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Abstract001

Radiology is increasingly adopting AI-based work-002

flows, which provide promise but also introduce new003

security concerns. The goal of this research is to en-004

hance the security of these workflows by evaluating005

the risks of data poisoning attacks using the Fast006

Gradient Sign Method (FGSM) and Carlini-Wagner007

(C&W) techniques. Detection methods commonly008

employed in financial fraud are evaluated to assess009

their effectiveness in this context. Knowledge dis-010

tillation is also explored as a defense mechanism011

against data poisoning, offering a potential mitiga-012

tion strategy. By conducting these evaluations and013

proposing defenses, this research aims to contribute014

to the discussion of more robust deployment of AI015

systems in real-world radiology applications.016

1 Introduction017

Radiology has had a tendency to be an early adopter018

of new technologies. Medical imaging is at the fore-019

front of research, since it is part of the initial pro-020

cesses for making a diagnosis [1]. The use of AI,021

along with the discipline’s eagerness, is part of a022

tradition. There has been the X-ray, MRI, and023

CT scan, each readily adopted into workflows. AI024

marks a continuation of that trend as it becomes025

more commonplace. However, AI fundamentally026

differs from previous technological advancements.027

Other imaging technologies simply provide more028

data, but AI seeks to complement the radiologist.029

It is also more mercurial by nature. Other techno-030

logical advancements are deterministic. If one takes031

an X-ray, there is a high degree of certainty that032

the image will yield the same result. This is not the033

case with AI; it is stochastic. Given images, models034

simply report what is most probable from their per-035

spective. It lacks the same promise of consistency.036

Software engineers approach this issue by defining037

key performance indicators and creating thresholds038

for performance. They ensure that the model will039

perform above a certain percent accuracy or with040

a degree of specificity [2]. This measure is usually041

based on the confusion matrix and Area Under the042

Curve.043

1.1 Data Drift 044

To ensure that performance metrics are maintained, 045

software engineers must regularly update and main- 046

tain the models under their stewardship. The main 047

challenge is that the performance of models tends 048

to fluctuate and degrade over time [3]. This phe- 049

nomenon is known as data drift. For example, con- 050

sider a model trained to analyze X-rays of legs from 051

people in Scandinavia. If there were a significant 052

migration of shorter individuals into the population, 053

the model’s performance would likely decline. The 054

AI relies on identifying certain characteristics in 055

specific locations. Due to the variation in height, 056

discrepancies could arise between what the AI has 057

learned and the data it encounters. Thus, leading to 058

degraded performance. This is data drift: the dis- 059

crepancy between the environment in which the AI 060

operates and the data on which it was trained. To 061

address these issues, it is common practice to update 062

models with more representative data. While this 063

practice aims to create more robust models, it also 064

opens up opportunities for bad actors to manipulate 065

the results of models for malicious purposes. 066

1.2 Data Poisoning 067

One technique to keep models aligned with the cur- 068

rent deployment context is to train them on data 069

that the AI processes during inference. Essentially, 070

the model may save the input provided by the user 071

along with the conclusion made, thereby reinforc- 072

ing its predictive ability. However, this opens the 073

door for bad actors to craft payloads designed to 074

intentionally degrade the model, encouraging it to 075

learn incorrect associations [4]. This is known as 076

data poisoning. Consequently, while your model 077

updates to avoid data drift, it could inadvertently 078

poison itself. One critical aspect of data poisoning 079

to understand is that human inspection alone would 080

not detect anything amiss. The alterations made to 081

poison the data are not something the human eye 082

can easily discern, adding a layer of stealth to these 083

attacks if an adversary is determined to undermine. 084

Data Poisoning is an increasing significant concern 085

through advancements in deployment of AI within 086

clinical settings. For instance, Project MONAI is 087

a framework that has become popular and focuses 088

on clinical use-cases. The MONAI Deploy extension 089

has already been utilized in the wild and implements 090
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continuous learning capabilities [5]. With increased091

