Evidence-driven dynamic weights at the decision level to obtain the trusted
fusion decisions, and Zhang et al. (2023) explored the advantages of dynamic fusion and further
proposed uncertainty-based fusion weights to enhance the robustness of multimodal learning. Al-
though these methods validated the effectiveness of performing dynamic learning, few works reveal
the dynamism of conditional guidance in diffusion-based image fusion. Most existing methods often
assume equal importance for all modalities, overlooking the variations in the information retained
by each modality at different denoising stages. This highlights the need for a dynamic guidance
mechanism capable of quantifying and utilizing the information gain of each modality.

3 METHOD

In this paper, we dig into the diffusion information gains and propose a denoising-oriented dynamic
image fusion framework. We proceed to reveal the DDPM (Song et al., 2020), the forward diffusion
process gradually adds noise to a clean sample x0 until it becomes nearly Gaussian as xt =

√
ᾱt x0+√

1− ᾱt ϵ, ϵ ∼ N (0, I), where αt = 1 − βt, ᾱt =
∏t
i=1 αi, and {βt} is a predefined variance

schedule. During inference, the noise xT iteratively denoises via the reverse update:

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σ(t) z, (1)

where σ2(t) = (1−αt)(1−ᾱt−1)/(1−ᾱt), ϵθ(·) is the network’s noise prediction, and z ∼ N (0, I).

3.1 MULTIMODAL GUIDANCE

For the forward process, if ϵθ accurately reflects the noise in xt, the gradient of log p(xt) can be
approximated by the score function as∇xt

log p(xt) = − ϵθ(xt,t)√
1−ᾱt

. Comprehensively, the final update
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Figure 2: The framework of our Dig2DIG. Deriving from generalization theory, we find that the key
to tightening the fusion generalization bound is to ensure that the guidance weight assigned to each
modality is positively correlated with the amount of residual information from that modality that has
not yet been incorporated into the current fused image. To achieve this, we utilize DIG to estimate
this residual information, providing theoretical guidance for reducing generalization error.

step is given as follows. More details are presented in Appendix A and C.

xt−1 ≈
1
√
αt
xt + σ(t) z︸ ︷︷ ︸

Noise

+
1
√
αt

(1− αt)∇xt log p(xt)︸ ︷︷ ︸
Unconditional Guidance

+
1
√
αt

(1− αt)
K∑
k=1

wk∇xt log p(ck | xt)︸ ︷︷ ︸
Multimodal Guidance

(2)

3.2 GENERALIZATION ERROR UPPER BOUND

Given images {ck}Kk=1, ck ∈ RH×W×N from K sources, the input image combination can be
represented as c = {c1, . . . , cK}. In the diffusion model, we use xt to denote the image in the t
step of the reverse diffusion process, and the final denoised (fused) result is x0 ∈ RH×W×N . The
overall denoising operator of the diffusion model can be denoted as F , i.e., x0 = F (c). We write
Ik,t = ∆I

(
ck, xt, x

∗(c)
)
, k = 1, . . . ,K, to denote the residual information of modality k that has

not yet been incorporated into xt; When x∗(c) is available, we instantiate ∆I as the modality-k
projection energy of the residual, i.e., Ik,t ≜ ∥Πk(x∗(c)− xt)∥2.

Let c ∼ D denote the multimodal input, and let z = {zt}Tt=1 be the algorithmic sampling noise in
the reverse diffusion, where each zt ∼ N (0, I) is independent of (c, xt).

Let x∗(c) represents the ideal fused image conditioned on the multimodal input c, and let ζ(·) be a
loss function that measures the discrepancy between a fused image and the ideal image. Assume that
ζ(·) is an L-Lipschitz function (i.e., |ζ(u)− ζ(v)| ≤ L ∥u− v∥ for a suitable norm; in image tasks
ζ is often chosen as the ℓ1 or ℓ2 distance) , under these assumptions, for any unseen data c ∼ D, we
define the Generalization Error as follows:

GError(F ) = Ec,z
[
ζ
(
F (c), x∗(c)

)]
. (3)

Here, x∗(c) denotes the ideal fused image tailored to the input c, which reflects the optimal fusion
result that we aim to approximate. This expectation quantifies the mean discrepancy between the
fused output F (c) and the ideal fused image x∗(c), evaluated on the actual data distribution D and
averaged over the internal sampling noise z. A smaller Generalization Error indicates that the model
performs better in terms of fusion accuracy on unseen multimodal data.

Theorem 1 For a multi-source image-fusion operator F that employs diffusion-based conditional
guidance, the Generalization Error (GError) can be decomposed into (i) a linear combination of
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covariance terms, each capturing the interaction between the guidance weight wk and the residual
information Ik,t of modality k that has not yet been incorporated into the current fused image xt,
and (ii) a constant term that is independent of both the weights {wk} and the input data c, given
that

∑K
k=1 wk = 1. The detailed proof and detailed explanation of Ik,t are provided in Appendix B.

GError(F ) ≤ C −
T∑
t=1

K∑
k=1

Ak,t Cov
(
wk, Ik,t

)
, (4)

where C and the coefficients Ak,t are constants that do not depend on wk or c. Ik,t quantifies
the amount of residual information from modality k that has not yet been fused into xt. A larger
Ik,t indicates that modality k still contains substantial information that can reduce the discrepancy
between xt and the ideal fused image x∗(c).

In practice, the ideal fused image x∗(c) and Ik,t are unobservable; consequently, the covariance
Cov(wk, Ik,t) cannot be evaluated. A common workaround in diffusion-based fusion systems is to
assign uniform weights, implicitly assuming equal importance for all modalities. However, empir-
ical studies (Du et al., 2023; Dinh et al., 2023) have shown that the rate at which information is
restored during the reverse process depends on spatial frequency and the current time step, leading
different modalities to exhibit heterogeneous informational contributions at a given xt.

Spectral analyses in diffusion (Lee et al., 2025) demonstrate that low-frequency content is synthe-
sized early whereas high-frequency details emerge later in diffusion models. Because a fused image
must simultaneously reconstruct the complete frequency content of all source modalities (Wang
et al., 2024), its step-wise information restoration naturally inherits the generation speed of each
modality. The results in Figure 1 also support this view. Therefore, the information gain obtained
at time step t from a single-modal reconstruction serves as a reasonable proxy for the amount of
modality-k information that still remains to be incorporated into the fused image, which is Ik,t.

3.3 DYNAMIC FUSION WITH DIFFUSION INFORMATION GAINS

Accordingly, we introduce the concept of Diffusion Information Gains (DIG), which quantifies how
much residual discrepancy still separates a single-modal reconstruction from its clean target at each
reverse-diffusion step. Specifically, for an individual modality ck, let ctk denote its noisy observation
at timestep t, and let ĉtk be the corresponding one-step denoised result. We define

DIGk(t) = l
(
ĉtk, ck

)
, (5)

where l(·, ·) is any image-to-image discrepancy measure (e.g., the ℓ2 distance). A larger DIGk(t)
means that, at step t, the current single-modal reconstruction is still far from its clean counterpart
ck, indicating that modality k can potentially supply a larger amount of information to the ongoing
fusion process. Therefore, we refer to this quantity as DIG.

Following the standard diffusion framework, the noisy image ctk at timestep t is generated by

ctk =
√
ᾱt ck +

√
1− ᾱt ϵ, ϵ∼N (0, I), (6)

where ᾱt controls the noise level. The denoised result ĉtk is obtained from ctk via the estimated noise:

ĉtk =
1√
ᾱt

(
ctk −

√
1− ᾱt ϵθ

(
ctk, t

))
. (7)

Recalling the upper bound of the Generalization Error in equation 4, the not-yet-fused informa-
tion Ik,t can be characterized by the status of the single-modal reconstruction at step t. Because
a larger DIGk(t) indicates that more residual information from modality k remains to be incorpo-
rated, DIGk(t) serves as a practical, observable proxy for the latent residual-information term Ik,t
discussed earlier.

Given DIGk(t) for each modality ck, we propose to dynamically weight the guidance contributions
to the fused image based on their diffusion information gains. At each denosing step t, the weights
{wk} is computed by normalizing the DIG values across the modalities (e.g., softmax):

wk(t) =
exp

(
DIGk(t)

)∑K
j=1 exp

(
DIGj(t)

) . (8)
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Figure 3: Qualitative comparisons of our method on M3FD, LLVIP, and MSRS datasets.
Table 1: Quantitative comparisons on LLVIP, M3FD, and MSRS.

