

000 001 002 003 004 005 DIG2DIG: DIG INTO DIFFUSION INFORMATION GAINS 006 FOR IMAGE FUSION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Image fusion integrates complementary information from multiple sources to generate more informative results. Recently, the diffusion model, which demonstrates unprecedented generative potential, has been explored in the context of image fusion. During diffusion model generation, information emerges at unequal rates, so the fusion should dynamically weight the source modalities. To address this issue, we reveal a significant spatio-temporal imbalance in image denoising; specifically, the diffusion model produces dynamic information gains in different image regions with denoising steps. Based on this observation, we dive into the Diffusion Information Gains (DIG) and theoretically derive a diffusion-based dynamic image fusion framework that provably reduces its upper bound of the generalization error. Accordingly, we introduce diffusion information gains to quantify the information contribution of each modality at different denoising steps, thereby providing dynamic guidance during the fusion process. Experiments on multiple fusion scenarios confirm that our method outperforms existing diffusion-based approaches in terms of both fusion quality and inference efficiency.

1 INTRODUCTION

Image fusion integrates complementary information from various sources to generate informative fused images with high visual quality (Kaur et al., 2021; Liang et al., 2022), thus substantially improving the performance of downstream vision tasks through enhanced scene representations and enriched visual perception. Image fusion can be mainly grouped into three categories: multi-modal image fusion, multi-exposure image fusion, and multi-focus image fusion. Multi-modal image fusion (MMF) mainly encompasses Visible-Infrared Image Fusion (VIF) and Medical Image Fusion (MIF) tasks. VIF aims to combine the highlighted thermal targets, especially under extreme conditions, in infrared images and the textural details contributed by visible images (Zhang et al., 2020; Ma et al., 2021). MIF incorporates the active regions of various medical imaging modalities, thereby contributing to diagnostic capabilities (Basu et al., 2024). Different from MMF, MEF (Cao et al., 2025a) reconciles the disparity between high- and low-dynamic range images in visual modality, ensuring harmonious lighting appearance, while MFF (Kaur et al., 2021) produces all-in-focus images by blending multiple images captured at different focal depths.

Deep learning-based image fusion techniques, such as CNNs, GANs, and Transformers, have outperformed traditional methods; however, their generative capacity usually restricts the detail and realism of the fused images. Later, diffusion models have emerged as a powerful generative model (Dhariwal & Nichol, 2021), demonstrating unprecedented potential in image fusion (Zhao et al., 2023b). Some works aim to generate fused images by extracting effective feature representations or incorporating diverse constraints (Cao et al., 2025b) into diffusion models. However, they often employ fixed multi-modal fusion guidance to the denoising diffusion steps, overlooking the structural dynamism of denoising and failing to produce qualified fusion results in complex scenarios with changing image quality, highlighting the importance of performing dynamic fusion.

Recently, some studies (Tang et al., 2022b) have explored the dynamism in image fusion. For instance, MoE-Fusion (Cao et al., 2023) introduced a dynamic fusion CNN framework with a mixture of experts model, adaptively extracting comprehensive features from diverse modalities. Text-IF (Yi et al., 2024) pioneered the dynamic controllability of image fusion utilizing various text guidance. Furthermore, TTD (Cao et al., 2025a) first studied the theoretical foundation of dynamic image fu-

Figure 1: The spatio-temporal imbalance of diffusion. We observe that diffusion models restore different regions of an image at unequal rates. Throughout the denoising process, not only do information discrepancies exist between different modalities, but such spatio-temporal imbalance of information gain also persists across various regions of the image. **For clarity, the “information gain” in this figure refers to the ℓ_2 difference between the denoised image at timestep t and the image at $t = T/2$ during the denoising process, which is slightly different from the DIG defined later.**

sion during inference. Despite their notable empirical performance, these dynamic-oriented fusion methods are mainly limited to CNN-based frameworks, and few works dive into the dynamism of diffusion modeling. Furthermore, many of these techniques fundamentally rely on heuristic approaches that lack theoretical validation and clear interpretability, leading to unstable fusion results.

To address these issues, we reveal the objective of image fusion and dig into diffusion information gains for denoising image fusion with theoretical guarantee. Intuitively, image fusion aims to maximize information retention across all modalities (Li et al., 2017; Liu et al., 2024). Given that multi-source images jointly determine the fusion result at each step of the diffusion process, the more incremental information of one modality gains at the denoising step contributes more to the overall fusion result, and vice versa. As illustrated in Figure 1, each modality involved in the fusion process demonstrates a distinct denoising pace within the diffusion framework. Specifically, regions with salient structures converge during the early denoising steps, whereas texture-rich details are recovered only in later iterations. This spatio-temporal heterogeneity reveals that the information contribution of each modality is uneven across denoising steps. This highlights the dynamic guidance strength of different modalities to effectively preserve and integrate the complementary information offered by each modality. The information recovery speed of the fused image also shows a similar pattern. Building on this insight, we revisit the generalized form of denoising image fusion from the perspective of generalization error, and for the first time prove that the key to enhancing generalization in denoising diffusion fusion lies in the positive correlation of the modality fusion weight and the residual modality information. Consequently, we derive the Diffusion Information Gains (DIG) as the dynamic fusion weight, which quantifies the contribution of each modality, theoretically enhancing the generalization of the image fusion model, and dynamically highlights the *informative* regions of different sources. Extensive experiments on multiple datasets and diverse image fusion tasks demonstrate our superiority in terms of fusion quality and efficiency.

- We introduce Dig2DIG, a simple yet effective dynamic denoising fusion framework. By taking DIG as the dynamic fusion weight, our approach enhances the generalization of the image fusion model while adaptively integrating informative regions from each source.
- We theoretically prove that dynamic denoising image fusion outperforms static denoising fusion from the generalization error perspective provably, the key of which lies in the positive covariance between the fusion weight and the residual modality information.
- We compute per-modality, per-region Diffusion Information Gain (DIG) at each reverse-denoising step and use these gains as fusion weights to inject only the currently informative regions from each modality; information-deficient regions are automatically down-weighted. Guided by DIG, steps with less information gain can be skipped, saving 70% of time consumption. This differs from conventional fusion that enforces proximity to all inputs at every step with fixed or heuristic weights, which can bias the fused result toward weak modalities and uninformative regions.

108

2 RELATED WORKS

109

2.1 IMAGE FUSION

110 Image fusion aims to integrate complementary information from various sources, such as visible-
 111 infrared images, multi-exposure images, and multi-focus images, into a single fused image, thereby
 112 improving its visual appearance and downstream task performance. Traditional approaches often
 113 employ wavelet transforms, multi-scale pyramids, or sparse representations to perform fusion in
 114 a transform domain (Wang et al., 2005), while deep learning-based methods (e.g., CNN-, GAN-
 115 , or Transformer-based models) learn end-to-end fusion mappings directly in data-driven scheme,
 116 which significant enhances the fusion quality compared to traditional methods (Archana & Jeevaraj,
 117 2024). Recently, several fusion approaches based on diffusion models have emerged. For example,
 118 DDFM (Zhao et al., 2023b) frames the fusion problem as conditional generation within a DDPM
 119 framework, utilizing an unconditional pretrained model and expectation-maximization (EM) infer-
 120 ence to generate high-quality fused images. CCF (Cao et al., 2025b) introduces controllable
 121 constraints into a pretrained DDPM, allowing the fusion process to adapt to various requirements at
 122 each reverse diffusion step, thereby enhancing versatility and controllability. Moreover, Text-IF (Yi
 123 et al., 2024) incorporates textual semantic guidance into the fusion process, enabling joint image
 124 restoration and fusion interactively. Although some studies have explored dynamic image fusion,
 125 the absence of theoretical foundations may yield unstable and unreliable performance in practice.
 126

127

2.2 CONDITIONAL GUIDANCE

128 Conditional guidance (Ho & Salimans, 2022) in diffusion models typically involves injecting addi-
 129 tional priors (such as multi-modal features or textual semantics) at each denoising step, providing
 130 a flexible way to steer the final generation or editing outcome. Existing studies (Tumanyan et al.,
 131 2023; Xu et al., 2024) have shown that the guidance on different denoising stages can produce
 132 substantially different results, highlighting the importance of dynamic guidance within denoising
 133 steps (Cao et al., 2025b). Recently, some dynamic fusion methods were proposed not only for im-
 134 age fusion, but also for more general multi-modal learning. For instance, Xue & Marculescu (2023)
 135 employ a Mixture-of-Experts mechanism to integrate multiple experts for multimodal fusion. Han
 136 et al. (2022) assign the Evidence-driven dynamic weights at the decision level to obtain the trusted
 137 fusion decisions, and Zhang et al. (2023) explored the advantages of dynamic fusion and further
 138 proposed uncertainty-based fusion weights to enhance the robustness of multimodal learning. Al-
 139 though these methods validated the effectiveness of performing dynamic learning, few works reveal
 140 the dynamism of conditional guidance in diffusion-based image fusion. Most existing methods often
 141 assume equal importance for all modalities, overlooking the variations in the information retained
 142 by each modality at different denoising stages. This highlights the need for a dynamic guidance
 143 mechanism capable of quantifying and utilizing the information gain of each modality.
 144

145

3 METHOD

146 In this paper, we dig into the diffusion information gains and propose a denoising-oriented dynamic
 147 image fusion framework. We proceed to reveal the DDPM (Song et al., 2020), the forward diffusion
 148 process gradually adds noise to a clean sample x_0 until it becomes nearly Gaussian as $x_t = \sqrt{\bar{\alpha}_t} x_0 +$
 149 $\sqrt{1 - \bar{\alpha}_t} \epsilon$, $\epsilon \sim \mathcal{N}(0, I)$, where $\alpha_t = 1 - \beta_t$, $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$, and $\{\beta_t\}$ is a predefined variance
 150 schedule. During inference, the noise x_T iteratively denoises via the reverse update:
 151

$$152 \quad x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t) \right) + \sigma(t) z, \quad (1)$$

153 where $\sigma^2(t) = (1 - \alpha_t)(1 - \bar{\alpha}_{t-1}) / (1 - \bar{\alpha}_t)$, $\epsilon_\theta(\cdot)$ is the network's noise prediction, and $z \sim \mathcal{N}(0, I)$.
 154

155

3.1 MULTIMODAL GUIDANCE

156 For the forward process, if ϵ_θ accurately reflects the noise in x_t , the gradient of $\log p(x_t)$ can be
 157 approximated by the score function as $\nabla_{x_t} \log p(x_t) = -\frac{\epsilon_\theta(x_t, t)}{\sqrt{1 - \bar{\alpha}_t}}$. Comprehensively, the final update
 158

Figure 2: The framework of our Dig2DIG. Deriving from generalization theory, we find that the key to tightening the fusion generalization bound is to ensure that the guidance weight assigned to each modality is positively correlated with the amount of residual information from that modality that has not yet been incorporated into the current fused image. To achieve this, we utilize DIG to estimate this residual information, providing theoretical guidance for reducing generalization error.

step is given as follows. More details are presented in Appendix A and C.

$$x_{t-1} \approx \underbrace{\frac{1}{\sqrt{\alpha_t}} x_t + \underbrace{\sigma(t) z}_{\text{Noise}}}_{\text{Noise}} + \underbrace{\frac{1}{\sqrt{\alpha_t}} (1 - \alpha_t) \nabla_{x_t} \log p(x_t)}_{\text{Unconditional Guidance}} + \underbrace{\frac{1}{\sqrt{\alpha_t}} (1 - \alpha_t) \sum_{k=1}^K w_k \nabla_{x_t} \log p(c_k | x_t)}_{\text{Multimodal Guidance}} \quad (2)$$

3.2 GENERALIZATION ERROR UPPER BOUND

Given images $\{c_k\}_{k=1}^K$, $c_k \in \mathbb{R}^{H \times W \times N}$ from K sources, the input image combination can be represented as $c = \{c_1, \dots, c_K\}$. In the diffusion model, we use x_t to denote the image in the t step of the reverse diffusion process, and the final denoised (fused) result is $x_0 \in \mathbb{R}^{H \times W \times N}$. The overall denoising operator of the diffusion model can be denoted as F , i.e., $x_0 = F(c)$. We write $I_{k,t} = \Delta_I(c_k, x_t, x^*(c))$, $k = 1, \dots, K$, to denote the residual information of modality k that has not yet been incorporated into x_t ; **When $x^*(c)$ is available, we instantiate Δ_I as the modality- k projection energy of the residual, i.e., $I_{k,t} \triangleq \|\Pi_k(x^*(c) - x_t)\|^2$.**

Let $c \sim D$ denote the multimodal input, and let $z = \{z_t\}_{t=1}^T$ be the algorithmic sampling noise in the reverse diffusion, where each $z_t \sim \mathcal{N}(0, I)$ is independent of (c, x_t) .