deployment, the risks associated with using AI in092

clinical workflows will increase with time.093

1.3 Contribution094

There are several aims this paper seeks to target.095

The first is to investigate adversarial attacks. Two096

of the most common attacks are FGSM and C&W.097

The literature suggests that luminosity is a factor in098

the ability to conduct attacks. [6]. Thus, the data099

from 2017 RSNA Pediatric Bone Age Challenge is100

investigated [7]. The contrast between the brightness101

of the bones and the black background make this102

analysis within the domain of adversarial attacks103

of medical images significant. The dataset is also104

selected because the images are more sparse, whereas105

typical scans usually contain significantly more noise.106

By using X-rays, the manipulations become clearer107

and more understandable, and the structures of the108

bones are more defined. It is also multi-class. A109

second dataset is used for only segmentation. It is110

the Kvasir-SEG dataset [8]. This dataset is designed111

for the segmentation of polyps. This is valuable as112

a contrast to Bone Age. The images are color and113

are of the GI tract; these are visually more complex.114

By conducting this analysis, it provides guidance115

how adversarial attacks affect segmentation and not116

only classification.117

The second aim is to better understand the appli-118

cability of Benford’s Law to medical imaging. There119

has only been some initial investigation in the litera-120

ture [9]. This requires consensus building to uncover121

the strengths and limitations of this approach.122

The last aim is to explore how utilizing different123

loss functions within distillation affects their defen-124

sive capability and how different tasks are affected125

by adversarial attacks.126

2 Background127

Perturbations are the primary attack methods used128

against computer vision models and pose a signifi-129

cant risk to models deployed in the healthcare space.130

Therefore, it is essential to understand these attacks131

and how they are used in context. Additionally, de-132

tection methods from other fields, such as Benford’s133

Law, are worth considering. Finally, it is important134

to explore defenses against these attacks to learn135

how developers can be both proactive in detection136

and reactive by fortifying their models if poisoned137

data slips through.138

2.1 Computer Vision139

YOLO (You Only Look Once) and U-Net are the140

focus of this discussion as they represent the most141

widely used models. YOLO is a productionized142

object detection and classification model that is 143

widely used in industry. The first iteration of YOLO 144

was published in 2016 [10]. There have been upwards 145

of a eleven versions, and it has been foundational 146

in computer vision. YOLO will be primary focus of 147

this study. U-Net is a convolutional neural network 148

(CNN) like YOLO, but it is designed for medical 149

segmentation. It utilizes an encoder to compress 150

the inputs into the feature space and then uses a 151

decoder to up-sample to recover spatial information 152

to create the segmentation map [11]. A standard 153

U-Net is utilized in this work. 154

YOLO will be the focus of the work as it is gen- 155

erally more popular. YOLO segments an image 156

based on labeled images with annotated bounding 157

boxes. It then predicts the presence of particular 158

classes within the image during inference. YOLO is 159

currently the benchmark for object detection tasks 160

and has been enhanced through a series of innova- 161

tions.The first key innovation of YOLO is the use of 162

Cross-Stage Partial Networks [12], which minimizes 163

the computational load required for convolutions 164

by employing a partitioning strategy. The second 165

innovation involves Path Aggregation Networks [13], 166

a technique that enables the development of sub- 167

networks for more robust feature pooling. Lastly, 168

YOLO produces three feature maps that are fused 169

to create a more informative output, which is then 170

further interpreted [12]. These innovations have so- 171

lidified YOLO as the standard in object detection 172

and classification. 173

2.2 Attacks 174

There are two main attack methods evaluated in this 175

endeavor. The first is Fast Gradient Sign Method. 176

This method is far simpler and is more well suited 177

for general attacks. 178

x′ = x+ ϵ · sign(∇xJ(θ, x, y)) (1) 179

In FGSM, there is your input, x. In this context, 180

it is an image. ϵ is essentially the amount of manip- 181

ulation the attack should inflict to the image. It is a 182

tuning parameter. The larger the value, the greater 183

the amount of perpetuation. However, this increases 184

the visibility of attack and increases the likelihood 185

that your attack will be detected. ∇xJ(θ, x, y) is the 186

gradient of the loss function and is used by FGSM to 187

identify the directionality of perturbations to maxi- 188

mize the model’s prediction error [14]. This can be 189

better conceptualized when considering a prediction 190

landscape and pushing the poisoned data against 191

the gradient. 192

min
δ

∥δ∥p + c · f(x+ δ) (2) 193

Carlini & Wagner is the second attack evaluated. 194

The C&W attack is an optimization-based approach. 195

2



NLDL
#10

NLDL
#10

NLDL 2025 Full Paper Submission #10. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