LLVIP Dataset M3FD Dataset MSRS Dataset
Method PSNR↑SSIM↑MSE↓Nabf↓CC↑LPIPS↓PSNR↑SSIM↑MSE↓Nabf↓CC↑LPIPS↓PSNR↑SSIM↑MSE↓Nabf↓CC↑LPIPS↓
SwinFusion 32.33 0.81 2845 0.023 0.67 0.321 31.73 1.40 3853 0.021 0.51 0.289 39.34 1.41 1755 0.002 0.59 0.298
DIVFusion 21.60 0.82 6450 0.044 0.66 0.350 26.19 1.20 4099 0.083 0.51 0.377 18.49 0.69 10054 0.100 0.52 0.462
MoE-Fusion 31.70 1.12 2402 0.034 0.69 0.324 33.15 1.37 3462 0.012 0.47 0.303 38.21 1.35 2637 0.030 0.60 0.298
MUFusion 31.64 1.10 2069 0.030 0.65 0.320 29.82 1.29 2733 0.071 0.50 0.349 36.02 1.25 1701 0.037 0.62 0.370
CDDFuse 32.13 1.18 2545 0.016 0.67 0.335 31.75 1.40 3715 0.030 0.52 0.278 37.76 1.30 2485 0.022 0.59 0.335
DDFM 36.10 1.18 2056 0.004 0.67 0.310 30.87 1.40 2221 0.007 0.56 0.303 38.19 1.39 1367 0.004 0.66 0.287
Text-IF 31.22 1.18 2460 0.031 0.69 0.312 34.01 1.39 3470 0.037 0.48 0.277 41.93 1.37 2494 0.027 0.60 0.298
TC-MoA 33.00 1.20 2790 0.017 0.67 0.332 31.07 1.40 2516 0.011 0.53 0.289 37.73 1.40 1640 0.005 0.62 0.293
CCF 33.12 1.22 1658 0.006 0.70 0.334 31.51 1.40 2271 0.010 0.56 0.291 38.00 1.38 1410 0.006 0.64 0.319
DCEvo 32.42 1.15 2575 0.014 0.66 0.321 31.45 1.40 3812 0.071 0.50 0.290 38.00 1.41 2464 0.039 0.60 0.299
MMDRFuse 33.28 1.20 2159 0.025 0.69 0.302 31.51 1.40 3508 0.014 0.54 0.301 39.01 1.40 2199 0.190 0.60 0.323
LFDT 33.31 1.20 2534 0.019 0.66 0.302 30.54 1.39 3714 0.027 0.47 0.318 38.97 1.41 2525 0.031 0.60 0.306
Dig2DIG 33.74 1.23 1464 0.001 0.73 0.298 31.83 1.41 2216 0.009 0.57 0.287 39.07 1.42 1366 0.001 0.63 0.282

By incorporating DIG-based weights, the fused result more accurately reflects the relative contri-
butions of each modality at each timestep, ultimately leading to a lower fusion error and better
generalization performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. In our experiments, we evaluate the proposed method on three key image fusion
tasks: Visible-Infrared Image Fusion (VIF), Multi-Focus Fusion (MFF), and Multi-Exposure Fu-
sion (MEF). For VIF, we use the LLVIP (Jia et al., 2021), M3FD (Liu et al., 2022), and MSRS (Tang
et al., 2022a) datasets, each providing paired visible and infrared images under a variety of scenar-
ios. In the MFF task, we adopt the MFFW dataset (Zhang, 2021a) to merge images that focus on
different regions into a single, fully focused output. For the MEF task, we employ the MEFB dataset
(Zhang, 2021b) to assess the performance of combining images captured at various exposure levels.

Implementation Details. Our approach is built upon a single pre-trained diffusion model (Dhariwal
& Nichol, 2021), and it does not require any additional training or fine-tuning. The same pretrained
network is reused without any modification to denoise every modality across all fusion tasks, thereby
avoiding modality-specific supervision. See Appendix C for more details.

Evaluation Metrics. We evaluate fusion quality using both qualitative and quantitative approaches.
Qualitative assessment relies on subjective visual inspection, focusing on clear textures and natural
color representation. For the Visible-Infrared Image Fusion task, we use Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity (SSIM), Mean Squared Error (MSE), Noise Amplification (Nabf),
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Figure 4: Qualitative comparisons of our method on MFFW Dataset and MEFB Dataset.

Table 2: Performance comparison on MFFW and MEFB datasets.

MFFW Dataset MEFB Dataset
Method SD↑ EI↑ EN↑ AG↑ SF↑ MI↑ SD↑ EI↑ EN↑ AG↑ SF↑ MI↑
FusionDN 66.59 17.20 7.45 6.74 22.27 3.37 61.50 19.55 7.29 7.56 21.05 3.47
U2Fusion 64.88 11.97 6.93 5.56 18.74 3.25 67.83 19.54 7.37 8.08 22.19 3.38
DeFusion 52.75 10.60 6.80 4.32 14.12 2.92 54.75 12.55 7.28 4.76 12.72 3.89
DDFM 67.30 14.32 7.51 3.82 13.40 5.71 56.34 11.95 7.30 4.47 12.21 8.49
Text-IF 62.51 12.73 6.39 4.82 17.26 3.41 66.27 20.01 7.37 7.72 21.58 3.30
TC-MoA 50.27 12.18 7.07 4.82 15.64 3.39 57.55 17.65 7.35 6.95 20.67 4.45
TTD 52.86 15.94 7.10 6.38 21.99 4.54 54.22 19.10 7.39 7.70 23.51 3.59
CCF 69.71 14.85 7.75 6.70 21.49 4.23 71.01 19.99 7.35 8.03 22.71 3.93
Dig2DIG 72.95 16.64 7.87 6.75 22.60 5.97 75.05 20.21 7.38 8.10 23.60 6.87

Correlation Coefficient (CC), and Learned Perceptual Image Patch Similarity (LPIPS). For the MFF
and MEF tasks, we employ Standard Deviation (SD), Edge Intensity (EI), Entropy (EN), Average
Gradient (AG), Spatial Frequency (SF), and Mutual Information (MI). Following DDFM/CCF, we
compute SSIM as the sum over two references, this keeps comparisons protocol-consistent.

4.2 COMPARISON ON VISIBLE-INFRARED IMAGE FUSION

For VIF, we compare our method with the state-of-the-art methods: SwinFusion (Ma et al., 2022),
DIVFusion (Tang et al., 2023), MOEFusion (Cao et al., 2023), MUFusion (Cheng et al., 2023),
CDDFuse (Zhao et al., 2023a), DDFM (Zhao et al., 2023b), Text-IF (Yi et al., 2024), TC-MoA Zhu
et al. (2024), CCF (Cao et al., 2025b), DCEvo (Liu et al., 2025), MMDRFuse (Deng et al., 2024),
and LFDT-Fusion (Yang et al., 2025).

Quantitative Comparisons. Table 1 presents the quantitative results on three infrared-visible
datasets (LLVIP, M3FD, and MSRS) under six evaluation metrics. Our proposed method (Dig2DIG)
achieves leading performance on the majority of these metrics without requiring any training proce-
dure. On the LLVIP dataset, Dig2DIG attains the best SSIM, MSE, Nabf, CC, and LPIPS scores.
For instance, our MSE (1464) not only outperforms the second-best value (1658) but is also indica-
tive of improved fidelity to the original images. Additionally, our SSIM (1.23) surpasses previous
methods, demonstrating superior structural preservation. In the M3FD dataset, our method again
secures top rankings in several metrics, including SSIM and CC. The reduction of MSE from 2221
(second-best) to 2216 underlines our consistent fidelity benefits, while the improvements in SSIM
highlight enhanced structural similarity. Meanwhile, on the MSRS dataset, Dig2DIG achieves the
best SSIM, MSE, and LPIPS scores. The lower MSE (1366) suggests stronger detail retention, and
the improved LPIPS (0.282) indicates better perceptual quality. Consistent with Theorem 1, across
all three VIF benchmarks we observe that positive covariance outperforms the uncorrelated baseline
, which in turn outperforms negative covariance , as shown in Appendix Table 8. This observed
monotone ordering supports treating DIGk(t) as a proxy for Ik,t.

7
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Table 3: Performance of different DIG inter-
vals S on the M3FD dataset.

S PSNR↑ SSIM↑ MSE↓ Nabf↓ CC↑ LPIPS↓

1 30.35 1.35 2562 0.035 0.521 0.308
5 30.92 1.38 2321 0.021 0.533 0.294

10 31.83 1.41 2215 0.009 0.573 0.287
20 31.51 1.40 2220 0.010 0.570 0.289

Table 4: Comparison of different distance mea-
sures on the M3FD dataset.