Let $x^*(c)$ represents the *ideal* fused image conditioned on the multimodal input c , and let $\zeta(\cdot)$ be a loss function that measures the discrepancy between a fused image and the ideal image. Assume that $\zeta(\cdot)$ is an L -Lipschitz function (i.e., $|\zeta(u) - \zeta(v)| \leq L \|u - v\|$ for a suitable norm; in image tasks ζ is often chosen as the ℓ_1 or ℓ_2 distance), under these assumptions, for any unseen data $c \sim D$, we define the Generalization Error as follows:

$$\text{GError}(F) = \mathbb{E}_{c,z} [\zeta(F(c), x^*(c))]. \quad (3)$$

Here, $x^*(c)$ denotes the ideal fused image tailored to the input c , which reflects the optimal fusion result that we aim to approximate. This expectation quantifies the mean discrepancy between the fused output $F(c)$ and the ideal fused image $x^*(c)$, evaluated on the actual data distribution D and averaged over the internal sampling noise z . A smaller Generalization Error indicates that the model performs better in terms of fusion accuracy on unseen multimodal data.

Theorem 1 *For a multi-source image-fusion operator F that employs diffusion-based conditional guidance, the Generalization Error (GError) can be decomposed into (i) a linear combination of*

covariance terms, each capturing the interaction between the guidance weight w_k and the residual information $I_{k,t}$ of modality k that has not yet been incorporated into the current fused image x_t , and (ii) a constant term that is independent of both the weights $\{w_k\}$ and the input data c , given that $\sum_{k=1}^K w_k = 1$. The detailed proof and detailed explanation of $I_{k,t}$ are provided in Appendix B.

$$\text{GError}(F) \leq C - \sum_{t=1}^T \sum_{k=1}^K A_{k,t} \text{Cov}(w_k, I_{k,t}), \quad (4)$$

where C and the coefficients $A_{k,t}$ are constants that do not depend on w_k or c . $I_{k,t}$ quantifies the amount of residual information from modality k that has not yet been fused into x_t . A larger $I_{k,t}$ indicates that modality k still contains substantial information that can reduce the discrepancy between x_t and the ideal fused image $x^*(c)$.

In practice, the ideal fused image $x^*(c)$ and $I_{k,t}$ are unobservable; consequently, the covariance $\text{Cov}(w_k, I_{k,t})$ cannot be evaluated. A common workaround in diffusion-based fusion systems is to assign uniform weights, implicitly assuming equal importance for all modalities. However, empirical studies (Du et al., 2023; Dinh et al., 2023) have shown that the rate at which information is restored during the reverse process depends on spatial frequency and the current time step, leading different modalities to exhibit heterogeneous informational contributions at a given x_t .

Spectral analyses in diffusion (Lee et al., 2025) demonstrate that low-frequency content is synthesized early whereas high-frequency details emerge later in diffusion models. Because a fused image must simultaneously reconstruct the complete frequency content of all source modalities (Wang et al., 2024), its step-wise information restoration naturally inherits the generation speed of each modality. The results in Figure 1 also support this view. Therefore, the information gain obtained at time step t from a single-modal reconstruction serves as a reasonable proxy for the amount of modality- k information that still remains to be incorporated into the fused image, which is $I_{k,t}$.

3.3 DYNAMIC FUSION WITH DIFFUSION INFORMATION GAINS

Accordingly, we introduce the concept of *Diffusion Information Gains* (DIG), which quantifies how much residual discrepancy still separates a single-modal reconstruction from its clean target at each reverse-diffusion step. Specifically, for an individual modality c_k , let c_k^t denote its noisy observation at timestep t , and let \hat{c}_k^t be the corresponding one-step denoised result. We define

$$\text{DIG}_k(t) = l(\hat{c}_k^t, c_k), \quad (5)$$

where $l(\cdot, \cdot)$ is any image-to-image discrepancy measure (e.g., the ℓ_2 distance). A larger $\text{DIG}_k(t)$ means that, at step t , the current single-modal reconstruction is still far from its clean counterpart c_k , indicating that modality k can potentially supply a larger amount of information to the ongoing fusion process. Therefore, we refer to this quantity as DIG.

Following the standard diffusion framework, the noisy image c_k^t at timestep t is generated by

$$c_k^t = \sqrt{\bar{\alpha}_t} c_k + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \quad (6)$$

where $\bar{\alpha}_t$ controls the noise level. The denoised result \hat{c}_k^t is obtained from c_k^t via the estimated noise:

$$\hat{c}_k^t = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(c_k^t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(c_k^t, t) \right). \quad (7)$$

Recalling the upper bound of the Generalization Error in equation 4, the not-yet-fused information $I_{k,t}$ can be characterized by the status of the single-modal reconstruction at step t . Because a larger $\text{DIG}_k(t)$ indicates that more residual information from modality k remains to be incorporated, $\text{DIG}_k(t)$ serves as a practical, observable proxy for the latent residual-information term $I_{k,t}$ discussed earlier.

Given $\text{DIG}_k(t)$ for each modality c_k , we propose to dynamically weight the guidance contributions to the fused image based on their diffusion information gains. At each denoising step t , the weights $\{w_k\}$ is computed by normalizing the DIG values across the modalities (e.g., softmax):

$$w_k(t) = \frac{\exp(\text{DIG}_k(t))}{\sum_{j=1}^K \exp(\text{DIG}_j(t))}. \quad (8)$$

Figure 3: Qualitative comparisons of our method on M3FD, LLVIP, and MSRS datasets.

Table 1: Quantitative comparisons on LLVIP, M3FD, and MSRS.

Method	LLVIP Dataset						M3FD Dataset						MSRS Dataset					
	PSNR↑	SSIM↑	MSE↓	Nabf↓	CC↑	LPIPS↓	PSNR↑	SSIM↑	MSE↓	Nabf↓	CC↑	LPIPS↓	PSNR↑	SSIM↑	MSE↓	Nabf↓	CC↑	LPIPS↓
SwinFusion	32.33	0.81	2845	0.023	0.67	0.321	31.73	1.40	3853	0.021	0.51	0.289	39.34	1.41	1755	0.002	0.59	0.298
DIVFusion	21.60	0.82	6450	0.044	0.66	0.350	26.19	1.20	4099	0.083	0.51	0.377	18.49	0.69	10054	0.100	0.52	0.462
MoE-Fusion	31.70	1.12	2402	0.034	0.69	0.324	33.15	1.37	3462	0.012	0.47	0.303	38.21	1.35	2637	0.030	0.60	0.298
MUFusion	31.64	1.10	2069	0.030	0.65	0.320	29.82	1.29	2733	0.071	0.50	0.349	36.02	1.25	1701	0.037	0.62	0.370
CDDFuse	32.13	1.18	2545	0.016	0.67	0.335	31.75	1.40	3715	0.030	0.52	0.278	37.76	1.30	2485	0.022	0.59	0.335
DDFM	36.10	1.18	2056	0.004	0.67	0.310	30.87	1.40	2221	0.007	0.56	0.303	38.19	1.39	1367	0.004	0.66	0.287
Text-IF	31.22	1.18	2460	0.031	0.69	0.312	34.01	1.39	3470	0.037	0.48	0.277	41.93	1.37	2494	0.027	0.60	0.298
TC-MoA	33.00	1.20	2790	0.017	0.67	0.332	31.07	1.40	2516	0.011	0.53	0.289	37.73	1.40	1640	0.005	0.62	0.293
CCF	33.12	1.22	1658	0.006	0.70	0.334	31.51	1.40	2271	0.010	0.56	0.291	38.00	1.38	1410	0.006	0.64	0.319
DCEvo	32.42	1.15	2575	0.014	0.66	0.321	31.45	1.40	3812	0.071	0.50	0.290	38.00	1.41	2464	0.039	0.60	0.299
MMDRFuse	33.28	1.20	2159	0.025	0.69	0.302	31.51	1.40	3508	0.014	0.54	0.301	39.01	1.40	2199	0.190	0.60	0.323
LFDT	33.31	1.20	2534	0.019	0.66	0.302	30.54	1.39	3714	0.027	0.47	0.318	38.97	1.41	2525	0.031	0.60	0.306
Dig2DIG	33.74	1.23	1464	0.001	0.73	0.298	31.83	1.41	2216	0.009	0.57	0.287	39.07	1.42	1366	0.001	0.63	0.282

By incorporating DIG-based weights, the fused result more accurately reflects the relative contributions of each modality at each timestep, ultimately leading to a lower fusion error and better generalization performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. In our experiments, we evaluate the proposed method on three key image fusion tasks: Visible-Infrared Image Fusion (VIF), Multi-Focus Fusion (MFF), and Multi-Exposure Fusion (MEF). For VIF, we use the LLVIP (Jia et al., 2021), M3FD (Liu et al., 2022), and MSRS (Tang et al., 2022a) datasets, each providing paired visible and infrared images under a variety of scenarios. In the MFF task, we adopt the MFFW dataset (Zhang, 2021a) to merge images that focus on different regions into a single, fully focused output. For the MEF task, we employ the MEFB dataset (Zhang, 2021b) to assess the performance of combining images captured at various exposure levels.

Implementation Details. Our approach is built upon a single pre-trained diffusion model (Dhariwal & Nichol, 2021), and it does not require any additional training or fine-tuning. The same pretrained network is reused without any modification to denoise every modality across all fusion tasks, thereby avoiding modality-specific supervision. See Appendix C for more details.

Evaluation Metrics. We evaluate fusion quality using both qualitative and quantitative approaches. Qualitative assessment relies on subjective visual inspection, focusing on clear textures and natural color representation. For the Visible-Infrared Image Fusion task, we use Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), Mean Squared Error (MSE), Noise Amplification (Nabf),

336 Figure 4: Qualitative comparisons of our method on MFFW Dataset and MEFB Dataset.
337338 Table 2: Performance comparison on MFFW and MEFB datasets.
339

Method	MFFW Dataset						MEFB Dataset					
	SD↑	EI↑	EN↑	AG↑	SF↑	MI↑	SD↑	EI↑	EN↑	AG↑	SF↑	MI↑
FusionDN	66.59	17.20	7.45	6.74	22.27	3.37	61.50	19.55	7.29	7.56	21.05	3.47
U2Fusion	64.88	11.97	6.93	5.56	18.74	3.25	67.83	19.54	7.37	8.08	22.19	3.38
DeFusion	52.75	10.60	6.80	4.32	14.12	2.92	54.75	12.55	7.28	4.76	12.72	3.89
DDFM	67.30	14.32	7.51	3.82	13.40	5.71	56.34	11.95	7.30	4.47	12.21	8.49
Text-IF	62.51	12.73	6.39	4.82	17.26	3.41	66.27	20.01	7.37	7.72	21.58	3.30
TC-MoA	50.27	12.18	7.07	4.82	15.64	3.39	57.55	17.65	7.35	6.95	20.67	4.45
TTD	52.86	15.94	7.10	6.38	21.99	4.54	54.22	19.10	7.39	7.70	23.51	3.59
CCF	69.71	14.85	7.75	6.70	21.49	4.23	71.01	19.99	7.35	8.03	22.71	3.93
Dig2DIG	72.95	16.64	7.87	6.75	22.60	5.97	75.05	20.21	7.38	8.10	23.60	6.87

353 Correlation Coefficient (CC), and Learned Perceptual Image Patch Similarity (LPIPS). For the MFF
354 and MEF tasks, we employ Standard Deviation (SD), Edge Intensity (EI), Entropy (EN), Average
355 Gradient (AG), Spatial Frequency (SF), and Mutual Information (MI). Following DDFM/CCF, we
356 compute SSIM as the sum over two references, this keeps comparisons protocol-consistent.

357
358

4.2 COMPARISON ON VISIBLE-INFRARED IMAGE FUSION

359

360 For VIF, we compare our method with the state-of-the-art methods: SwinFusion (Ma et al., 2022),
361 DIVFusion (Tang et al., 2023), MOEFusion (Cao et al., 2023), MUFusion (Cheng et al., 2023),
362 CDDFuse (Zhao et al., 2023a), DDFM (Zhao et al., 2023b), Text-IF (Yi et al., 2024), TC-MoA Zhu
363 et al. (2024), CCF (Cao et al., 2025b), [DCEvo](#) (Liu et al., 2025), [MMDRFuse](#) (Deng et al., 2024),
364 and [LFDT-Fusion](#) (Yang et al., 2025).