The perturbation δ is measured with an L2 norm in196

most cases. This helps to constrain the space of the197

perturbation while still allowing it to misclassify the198

input. The constant c is a tuning parameter. It helps199

to shrink δ to the point where it may still misclassify200

inputs without it being larger than necessary, which201

could draw attention and increase the chance of202

detection [15].203

2.3 Detection204

To detect these attacks, techniques from other do-205

mains are being explored. The investigators in [9]206

apply methods grounded in Benford’s Law to de-207

tect such attacks. Benford’s Law suggests that the208

leading digit distribution of natural datasets follows209

a logarithmic function. In their analysis, the goal210

was to test whether the leading digit distribution211

of pixel values deviates from that of natural images.212

The approach involved treating the input image as a213

vector, computing a gradient, transforming the data,214

and then comparing the frequency of the first digits215

using the Kolmogorov-Smirnov test [16]. The gradi-216

ent magnitude of the input image and the Discrete217

Cosine Transformation typically adhere to Benford’s218

Law, and these were used in the comparison. The219

Kolmogorov-Smirnov test was employed to deter-220

mine the divergence of these distributions. Using221

these techniques, the investigators successfully iden-222

tified 94.7% of a Projected Gradient Descent attack223

with infinity norm and 81.8% with L2 norm.224

2.4 Defenses225

Proactive measures can be taken to mitigate attacks,226

rather than simply focusing on reducing response227

times. In [17], the investigators introduce knowl-228

edge distillation, a strategy designed to make models229

less susceptible to adversarial input by facilitating230

knowledge transfer. Essentially, class probability231

vectors are fed into a smaller secondary model that232

produces a more discrete result. While the primary233

goal is to enhance the model’s robustness, knowl-234

edge distillation is designed to have minimal impact235

on the model’s architecture, maintain accuracy, and236

preserve speed. The technique significantly reduced237

the success rate of adversarial sample crafting from238

95.89% to 0.45% on the MNIST dataset [17]. Ad-239

ditionally, the distilled model experienced only a240

1.28% drop in accuracy, without requiring signifi-241

cant changes to the base model.242

3 Literature Review243

U-Nets have been developed for medical segmenta-244

tion and have been a focus of attacks along with245

YOLO. In [6], the investigators applied FGSM to246

U-Nets. They found image luminosity is a factor247

(a) X-Ray of 1 Month
Old

(b) X-Ray of 5 Month
Old

Figure 1. Comparison of X-Ray Features

for attack success. This suggestion is in part moti- 248

vated using the Bone Age dataset in our analysis. 249

They used the Dice Score and found a 40% drop 250

after applying only FGSM to four varieties of U- 251

Net. Furthering the investigation of FGSM attacks, 252

the investigators in [18] also applied C&W attacks 253

and attempted to defend against both. However, 254

this work was outside of the medical context. They 255

found that distillation was effective at the mitigation 256

of FGSM but not C&W. The loss function used in 257

their distillation process utilized a singular weight- 258

ing parameter to balance loss of the student model 259

with the distillation loss, which can be thought as 260

agreement between the student and teacher model. 261

4 Detection Techniques 262

To guard against these attacks and to ensure qual- 263

ity checks for AI, qualitative and quantitative tech- 264

niques have arisen. The first technique is more qual- 265

itative. It is inspecting saliency plots to understand 266

which aspects of the input are most significant [19]. 267

Applications of Benford’s Law are more quantitative 268

measures for detecting manipulation. 269

When reviewing these two plots, one can interpret 270

which features are most significant to the classifi- 271

cation of hand bone ages. For the one-month-old, 272

the structure and definition of the carpal bones ap- 273

pear to be most significant. For instance, one might 274

notice the roundness due to the lack of structure. 275

Additionally, there is increased highlighting in the 276

larger gaps between the phalanges. For the five- 277

month-old, the carpal bones are more well-defined, 278

and there is notable highlighting of the radius and 279

ulna in the scan. 280

One issue to consider is the presence of the ”L” 281

marker. This marker is intended to help radiologists 282

orient the scan by indicating the left side of the 283

person being scanned. The strongest highlighting is 284

found along the contours of the letters on the marker. 285

The concern is that the model might be associating 286

the marker with older hands. Younger hands are 287

smaller and often require zooming in, which can 288
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(a) Benford’s Law Applied to C&W Attacked
Scan From Kvasir