Metric PSNR↑ SSIM↑ MSE↓ Nabf↓ CC↑ LPIPS↓

∅ 30.29 1.36 2381 0.040 0.535 0.322
ℓ1 31.41 1.39 2220 0.017 0.569 0.293
SSIM 31.45 1.41 2245 0.011 0.571 0.297
ℓ2 31.83 1.41 2216 0.009 0.573 0.287

Table 5: Ablation of region-wise and time-wise
DIG weighting on the M3FD dataset.

Metric PSNR↑ SSIM↑ MSE↓ Nabf↓ CC↑ LPIPS↓

Region+Time 31.83 1.41 2216 0.009 0.573 0.287
Region-only 31.40 1.40 2269 0.012 0.570 0.290
Time-only 30.67 1.37 2350 0.031 0.542 0.310
No weighting 30.29 1.36 2381 0.040 0.535 0.322

Table 6: Comparison of different weighting
functions for deriving wk on the M3FD dataset.

Metric PSNR↑ SSIM↑ MSE↓ Nabf↓ CC↑ LPIPS↓

Softmax 31.83 1.41 2216 0.009 0.573 0.287
Sigmoid 31.62 1.40 2239 0.022 0.556 0.292
ReLU 31.67 1.41 2240 0.017 0.571 0.299
No weighting 30.29 1.36 2381 0.040 0.535 0.322

Qualitative Comparisons. With the aid of DIG, Dig2DIG persistently preserves fine-grained struc-
tures and salient infrared cues across all three benchmarks, as shown in Fig. 3. On M3FD, Our
method retains the sharpest texture patterns, while TC-MoA and CCF produce noticeably blurred
results. Within LLVIP scenes, Dig2DIG keeps licence-plate characters and facial details intact;
MUFusion and Text-IF, by contrast, erode these high-frequency regions. For the MSRS dataset,
Dig2DIG again delivers clearer human details and background textures, whereas Text-IF over-
whelms visible structures with infrared intensity and CCF sacrifices visible-light detail. Our fusion
strikes a superior balance between infrared saliency and visible clarity, yielding images that are both
informative and visually natural. These qualitative findings corroborate the quantitative gains in Ta-
ble 1, underscoring DIG’s ability to safeguard critical texture during the reverse-diffusion process.

4.3 EVALUATION ON MULTI-FOCUS FUSION

For multi-focus image fusion, we compare our method with the state-of-the-art methods: Fu-
sionDN (Xu et al., 2020b), U2Fusion (Xu et al., 2020a), DeFusion (Liang et al., 2022), DDFM (Zhao
et al., 2023b), Text-IF (Yi et al., 2024), TC-MoA (Zhu et al., 2024), TTD (Cao et al., 2025a) and
CCF (Cao et al., 2025b).

Quantitative Comparisons. We evaluate our approach on the MFFW dataset using six metrics (SD,
EI, EN, AG, SF, and MI). As shown in Table 2 (left), Dig2DIG outperforms competing methods on
five of these six indicators by notable margins. In particular, our method achieves the highest SD
(72.95), which is 5.65 above the second-best (67.30), reflecting enhanced contrast and clarity. We
also secure top positions in EN (7.87), AG (6.75), SF (22.60), and MI (5.97), suggesting superior
retention of details and overall information. Although FusionDN slightly outperforms Dig2DIG in
EI, our model still ranks second. These results validate the efficacy of our dynamic fusion framework
in handling multi-focus imagery. This result demonstrates the effectiveness of our method.

Qualitative Comparisons. On the multi-focus MFFW dataset (Fig. 4), Dig2DIG preserves fine
textures and true chromatic tones across both focused and defocused regions. By contrast, TTD
and TC-MoA introduce noticeable colour shifts, while FusionDN produces softer, less distinct
edges. The consistently sharper structures and faithful colours highlight Dig2DIG’s ability to fuse
multi-focus inputs without sacrificing either structural or colour information.

4.4 EVALUATION ON MULTI-EXPOSURE FUSION

For multi-exposure image fusion, we compare our method with the state-of-the-art methods: Fu-
sionDN (Xu et al., 2020b), U2Fusion (Xu et al., 2020a), DeFusion (Liang et al., 2022), DDFM (Zhao
et al., 2023b), Text-IF (Yi et al., 2024), TC-MoA (Zhu et al., 2024), and TTD (Cao et al., 2025a).

Quantitative Comparisons. As shown in Table 2 (right), we evaluate our method on the MEFB
dataset using SD, EI, EN, AG, SF, and MI. Dig2DIG obtains the best performance on four of these
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Figure 5: wk visualization.

Table 7: Efficiency on the M3FD dataset com-
pared with diffusion-based methods.

Method SSIM MSE CC LPIPS t (s) TFLOPS

DIG-15 1.30 2771 0.501 0.312 31 479
DIG-20 1.38 2321 0.551 0.294 43 705
DIG-25 1.41 2215 0.573 0.287 52 819
DIG-50 1.41 2219 0.573 0.287 109 3327

CCF 1.40 2271 0.572 0.291 633 8505
DDFM 1.40 2221 0.568 0.303 180 2820

Figure 6: Influence of COV(wk, Ik,t) on quality and the positive correlation between DIG and Ik,t.

metrics (SD, EI, AG, SF), While TTD achieves a slightly higher EN and DDFM outperforms us in
MI , our method still ranks second in both metrics.

Qualitative Comparisons. On the multi-exposure dataset (Fig. 4), TEXT-IF frequently overex-
poses high-luminance regions, erasing fine detail, while FusionDN, TC-MoA, and TTD introduce
unnatural transitions between the desk lamp and its background. By contrast, Dig2DIG integrates
information from all exposure levels, preserving highlight texture, shadow gradation, and smooth
spatial transitions. The resulting images achieve a well-balanced combination of saturation and
clarity, delivering the highest visual fidelity and detail retention among the compared methods.

4.5 DISCUSSION

Discussion of Efficiency. To reduce the overhead of computing DIG at each reverse diffusion step,
we introduce a hyperparameter S that specifies the interval at which DIG is calculated. In other
words, instead of computing DIG at every step, it is updated every S steps. Table 3 shows that setting
the update interval to S=10 offers the best trade-off between fusion quality and computational cost.
When S = 1 or S = 5, DIG is refreshed at every (or nearly every) denoising step; near the late
stages of denoising, the partially recovered image already resembles the clean target, so the residual
difference becomes too small to provide reliable information-gain estimates, leading to a slight drop
in performance. Conversely, with S = 20 the update is so sparse that finer-grained changes in the
dynamic guidance can no longer be tracked, again causing a marginal decline. We therefore adopt
S=10, which keeps the computational overhead low while retaining high-quality fusion results.

“DIG-N” denotes our method with a total of N reverse diffusion steps. Based on the results in
Table 7, increasing the total number of reverse diffusion steps generally improves performance but
also significantly increases runtime. We find that “DIG-25” effectively strikes a balance between
runtime and fusion quality. Note that in the early stages of the reverse diffusion process, the noise
level is high and the variance of DIG is large, which often makes the information gain inaccurate
or ineffective. Based on this, and in order to fuse information more efficiently, Dig2DIG employs
larger denoising steps at higher noise levels and smaller denoising steps at lower noise levels. This
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approach ensures that, when the noise is sufficiently reduced, the valuable features of each modality
can be more deeply integrated, thus effectively achieving more efficient information fusion.

Discussion of DIG and Ik,t. In most image fusion tasks, the ground truth x∗(c) is unavailable, so
the residual (yet-unfused) modality information Ik,t in our theory cannot be directly observed. To
provide a more direct quantitative support for the theoretical claims, we additionally conduct exper-
iments on a GT-available multi-focus fusion benchmark, MFI-WHU (Zhang et al., 2021). On this
dataset, since the all-in-focus GT is provided , we construct a GT-based residual measurement Ik,t
by first computing the pixel-wise ℓ2 distance between the current fused image xt and the GT, and
then averaging it within the focused regions of each source modality. With Ik,t available, we can
validate two key implications of our bound within a unified experiment. As shown in Fig. 6, the scat-
ter plot between DIGk(t) and Ik,t across all image exhibits a strong positive correlation (Pearson
r = 0.9345), supporting DIG as a reliable monotone surrogate of the GT-based residual. Moreover,
when using softmax(Ik,t) to form fusion weights, positively aligning weights with residual mag-
nitudes yields the lowest error (MSE 597.9), whereas uniform weighting and negatively correlated
weighting lead to substantially higher errors (MSE 1060.8 and 1883.7, respectively). Together, these
GT-based results quantitatively corroborate that DIG faithfully reflects residual information and that
residual-aligned dynamic weighting tightens the generalization bound in practice.

wk Visualization Results. Fig. 5 visualizes wk, in early denoising, prominent infrared structures
exhibit larger wk; as denoising proceeds and the overall image structure is rapidly reconstructed, re-
gions with rich fine-grained textures then exhibit larger wk. The results indicate that DIG accurately
captures the relative magnitudes of information gain contributed by each modality across different
regions of the image. The magnitude of DIG directly reflects how much information from the cor-
responding modality remains unfused in that region, and can therefore be used to guide fusion in
diffusion models. further examples are provided in Appendix D.