365 **Quantitative Comparisons.** Table 1 presents the quantitative results on three infrared-visible
366 datasets (LLVIP, M3FD, and MSRS) under six evaluation metrics. Our proposed method (Dig2DIG)
367 achieves leading performance on the majority of these metrics without requiring any training proce-
368 dure. On the [LLVIP](#) dataset, Dig2DIG attains the best SSIM, MSE, Nabf, CC, and LPIPS scores.
369 For instance, our MSE (1464) not only outperforms the second-best value (1658) but is also indica-
370 tive of improved fidelity to the original images. Additionally, our SSIM (1.23) surpasses previous
371 methods, demonstrating superior structural preservation. In the [M3FD](#) dataset, our method again
372 secures top rankings in several metrics, including SSIM and CC. The reduction of MSE from 2221
373 (second-best) to 2216 underlines our consistent fidelity benefits, while the improvements in SSIM
374 highlight enhanced structural similarity. Meanwhile, on the [MSRS](#) dataset, Dig2DIG achieves the
375 best SSIM, MSE, and LPIPS scores. The lower MSE (1366) suggests stronger detail retention, and
376 the improved LPIPS (0.282) indicates better perceptual quality. Consistent with Theorem 1, across
377 all three VIF benchmarks we observe that positive covariance outperforms the uncorrelated baseline
378 , which in turn outperforms negative covariance , as shown in Appendix Table 8. This observed
379 monotone ordering supports treating $DIG_k(t)$ as a proxy for $I_{k,t}$.

378
379
380
Table 3: Performance of different DIG intervals
381 S on the M3FD dataset.

S	PSNR↑	SSIM↑	MSE↓	Nabf↓	CC↑	LPIPS↓
1	30.35	1.35	2562	0.035	0.521	0.308
5	30.92	1.38	2321	0.021	0.533	0.294
10	31.83	1.41	2215	0.009	0.573	0.287
20	31.51	1.40	2220	0.010	0.570	0.289

386
387
388
Table 5: **Ablation of region-wise and time-wise**
389 **DIG weighting on the M3FD dataset.**

Metric	PSNR↑	SSIM↑	MSE↓	Nabf↓	CC↑	LPIPS↓
Region+Time	31.83	1.41	2216	0.009	0.573	0.287
Region-only	31.40	1.40	2269	0.012	0.570	0.290
Time-only	30.67	1.37	2350	0.031	0.542	0.310
No weighting	30.29	1.36	2381	0.040	0.535	0.322

395 **Qualitative Comparisons.** With the aid of DIG, Dig2DIG persistently preserves fine-grained structures and salient infrared cues across all three benchmarks, as shown in Fig. 3. On **M3FD**, Our method retains the sharpest texture patterns, while TC-MoA and CCF produce noticeably blurred results. Within **LLVIP** scenes, Dig2DIG keeps licence-plate characters and facial details intact; MUfusion and Text-IF, by contrast, erode these high-frequency regions. For the **MSRS** dataset, Dig2DIG again delivers clearer human details and background textures, whereas Text-IF overwhelms visible structures with infrared intensity and CCF sacrifices visible-light detail. Our fusion strikes a superior balance between infrared saliency and visible clarity, yielding images that are both informative and visually natural. These qualitative findings corroborate the quantitative gains in Table 1, underscoring DIG’s ability to safeguard critical texture during the reverse-diffusion process.

405
406

4.3 EVALUATION ON MULTI-FOCUS FUSION

407 For multi-focus image fusion, we compare our method with the state-of-the-art methods: FusionDN (Xu et al., 2020b), U2Fusion (Xu et al., 2020a), DeFusion (Liang et al., 2022), DDFM (Zhao et al., 2023b), Text-IF (Yi et al., 2024), TC-MoA (Zhu et al., 2024), TTD (Cao et al., 2025a) and CCF (Cao et al., 2025b).

412 **Quantitative Comparisons.** We evaluate our approach on the **MFFW** dataset using six metrics (SD, 413 EI, EN, AG, SF, and MI). As shown in Table 2 (left), Dig2DIG outperforms competing methods on 414 five of these six indicators by notable margins. In particular, our method achieves the highest SD 415 (72.95), which is 5.65 above the second-best (67.30), reflecting enhanced contrast and clarity. We 416 also secure top positions in EN (7.87), AG (6.75), SF (22.60), and MI (5.97), suggesting superior 417 retention of details and overall information. Although FusionDN slightly outperforms Dig2DIG in 418 EI, our model still ranks second. These results validate the efficacy of our dynamic fusion framework 419 in handling multi-focus imagery. This result demonstrates the effectiveness of our method.

420 **Qualitative Comparisons.** On the multi-focus **MFFW** dataset (Fig. 4), Dig2DIG preserves fine 421 textures and true chromatic tones across both focused and defocused regions. By contrast, TTD 422 and TC-MoA introduce noticeable colour shifts, while FusionDN produces softer, less distinct 423 edges. The consistently sharper structures and faithful colours highlight Dig2DIG’s ability to fuse 424 multi-focus inputs without sacrificing either structural or colour information.

425
426

4.4 EVALUATION ON MULTI-EXPOSURE FUSION

427 For multi-exposure image fusion, we compare our method with the state-of-the-art methods: FusionDN (Xu et al., 2020b), U2Fusion (Xu et al., 2020a), DeFusion (Liang et al., 2022), DDFM (Zhao et al., 2023b), Text-IF (Yi et al., 2024), TC-MoA (Zhu et al., 2024), and TTD (Cao et al., 2025a).

431 **Quantitative Comparisons.** As shown in Table 2 (right), we evaluate our method on the **MEFB** 432 dataset using SD, EI, EN, AG, SF, and MI. Dig2DIG obtains the best performance on four of these

378
379
380
Table 4: Comparison of different distance mea-
381 sures on the M3FD dataset.

Metric	PSNR↑	SSIM↑	MSE↓	Nabf↓	CC↑	LPIPS↓
\emptyset	30.29	1.36	2381	0.040	0.535	0.322
ℓ_1	31.41	1.39	2220	0.017	0.569	0.293
SSIM	31.45	1.41	2245	0.011	0.571	0.297
ℓ_2	31.83	1.41	2216	0.009	0.573	0.287

386
387
388
Table 6: **Comparison of different weighting**
389 **functions for deriving w_k on the M3FD dataset.**

Metric	PSNR↑	SSIM↑	MSE↓	Nabf↓	CC↑	LPIPS↓
Softmax	31.83	1.41	2216	0.009	0.573	0.287
Sigmoid	31.62	1.40	2239	0.022	0.556	0.292
ReLU	31.67	1.41	2240	0.017	0.571	0.299
No weighting	30.29	1.36	2381	0.040	0.535	0.322

432
433
434
435
436
437
438
439
440
441
442
443
Figure 5: w_k visualization.444
445
446
447
448
449
450
451
452
453
454
455
456
Figure 6: Influence of $\text{COV}(w_k, I_{k,t})$ on quality and the positive correlation between DIG and $I_{k,t}$.

457 metrics (SD, EI, AG, SF). While TTD achieves a slightly higher EN and DDFM outperforms us in
458 MI, our method still ranks second in both metrics.

459 **Qualitative Comparisons.** On the multi-exposure dataset (Fig. 4), TEXT-IF frequently overex-
460 poses high-luminance regions, erasing fine detail, while FusionDN, TC-MoA, and TTD introduce
461 unnatural transitions between the desk lamp and its background. By contrast, Dig2DIG integrates
462 information from all exposure levels, preserving highlight texture, shadow gradation, and smooth
463 spatial transitions. The resulting images achieve a well-balanced combination of saturation and
464 clarity, delivering the highest visual fidelity and detail retention among the compared methods.

465
466
467
468
469 4.5 DISCUSSION

470 **Discussion of Efficiency.** To reduce the overhead of computing DIG at each reverse diffusion step,
471 we introduce a hyperparameter S that specifies the interval at which DIG is calculated. In other
472 words, instead of computing DIG at every step, it is updated every S steps. Table 3 shows that setting
473 the update interval to $S = 10$ offers the best trade-off between fusion quality and computational cost.
474 When $S = 1$ or $S = 5$, DIG is refreshed at every (or nearly every) denoising step; near the *late*
475 stages of denoising, the partially recovered image already resembles the clean target, so the residual
476 difference becomes too small to provide reliable information-gain estimates, leading to a slight drop
477 in performance. Conversely, with $S = 20$ the update is so sparse that finer-grained changes in the
478 dynamic guidance can no longer be tracked, again causing a marginal decline. We therefore adopt
479 $S = 10$, which keeps the computational overhead low while retaining high-quality fusion results.

480 “DIG- N ” denotes our method with a total of N reverse diffusion steps. Based on the results in
481 Table 7, increasing the total number of reverse diffusion steps generally improves performance but
482 also significantly increases runtime. We find that “DIG-25” effectively strikes a balance between
483 runtime and fusion quality. Note that in the early stages of the reverse diffusion process, the noise
484 level is high and the variance of DIG is large, which often makes the information gain inaccurate
485 or ineffective. Based on this, and in order to fuse information more efficiently, Dig2DIG employs
larger denoising steps at higher noise levels and smaller denoising steps at lower noise levels. This

432
433
434
435
436
437
438
439
440
441
442
443
Table 7: Efficiency on the M3FD dataset compared with diffusion-based methods.

Method	SSIM	MSE	CC	LPIPS	t (s)	TFLOPS
DIG-15	1.30	2771	0.501	0.312	31	479
DIG-20	1.38	2321	0.551	0.294	43	705
DIG-25	1.41	2215	0.573	0.287	52	819
DIG-50	1.41	2219	0.573	0.287	109	3327
CCF	1.40	2271	0.572	0.291	633	8505
DDFM	1.40	2221	0.568	0.303	180	2820

486 approach ensures that, when the noise is sufficiently reduced, the valuable features of each modality
 487 can be more deeply integrated, thus effectively achieving more efficient information fusion.
 488

489 **Discussion of DIG and $I_{k,t}$.** In most image fusion tasks, the ground truth $x^*(c)$ is unavailable, so
 490 the residual (yet-unfused) modality information $I_{k,t}$ in our theory cannot be directly observed. To
 491 provide a more direct quantitative support for the theoretical claims, we additionally conduct experiments
 492 on a GT-available multi-focus fusion benchmark, MFI-WHU (Zhang et al., 2021). On this
 493 dataset, since the all-in-focus GT is provided, we construct a GT-based residual measurement $I_{k,t}$
 494 by first computing the pixel-wise ℓ_2 distance between the current fused image x_t and the GT, and
 495 then averaging it within the focused regions of each source modality. With $I_{k,t}$ available, we can
 496 validate two key implications of our bound within a unified experiment. As shown in Fig. 6, the scatter
 497 plot between $DIG_k(t)$ and $I_{k,t}$ across all image exhibits a strong positive correlation (Pearson
 498 $r = 0.9345$), supporting DIG as a reliable monotone surrogate of the GT-based residual. Moreover,
 499 when using softmax($I_{k,t}$) to form fusion weights, positively aligning weights with residual magnitudes
 500 yields the lowest error (MSE 597.9), whereas uniform weighting and negatively correlated
 501 weighting lead to substantially higher errors (MSE 1060.8 and 1883.7, respectively). Together, these
 502 GT-based results quantitatively corroborate that DIG faithfully reflects residual information and that
 503 residual-aligned dynamic weighting tightens the generalization bound in practice.
 504

505 **w_k Visualization Results.** Fig. 5 visualizes w_k , in early denoising, prominent infrared structures
 506 exhibit larger w_k ; as denoising proceeds and the overall image structure is rapidly reconstructed, re-
 507 gions with rich fine-grained textures then exhibit larger w_k . The results indicate that DIG accurately
 508 captures the relative magnitudes of information gain contributed by each modality across different
 509 regions of the image. The magnitude of DIG directly reflects how much information from the cor-
 510 responding modality remains unfused in that region, and can therefore be used to guide fusion in
 511 diffusion models. further examples are provided in Appendix D.
 512

513 **Discussion of Region-wise and Time-wise DIG Weighting.** Table 5 studies how applying DIG-
 514 based weights across regions and timesteps affects fusion quality. Using both region-wise and time-
 515 wise dynamic weighting consistently yields the best performance, indicating that the two dimensions
 516 are complementary. Region-only weighting already brings a clear gain over no weighting, showing
 517 that spatially adaptive guidance is important for identifying modality-salient areas (e.g., thermal
 518 targets vs. visible textures). Time-only weighting also improves over the baseline but is weaker
 519 than region-only weighting, suggesting that temporal adaptivity alone cannot fully resolve local
 520 modality competition without spatial discrimination. Overall, the strongest results are achieved
 521 when Dig2DIG jointly accounts for where each modality is informative and when this residual
 522 information should be emphasized during denoising, validating the design of our weighting strategy.
 523

524 **Discussion of Weighting Functions for Deriving w_k .** Table 6 compares different ways to map DIG
 525 to fusion weights w_k . Softmax, Sigmoid gating, and ReLU normalization all consistently outperform
 526 the no weighting baseline on all metrics, indicating that Dig2DIG is robust to the specific DIG to w_k
 527 mapping. Among them, Softmax gives the best overall performance in our setting, while Sigmoid
 528 gating and ReLU remain competitive with only minor gaps.
 529

530 **Discussion of the choice of l .** To determine a suitable function for computing l , we conduct ex-
 531 periments on the M3FD dataset using different metric functions, including ℓ_1 , SSIM, and ℓ_2 , while
 532 considering the case with fixed uniform weight as the "baseline," denoted by \emptyset . in the table 4, it is
 533 evident that the ℓ_2 distance achieves the best performance. Therefore, we adopt ℓ_2 distance as the
 534 evaluation function for subsequent experiments. The overall performance suggests that introducing
 535 a reasonable metric function consistently enhances the results to varying degrees. Compared to the
 536 baseline without any distance metric, these improvements indicate the strong applicability of our
 537 method to different metric functions in both theoretical and practical aspects.
 538

539 5 CONCLUSION

540 In this paper, we introduced a novel dynamic denoising diffusion framework for image fusion, which
 541 explicitly addresses the spatio-temporal imbalance in denoising through the lens of Diffusion Infor-
 542 mation Gains. By quantifying DIG by each modality at different noise levels, our method adaptively
 543 weights the fusion guidance to preserve critical features while ensuring high-quality, reliable fusion
 544 results. Theoretically, we proved that aligning the modality fusion weight with the residual modality
 545 information reduces the upper bound of the generalization error, thus offering a rigorous explanation
 546 for the advantages of dynamic denoising fusion.
 547

540 REFERENCES
541

542 R Archana and PS Eliahim Jeevaraj. Deep learning models for digital image processing: a review.
543 *Artificial Intelligence Review*, 57(1):11, 2024.