(b) Benford’s Law Applied to C&W Attacked
Scan From Bone Age

Figure 2. Comparison in Digit Frequency

obscure the marker and implicitly train the model289

to recognize the marker as a feature associated with290

older hands. If the marker were superimposed on291

younger hands, they might be incorrectly interpreted292

as older due to this spurious relationship. Thus,293

models may sometimes hamper their own learning294

without external influence and may simply learn295

problematic features.296

4.1 Benford’s Law297

Benford’s Law is an observation regarding the fre-298

quency of digits. For instance, the number ”1”299

should appear in the first digit of a number roughly300

30% of the time. The number ”2” should appear as301

the first digit in a number 18% of the time. This302

pattern in frequency decreases with the higher the303

digit. The underlying process causing this distribu-304

tion is not well understood, but it provides a useful305

benchmark to suggest if the data has been manip-306

ulated not. In [9], a cosine transform is applied to307

the images which allows Benford’s Law to hold.308

A scan of a five month old is evaluated to deter-309

mine if an attack by C&W could be determined by310

inspection for Bone Age. For Kvasir, C&W is also311

used on the image of a polyp.312

When observing how these distribution differ from313

the expectation, it is suggestive that the has been314

manipulated. This is most noticeable when observ-315

ing the frequency of ”1” in both datasets.316

A limitation to consider is that when applying317

the Kolmogorov-Smirnov test, the p-value tends to318

produce too many false positives. It is likely that this 319

test should be applied to entire datasets rather than 320

individual images. If Benford’s Law is to be applied 321

to specific images, it is more useful to inspect the 322

distribution through graphs or to use more advanced 323

versions of Benford’s Law to increase the robustness 324

of the detection. For instance, it may be more robust 325

to jointly look at the first and second digits to avoid 326

false positives. 327

When evaluating Benford’s Law on an image at- 328

tacked by the FGSM, the technique did not perform 329

well. This holds for both datasets. The attack 330

caused the frequencies to more closely align with 331

the expected frequencies, leading to false negatives. 332

Observing entire datasets may help mitigate these 333

deviations in individual scans and determine whether 334

there has been a systematic attack on the dataset. 335

5 Results 336

YOLO is a model for object detection, and in this 337

formulation, the ages of bones were treated as classes 338

to segment. The accuracy measurement reflects how 339

well YOLO was able to determine a bounding box 340

for the correct age of the bone from the scan. After 341

training YOLO for 10 epochs, the model achieved 342

an accuracy of 64% in segmenting the images to 343

determine the correct class. This is a reasonable 344

baseline, with the highest accuracy being 78% for 345

1-month-old scans. However, it performed the least 346

well for 8-month-old scans, with an accuracy of only 347

28%. 348

When applying the FGSM, the average accuracy 349

drops to 17% on the adversarial example set. For the 350

less representative classes, YOLO was completely 351

fooled. For instance, none of the 8-month-old scans 352

were correctly classified. However, for larger classes, 353

the model performed slightly better, with 5-month- 354

old bones reaching 32% accuracy and 4-month-old 355

bones reaching 26 356

As for the C&W attack, the overall accuracy 357

drops to 12%. YOLO was again tricked by the 358

less representative classes. For newborns, none of 359

the poisoned test set scans were correctly classified. 360

Accuracy remained close to 0 for 7-month-old and 8- 361

month-old scans. The majority class, 5-month-olds, 362

saw a performance of 35%. 363

U-Net is a model suited for segmentation. It 364

achieved a mean average precision of 42%. This 365

drops to 22% under FGSM and 19% under C&W. 366

It was also trained for 10 epochs and adhered to 367

the same general process that is used to evaluate 368

YOLO. 369
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6 Knowledge Distillation370