Discussion of Region-wise and Time-wise DIG Weighting. Table 5 studies how applying DIG-
based weights across regions and timesteps affects fusion quality. Using both region-wise and time-
wise dynamic weighting consistently yields the best performance, indicating that the two dimensions
are complementary. Region-only weighting already brings a clear gain over no weighting, showing
that spatially adaptive guidance is important for identifying modality-salient areas (e.g., thermal
targets vs. visible textures). Time-only weighting also improves over the baseline but is weaker
than region-only weighting, suggesting that temporal adaptivity alone cannot fully resolve local
modality competition without spatial discrimination. Overall, the strongest results are achieved
when Dig2DIG jointly accounts for where each modality is informative and when this residual
information should be emphasized during denoising, validating the design of our weighting strategy.

Discussion of Weighting Functions for Deriving wk. Table 6 compares different ways to map DIG
to fusion weightswk. Softmax, Sigmoid gating, and ReLU normalization all consistently outperform
the no weighting baseline on all metrics, indicating that Dig2DIG is robust to the specific DIG to wk
mapping. Among them, Softmax gives the best overall performance in our setting, while Sigmoid
gating and ReLU remain competitive with only minor gaps.

Discussion of the choice of l. To determine a suitable function for computing l, we conduct ex-
periments on the M3FD dataset using different metric functions, including ℓ1, SSIM, and ℓ2, while
considering the case with fixed uniform weight as the ”baseline,” denoted by ∅. in the table 4, it is
evident that the ℓ2 distance achieves the best performance. Therefore, we adopt ℓ2 distance as the
evaluation function for subsequent experiments. The overall performance suggests that introducing
a reasonable metric function consistently enhances the results to varying degrees. Compared to the
baseline without any distance metric, these improvements indicate the strong applicability of our
method to different metric functions in both theoretical and practical aspects.

5 CONCLUSION

In this paper, we introduced a novel dynamic denoising diffusion framework for image fusion, which
explicitly addresses the spatio-temporal imbalance in denoising through the lens of Diffusion Infor-
mation Gains. By quantifying DIG by each modality at different noise levels, our method adaptively
weights the fusion guidance to preserve critical features while ensuring high-quality, reliable fusion
results. Theoretically, we proved that aligning the modality fusion weight with the residual modality
information reduces the upper bound of the generalization error, thus offering a rigorous explanation
for the advantages of dynamic denoising fusion.
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APPENDIX

A MORE DETAILS ABOUT MULTIMODAL GUIDANCE

This supplementary note re-derives, step by step, the gradient-based sampling rule that underlies
our guided image-fusion framework. Starting from the standard DDPM forward–reverse processes,
we show how additional conditional terms lead to the multimodal guidance formula in equation 18.
Readers who are new to diffusion models can thus follow the main paper without consulting external
references.

In DDPM (Denoising Diffusion Probabilistic Models), the forward diffusion process adds noise to a
clean sample x0 over multiple steps, eventually transforming it into nearly pure Gaussian noise. This
procedure is linear, so one can sample xt in a single shot at step t via the closed-form expression:

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I), (9)

where αt = 1 − βt, ᾱt =
∏t
i=1 αi, and {βt}Tt=1 is a predefined variance schedule. As t increases,

xt approaches a nearly pure noise distribution.

To generate a sample during inference, one starts from pure noise xT and iteratively denoises down
to x0. Under a common parameterization, each reverse update step is given by:

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σ(t) z, (10)

Here σ(t) is the closed-form posterior standard deviation; it does not depend on network parameters,
where σ2(t) = (1−αt)(1−ᾱt−1)

1−ᾱt
, ϵθ(·) is the network’s noise prediction, and z ∼ N (0, I). By

iterating from t = T down to t = 0, one transforms pure noise into a nearly clean sample.

From the closed-form forward process equation 9, If the model ϵθ(xt, t) accurately predicts the noise
ϵ, one can approximate the “denoised” x̂0 as:

x̂0 ≈
1√
ᾱt

(
xt −

√
1− ᾱt ϵθ(xt, t)

)
. (11)

This highlights the reverse denoising mechanism: once the correct noise component of xt is identi-
fied, we retrieve a good approximation of the clean data.

From the perspective of stochastic differential equations or variational inference, and based on equa-
tion 9, the gradient of log p(xt) with respect to xt (i.e., the score function) can be expressed as:

∇xt
log p(xt) = −

xt −
√
ᾱtx0

1− ᾱt
. (12)

Using the estimated x̂0 to replace x0, and substituting equation 11,into equation 12, we derive:

∇xt
log p(xt) ≈ −

ϵθ(xt, t)√
1− ᾱt

. (13)

In certain applications, such as text-to-image generation and multimodal data fusion, we often wish
to incorporate additional conditions during the sampling process. By Bayes’ theorem, the gradient
of the conditional log-probability with respect to the current sample xt can be written as

∇xt
log p(xt | c) = ∇xt

log p(xt) + ∇xt
log p(c | xt). (14)

Here, c represents one or more conditions guiding the generation process.

For K conditions {ck}Kk=1, a commonly used separable approximation in multi-guidance diffusion
is to model a weighted joint conditional distribution as a product of experts:

pw(c | xt) ∝
K∏
k=1

p(ck | xt)wk , wk ≥ 0,
K∑
k=1

wk = 1. (15)
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Under this explicit joint model, the conditional score is Bayes consistent and satisfies

∇xt log pw(c | xt) =
K∑
k=1

wk∇xt log p(ck | xt), (16)

which recovers the weighted guidance form used in our sampler. Such PoE-style score composition
is standard in multi-condition diffusion guidance.

where wk is a user-defined weight indicating the relative importance of condition ck. Substituting
equation 16 into equation 14 then gives:

∇xt log p(xt | c) ≈ ∇xt log p(xt) + ∇xt log pw(c | xt). (17)

By adjusting the weights {wk}, one can modulate the strength of each condition’s contribution to
the gradient-based sampling step, thus allowing fine-grained control over the generated samples.

From equation 10, equation 13, and equation 17, we derive the following update equation for the
diffusion model:

xt−1 ≈
1
√
αt
xt +

1
√
αt

(1− αt)∇xt
log p(xt)︸ ︷︷ ︸

Unconditional Guidance

+
1
√
αt

(1− αt)
K∑
k=1

wk∇xt
log p(ck | xt)︸ ︷︷ ︸

Multimodal Guidance

+σ(t)z︸ ︷︷ ︸
Noise

.

(18)

This equation demonstrates that the update step in the diffusion model can be decomposed into
three key components: Unconditional Guidance, Multimodal Guidance, and Noise. This decompo-
sition encourages further exploration of the role of Multimodal Guidance in reducing the model’s
generalization error and improving conditional generation quality.

B PROOF

Our goal is to quantify how much each guided gradient step reduces the distance between the current
fused image and the ideal fusion x∗(c). The proof shows that, after summing all T reverse diffusion
steps, the generalization error separates into (i) fixed constants that do not depend on how we weight
the modalities, and (ii) a negative sum of covariance terms Cov(wk, alignment). Therefore, the
more a guidance direction aligns with the “correct move” toward x∗(c), the larger (more negative)
the covariance can be made by assigning a bigger weight wk, directly tightening the upper bound.

Importantly, the above summation is taken along the reverse-diffusion fusion trajectory {xt}Tt=0
generated by our sampler in equation 18. Thus, each guided gradient step refers to the concrete
update from xt to xt−1 in this trajectory, and the following smoothness inequality is applied only to
consecutive pairs (xt, xt−1) produced by the diffusion sampler.

Since ζ(·, x∗(c)) is L-smooth with respect to its first argument, Here “L-smooth” means
gradient-Lipschitz: ∥∇ζ(x)−∇ζ(y)∥ ≤ L∥x− y∥ for all x, y ∈ RH×W×N .