544 Shatabdi Basu, Sunita Singhal, and Dilbag Singh. A systematic literature review on multimodal
545 medical image fusion. *Multimedia tools and applications*, 83(6):15845–15913, 2024.

546 Jianrui Cai, Shuhang Gu, and Lei Zhang. Learning a deep single image contrast enhancer from
547 multi-exposure images. *IEEE Transactions on Image Processing*, 27(4):2049–2062, 2018.

548 Bing Cao, Yiming Sun, Pengfei Zhu, and Qinghua Hu. Multi-modal gated mixture of local-to-global
549 experts for dynamic image fusion. In *Proceedings of the IEEE/CVF International Conference on*
550 *Computer Vision (ICCV)*, pp. 23555–23564, October 2023.

551 Bing Cao, Yinan Xia, Yi Ding, Changqing Zhang, and Qinghua Hu. Test-time dynamic image
552 fusion. *Advances in Neural Information Processing Systems*, 37:2080–2105, 2025a.

553 Bing Cao, Xingxin Xu, Pengfei Zhu, Qilong Wang, and Qinghua Hu. Conditional controllable
554 image fusion. *Advances in Neural Information Processing Systems*, 37:120311–120335, 2025b.

555 Pierre Charbonnier, Laure Blanc-Féraud, Gilles Aubert, and Michel Barlaud. Deterministic edge-
556 preserving regularization in computed imaging. *IEEE Transactions on image processing*, 6(2):
557 298–311, 1997.

558 Chunyang Cheng, Tianyang Xu, and Xiao-Jun Wu. Mufusion: A general unsupervised image fusion
559 network based on memory unit. *Information Fusion*, 92:80–92, 2023.

560 Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
561 posterior sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022.

562 Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm
563 for linear inverse problems with a sparsity constraint. *Communications on Pure and Applied*
564 *Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences*, 57(11):1413–
565 1457, 2004.

566 Yanglin Deng, Tianyang Xu, Chunyang Cheng, Xiao-Jun Wu, and Josef Kittler. Mmdrfuse: Dis-
567 tillied mini-model with dynamic refresh for multi-modality image fusion. In *Proceedings of the*
568 *32nd ACM International Conference on Multimedia*, MM '24, pp. 7326–7335. ACM, October
569 2024. doi: 10.1145/3664647.3681085. URL <http://dx.doi.org/10.1145/3664647.3681085>.

570 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
571 *in neural information processing systems*, 34:8780–8794, 2021.

572 Anh-Dung Dinh, Daochang Liu, and Chang Xu. Rethinking conditional diffusion sampling with
573 progressive guidance. *Advances in Neural Information Processing Systems*, 36:42285–42297,
574 2023.

575 Chengbin Du, Yanxi Li, Zhongwei Qiu, and Chang Xu. Stable diffusion is unstable. *Advances in*
576 *Neural Information Processing Systems*, 36:58648–58669, 2023.

577 Zhengqi Gao, Kaiwen Zha, Tianyuan Zhang, Zihui Xue, and Duane S Boning. Reg: Rectified
578 gradient guidance for conditional diffusion models. *arXiv preprint arXiv:2501.18865*, 2025.

579 Zongbo Han, Changqing Zhang, Huazhu Fu, and Joey Tianyi Zhou. Trusted multi-view classi-
580 fication with dynamic evidential fusion. *IEEE transactions on pattern analysis and machine*
581 *intelligence*, 45(2):2551–2566, 2022.

582 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
583 *arXiv:2207.12598*, 2022.

584 Xinyu Jia, Chuang Zhu, Minzhen Li, Wenqi Tang, and Wenli Zhou. Llvip: A visible-infrared
585 paired dataset for low-light vision. In *Proceedings of the IEEE/CVF International Conference on*
586 *Computer Vision*, pp. 3496–3504, 2021.

594 Harpreet Kaur, Deepika Koundal, and Virender Kadyan. Image fusion techniques: a survey. *Archives*
 595 *of computational methods in Engineering*, 28(7):4425–4447, 2021.
 596

597 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
 598 models. *Advances in neural information processing systems*, 35:23593–23606, 2022.

599 Haeil Lee, Hansang Lee, Seoyeon Gye, and Junmo Kim. Beta sampling is all you need: Efficient im-
 600 age generation strategy for diffusion models using stepwise spectral analysis. In *2025 IEEE/CVF*
 601 *Winter Conference on Applications of Computer Vision (WACV)*, pp. 4215–4224. IEEE, 2025.
 602

603 Shutao Li, Xudong Kang, Leyuan Fang, Jianwen Hu, and Haitao Yin. Pixel-level image fusion: A
 604 survey of the state of the art. *information Fusion*, 33:100–112, 2017.

605 Pengwei Liang, Junjun Jiang, Xianming Liu, and Jiayi Ma. Fusion from decomposition: A self-
 606 supervised decomposition approach for image fusion. In *European Conference on Computer*
 607 *Vision*, pp. 719–735. Springer, 2022.

608

609 Jinyuan Liu, Xin Fan, Zhanbo Huang, Guanyao Wu, Risheng Liu, Wei Zhong, and Zhongxuan
 610 Luo. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to
 611 fuse infrared and visible for object detection. In *Proceedings of the IEEE/CVF Conference on*
 612 *Computer Vision and Pattern Recognition*, pp. 5802–5811, 2022.

613 Jinyuan Liu, Guanyao Wu, Zhu Liu, Di Wang, Zhiying Jiang, Long Ma, Wei Zhong, and Xin Fan.
 614 Infrared and visible image fusion: From data compatibility to task adaption. *IEEE Transactions*
 615 *on Pattern Analysis and Machine Intelligence*, 2024.

616

617 Jinyuan Liu, Bowei Zhang, Qingyun Mei, Xingyuan Li, Yang Zou, Zhiying Jiang, Long Ma, Risheng
 618 Liu, and Xin Fan. Dcevo: Discriminative cross-dimensional evolutionary learning for infrared and
 619 visible image fusion. In *Proceedings of the Computer Vision and Pattern Recognition Conference*
 620 (*CVPR*), pp. 2226–2235, June 2025.

621

622 Jiayi Ma, Linfeng Tang, Meilong Xu, Hao Zhang, and Guobao Xiao. Stdfusionnet: An infrared and
 623 visible image fusion network based on salient target detection. *IEEE Transactions on Instrumen-*
 624 *tation and Measurement*, 70:1–13, 2021.

625

626 Jiayi Ma, Linfeng Tang, Fan Fan, Jun Huang, Xiaoguang Mei, and Yong Ma. Swinfusion: Cross-
 627 domain long-range learning for general image fusion via swin transformer. *IEEE/CAA Journal of*
 628 *Automatica Sinica*, 9(7):1200–1217, 2022.

629

630 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 631 *preprint arXiv:2010.02502*, 2020.

632

633 Linfeng Tang, Jiteng Yuan, Hao Zhang, Xingyu Jiang, and Jiayi Ma. Piafusion: A progressive
 634 infrared and visible image fusion network based on illumination aware. *Information Fusion*,
 635 2022a.

636

637 Linfeng Tang, Xinyu Xiang, Hao Zhang, Meiqi Gong, and Jiayi Ma. Divfusion: Darkness-free
 638 infrared and visible image fusion. *Information Fusion*, 91:477–493, 2023.

639

640 Wei Tang, Fazhi He, and Yu Liu. Ydtr: Infrared and visible image fusion via y-shape dynamic
 641 transformer. *IEEE Transactions on Multimedia*, 25:5413–5428, 2022b.

642

643 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
 644 text-driven image-to-image translation. In *Proceedings of the IEEE/CVF Conference on*
 645 *Computer Vision and Pattern Recognition*, pp. 1921–1930, 2023.

646

647 Chenwu Wang, Junsheng Wu, Aiqing Fang, Zhixiang Zhu, Pei Wang, and Hao Chen. An efficient
 648 frequency domain fusion network of infrared and visible images. *Engineering Applications of*
 649 *Artificial Intelligence*, 133:108013, 2024.

650

651 Zhijun Wang, Djemel Ziou, Costas Armenakis, Deren Li, and Qingquan Li. A comparative analysis
 652 of image fusion methods. *IEEE transactions on geoscience and remote sensing*, 43(6):1391–1402,
 653 2005.

648 Han Xu, Jiayi Ma, Junjun Jiang, Xiaojie Guo, and Haibin Ling. U2fusion: A unified unsupervised
 649 image fusion network. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(1):
 650 502–518, 2020a.

651 Han Xu, Jiayi Ma, Zhuliang Le, Junjun Jiang, and Xiaojie Guo. Fusiondn: A unified densely
 652 connected network for image fusion. In *Proceedings of the Thirty-Fourth AAAI Conference on
 653 Artificial Intelligence (AAAI)*, pp. 12484–12491, 2020b.

654 Sihan Xu, Yidong Huang, Jiayi Pan, Ziqiao Ma, and Joyce Chai. Inversion-free image editing with
 655 natural language. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 656 Recognition*, 2024.

657 Zihui Xue and Radu Marculescu. Dynamic multimodal fusion. In *Proceedings of the IEEE/CVF
 658 Conference on Computer Vision and Pattern Recognition*, pp. 2575–2584, 2023.

659 Bo Yang, Zhaohui Jiang, Dong Pan, Haoyang Yu, Gui Gui, and Weihua Gui. Lfdt-fusion: A latent
 660 feature-guided diffusion transformer model for general image fusion. *Information Fusion*, 113:
 661 102639, 2025.

662 Xunpeng Yi, Han Xu, Hao Zhang, Linfeng Tang, and Jiayi Ma. Text-if: Leveraging semantic text
 663 guidance for degradation-aware and interactive image fusion. In *Proceedings of the IEEE/CVF
 664 Conference on Computer Vision and Pattern Recognition*, pp. 27026–27035, 2024.

665 Hao Zhang, Zhuliang Le, Zhenfeng Shao, Han Xu, and Jiayi Ma. Mff-gan: An unsupervised genera-
 666 tive adversarial network with adaptive and gradient joint constraints for multi-focus image fusion.
 667 *Information Fusion*, 66:40–53, 2021.

668 Qingyang Zhang, Haitao Wu, Changqing Zhang, Qinghua Hu, Huazhu Fu, Joey Tianyi Zhou, and
 669 Xi Peng. Provable dynamic fusion for low-quality multimodal data. In *International conference
 670 on machine learning*, pp. 41753–41769. PMLR, 2023.

671 Xingchen Zhang. Benchmarking and comparing multi-exposure image fusion algorithms. *Informa-
 672 tion Fusion*, 74:111–131, 2021a.

673 Xingchen Zhang. Deep learning-based multi-focus image fusion: A survey and a comparative study.
 674 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(9):4819–4838, 2021b.

675 Yu Zhang, Yu Liu, Peng Sun, Han Yan, Xiaolin Zhao, and Li Zhang. Ifcnn: A general image fusion
 676 framework based on convolutional neural network. *Information Fusion*, 54:99–118, 2020.

677 Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Shuang Xu, Zudi Lin, Radu Timofte,
 678 and Luc Van Gool. Cddfuse: Correlation-driven dual-branch feature decomposition for multi-
 679 modality image fusion. In *Proceedings of the IEEE/CVF conference on computer vision and
 680 pattern recognition*, pp. 5906–5916, 2023a.

