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Abstract

Personalizing biophysical simulations to individual patients remains a major com-
putational bottleneck, as traditional optimization requires repeated runs of costly
numerical solvers. We present a differentiable system that replaces the forward
simulation with a neural surrogate, providing a fast and accurate approximation
of the underlying biophysical model. The surrogate’s differentiability enables
efficient gradient-based inversion of patient-specific parameters, even when the
original solver is non-differentiable. Applied to a 3D finite-difference model of
brain tumor growth, our method achieves clinically relevant accuracy while reduc-
ing optimization time from days to seconds. This demonstrates how differentiable
surrogates can serve as core components of broader differentiable systems for
scientific machine learning.

1 Introduction

In medical research, computational modeling underpins many applications, from finite element
models of brain tumor growth to patient-specific biophysical simulations, which are central to
advancing personalized medicine [10, [12]. These models capture complex physiological processes
but are computationally expensive, often requiring hours for a single forward run. Consequently,
parameter fitting and calibration to patient data, essential for personalization, remain challenging
inverse problems [5]]. Traditional optimization methods such as Bayesian or evolutionary strategies
[21} [14] demand numerous forward evaluations, making clinical integration infeasible. Neural
surrogates have emerged to mitigate this limitation by approximating input-output mappings with
significant speedups [[11}[17]. They are used in medical imaging and physical modeling [19} [13]], yet
they typically focus on forward predictions rather than solving inverse problems. Physics-Informed
Neural Networks (PINNSs) [4} [7] partially address this but often suffer from instability and difficulty
handling discontinuities [23]. Related approaches that embed physics as soft constraints [2, 9] or rely
on differentiable simulators [11]] face similar limitations in generalizability and applicability. We
propose to use differentiable neural surrogates to solve inverse problems in personalized medical
simulations [22} [1]]. Specifically, we demonstrate how to transform a non-differentiable biophysical
simulator for brain tumor growth into a differentiable system using a learned surrogate, bridging
numerical modeling and optimizationﬂ

'This manuscript extends a prior short version [22]] by incorporating comparative optimization strategies, a
broader differentiable-systems framing, and an explicit hybrid initialization. Code: |github.com/jonasw247/
train-forwards-optimize-backwards.
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2 Methods

We aim to personalize biophysical tumor models by fitting simulated tumor concentrations to individ-
ual patients’ magnetic resonance images (MRI). Accurate personalization is essential for radiotherapy
planning, particularly to infer tumor infiltration in regions not visible in the images. By estimat-
ing patient-specific tumor growth coefficients, we seek to optimize treatment targets beyond the
radiologically defined tumor boundaries (Figure [I). Typically, the final stage of personalization
introduces an imaging function that transforms the continuous tumor-cell concentration into a binary
segmentation to compare it to MRI. Earlier studies tested several hand-crafted imaging functions and
calibrated some of their parameters [22} 2} |14} 21]. To remove this additional source of uncertainty
and focus squarely on the inverse problem of calibrating the biophysical model, we perform parameter
estimation directly against the simulated “ground-truth” concentration.
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Figure 1: (a) The goal is to estimate the invisible 3-D brain tumor concentration crucial for radiation
treatment planning based on the visible segmentation of the MRI and biophysical constraints. There-
fore, we simulate the tumor growth. The numerical solver inputs the PDE coefficients and the brain
tissue to predict a tumor concentration. Optimizing those coefficients with classical methods is slow
and thus limits the clinical adaptation of complex brain tumor models. (b) We introduce a precise
and differentiable neural surrogate enabling fast personalization.