Knowledge Distillation is a technique designed to371

guard against adversarial examples. The effective-372

ness of the previous attacks is due to the inherent373

fragility of CNNs, where small perturbations can374

significantly manipulate inference. Knowledge dis-375

tillation involves a student-teacher model approach.376

In this instance, the teacher model is YOLO. The377

confidence score of the predicted class is extracted378

from YOLO and used as a new input. This score,379

along with the class (in this case, the age of the in-380

fant being scanned), serves as input for a secondary381

ResNet model. The ResNet is then evaluated both382

with and without distillation.383

For the U-Net, instead of feeding the output di-384

rectly into the student model, it is added to the loss385

function. For segmentation tasks, basing the loss on386

ground truth with the teacher model’s soft targets387

supports student model in learning segmentation388

boundaries from the teacher. The loss used is389

loss = α · label loss + (1− α) · distillation loss (3)390

This formulation allows for a more precise weight-391

ing to be applied to learning the ground truth and392

agreement with the teacher model.393

To test YOLO, 500 adversarial examples were394

generated using the C&W attack, and 10,000 ad-395

versarial examples were generated using FGSM to396

create a poisoned version of the original dataset.397

C&W is too computationally intensive to warrant so398

many examples, since the adversarial examples are399

more potent. As for Kvasir, 1,000 examples were400

created under FGSM with 100 with C&W with the401

same reasoning.402

When reviewing the example model without dis-403

tillation, its ability to classify images is very limited.404

The model is essentially only capable of correctly405

classifying bones from 4-month-olds and 5-month-406

olds, while misclassifying all other age groups. This407

suggests that the model is not effectively learning408

the distinguishing characteristics of the other classes409

and is instead relying on the prominence of certain410

classes in making its predictions.411

In contrast, when applying distillation, the model412

demonstrates a greater ability to differentiate be-413

tween characteristics across classes. This improve-414

ment is evident in the confusion matrix, which shows415

a more diverse distribution of predictions. The dis-416

tilled model is attempting to generalize and learn417

from the data. However, the limitations of this418

model may indicate that the teacher model (YOLO)419

has not been sufficiently trained. The YOLO model420

was only trained for 10 epochs, yet there is still a421

significant difference in performance between a stan-422

dard ResNet and a ResNet that has undergone dis-423

tillation. However, the dataset is large and is using424

Figure 3. Comparison of Attacks Under Distillation
for Kvasir

a foundational model to conduct transfer learning, 425

so the concern may be overstated. Also, the differ- 426

ence in accuracy is the finding and not the absolute 427

accuracy. 428

When evaluating the effectiveness of distillation 429

in mitigating C&W, the results are not particularly 430

promising. Without distillation, the model strug- 431

gles to generalize effectively. Although the distilled 432

model performs marginally better, such as predict- 433

ing 7-month-olds more accurately, it largely fails to 434

cope with the attack. 435

As for the segmentation results, distillation was 436

effective at improving model robustness under C&W. 437

However, it becomes less robust to FGSM and in- 438

forms a trade-off in how loss functions should be 439

formulated for targeting specific attacks. 440

7 Conclusion 441

In this study, two attack types were applied to the 442

RSNA Bone Age dataset and Kvasir using FGSM 443

and C&W. FGSM, while simple and effective, is 444

harder to detect, with Benford’s Law failing to catch 445

its perturbations. C&W, being more complex, is 446

more damaging but also more noticeable. Knowl- 447

edge distillation showed some effectiveness, particu- 448

larly against FGSM when considering the attack on 449

YOLO. However, it is ineffective when considering 450

U-Net and FGSM. This is likely attributable to the 451

loss function that is able to more effectively protect 452

against C&W. 453

It is recommended to apply Benford’s Law for de- 454

tecting severe attacks, while knowledge distillation 455

can help mitigate simpler ones. Future work should 456

focus on understanding how loss function formula- 457

tions factor into distillation effectiveness and the 458

robustness of Benford’s Law in the medical image 459

domain to further support robustness initiatives. 460
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A Appendix A461

Figure A.1. Comparison of ResNets when Attacked by FGSM

462

Figure A.2. Comparison of ResNets when Attacked by C&W

463
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