For any x, y ∈ RH×W×N we have:

ζ(y, x∗(c)) ≤ ζ(x, x∗(c)) + ∇xtζ(x, x
∗(c)) · (y − x) +

L

2
∥y − x∥2. (19)

Letting x = xt and y = xt−1 gives a one-step difference inequality:

ζ
(
xt−1, x

∗(c)
)
− ζ

(
xt, x

∗(c)
)
≤ ∇xtζ

(
xt, x

∗(c)
)
·
(
xt−1−xt

)
+

L

2
∥xt−1−xt ∥2. (20)

In many cases, we are primarily interested in the first-order term (dot product) and regard the second-
order term as a manageable constant. Specifically, if we assume∥xt−1 − xt∥2 ≤ ∆2

t , so that
equation 20 can be relaxed to:

ζ
(
xt−1, x

∗(c)
)
− ζ

(
xt, x

∗(c)
)
≤ ∇xt

ζ
(
xt, x

∗(c)
)
·
(
xt−1 − xt

)
+

L

2
∆2
t . (21)
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In practice T (the number of reverse steps) is large and ∥xt−1 − xt∥ is dominated by the scheduler
; we upper-bound it by a deterministic constant ∆t and absorb L

2∆
2
t into later constants. We do not

need an exact value of ∆t, only the existence of such a uniform bound. Thus, a simple upper bound
L
2∆

2
t can be carried along in subsequent summations. we decompose:

xt−1 − xt =
(

1√
αt
− 1

)
xt︸ ︷︷ ︸

(I) scaling difference

+
1
√
αt

(1− αt)∇xt log p(xt)︸ ︷︷ ︸
(II) unconditional gradient

+
1
√
αt

(1− αt)
K∑
k=1

wk∇xt log p
(
ck | xt

)
︸ ︷︷ ︸

(III) multimodal guidance

+ σ(t) z︸ ︷︷ ︸
(IV) noise

. (22)

(I) is deterministic w.r.t. (c, z) once xt is fixed. (II) uses the unconditional score; deterministic
conditioned on xt. (III) contains the only wk-dependent part. (IV) is the only term that depends on
the fresh noise zt. Plugging this into equation 21, we have:

ζ
(
xt−1, x

∗(c)
)
− ζ

(
xt, x

∗(c)
)
≤ ∇xt

ζ
(
xt, x

∗(c)
)
·
[(

1√
αt
− 1

)
xt

]
+ ∇xt

ζ
(
xt, x

∗(c)
)
·
[

1√
αt
(1− αt)∇xt

log p(xt)
]

+ ∇xt
ζ
(
xt, x

∗(c)
)
·
[

1√
αt
(1− αt)

K∑
k=1

wk∇xt
log p

(
ck | xt

)]
+ ∇xtζ

(
xt, x

∗(c)
)
·
[
σ(t) z

]
+
L

2
∆2
t . (23)

Because the fresh noise zt is independent of (c, xt) given xt (standard DDPM sampling), all terms
that do not contain either wk or zt are Ft-measurable deterministic functions. We collect them into:

G(xt, c, t) = ∇xt
ζ
(
xt, x

∗(c)
)
·
[(

1√
αt
− 1

)
xt

]
(24)

+ ∇xt
ζ
(
xt, x

∗(c)
)
·
[

1√
αt
(1− αt)∇xt

log p(xt)
]
.

Then we can rewrite equation 23 more compactly as:
ζ
(
xt−1, x

∗(c)
)
− ζ

(
xt, x

∗(c)
)
≤ G(xt, c, t)

+ ∇xt
ζ
(
xt, x

∗(c)
)
·
[

1√
αt
(1− αt)

K∑
k=1

wk∇xt
log p

(
ck | xt

)]
+ ∇xt

ζ
(
xt, x

∗(c)
)
·
[
σ(t) z

]
+

L

2
∆2
t . (25)

Summing from t = 1 to T in a telescoping manner, we have:

ζ(x0, x
∗(c)) = ζ(xT , x

∗(c)) +
T∑
t=1

[
ζ(xt−1, x

∗(c)) − ζ(xt, x
∗(c))

]
. (26)

Applying equation 25 at each step, we obtain (summing over t):

ζ
(
x0, x

∗(c)
)
≤ ζ

(
xT , x

∗(c)
)
+

T∑
t=1

G
(
xt, c, t

)
+

T∑
t=1

∇xtζ
(
xt, x

∗(c)
)
·
[
σ(t) zt

]
+

T∑
t=1

L
2 ∆2

t

+
T∑
t=1

∇xt
ζ
(
xt, x

∗(c)
)
·
[

1√
αt
(1− αt)

K∑
k=1

wk∇xt
log p

(
ck | xt

)]
. (27)
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Finally, recall x0 = F (c), so ζ(x0, x
∗(c)) = ζ

(
F (c), x∗(c)

)
. Taking Ec∼D on both sides of

equation 27, we obtain

GError(F ) = Ec,z
[
ζ(x0, x

∗(c))
]

≤ Ec,z
[
ζ
(
xT , x

∗(c)
)]

+ Ec,z
[ T∑
t=1

G
(
xt, c, t

)]
+ Ec,z

[ T∑
t=1

L
2 ∆2

t

]

− Ec,z
[ T∑
t=1

K∑
k=1

1√
αt
(1− αt)wk ·

[
− ∇xt

ζ
(
xt, x

∗(c)
)
∇xt

log p
(
ck | xt

)]]

+ Ec,z
[ T∑
t=1

∇xt
ζ
(
xt, x

∗(c)
)
·
[
σ(t) zt

]]

= Ec,z
[
ζ
(
xT , x

∗(c)
)]

+ Ec,z
[ T∑
t=1

G
(
xt, c, t

)]
+ Ec,z

[ T∑
t=1

L
2 ∆2

t

]
︸ ︷︷ ︸

constant

−
T∑
t=1

[
1√
αt
(1− αt)

K∑
k=1

Ec,z
[
wk

]
︸ ︷︷ ︸

equal to 1

Ec,z
[
− ∇xtζ

(
xt, x

∗(c)
)
∇xt log p

(
ck | xt

)]
︸ ︷︷ ︸

constant

]

−
T∑
t=1

[
1√
αt
(1− αt)

K∑
k=1

Cov
(
wk, − ∇xtζ

(
xt, x

∗(c)
)
∇xt log p

(
ck | xt

))]

+
T∑
t=1

[
Ec,z

[
∇xt

ζ
(
xt, x

∗(c)
)]

Ec,z
[
σ(t) zt

]
}︸ ︷︷ ︸

equal to 0

+ Cov
(
∇xtζ

(
xt, x

∗(c)
)
, σ(t) zt

)
︸ ︷︷ ︸

equal to 0 (by independence)

]

= C −
T∑
t=1

[
1√
αt
(1− αt)

K∑
k=1

Cov
(
wk, − ∇xt

ζ
(
xt, x

∗(c)
)
∇xt

log p
(
ck | xt

)︸ ︷︷ ︸
alignment Measure

)]
(28)

Here independence follows from the fact that zt is freshly sampled after xt has been com-
puted, hence uncorrelated with any Ft-measurable quantity. We revisit the alignment measure
− ∇xtζ

(
xt, x

∗(c)
)
∇xt log p

(
ck | xt

)
to elucidate its geometric interpretation. Recall we set vt =

− ∇xt
ζ
(
xt, x

∗(c)
)
. By the L-smoothness of ζ and the bounded data domain ∥xt − x∗(c)∥ ≤ Bt,

we have the deterministic bound

∥vt∥ = ∥∇xt
ζ(xt, x

∗(c))∥ ≤ LBt =: V̄ . (29)

We will use V̄ in place of ∥vt∥ whenever the latter is factored outside a covariance. Intuitively, when
xt is close to the ideal fused image x∗(c), − ∇xtζ

(
xt, x

∗(c)
)

should point from xt toward x∗(c).
Thus vt can be seen as a vector indicating the current direction from the generated image to the ideal
fused image x∗(c). Let ∥vt∥ denote the norm of vt. Next, let θt,k ∈ [0, π] be the angle between vt
and∇xt

log p
(
ck | xt

)
. By definition of the dot product in terms of norms and angles, we have

− ∇xt
ζ
(
xt, x

∗(c)
)
∇xt

log p
(
ck | xt

)
= ∥vt∥

∥∥∇xt
log p

(
ck | xt

)∥∥ cos(θt,k). (30)

So, we have

GError(F ) ≤ C −
T∑
t=1

[
1√
αt
(1− αt)V̄

K∑
k=1

Cov
(
wk, ∥∇xt

log p
(
ck | xt

)
∥ cos

(
θt,k

))]
(31)