681 Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai Zhang,
 682 Deyu Meng, Radu Timofte, and Luc Van Gool. Ddfm: denoising diffusion model for multi-
 683 modality image fusion. In *Proceedings of the IEEE/CVF International Conference on Computer
 684 Vision*, pp. 8082–8093, 2023b.

685 Pengfei Zhu, Yang Sun, Bing Cao, and Qinghua Hu. Task-customized mixture of adapters for
 686 general image fusion. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 687 recognition*, pp. 7099–7108, 2024.

688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

APPENDIX

A MORE DETAILS ABOUT MULTIMODAL GUIDANCE

This supplementary note re-derives, step by step, the gradient-based sampling rule that underlies our guided image-fusion framework. Starting from the standard DDPM forward–reverse processes, we show how additional conditional terms lead to the multimodal guidance formula in equation 18. Readers who are new to diffusion models can thus follow the main paper without consulting external references.

In DDPM (Denoising Diffusion Probabilistic Models), the forward diffusion process adds noise to a clean sample x_0 over multiple steps, eventually transforming it into nearly pure Gaussian noise. This procedure is linear, so one can sample x_t in a single shot at step t via the closed-form expression:

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \quad (9)$$

where $\alpha_t = 1 - \beta_t$, $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$, and $\{\beta_t\}_{t=1}^T$ is a predefined variance schedule. As t increases, x_t approaches a nearly pure noise distribution.

To generate a sample during inference, one starts from pure noise x_T and iteratively denoises down to x_0 . Under a common parameterization, each reverse update step is given by:

$$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t) \right) + \sigma(t) z, \quad (10)$$

Here $\sigma(t)$ is the closed-form posterior standard deviation; it does not depend on network parameters, where $\sigma^2(t) = \frac{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}$, $\epsilon_\theta(\cdot)$ is the network’s noise prediction, and $z \sim \mathcal{N}(0, I)$. By iterating from $t = T$ down to $t = 0$, one transforms pure noise into a nearly clean sample.

From the closed-form forward process equation 9, If the model $\epsilon_\theta(x_t, t)$ accurately predicts the noise ϵ , one can approximate the “denoised” \hat{x}_0 as:

$$\hat{x}_0 \approx \frac{1}{\sqrt{\bar{\alpha}_t}} (x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t, t)). \quad (11)$$

This highlights the reverse denoising mechanism: once the correct noise component of x_t is identified, we retrieve a good approximation of the clean data.

From the perspective of stochastic differential equations or variational inference, and based on equation 9, the gradient of $\log p(x_t)$ with respect to x_t (i.e., the score function) can be expressed as:

$$\nabla_{x_t} \log p(x_t) = -\frac{x_t - \sqrt{\bar{\alpha}_t} x_0}{1 - \bar{\alpha}_t}. \quad (12)$$

Using the estimated \hat{x}_0 to replace x_0 , and substituting equation 11, into equation 12, we derive:

$$\nabla_{x_t} \log p(x_t) \approx -\frac{\epsilon_\theta(x_t, t)}{\sqrt{1 - \bar{\alpha}_t}}. \quad (13)$$

In certain applications, such as text-to-image generation and multimodal data fusion, we often wish to incorporate additional conditions during the sampling process. By Bayes’ theorem, the gradient of the conditional log-probability with respect to the current sample x_t can be written as

$$\nabla_{x_t} \log p(x_t | c) = \nabla_{x_t} \log p(x_t) + \nabla_{x_t} \log p(c | x_t). \quad (14)$$

Here, c represents one or more conditions guiding the generation process.

For K conditions $\{c_k\}_{k=1}^K$, a commonly used separable approximation in multi-guidance diffusion is to model a weighted joint conditional distribution as a product of experts:

$$p_w(c | x_t) \propto \prod_{k=1}^K p(c_k | x_t)^{w_k}, \quad w_k \geq 0, \quad \sum_{k=1}^K w_k = 1. \quad (15)$$

756 Under this explicit joint model, the conditional score is Bayes consistent and satisfies
 757

$$758 \quad \nabla_{x_t} \log p_w(c | x_t) = \sum_{k=1}^K w_k \nabla_{x_t} \log p(c_k | x_t), \quad (16)$$

761 which recovers the weighted guidance form used in our sampler. Such PoE-style score composition
 762 is standard in multi-condition diffusion guidance.

763 where w_k is a user-defined weight indicating the relative importance of condition c_k . Substituting
 764 equation 16 into equation 14 then gives:

$$766 \quad \nabla_{x_t} \log p(x_t | c) \approx \nabla_{x_t} \log p(x_t) + \nabla_{x_t} \log p_w(c | x_t). \quad (17)$$

768 By adjusting the weights $\{w_k\}$, one can modulate the strength of each condition’s contribution to
 769 the gradient-based sampling step, thus allowing fine-grained control over the generated samples.

770 From equation 10, equation 13, and equation 17, we derive the following update equation for the
 771 diffusion model:

$$772 \quad x_{t-1} \approx \frac{1}{\sqrt{\alpha_t}} x_t + \underbrace{\frac{1}{\sqrt{\alpha_t}} (1 - \alpha_t) \nabla_{x_t} \log p(x_t)}_{\text{Unconditional Guidance}} + \underbrace{\frac{1}{\sqrt{\alpha_t}} (1 - \alpha_t) \sum_{k=1}^K w_k \nabla_{x_t} \log p(c_k | x_t)}_{\text{Multimodal Guidance}} + \underbrace{\sigma(t) z}_{\text{Noise}}. \quad (18)$$

777 This equation demonstrates that the update step in the diffusion model can be decomposed into
 778 three key components: Unconditional Guidance, Multimodal Guidance, and Noise. This decomposi-
 779 tion encourages further exploration of the role of Multimodal Guidance in reducing the model’s
 780 generalization error and improving conditional generation quality.

782 B PROOF

785 Our goal is to quantify how much each guided gradient step reduces the distance between the current
 786 fused image and the ideal fusion $x^*(c)$. The proof shows that, after summing all T reverse diffusion
 787 steps, the generalization error separates into (i) fixed constants that do not depend on how we weight
 788 the modalities, and (ii) a negative sum of covariance terms $\text{Cov}(w_k, \text{alignment})$. Therefore, the
 789 more a guidance direction aligns with the “correct move” toward $x^*(c)$, the larger (more negative)
 790 the covariance can be made by assigning a bigger weight w_k , directly tightening the upper bound.

791 Importantly, the above summation is taken along the reverse-diffusion fusion trajectory $\{x_t\}_{t=0}^T$
 792 generated by our sampler in equation 18. Thus, each guided gradient step refers to the concrete
 793 update from x_t to x_{t-1} in this trajectory, and the following smoothness inequality is applied only to
 794 consecutive pairs (x_t, x_{t-1}) produced by the diffusion sampler.

795 Since $\zeta(\cdot, x^*(c))$ is L -smooth with respect to its first argument, Here “ L -smooth” means
 796 gradient-Lipschitz: $\|\nabla \zeta(x) - \nabla \zeta(y)\| \leq L \|x - y\|$ for all $x, y \in \mathbb{R}^{H \times W \times N}$.

797 For any $x, y \in \mathbb{R}^{H \times W \times N}$ we have:

$$799 \quad \zeta(y, x^*(c)) \leq \zeta(x, x^*(c)) + \nabla_{x_t} \zeta(x, x^*(c)) \cdot (y - x) + \frac{L}{2} \|y - x\|^2. \quad (19)$$

801 Letting $x = x_t$ and $y = x_{t-1}$ gives a one-step difference inequality:

$$803 \quad \zeta(x_{t-1}, x^*(c)) - \zeta(x_t, x^*(c)) \leq \nabla_{x_t} \zeta(x_t, x^*(c)) \cdot (x_{t-1} - x_t) + \frac{L}{2} \|x_{t-1} - x_t\|^2. \quad (20)$$

805 In many cases, we are primarily interested in the first-order term (dot product) and regard the second-
 806 order term as a manageable constant. Specifically, if we assume $\|x_{t-1} - x_t\|^2 \leq \Delta_t^2$, so that
 807 equation 20 can be relaxed to:

$$809 \quad \zeta(x_{t-1}, x^*(c)) - \zeta(x_t, x^*(c)) \leq \nabla_{x_t} \zeta(x_t, x^*(c)) \cdot (x_{t-1} - x_t) + \frac{L}{2} \Delta_t^2. \quad (21)$$

In practice T (the number of reverse steps) is large and $\|x_{t-1} - x_t\|$ is dominated by the scheduler ; we upper-bound it by a deterministic constant Δ_t and absorb $\frac{L}{2}\Delta_t^2$ into later constants. We do *not* need an exact value of Δ_t , only the existence of such a uniform bound. Thus, a simple upper bound $\frac{L}{2}\Delta_t^2$ can be carried along in subsequent summations. we decompose:

$$\begin{aligned}
 x_{t-1} - x_t &= \underbrace{\left(\frac{1}{\sqrt{\alpha_t}} - 1\right)x_t}_{\text{(I) scaling difference}} + \underbrace{\frac{1}{\sqrt{\alpha_t}}(1 - \alpha_t)\nabla_{x_t} \log p(x_t)}_{\text{(II) unconditional gradient}} \\
 &\quad + \underbrace{\frac{1}{\sqrt{\alpha_t}}(1 - \alpha_t)\sum_{k=1}^K w_k \nabla_{x_t} \log p(c_k | x_t)}_{\text{(III) multimodal guidance}} \\
 &\quad + \underbrace{\sigma(t)z}_{\text{(IV) noise}}. \tag{22}
 \end{aligned}$$

(I) is deterministic w.r.t. (c, z) once x_t is fixed. (II) uses the unconditional score; deterministic conditioned on x_t . (III) contains the only w_k -dependent part. (IV) is the only term that depends on the fresh noise z_t . Plugging this into equation 21, we have:

$$\begin{aligned}
 \zeta(x_{t-1}, x^*(c)) - \zeta(x_t, x^*(c)) &\leq \nabla_{x_t}\zeta(x_t, x^*(c)) \cdot \left[\left(\frac{1}{\sqrt{\alpha_t}} - 1\right)x_t\right] \\
 &\quad + \nabla_{x_t}\zeta(x_t, x^*(c)) \cdot \left[\frac{1}{\sqrt{\alpha_t}}(1 - \alpha_t)\nabla_{x_t} \log p(x_t)\right] \\
 &\quad + \nabla_{x_t}\zeta(x_t, x^*(c)) \cdot \left[\frac{1}{\sqrt{\alpha_t}}(1 - \alpha_t)\sum_{k=1}^K w_k \nabla_{x_t} \log p(c_k | x_t)\right] \\
 &\quad + \nabla_{x_t}\zeta(x_t, x^*(c)) \cdot [\sigma(t)z] + \frac{L}{2}\Delta_t^2. \tag{23}
 \end{aligned}$$

Because the fresh noise z_t is independent of (c, x_t) given x_t (standard DDPM sampling), all terms that do not contain either w_k or z_t are F_t -measurable deterministic functions. We collect them into:

$$\begin{aligned}
 G(x_t, c, t) &= \nabla_{x_t}\zeta(x_t, x^*(c)) \cdot \left[\left(\frac{1}{\sqrt{\alpha_t}} - 1\right)x_t\right] \\
 &\quad + \nabla_{x_t}\zeta(x_t, x^*(c)) \cdot \left[\frac{1}{\sqrt{\alpha_t}}(1 - \alpha_t)\nabla_{x_t} \log p(x_t)\right]. \tag{24}
 \end{aligned}$$

Then we can rewrite equation 23 more compactly as:

$$\begin{aligned}
 \zeta(x_{t-1}, x^*(c)) - \zeta(x_t, x^*(c)) &\leq G(x_t, c, t) \\
 &\quad + \nabla_{x_t}\zeta(x_t, x^*(c)) \cdot \left[\frac{1}{\sqrt{\alpha_t}}(1 - \alpha_t)\sum_{k=1}^K w_k \nabla_{x_t} \log p(c_k | x_t)\right] \\
 &\quad + \nabla_{x_t}\zeta(x_t, x^*(c)) \cdot [\sigma(t)z] + \frac{L}{2}\Delta_t^2. \tag{25}
 \end{aligned}$$

Summing from $t = 1$ to T in a telescoping manner, we have:

$$\zeta(x_0, x^*(c)) = \zeta(x_T, x^*(c)) + \sum_{t=1}^T \left[\zeta(x_{t-1}, x^*(c)) - \zeta(x_t, x^*(c)) \right]. \tag{26}$$