As a result, the “directional alignment” with respect to the ideal fusion direction vt boils down to
the projection ∥∇xt

log p
(
ck | xt

)
∥ cos

(
θt,k

)
. The bound shows that boosting a modality’s weight

wk will tighten (give a lower) error bound iff the modality’s guidance gradient points more toward
the ideal-fusion direction (cos θt,k > 0) than average. This matches the practical heuristic “assign
larger weights to modalities that are currently more helpful for approaching x∗(c).”
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The covariance term obtained earlier still contains the factor ∥∇xt
log p(ck | xt)∥, mixing magni-

tude and direction. Before turning to the directional component, we first explain that the gradient-
guidance magnitudes are, to an excellent approximation, identical across modalities at every dif-
fusion step. In our implementation, we compute the gradients using a surrogate objective that is
analytically equivalent to an ℓ1 loss (Appendix C); consequently the norms for any two modalities
satisfy ∥∇xt

log p(ck1 | xt)∥ ≈ ∥∇xt
log p(ck2 | xt)∥. Experiments in Appendix D corroborate

this observation. Let this common value be st (step–dependent, modality–independent). Pulling st
outside the covariance gives

GError(F ) ≤ C −
T∑
t=1

[
Dt

K∑
k=1

Cov
(
wk, cos θt,k

)]
, Dt :=

1√
αt
(1− αt) V̄ st. (32)

The problem is therefore reduced to understanding how the angles θt,k depend on the still-unfused
information in each modality. All geometric arguments below are carried out in the discrete pixel
space: each image is vectorized as x ∈ RHWN with the standard Euclidean inner product ⟨x, y⟩ =∑
p xpyp and the induced norm ∥x∥. The decomposition into uIR, uRGB, us is an approximate

orthogonal subspace split , a standard viewpoint in fusion analysis. To carry out a geometric
analysis and make the dependence of θt,k on ikt explicit, we restrict attention to a simplified two-
modality setting with infrared (IR) and visible light (RGB). Fix a reverse step t (index suppressed).
For clarity, the notational conventions are collected once in the table below, and all symbols retain
their original meanings throughout the derivation.

uIR, uRGB – orthogonal high-frequency bases,
us – shared low-frequency basis, |⟨us, u∗⟩| = δ ≪ 1,
xF , xt – ideal and current fused images,
cIR, cRGB, cs – projections of xF ,
α, β, γ∈ [0, 1] – unrecovered fractions,
a := αcIR, b := βcRGB, c := γcs – residual information,
κIR, κRGB≥ 0 – score projections on us.

Link to Ik,t. In this two-modality geometric instantiation, a and b are exactly the modality-specific
residual components of x∗(c) − xt (the main-text definition Ik,t = ∥Πk(x∗(c) − xt)∥2); hence
we identify IIR,t ∝ a2 and IRGB,t ∝ b2, so the following angle analysis directly establishes the
monotone relation between cos θt,k and Ik,t.

Define three explicit vectors

v = a uIR + b uRGB + c us, gIR = a uIR + κIRus, gRGB = b uRGB + κRGBus.

With O(δ) terms discarded,

|v|2 = a2 + b2 + c2, |gIR|2 = a2 + κ2IR, |gRGB|2 = b2 + κ2RGB,

v ·gIR = a2 + cκIR, v ·gRGB = b2 + cκRGB.

Hence

cos θIR =
a2 + c κIR√

a2 + b2 + c2
√
a2 + κ2IR

, cos θRGB =
b2 + c κRGB√

a2 + b2 + c2
√
b2 + κ2RGB

. (33)

Introduce the log ratio h(a, b) := ln
(
cos θIR/ cos θRGB

)
; substituting equation 33 and differentiating

without abbreviation yields

∂h

∂a
=

a
[
a2 + 2κ2IR − cκIR

]
(a2 + cκIR)(a2 + κ2IR)

,
∂h

∂b
= −

b
[
b2 + 2κ2RGB − cκRGB

]
(b2 + cκRGB)(b2 + κ2RGB)

.

For fixed a the quadratic g(κ) = a2 + 2κ2 − cκ attains its minimum a2 − c2/8 at κ = c/4, so
∂h/∂a > 0 for all κIR ≥ 0 iff a > τ := c/

√
8. The same threshold holds for b.

Main region a > τ, b > τ . Because a, b > τ := c/
√
8, the numerators in the partial-derivative

expressions are strictly positive for every κIR, κRGB ≥ 0, hence ∂ah > 0 and ∂bh < 0. Thus

a > b ⇐⇒ h(a, b) > 0 ⇐⇒ cos θIR > cos θRGB. (34)
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Within this work zone, the modality that still carries more residual energy (a or b) always owns the
larger cosine.

Boundary case a ≤ τ (IR almost exhausted). Define

ϕ(κ) :=
a2 + cκ√
a2 + κ2

, ϕ′(κ) =
a2(c− κ)

(a2 + κ2)3/2
.

Hence ϕ increases on [0, c] and decreases on (c,∞), with maximum ϕ(c) =
√
a2 + c2. Substituting

κIR = c into equation 33 gives the universal upper bound

cos θIR ≤
√
a2 + c2√

a2 + b2 + c2
. (35)

For the RGB side consider

ψ(κ) :=
b2 + cκ√
b2 + κ2

, ψ′(κ) =
b2(c− κ)

(b2 + κ2)3/2
,

so ψ attains its minimum ψ(0) = b. Taking κRGB = 0 yields a lower bound

cos θRGB ≥
b√

a2 + b2 + c2
. (36)

Whenever b2 > a2 + c2—in particular for the convenient sufficient condition b ≥
√
9/8 c (recall

a ≤ τ implies a2 ≤ c2/8)—the numerators in equation 35–equation 36 satisfy the strict inequality√
a2 + c2 < b, which forces cos θIR < cos θRGB.

Boundary case b ≤ τ (RGB almost exhausted). The argument is perfectly symmetric: replace
(a, κIR) with (b, κRGB) and interchange the roles of IR/RGB. One obtains cos θIR > cos θRGB

whenever a2 > b2 + c2 (sufficient condition a ≥
√
9/8 c).

Corner case a ≤ τ and b ≤ τ . Both numerators in equation 35–equation 36 are then bounded by√
τ2 + c2 while the common denominator exceeds

√
2c2 + τ2, so each cosine is

cos θIR, cos θRGB ≤
√
τ2 + c2√
2c2 + τ2

<
1√
2
.

Both guidance directions are therefore weak; any ordering between the two becomes immaterial for
fusion.

Combining equation 34 with the two boundary analyses we obtain: outside a negligible corner
region, the modality with larger a or b has the larger cosine. Because the a and b is exactly what the
residual-information measure Ik,t counts, there exists a positive scale Rt such that

Ik,t = Rt cos θt,k, Cov
(
wk, cos θt,k

)
=

1

Rt
Cov

(
wk, Ik,t

)
. (37)

The geometric derivation above was carried out for two modalities solely to keep every interme-
diate quantity visible. The heart of the argument is the pairwise link between (i) the unrecovered
residual information of a modality and (ii) the cosine it forms with the ideal-fusion direction. For a
fusion task withK > 2 modalities {c1, . . . , cK} one decomposes the signal space intoK orthogonal
high-frequency axes {u1, . . . , uK}, plus the shared low-frequency axis us. Fixing any pair (i, j) and
repeating the foregoing two-dimensional projection immediately yields the same monotone relation-
ship Ii,t ∝ cos θi,t and Ij,t ∝ cos θj,t. Therefore the covariance structure Cov

(
wk, Ik,t

)
derived for

two modalities extends component-wise to all k ∈ {1, . . . ,K} without algebraic changes.

Substituting equation 37 into equation 32 and absorbing the positive factor Bt/Rt into a new
step-wise constant finally delivers:

GError(F ) ≤ C −
T∑
t=1

K∑
k=1

Ak,t Cov
(
wk, Ik,t

)
. (38)
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C MORE DETAILS

C.1 MORE DETAILS ABOUT CONDITIONAL SCORE

During reverse diffusion we require the conditional score ∇ft log p(i, v | ft) to steer the stochastic
differential equation. We follow DDFM’s EM routine and reproduce every algebraic step in this
appendix so that the full computation is visible in one place. The presentation starts with the neces-
sary notation, then walks through the EM loop, and finally collects the formulas that are fed into the
diffusion sampler.

Let i, v ∈ RH×W×N be the infrared and visible images. At diffusion timestep t the current estimate
is ft. The classical fusion loss is

L(f) = ∥f − i∥1 + φ∥f − v∥1. (39)

We transform this ℓ1 objective into a quadratic surrogate whose gradient is available in closed form.