Applying equation 25 at each step, we obtain (summing over t):

$$\begin{aligned}
 \zeta(x_0, x^*(c)) &\leq \zeta(x_T, x^*(c)) + \sum_{t=1}^T G(x_t, c, t) + \sum_{t=1}^T \nabla_{x_t}\zeta(x_t, x^*(c)) \cdot [\sigma(t)z_t] + \sum_{t=1}^T \frac{L}{2}\Delta_t^2 \\
 &\quad + \sum_{t=1}^T \nabla_{x_t}\zeta(x_t, x^*(c)) \cdot \left[\frac{1}{\sqrt{\alpha_t}}(1 - \alpha_t)\sum_{k=1}^K w_k \nabla_{x_t} \log p(c_k | x_t)\right]. \tag{27}
 \end{aligned}$$

Finally, recall $x_0 = F(c)$, so $\zeta(x_0, x^*(c)) = \zeta(F(c), x^*(c))$. Taking $\mathbb{E}_{c \sim D}$ on both sides of equation 27, we obtain

$$\begin{aligned}
\text{GError}(F) &= \mathbb{E}_{c,z}[\zeta(x_0, x^*(c))] \\
&\leq \mathbb{E}_{c,z}[\zeta(x_T, x^*(c))] + \mathbb{E}_{c,z}\left[\sum_{t=1}^T G(x_t, c, t)\right] + \mathbb{E}_{c,z}\left[\sum_{t=1}^T \frac{L}{2} \Delta_t^2\right] \\
&\quad - \mathbb{E}_{c,z}\left[\sum_{t=1}^T \sum_{k=1}^K \frac{1}{\sqrt{\alpha_t}} (1 - \alpha_t) w_k \cdot \left[-\nabla_{x_t} \zeta(x_t, x^*(c)) \nabla_{x_t} \log p(c_k | x_t) \right]\right] \\
&\quad + \mathbb{E}_{c,z}\left[\sum_{t=1}^T \nabla_{x_t} \zeta(x_t, x^*(c)) \cdot [\sigma(t) z_t]\right] \\
&= \mathbb{E}_{c,z}[\zeta(x_T, x^*(c))] + \mathbb{E}_{c,z}\left[\sum_{t=1}^T G(x_t, c, t)\right] + \mathbb{E}_{c,z}\left[\sum_{t=1}^T \frac{L}{2} \Delta_t^2\right] \\
&\quad \underbrace{\quad}_{\text{constant}} \\
&\quad - \sum_{t=1}^T \left[\frac{1}{\sqrt{\alpha_t}} (1 - \alpha_t) \underbrace{\sum_{k=1}^K \mathbb{E}_{c,z}[w_k]}_{\text{equal to 1}} \underbrace{\mathbb{E}_{c,z}\left[-\nabla_{x_t} \zeta(x_t, x^*(c)) \nabla_{x_t} \log p(c_k | x_t) \right]}_{\text{constant}} \right] \\
&\quad - \sum_{t=1}^T \left[\frac{1}{\sqrt{\alpha_t}} (1 - \alpha_t) \sum_{k=1}^K \text{Cov}(w_k, -\nabla_{x_t} \zeta(x_t, x^*(c)) \nabla_{x_t} \log p(c_k | x_t)) \right] \\
&\quad + \sum_{t=1}^T \left[\mathbb{E}_{c,z}[\nabla_{x_t} \zeta(x_t, x^*(c))] \underbrace{\mathbb{E}_{c,z}[\sigma(t) z_t]}_{\text{equal to 0}} + \underbrace{\text{Cov}(\nabla_{x_t} \zeta(x_t, x^*(c)), \sigma(t) z_t)}_{\text{equal to 0 (by independence)}} \right] \\
&= C - \sum_{t=1}^T \left[\frac{1}{\sqrt{\alpha_t}} (1 - \alpha_t) \sum_{k=1}^K \text{Cov}(w_k, \underbrace{-\nabla_{x_t} \zeta(x_t, x^*(c)) \nabla_{x_t} \log p(c_k | x_t)}_{\text{alignment Measure}}) \right]
\end{aligned} \tag{28}$$

Here independence follows from the fact that z_t is freshly sampled *after* x_t has been computed, hence uncorrelated with any \mathcal{F}_t -measurable quantity. We revisit the alignment measure $-\nabla_{x_t} \zeta(x_t, x^*(c)) \nabla_{x_t} \log p(c_k | x_t)$ to elucidate its geometric interpretation. Recall we set $v_t = -\nabla_{x_t} \zeta(x_t, x^*(c))$. By the L -smoothness of ζ and the bounded data domain $\|x_t - x^*(c)\| \leq B_t$, we have the deterministic bound

$$\|v_t\| = \|\nabla_{x_t} \zeta(x_t, x^*(c))\| \leq LB_t =: \bar{V}. \tag{29}$$

We will use \bar{V} in place of $\|v_t\|$ whenever the latter is factored outside a covariance. Intuitively, when x_t is close to the ideal fused image $x^*(c)$, $-\nabla_{x_t} \zeta(x_t, x^*(c))$ should point from x_t toward $x^*(c)$. Thus v_t can be seen as a vector indicating the current direction from the generated image to the ideal fused image $x^*(c)$. Let $\|v_t\|$ denote the norm of v_t . Next, let $\theta_{t,k} \in [0, \pi]$ be the angle between v_t and $\nabla_{x_t} \log p(c_k | x_t)$. By definition of the dot product in terms of norms and angles, we have

$$-\nabla_{x_t} \zeta(x_t, x^*(c)) \nabla_{x_t} \log p(c_k | x_t) = \|v_t\| \|\nabla_{x_t} \log p(c_k | x_t)\| \cos(\theta_{t,k}). \tag{30}$$

So, we have

$$\text{GError}(F) \leq C - \sum_{t=1}^T \left[\frac{1}{\sqrt{\alpha_t}} (1 - \alpha_t) \bar{V} \sum_{k=1}^K \text{Cov}(w_k, \|\nabla_{x_t} \log p(c_k | x_t)\| \cos(\theta_{t,k})) \right] \tag{31}$$

As a result, the “directional alignment” with respect to the ideal fusion direction v_t boils down to the projection $\|\nabla_{x_t} \log p(c_k | x_t)\| \cos(\theta_{t,k})$. The bound shows that boosting a modality’s weight w_k will tighten (give a lower) error bound iff the modality’s guidance gradient points more toward the ideal-fusion direction ($\cos \theta_{t,k} > 0$) than average. This matches the practical heuristic “assign larger weights to modalities that are currently more helpful for approaching $x^*(c)$.”

The covariance term obtained earlier still contains the factor $\|\nabla_{x_t} \log p(c_k | x_t)\|$, mixing magnitude and direction. Before turning to the directional component, we first explain that the gradient-guidance magnitudes are, to an excellent approximation, identical across modalities at every diffusion step. In our implementation, we compute the gradients using a surrogate objective that is analytically equivalent to an ℓ_1 loss (Appendix C); consequently the norms for any two modalities satisfy $\|\nabla_{x_t} \log p(c_{k_1} | x_t)\| \approx \|\nabla_{x_t} \log p(c_{k_2} | x_t)\|$. Experiments in Appendix D corroborate this observation. Let this common value be s_t (step-dependent, modality-independent). Pulling s_t outside the covariance gives

$$\text{GError}(F) \leq C - \sum_{t=1}^T \left[D_t \sum_{k=1}^K \text{Cov}(w_k, \cos \theta_{t,k}) \right], \quad D_t := \frac{1}{\sqrt{\alpha_t}} (1 - \alpha_t) \bar{V} s_t. \quad (32)$$

The problem is therefore reduced to understanding how the angles $\theta_{t,k}$ depend on the still-unfused information in each modality. All geometric arguments below are carried out in the discrete pixel space: each image is vectorized as $x \in \mathbb{R}^{HWN}$ with the standard Euclidean inner product $\langle x, y \rangle = \sum_p x_p y_p$ and the induced norm $\|x\|$. The decomposition into $u_{\text{IR}}, u_{\text{RGB}}, u_s$ is an approximate orthogonal subspace split, a standard viewpoint in fusion analysis. To carry out a geometric analysis and make the dependence of $\theta_{t,k}$ on τ_t^k explicit, we restrict attention to a simplified two-modality setting with infrared (IR) and visible light (RGB). Fix a reverse step t (index suppressed). For clarity, the notational conventions are collected once in the table below, and all symbols retain their original meanings throughout the derivation.

$u_{\text{IR}}, u_{\text{RGB}}$	– orthogonal high-frequency bases,
u_s	– shared low-frequency basis, $ \langle u_s, u_* \rangle = \delta \ll 1$,
x_F, x_t	– ideal and current fused images,
$c_{\text{IR}}, c_{\text{RGB}}, c_s$	– projections of x_F ,
$\alpha, \beta, \gamma \in [0, 1]$	– unrecovered fractions,
$a := \alpha c_{\text{IR}}, b := \beta c_{\text{RGB}}, c := \gamma c_s$	– residual information,
$\kappa_{\text{IR}}, \kappa_{\text{RGB}} \geq 0$	– score projections on u_s .

Link to $I_{k,t}$. In this two-modality geometric instantiation, a and b are exactly the modality-specific residual components of $x^*(c) - x_t$ (the main-text definition $I_{k,t} = \|\Pi_k(x^*(c) - x_t)\|^2$); hence we identify $I_{\text{IR},t} \propto a^2$ and $I_{\text{RGB},t} \propto b^2$, so the following angle analysis directly establishes the monotone relation between $\cos \theta_{t,k}$ and $I_{k,t}$.

Define three explicit vectors

$$v = a u_{\text{IR}} + b u_{\text{RGB}} + c u_s, \quad g_{\text{IR}} = a u_{\text{IR}} + \kappa_{\text{IR}} u_s, \quad g_{\text{RGB}} = b u_{\text{RGB}} + \kappa_{\text{RGB}} u_s.$$

With $O(\delta)$ terms discarded,

$$\begin{aligned} |v|^2 &= a^2 + b^2 + c^2, & |g_{\text{IR}}|^2 &= a^2 + \kappa_{\text{IR}}^2, & |g_{\text{RGB}}|^2 &= b^2 + \kappa_{\text{RGB}}^2, \\ v \cdot g_{\text{IR}} &= a^2 + c \kappa_{\text{IR}}, & v \cdot g_{\text{RGB}} &= b^2 + c \kappa_{\text{RGB}}. \end{aligned}$$

Hence

$$\cos \theta_{\text{IR}} = \frac{a^2 + c \kappa_{\text{IR}}}{\sqrt{a^2 + b^2 + c^2} \sqrt{a^2 + \kappa_{\text{IR}}^2}}, \quad \cos \theta_{\text{RGB}} = \frac{b^2 + c \kappa_{\text{RGB}}}{\sqrt{a^2 + b^2 + c^2} \sqrt{b^2 + \kappa_{\text{RGB}}^2}}. \quad (33)$$

Introduce the log ratio $h(a, b) := \ln(\cos \theta_{\text{IR}} / \cos \theta_{\text{RGB}})$; substituting equation 33 and differentiating without abbreviation yields

$$\frac{\partial h}{\partial a} = \frac{a[a^2 + 2\kappa_{\text{IR}}^2 - c\kappa_{\text{IR}}]}{(a^2 + c\kappa_{\text{IR}})(a^2 + \kappa_{\text{IR}}^2)}, \quad \frac{\partial h}{\partial b} = -\frac{b[b^2 + 2\kappa_{\text{RGB}}^2 - c\kappa_{\text{RGB}}]}{(b^2 + c\kappa_{\text{RGB}})(b^2 + \kappa_{\text{RGB}}^2)}.$$

For fixed a the quadratic $g(\kappa) = a^2 + 2\kappa^2 - c\kappa$ attains its minimum $a^2 - c^2/8$ at $\kappa = c/4$, so $\partial h / \partial a > 0$ for all $\kappa_{\text{IR}} \geq 0$ iff $a > \tau := c/\sqrt{8}$. The same threshold holds for b .

Main region $a > \tau, b > \tau$. Because $a, b > \tau := c/\sqrt{8}$, the numerators in the partial-derivative expressions are strictly positive for every $\kappa_{\text{IR}}, \kappa_{\text{RGB}} \geq 0$, hence $\partial_a h > 0$ and $\partial_b h < 0$. Thus

$$a > b \iff h(a, b) > 0 \iff \cos \theta_{\text{IR}} > \cos \theta_{\text{RGB}}. \quad (34)$$

972 Within this work zone, the modality that still carries *more* residual energy (a or b) always owns the
 973 larger cosine.