Set x = f−v and y = i−v. Then equation 39 becomes ∥y−x∥1+φ∥x∥1, which can be interpreted
as the maximum-likelihood problem of a Laplace model

xij ∼ Lap(0, ρ), yij | xij ∼ Lap(xij , γ). (40)

Using the Gaussian–exponential mixture representation of the Laplace distribution, each absolute
term introduces an auxiliary precision variable. The resulting hierarchical graph is


yij | xij ,mij ∼ N

(
yij ;xij ,mij

)
,

mij ∼ Exp(mij ; γ),

xij | nij ∼ N
(
xij ; 0, nij

)
,

nij ∼ Exp(nij ; ρ).

(41)

Adding a total-variation term r(x) = ψ
2 ∥∇x∥

2
2 leads to the log-likelihood

L(x) = −
∑
i,j

[
(xij−yij)2

2mij
+

x2
ij

2nij

]
− ψ

2 ∥∇x∥
2
2. (42)

For the current latent image x(t) compute

m̄ij =

√
2 (yij−x(t)

ij )2

γ , n̄ij =

√
2 x

(t) 2
ij

ρ . (43)

Define weights mij =
√
m̄ij and nij =

√
n̄ij .

The conditional expectation of equation 42 becomes

E(x) = ∥m⊙ (x− y)∥22 + ∥n⊙ x∥22 + ψ∥∇x∥22, (44)

where ⊙ is element-wise multiplication.

Introduce auxiliary variables u, k and minimise

∥m⊙ (x− y)∥22 + ∥n⊙ x∥22 + ψ∥u∥22
+η

2

(
∥u−∇k∥22 + ∥k − x∥22

)
.

(45)

With the Fourier transform F (and complex conjugate ·) the coordinate updates are

k = F−1
(

F(x)+F(∇)F(u)

1+F(∇)F(∇)

)
,

u = η
2ψ+η ∇k,

x = 2m2⊙y+ηk
2m2+2n2+η .

(46)

The fused image estimate for this diffusion step is

f̂0|t = x+ v. (47)
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The required gradient is the negative derivative of E(x) at x = f̂0|t − v:

∇ft log p(i, v | ft) = −∇xE(x)
∣∣∣
x=f̂0|t−v

, (48)

where
∇xE = 2m2 ⊙ (x− y) + 2n2 ⊙ x+ ψ∇⊤∇x. (49)

After updating x, refresh the Laplace scales as in:

γ =
1

HWN

∑
i,j

E[mij ], ρ =
1

HWN

∑
i,j

E[nij ]. (50)

The new γ, ρ enter the next E-step.

Practical recap:

1. Initialise x(0) = 0 (or any prior guess) together with γ, ρ, ψ, η.

2. At every reverse-diffusion timestep run Eqs. equation 43–equation 48 to obtain f̂0|t and the guid-
ance gradient.

3. Use the gradient in the SDE integrator and proceed to the next timestep.

The ℓ1 fusion loss is converted to a quadratic surrogate through an EM iteration. Because the
surrogate is quadratic, its gradient— given explicitly in equation 48—is available per pixel and
can be inserted into the diffusion sampler without additional neural networks.

C.2 MORE DETAILS ABOUT GRADIENT-GUIDANCE MAGNITUDES

The generalisation-error bound in equation 31 contains the term Cov
(
wk, ∥∇xt log p(ck |

xt)∥ cos θt,k
)
, whose interpretation hinges on the directional alignment cos θt,k. To isolate this an-

gular factor we must show rigorously that, at every diffusion step t, the magnitudes ∥∇xt log p(ck |
xt)∥ are (almost) the same for all modalities k. Below we provide two complementary arguments
that justify this claim without introducing extra approximations.

f denotes the fused image, i and v are the infrared and visible reference images, and φt> 0 is the
step-dependent fusion ratio chosen by the scheduler. All norms on gradients are ordinary ℓ2 norms
taken over the N pixels, while the loss is measured in ℓ1.

The data-consistency term used by DDFM is the classic two-branch ℓ1 objective

Lt(f) = ∥f − i∥1 + φt ∥f − v∥1, φt > 0. (51)

Except on a measure-zero set where ℓ1 is not differentiable,∣∣∂fp |fp − ip|∣∣ = 1,
∣∣∂fp φt |fp − vp|∣∣ = φt. (52)

Hence every pixel gradient of the infrared branch has magnitude 1, while the visible branch has
magnitude φt, independent of image content.

Summing the squared pixel-wise magnitudes over N pixels gives∥∥∇f∥f − i∥1∥∥2 =
√
N,

∥∥∇f φt∥f − v∥1∥∥2 = φt
√
N. (53)

Thus any discrepancy in the branch norms is a known scalar factor of φt.

Define re-scaled, non-negative weights

w̃IR =
wIR
St

, w̃V I =
φt wV I
St

, St = wIR + φt wV I . (54)

Because w̃IR + w̃V I = 1, the combined gradient becomes

w̃IR gIR + w̃V I gVIS = 1
St

(
wIR gIR + wV I gVIS

)
, (55)
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Figure 7: The robustness of single pre-trained diffusion model.

i.e. it is altered only by a scalar common to all modalities. Such a scalar vanishes in the cosine
cos θt,k, hence the covariance in Eq. (21) depends only on the directional component.

Because the gradients of an ℓ1 loss have constant pixel magnitudes, their global ℓ2 norms differ by
at most the known scalar φt. Re-scaling the branch weights therefore yields magnitudes that are
effectively identical, justifying the step-independent constant st.

Many diffusion works replace Eq. equation 51 by a surrogate solved with iteratively reweighted
least-squares (Charbonnier et al., 1997; Daubechies et al., 2004). The IRLS surrogate is analytically
equivalent to the original ℓ1 problem. Classifier-free guidance (Ho & Salimans, 2022) and its de-
scendants (Chung et al., 2022; Kawar et al., 2022; Gao et al., 2025) exploit exactly this observation:
they balance data and prior gradients with a single scalar at each step. Whether one solves the exact
ℓ1 problem or its IRLS surrogate , the guiding gradients entering Eq. (21) are provably or empirically
equal in magnitude. The analysis of directional alignment cos θt,k is therefore well-founded.

C.3 MORE DETAILS ABOUT PSEUDOCODE FLOW

Algorithm 1 dig2DIG

Require: Multimodal sources {ck}Kk=1; diffusion model ϵθ; total steps T ; DIG update interval S;
discrepancy metric l(·, ·)

Ensure: Fused image x0
1: Pre-compute variance schedule {αt, ᾱt}Tt=1
2: xT ∼ N (0, I) ▷ start from pure noise
3: wk ← 1

K , k = 1, . . . ,K ▷ uniform init
4: for t = T, T − 1, . . . , 1 do
5: if t mod S = 0 then ▷ update DIG every S steps
6: for k = 1 to K do ▷ single-modal reconstructions
7: ctk ←

√
ᾱt ck +

√
1−ᾱt ϵ, ϵ∼N (0, I)

8: ĉtk ←
1√
ᾱt

(
ctk −

√
1−ᾱt ϵθ(ctk, t)

)
9: DIGk ← l(ĉtk, ck)

10: end for
11: wk ←

exp(DIGk)∑K
j=1 exp(DIGj)

, ∀k ▷ softmax normalisation

12: end if
13: ▷ one reverse-diffusion step with guidance

14: SCOREuncond ← −
ϵθ(xt, t)√
1− ᾱt

15: SCOREmulti ←
∑K
k=1 wk CONDSCORE(xt, ck) ▷ EM-based

16: z ∼ N (0, I)

17: xt−1 ←
1
√
αt
xt + σ(t) z +

1−αt√
αt

(
SCOREuncond + SCOREmulti

)
18: end for
19: return x0

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.4 MORE DETAILS ABOUT SINGLE PRE-TRAINED DIFFUSION MODEL

Figure 7 demonstrates the strong restoration capability obtained with a single diffusion model, un-
derscoring the robustness of our method. For both infrared and visible images, even after noise is
added, the diffusion model is able to reconstruct them faithfully. We also present scenarios in which
portions of one modality are missing; the high-quality reconstructions further verify the robustness
of our approach.

Although we employ only one pre-trained diffusion model, its training on a large and diverse dataset
enables it to model a broad image manifold and thus recover information across multiple modali-
ties. Because a single diffusion model already possesses this capability, we adopt one pre-trained
diffusion model to keep the overall pipeline concise.