975 Boundary case $a \leq \tau$ (IR almost exhausted). Define

$$976 \quad \phi(\kappa) := \frac{a^2 + c\kappa}{\sqrt{a^2 + \kappa^2}}, \quad \phi'(\kappa) = \frac{a^2(c - \kappa)}{(a^2 + \kappa^2)^{3/2}}.$$

979 Hence ϕ increases on $[0, c]$ and decreases on (c, ∞) , with maximum $\phi(c) = \sqrt{a^2 + c^2}$. Substituting
 980 $\kappa_{\text{IR}} = c$ into equation 33 gives the universal upper bound

$$982 \quad \cos \theta_{\text{IR}} \leq \frac{\sqrt{a^2 + c^2}}{\sqrt{a^2 + b^2 + c^2}}. \quad (35)$$

984 For the RGB side consider

$$986 \quad \psi(\kappa) := \frac{b^2 + c\kappa}{\sqrt{b^2 + \kappa^2}}, \quad \psi'(\kappa) = \frac{b^2(c - \kappa)}{(b^2 + \kappa^2)^{3/2}},$$

988 so ψ attains its minimum $\psi(0) = b$. Taking $\kappa_{\text{RGB}} = 0$ yields a lower bound

$$990 \quad \cos \theta_{\text{RGB}} \geq \frac{b}{\sqrt{a^2 + b^2 + c^2}}. \quad (36)$$

993 Whenever $b^2 > a^2 + c^2$ —in particular for the convenient sufficient condition $b \geq \sqrt{9/8}c$ (recall
 994 $a \leq \tau$ implies $a^2 \leq c^2/8$)—the numerators in equation 35–equation 36 satisfy the strict inequality
 995 $\sqrt{a^2 + c^2} < b$, which forces $\cos \theta_{\text{IR}} < \cos \theta_{\text{RGB}}$.

996 Boundary case $b \leq \tau$ (RGB almost exhausted). The argument is perfectly symmetric: replace
 997 (a, κ_{IR}) with (b, κ_{RGB}) and interchange the roles of IR/RGB. One obtains $\cos \theta_{\text{IR}} > \cos \theta_{\text{RGB}}$
 998 whenever $a^2 > b^2 + c^2$ (sufficient condition $a \geq \sqrt{9/8}c$).

1000 Corner case $a \leq \tau$ and $b \leq \tau$. Both numerators in equation 35–equation 36 are then bounded by
 1001 $\sqrt{\tau^2 + c^2}$ while the common denominator exceeds $\sqrt{2c^2 + \tau^2}$, so each cosine is

$$1003 \quad \cos \theta_{\text{IR}}, \cos \theta_{\text{RGB}} \leq \frac{\sqrt{\tau^2 + c^2}}{\sqrt{2c^2 + \tau^2}} < \frac{1}{\sqrt{2}}.$$

1005 Both guidance directions are therefore weak; any ordering between the two becomes immaterial for
 1006 fusion.

1008 Combining equation 34 with the two boundary analyses we obtain: outside a negligible corner
 1009 region, the modality with larger a or b has the larger cosine. Because the a and b is exactly what the
 1010 residual-information measure $I_{k,t}$ counts, there exists a positive scale R_t such that

$$1011 \quad I_{k,t} = R_t \cos \theta_{t,k}, \quad \text{Cov}(w_k, \cos \theta_{t,k}) = \frac{1}{R_t} \text{Cov}(w_k, I_{k,t}). \quad (37)$$

1014 The geometric derivation above was carried out for two modalities solely to keep every interme-
 1015 diate quantity visible. The heart of the argument is the pairwise link between (i) the unrecovered
 1016 residual information of a modality and (ii) the cosine it forms with the ideal-fusion direction. For a
 1017 fusion task with $K > 2$ modalities $\{c_1, \dots, c_K\}$ one decomposes the signal space into K orthogonal
 1018 high-frequency axes $\{u_1, \dots, u_K\}$, plus the shared low-frequency axis u_s . Fixing any pair (i, j) and
 1019 repeating the foregoing two-dimensional projection immediately yields the same monotone relation-
 1020 ship $I_{i,t} \propto \cos \theta_{i,t}$ and $I_{j,t} \propto \cos \theta_{j,t}$. Therefore the covariance structure $\text{Cov}(w_k, I_{k,t})$ derived for
 1021 two modalities extends component-wise to all $k \in \{1, \dots, K\}$ without algebraic changes.

1022 Substituting equation 37 into equation 32 and absorbing the positive factor B_t/R_t into a new
 1023 step-wise constant finally delivers:

$$1024 \quad \text{GError}(F) \leq C - \sum_{t=1}^T \sum_{k=1}^K A_{k,t} \text{Cov}(w_k, I_{k,t}). \quad (38)$$

1026
1027

C MORE DETAILS

1028
1029

C.1 MORE DETAILS ABOUT CONDITIONAL SCORE

1030
1031
1032
1033
1034

During reverse diffusion we require the conditional score $\nabla_{f_t} \log p(i, v | f_t)$ to steer the stochastic differential equation. We follow DDFM’s EM routine and reproduce every algebraic step in this appendix so that the full computation is visible in one place. The presentation starts with the necessary notation, then walks through the EM loop, and finally collects the formulas that are fed into the diffusion sampler.

1035
1036

Let $i, v \in \mathbb{R}^{H \times W \times N}$ be the infrared and visible images. At diffusion timestep t the current estimate is f_t . The classical fusion loss is

1037
1038

$$\mathcal{L}(f) = \|f - i\|_1 + \varphi \|f - v\|_1. \quad (39)$$

1039

We transform this ℓ_1 objective into a quadratic surrogate whose gradient is available in closed form.

1040
1041

Set $x = f - v$ and $y = i - v$. Then equation 39 becomes $\|y - x\|_1 + \varphi \|x\|_1$, which can be interpreted as the maximum-likelihood problem of a Laplace model

1042
1043

$$x_{ij} \sim \text{Lap}(0, \rho), \quad y_{ij} | x_{ij} \sim \text{Lap}(x_{ij}, \gamma). \quad (40)$$

1044
1045

Using the Gaussian–exponential mixture representation of the Laplace distribution, each absolute term introduces an auxiliary precision variable. The resulting hierarchical graph is

1046

$$\begin{cases} y_{ij} | x_{ij}, m_{ij} \sim \mathcal{N}(y_{ij}; x_{ij}, m_{ij}), \\ m_{ij} \sim \text{Exp}(m_{ij}; \gamma), \\ x_{ij} | n_{ij} \sim \mathcal{N}(x_{ij}; 0, n_{ij}), \\ n_{ij} \sim \text{Exp}(n_{ij}; \rho). \end{cases} \quad (41)$$

1052
1053

Adding a total-variation term $r(x) = \frac{\psi}{2} \|\nabla x\|_2^2$ leads to the log-likelihood

1054
1055
1056

$$\mathcal{L}(x) = - \sum_{i,j} \left[\frac{(x_{ij} - y_{ij})^2}{2m_{ij}} + \frac{x_{ij}^2}{2n_{ij}} \right] - \frac{\psi}{2} \|\nabla x\|_2^2. \quad (42)$$

1057
1058

For the current latent image $x^{(t)}$ compute

1059
1060

$$\bar{m}_{ij} = \sqrt{\frac{2(y_{ij} - x_{ij}^{(t)})^2}{\gamma}}, \quad \bar{n}_{ij} = \sqrt{\frac{2x_{ij}^{(t)2}}{\rho}}. \quad (43)$$

1061

Define weights $m_{ij} = \sqrt{\bar{m}_{ij}}$ and $n_{ij} = \sqrt{\bar{n}_{ij}}$.

1062

The conditional expectation of equation 42 becomes

1064
1065

$$E(x) = \|m \odot (x - y)\|_2^2 + \|n \odot x\|_2^2 + \psi \|\nabla x\|_2^2, \quad (44)$$

1066

where \odot is element-wise multiplication.

1067

Introduce auxiliary variables u, k and minimise

1068
1069
1070

$$\begin{aligned} & \|m \odot (x - y)\|_2^2 + \|n \odot x\|_2^2 + \psi \|u\|_2^2 \\ & + \frac{\eta}{2} (\|u - \nabla k\|_2^2 + \|k - x\|_2^2). \end{aligned} \quad (45)$$

1071
1072

With the Fourier transform \mathcal{F} (and complex conjugate $\bar{\cdot}$) the coordinate updates are

1073
1074

$$\begin{aligned} k &= \mathcal{F}^{-1} \left(\frac{\mathcal{F}(x) + \mathcal{F}(\nabla) \bar{\mathcal{F}(u)}}{1 + \mathcal{F}(\nabla) \bar{\mathcal{F}(\nabla)}} \right), \\ u &= \frac{\eta}{2\psi + \eta} \nabla k, \\ x &= \frac{2m^2 \odot y + \eta k}{2m^2 + 2n^2 + \eta}. \end{aligned} \quad (46)$$

1075
1076
1077

The fused image estimate for this diffusion step is

1078

$$\hat{f}_{0|t} = x + v. \quad (47)$$

1080 The required gradient is the negative derivative of $E(x)$ at $x = \hat{f}_{0|t} - v$:
 1081

$$\nabla_{f_t} \log p(i, v | f_t) = -\nabla_x E(x) \Big|_{x=\hat{f}_{0|t}-v}, \quad (48)$$

1084 where

$$\nabla_x E = 2m^2 \odot (x - y) + 2n^2 \odot x + \psi \nabla^\top \nabla x. \quad (49)$$

1085 After updating x , refresh the Laplace scales as in:

$$\gamma = \frac{1}{HWN} \sum_{i,j} \mathbb{E}[m_{ij}], \quad \rho = \frac{1}{HWN} \sum_{i,j} \mathbb{E}[n_{ij}]. \quad (50)$$

1091 The new γ, ρ enter the next E-step.

1093 Practical recap:

- 1095 Initialise $x^{(0)} = 0$ (or any prior guess) together with γ, ρ, ψ, η .
- 1096 At every reverse-diffusion timestep run Eqs. equation 43–equation 48 to obtain $\hat{f}_{0|t}$ and the guidance gradient.
- 1099 Use the gradient in the SDE integrator and proceed to the next timestep.

1100 The ℓ_1 fusion loss is converted to a quadratic surrogate through an EM iteration. Because the 1101 surrogate is quadratic, its gradient— given explicitly in equation 48—is available per pixel and 1102 can be inserted into the diffusion sampler without additional neural networks.

1104 C.2 MORE DETAILS ABOUT GRADIENT-GUIDANCE MAGNITUDES

1106 The generalisation-error bound in equation 31 contains the term $\text{Cov}(w_k, \|\nabla_{x_t} \log p(c_k | x_t)\| \cos \theta_{t,k})$, whose interpretation hinges on the directional alignment $\cos \theta_{t,k}$. To isolate this angular factor we must show rigorously that, at every diffusion step t , the magnitudes $\|\nabla_{x_t} \log p(c_k | x_t)\|$ are (almost) the same for all modalities k . Below we provide two complementary arguments 1109 that justify this claim without introducing extra approximations.

1111 f denotes the fused image, i and v are the infrared and visible reference images, and $\varphi_t > 0$ is the 1112 step-dependent fusion ratio chosen by the scheduler. All norms on gradients are ordinary ℓ_2 norms 1113 taken over the N pixels, while the loss is measured in ℓ_1 .

1115 The data-consistency term used by DDFM is the classic two-branch ℓ_1 objective

$$1116 \quad L_t(f) = \|f - i\|_1 + \varphi_t \|f - v\|_1, \quad \varphi_t > 0. \quad (51)$$

1118 Except on a measure-zero set where ℓ_1 is not differentiable,

$$1120 \quad |\partial_{f_p} |f_p - i_p|| = 1, \quad |\partial_{f_p} \varphi_t |f_p - v_p|| = \varphi_t. \quad (52)$$

1121 Hence every pixel gradient of the infrared branch has magnitude 1, while the visible branch has 1122 magnitude φ_t , independent of image content.

1124 Summing the squared pixel-wise magnitudes over N pixels gives

$$1125 \quad \|\nabla_f \|f - i\|_1\|_2 = \sqrt{N}, \quad \|\nabla_f \varphi_t \|f - v\|_1\|_2 = \varphi_t \sqrt{N}. \quad (53)$$

1127 Thus any discrepancy in the branch norms is a known scalar factor of φ_t .

1128 Define re-scaled, non-negative weights

$$1130 \quad \tilde{w}_{IR} = \frac{w_{IR}}{S_t}, \quad \tilde{w}_{VI} = \frac{\varphi_t w_{VI}}{S_t}, \quad S_t = w_{IR} + \varphi_t w_{VI}. \quad (54)$$

1132 Because $\tilde{w}_{IR} + \tilde{w}_{VI} = 1$, the combined gradient becomes

$$1133 \quad \tilde{w}_{IR} g_{IR} + \tilde{w}_{VI} g_{VI} = \frac{1}{S_t} (w_{IR} g_{IR} + \varphi_t w_{VI} g_{VI}), \quad (55)$$

Figure 7: The robustness of single pre-trained diffusion model.

i.e. it is altered only by a scalar common to all modalities. Such a scalar vanishes in the cosine $\cos \theta_{t,k}$, hence the covariance in Eq.(21) depends only on the directional component.

Because the gradients of an ℓ_1 loss have constant pixel magnitudes, their global ℓ_2 norms differ by at most the known scalar φ_t . Re-scaling the branch weights therefore yields magnitudes that are effectively identical, justifying the step-independent constant s_t .

Many diffusion works replace Eq. equation 51 by a surrogate solved with iteratively reweighted least-squares (Charbonnier et al., 1997; Daubechies et al., 2004). The IRLS surrogate is analytically equivalent to the original ℓ_1 problem. Classifier-free guidance (Ho & Salimans, 2022) and its descendants (Chung et al., 2022; Kawar et al., 2022; Gao et al., 2025) exploit exactly this observation: they balance data and prior gradients with a single scalar at each step. Whether one solves the exact ℓ_1 problem or its IRLS surrogate , the guiding gradients entering Eq. (21) are provably or empirically equal in magnitude. The analysis of directional alignment $\cos \theta_{t,k}$ is therefore well-founded.

C.3 MORE DETAILS ABOUT PSEUDOCODE FLOW

Algorithm 1 dig2DIG

Require: Multimodal sources $\{c_k\}_{k=1}^K$; diffusion model ϵ_θ ; total steps T ; DIG update interval S ; discrepancy metric $l(\cdot, \cdot)$

Ensure: Fused image x_0

```

1: Pre-compute variance schedule  $\{\alpha_t, \bar{\alpha}_t\}_{t=1}^T$ 
2:  $x_T \sim \mathcal{N}(0, I)$  ▷ start from pure noise
3:  $w_k \leftarrow \frac{1}{K}, k = 1, \dots, K$  ▷ uniform init
4: for  $t = T, T-1, \dots, 1$  do
5:   if  $t \bmod S = 0$  then ▷ update DIG every  $S$  steps
6:     for  $k = 1$  to  $K$  do ▷ single-modal reconstructions
7:        $c_k^t \leftarrow \sqrt{\bar{\alpha}_t} c_k + \sqrt{1-\bar{\alpha}_t} \epsilon, \epsilon \sim \mathcal{N}(0, I)$ 
8:        $\hat{c}_k^t \leftarrow \frac{1}{\sqrt{\bar{\alpha}_t}} (c_k^t - \sqrt{1-\bar{\alpha}_t} \epsilon_\theta(c_k^t, t))$ 
9:        $\text{DIG}_k \leftarrow l(\hat{c}_k^t, c_k)$ 
10:    end for
11:     $w_k \leftarrow \frac{\exp(\text{DIG}_k)}{\sum_{j=1}^K \exp(\text{DIG}_j)}, \forall k$  ▷ softmax normalisation
12:  end if
13:  ▷ one reverse-diffusion step with guidance
14:   $\text{SCORE}_{\text{uncond}} \leftarrow -\frac{\epsilon_\theta(x_t, t)}{\sqrt{1-\bar{\alpha}_t}}$ 
15:   $\text{SCORE}_{\text{multi}} \leftarrow \sum_{k=1}^K w_k \text{CONDSCORE}(x_t, c_k)$  ▷ EM-based
16:   $z \sim \mathcal{N}(0, I)$ 
17:   $x_{t-1} \leftarrow \frac{1}{\sqrt{\alpha_t}} x_t + \sigma(t) z + \frac{1-\alpha_t}{\sqrt{\alpha_t}} (\text{SCORE}_{\text{uncond}} + \text{SCORE}_{\text{multi}})$ 
18: end for
19: return  $x_0$ 

```

1188
1189

C.4 MORE DETAILS ABOUT SINGLE PRE-TRAINED DIFFUSION MODEL

1190
1191
1192
1193
1194

Figure 7 demonstrates the strong restoration capability obtained with a single diffusion model, underscoring the robustness of our method. For both infrared and visible images, even after noise is added, the diffusion model is able to reconstruct them faithfully. We also present scenarios in which portions of one modality are missing; the high-quality reconstructions further verify the robustness of our approach.

1195
1196
1197
1198

Although we employ only one pre-trained diffusion model, its training on a large and diverse dataset enables it to model a broad image manifold and thus recover information across multiple modalities. Because a single diffusion model already possesses this capability, we adopt one pre-trained diffusion model to keep the overall pipeline concise.

1199
1200
1201
1202
1203
1204

C.5 MORE DETAILS ABOUT EXPERIMENTS

1205
1206
1207
1208
1209
1210
1211
1212

Hardware and Software. All experiments were conducted on a single NVIDIA RTX A6000 GPU. We used PyTorch 2.4.1 built with CUDA 12.1 and cuDNN 9.1. Unless otherwise noted, inference ran in FP32 with batch size 1.

1213
1214
1215
1216
1217
1218

Backbone, Sampler, and Step Budgets. For a fair comparison across diffusion-based methods (DDFM, CCF, and our Dig2DIG), we reuse the same unconditional pretrained diffusion checkpoint `256x256_diffusion_uncond.pt` without any fine-tuning, and we adopt DDIM sampling for all methods. DDFM is run with its default 100 reverse steps, CCF with its default 300 steps, and Dig2DIG with a total of 25 reverse steps (“DIG-25”). DIG is refreshed every $S=10$ steps, which we found to offer the best quality–cost trade-off; early, high-noise stages use larger denoising steps while later stages use smaller steps to capture fine details.

1219
1220
1221

I/O Resolution and Pre-/Post-Processing. For every dataset and method, the model operates at native image resolution: inputs are fed at their original size and the fused outputs have exactly the same height and width. Images are read as `float32`, normalized to $[-1, 1]$ before diffusion inference, and de-normalized back to the original scale when writing results. Unless otherwise specified, we fix the random seed to 42 for reproducibility.

1222
1223
1224
1225
1226
1227
1228

Fairness Controls. To isolate guidance effects, we keep the checkpoint, sampler, and I/O resolution identical across DDFM, CCF, and Dig2DIG; only the guidance terms differ. This ensures that observed performance gaps are not attributable to backbone capacity or training.

1229
1230
1231
1232
1233

Evaluation Protocol and Timing. For visible–infrared fusion (VIF) we report PSNR, SSIM, MSE, Nabf, CC, and LPIPS; for multi-focus (MFF) and multi-exposure (MEF) we report SD, EI, EN, AG, SF, and MI. Following DDFM and CCF, SSIM is computed as the *sum over two references* to maintain protocol consistency, which can yield values greater than 1. Wall-clock runtime is measured per image on the RTX A6000 at batch size 1 after a brief warm-up and excludes data I/O; where applicable we also report TFLOPs alongside wall-clock time.

1234
1235
1236
1237
1238
1239
1240

D MORE RESULTS

1241
1242
1243
1244

D.1 MORE QUALITATIVE COMPARISONS

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
28

Figure 8: More qualitative comparisons of our method on M3FD datasets.

modality, which suppresses facial details of pedestrians, whereas DCEvo, CCF, and DDFM lose critical vehicle structures.

As shown in 10 On the MARS dataset, our method preserves both plant textures and human facial details. Most competing approaches—such as DCEvo, LFDT-Fusion, MMDRFuse, DDFM, DIV-Fusion, and CCF—are overly influenced by the infrared modality and therefore lose facial details. Compared with MoEFusion, our method also produces plant colors that are closer to those in the original visible modality.

As illustrated in 11 On the MFFW multi-focus dataset, our method maintains sharp textures and faithful colors, while CCF exhibits noticeable color distortion.

As shown in 12 On the MEFB multi-exposure dataset, our method achieves the most natural illumination transitions. Methods including CCF, DDFM, TTD, FusionDN, and U2Fusion show unnatural lamp-light transitions near the desk lamp region; compared with DeFusion and TC-MoA, our results contain fewer noise artifacts on the sofa. Overall, these visual comparisons further demonstrate the effectiveness and robustness of our approach across diverse fusion tasks.

D.2 EXPERIMENTS ON DATASETS WITH MORE THAN TWO MODALITIES

To verify the scalability of our method beyond bimodal settings, we further conduct experiments on a multi-exposure benchmark with more than two modalities (Cai et al., 2018). As shown in 13 the qualitative results demonstrate that Dig2DIG can effectively fuse complementary information from multiple exposures, confirming its extensibility to $K > 2$ modality fusion scenarios.

Figure 9: More qualitative comparisons of our method on LLVIP datasets.

Method	LLVIP Dataset						M3FD Dataset						MSRS Dataset					
	PSNR↑	SSIM↑	MSE↓	Nabf↓	CC↑	LPIPS↓	PSNR↑	SSIM↑	MSE↓	Nabf↓	CC↑	LPIPS↓	PSNR↑	SSIM↑	MSE↓	Nabf↓	CC↑	LPIPS↓
$\text{Cov}(w_k, I_{k,t}) < 0$	31.63	1.14	2331	0.015	0.65	0.380	30.24	1.35	2482	0.029	0.51	0.339	36.84	1.37	1586	0.010	0.58	0.301
$\text{Cov}(w_k, I_{k,t}) = 0$	36.10	1.18	2056	0.004	0.67	0.310	30.87	1.40	2221	0.007	0.56	0.303	38.19	1.39	1367	0.004	0.66	0.287
$\text{Cov}(w_k, I_{k,t}) > 0$	33.74	1.23	1464	0.001	0.73	0.298	31.83	1.41	2216	0.009	0.57	0.287	39.07	1.42	1366	0.001	0.63	0.282

Table 8: Effect of weight–DIG covariance on fusion performance on LLVIP, M3FD, and MSRS.

D.3 EFFECT OF WEIGHT–DIG COVARIANCE ON FUSION PERFORMANCE

To further corroborate Theorem 1, we perform an ablation study under three covariance regimes between the guidance weight w_k and the residual information proxy $\text{DIG}_k(t)$:

- (i) Positive covariance ($\text{Cov}(w_k, I_{k,t}) > 0$): the proposed DIG-based softmax;
- (ii) Zero covariance ($\text{Cov}(w_k, I_{k,t}) = 0$): fixed, uniform weights $w_k = 1/K, \forall k$;
- (iii) Negative covariance ($\text{Cov}(w_k, I_{k,t}) < 0$): an inverse-DIG softmax

$$w_k^{\text{neg}}(t) = \frac{\exp(-\text{DIG}_k(t))}{\sum_{j=1}^K \exp(-\text{DIG}_j(t))}. \quad (56)$$

All other hyper-parameters are kept identical across settings. Experiments are conducted on the **LLVIP**, **M3FD**, and **MSRS** datasets, and the quantitative results are summarised in Table 8.

Across all three benchmarks, the positive-covariance scheme attains the best fusion accuracy, the uniform scheme ranks second, and the negative-covariance scheme performs worst. This ordering aligns with Theorem 1: a larger (positive) $\text{Cov}(w_k, I_{k,t})$ lowers the generalisation-error upper bound, whereas a negative covariance increases it, thereby empirically validating our theoretical findings.

Figure 10: More qualitative comparisons of our method on MSRS datasets.

Figure 11: More qualitative comparisons of our method on MFFW datasets.

D.4 MORE RESULTS ABOUT DIG VISUALIZATION

Under identical experimental settings, we compute at each reverse step t the ratio of guidance-gradient norms between the infrared and visible modalities, $\rho_t = \frac{\|\nabla_{x_t} \log p(c_{ir}|x_t)\|}{\|\nabla_{x_t} \log p(c_{vi}|x_t)\|}$, and report its mean over all steps for each dataset. The dataset-wise averages are

$$(\bar{\rho}^{\text{LLVIP}}, \bar{\rho}^{\text{M3FD}}, \bar{\rho}^{\text{MSRS}}) = (1.06, 0.98, 1.04).$$

Values close to unity indicate that the gradient-norm approximation used in our derivations is reasonable.

Figure 12: More qualitative comparisons of our method on MEFB datasets.

Figure 13: Qualitative results on datasets with more than Two modalities

D.5 MORE RESULTS ABOUT DIG AND w_k VISUALIZATION

As shown in 15, we present additional visualization results for w_k . In the early denoising stage, w_k accurately highlights the salient pedestrians in the infrared modality while capturing the global scene structure in the visible modality. Because the visible images in this example are low-light and lack fine details, w_k increasingly focuses on infrared details as denoising proceeds and the coarse structure is reconstructed. Fig. 16 additionally provides the visualization of the raw DIG maps, where w_k is obtained by applying a pixel-wise Softmax to DIG across modalities.

E OBJECT DETECTION EXPERIMENT

To evaluate the usability of the fusion results, we use a pre-trained YOLOv5 model to perform pedestrian detection on the LLVIP dataset. The results are shown in 14, demonstrating the usability of the fusion results.

1474
1475 Figure 14: Object detection comparison of our method and the recent proposed competing ap-
1476 proaches on LLVIP dataset.
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486

Figure 15: w_k visualization during denoising steps.

Figure 16: DIG visualization during denoising steps.