C.5 MORE DETAILS ABOUT EXPERIMENTS

Hardware and Software. All experiments were conducted on a single NVIDIA RTX A6000
GPU. We used PyTorch 2.4.1 built with CUDA 12.1 and cuDNN 9.1. Unless otherwise noted,
inference ran in FP32 with batch size 1.

Backbone, Sampler, and Step Budgets. For a fair comparison across diffusion-based methods
(DDFM, CCF, and our Dig2DIG), we reuse the same unconditional pretrained diffusion checkpoint
256x256 diffusion uncond.pt without any fine-tuning, and we adopt DDIM sampling for
all methods. DDFM is run with its default 100 reverse steps, CCF with its default 300 steps, and
Dig2DIG with a total of 25 reverse steps (“DIG-25”). DIG is refreshed every S=10 steps, which
we found to offer the best quality–cost trade-off; early, high-noise stages use larger denoising steps
while later stages use smaller steps to capture fine details.

I/O Resolution and Pre-/Post-Processing. For every dataset and method, the model operates at
native image resolution: inputs are fed at their original size and the fused outputs have exactly
the same height and width. Images are read as float32, normalized to [−1, 1] before diffusion
inference, and de-normalized back to the original scale when writing results. Unless otherwise
specified, we fix the random seed to 42 for reproducibility.

Fairness Controls. To isolate guidance effects, we keep the checkpoint, sampler, and I/O resolu-
tion identical across DDFM, CCF, and Dig2DIG; only the guidance terms differ. This ensures that
observed performance gaps are not attributable to backbone capacity or training.

Evaluation Protocol and Timing. For visible–infrared fusion (VIF) we report PSNR, SSIM,
MSE, Nabf, CC, and LPIPS; for multi-focus (MFF) and multi-exposure (MEF) we report SD, EI,
EN, AG, SF, and MI. Following DDFM and CCF, SSIM is computed as the sum over two references
to maintain protocol consistency, which can yield values greater than 1. Wall-clock runtime is mea-
sured per image on the RTX A6000 at batch size 1 after a brief warm-up and excludes data I/O;
where applicable we also report TFLOPs alongside wall-clock time.

D MORE RESULTS

D.1 MORE QUALITATIVE COMPARISONS

As shown in 8 on the M3FD dataset, our method is the only one that simultaneously preserves sky
textures, produces clear building structures, and retains fine infrared details in smoky regions. In
contrast, CCF and related methods blur the buildings, while DCEvo, LFDT-Fusion, and MMDRFuse
lose infrared details inside the smoke; CDDFuse and SwinFusion fail to maintain the texture in the
sky.

As illustrated in 9 on the LLVIP dataset, our method is the only one that keeps both vehicle details
and pedestrian details intact. MUFusion, LFDT-Fusion, and TC-MoA over-emphasize the infrared
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Figure 8: More qualitative comparisons of our method on M3FD datasets.

modality, which suppresses facial details of pedestrians, whereas DCEvo, CCF, and DDFM lose
critical vehicle structures.

As shown in 10 On the MARS dataset, our method preserves both plant textures and human facial
details. Most competing approaches—such as DCEvo, LFDT-Fusion, MMDRFuse, DDFM, DIV-
Fusion, and CCF—are overly influenced by the infrared modality and therefore lose facial details.
Compared with MoEFusion, our method also produces plant colors that are closer to those in the
original visible modality.

As illustrated in 11 On the MFFW multi-focus dataset, our method maintains sharp textures and
faithful colors, while CCF exhibits noticeable color distortion.

As shown in 12 On the MEFB multi-exposure dataset, our method achieves the most natural illumi-
nation transitions. Methods including CCF, DDFM, TTD, FusionDN, and U2Fusion show unnatural
lamp-light transitions near the desk lamp region; compared with DeFusion and TC-MoA, our results
contain fewer noise artifacts on the sofa. Overall, these visual comparisons further demonstrate the
effectiveness and robustness of our approach across diverse fusion tasks.

D.2 EXPERIMENTS ON DATASETS WITH MORE THAN TWO MODALITIES

To verify the scalability of our method beyond bimodal settings, we further conduct experiments on
a multi-exposure benchmark with more than two modalities (Cai et al., 2018). As shown in 13 the
qualitative results demonstrate that Dig2DIG can effectively fuse complementary information from
multiple exposures, confirming its extensibility to K > 2 modality fusion scenarios.
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Figure 9: More qualitative comparisons of our method on LLVIP datasets.

LLVIP Dataset M3FD Dataset MSRS Dataset

Method PSNR↑ SSIM↑ MSE↓ Nabf↓ CC↑ LPIPS↓ PSNR↑ SSIM↑ MSE↓ Nabf↓ CC↑ LPIPS↓ PSNR↑ SSIM↑ MSE↓ Nabf↓ CC↑ LPIPS↓
Cov(wk, Ik,t) < 0 31.63 1.14 2331 0.015 0.65 0.380 30.24 1.35 2482 0.029 0.51 0.339 36.84 1.37 1586 0.010 0.58 0.301
Cov(wk, Ik,t) = 0 36.10 1.18 2056 0.004 0.67 0.310 30.87 1.40 2221 0.007 0.56 0.303 38.19 1.39 1367 0.004 0.66 0.287
Cov(wk, Ik,t) > 0 33.74 1.23 1464 0.001 0.73 0.298 31.83 1.41 2216 0.009 0.57 0.287 39.07 1.42 1366 0.001 0.63 0.282

Table 8: Effect of weight–DIG covariance on fusion performance on LLVIP, M3FD, and MSRS.

D.3 EFFECT OF WEIGHT–DIG COVARIANCE ON FUSION PERFORMANCE

To further corroborate Theorem 1, we perform an ablation study under three covariance regimes
between the guidance weight wk and the residual information proxy DIGk(t):

(i) Positive covariance (Cov(wk, Ik,t) > 0) : the proposed DIG-based softmax;

(ii) Zero covariance (Cov(wk, Ik,t) = 0) : fixed, uniform weights wk = 1/K, ∀k;
(iii) Negative covariance (Cov(wk, Ik,t) < 0) : an inverse-DIG softmax

wneg
k (t) =

exp
(
−DIGk(t)

)∑K
j=1 exp

(
−DIGj(t)

) . (56)

All other hyper-parameters are kept identical across settings. Experiments are conducted on the
LLVIP, M3FD, and MSRS datasets, and the quantitative results are summarised in Table 8.

Across all three benchmarks, the positive-covariance scheme attains the best fusion accuracy, the
uniform scheme ranks second, and the negative-covariance scheme performs worst. This order-
ing aligns with Theorem 1: a larger (positive) Cov(wk, Ik,t) lowers the generalisation-error upper
bound, whereas a negative covariance increases it, thereby empirically validating our theoretical
findings.
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Figure 10: More qualitative comparisons of our method on MSRS datasets.

Figure 11: More qualitative comparisons of our method on MFFW datasets.

D.4 MORE RESULTS ABOUT DIG VISUALIZATION

Under identical experimental settings, we compute at each reverse step t the ratio of guidance-
gradient norms between the infrared and visible modalities, ρt =

∥∇xt log p(cir|xt)∥
∥∇xt log p(cvi|xt)∥ , and report its

mean over all steps for each dataset. The dataset-wise averages are(
ρ LLVIP, ρM3FD, ρMSRS) = (1.06, 0.98, 1.04).

Values close to unity indicate that the gradient-norm approximation used in our derivations is rea-
sonable.
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Figure 12: More qualitative comparisons of our method on MEFB datasets.

Figure 13: Qualitative results on datasets with more than Two modalities

D.5 MORE RESULTS ABOUT DIG AND wk VISUALIZATION

As shown in 15, we present additional visualization results for wk. In the early denoising stage,
wk accurately highlights the salient pedestrians in the infrared modality while capturing the global
scene structure in the visible modality. Because the visible images in this example are low-light and
lack fine details, wk increasingly focuses on infrared details as denoising proceeds and the coarse
structure is reconstructed. Fig. 16 additionally provides the visualization of the raw DIG maps,
where wk is obtained by applying a pixel-wise Softmax to DIG across modalities.

E OBJECT DETECTION EXPERIMENT

To evaluate the usability of the fusion results, we use a pre-trained YOLOv5 model to perform
pedestrian detection on the LLVIP dataset. The results are shown in 14, demonstrating the usability
of the fusion results.
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Figure 14: Object detection comparison of our method and the recent proposed competing ap-
proaches on LLVIP dataset.

Figure 15: wk visualization during denoising steps.
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Figure 16: DIG visualization during denoising steps.
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