We apply the widely used Fisher-Kolmogorov equation for brain tumor growth

Oc(x,t)
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where c¢(x, t) is the tumor-cell density, D(x) the tissue-dependent diffusion coefficient, and p is the
proliferation rate. The brain volume is segmented into white matter (WM), grey matter (GM) and
cerebrospinal fluid (CSF) resulting in tissue-specific diffusion: Dgyv = 0.1 Dw, Desg = 0 as tumor
cells infiltrate GM more slowly and are assumed not to invade CSF [6]. The forward solver inputs
the proliferation rate p, diffusion coefficient Dy, seed location (x, y, z), and total growth time 7,
i.e. the parameter set Oorig = {, ¥, 2, p, Dwm, T'}. With only a single clinical scan, f,.ig is not
identifiable; for example, (p 1, T' }) and (p |, T 1) may yield identical tumor extents. Following
[14], we unify T into two scale-free parameters pp = /Dwm T, 1, = /p T, and optimise the
reduced set 0 = {z, y, 2z, up, p,}. Given 6, the numerical solver returns the 3-D tumor cell-density
field ¢(x; 0).

We train a neural surrogate that approximates the forward solver of the reaction—diffusion PDE.
During training, the network receives as input the PDE coefficients together with the relevant
side constraints, the initial tumor seed, tissue mask, and boundary conditions. The output is the
final tumor-cell concentration obtained by the numerical solver. The surrogate learns the mapping:
fo 1 (8,B) — c(x), where 6 denotes the set of biophysical coefficients, ¢ denotes the surrogate
weights and B the boundary data. Because the forward problem is well-posed, this supervised
learning task is stable and admits a unique solution, orders of magnitude faster than the classical
solver. Empirically, U-Net architectures have proven effective for this task [8}[18]. Recent studies
further show that substituting the standard convolutional blocks in a U-Net with ConvNeXt blocks
yields superior performance on reaction—diffusion problems [[15} [I7]. We therefore adopt this
ConvNeXt-U-Net variant. The PDE coefficients are first processed by a fully connected layer, and the
resulting activations are added channel-wise to the U-Net bottleneck. Injecting the coefficients at this
most abstract level allows the latent representation to modulate spatial features in a physics-informed
manner.

= V-(D(x)Ve(x,t)) + pe(x,t) (1 —c(x,1)), (1



For inverse optimization, we evaluate four approaches. CMA-ES classical solver: As a classical
baseline, we employ the CMA-ES (cma Python package) to optimize the tumor-concentration model.
To ensure a fair comparison with our neural surrogate, we deliberately use the vanilla algorithm,
foregoing common refinements such as multi-resolution search schemes or machine-learning priors
[21]. CMA-ES neural surrogate: To disentangle the benefits of gradient information from those of
the fast forward model, we also run CMA-ES directly on the neural surrogate. In this setting, the
expensive numerical solver is replaced by the surrogate, yet optimization remains entirely derivative-
free. The gradients of the network are intentionally ignored. This ablation allows us to assess how
much of the performance gain stems from the surrogate’s speed alone versus the use of gradient-based
inversion. Direct inverse prediction model: An obvious solution is the prediction of the coefficients
directly by a network (Figure [2h), as done by [6]. For this approach, we used a ConvNeXt [15]
architecture similar to the encoder of the forward neural surrogate mode. The network inputs the
tumor concentration and the brain tissue to predict the PDE coefficients. GB neural surrogate:
Once the network has converged, we freeze its weights and exploit its end-to-end differentiability for
inverse optimization. Treating fy4 as a differentiable function of f, we compute the exact gradient
of the /5 loss between the predicted and observed tumor maps. This gradient is then supplied
to a memory-efficient quasi-Newton optimiser (L-BFGS) that iteratively updates 6 to minimise
the discrepancy (Figure 2b). Inverse Prediction and GB Optimization: We integrate the two
complementary inversion strategies, direct inverse prediction and the gradient-based neural surrogate,
into a single hybrid pipeline. Concretely, we first execute the direct inverse model to obtain a coarse
but physically plausible estimate dp; of the PDE coefficients. This estimate is then used to initialise
the gradient-based optimiser that operates on the neural surrogate. Starting from fp; provides the
quasi-Newton solver with a point already close to the true optimum, reducing the risk of entrapment
in poor local minima.

After the GB optimisation terminates, we evaluate both candidate solutions, the original direct-inverse
estimate and the refined GB surrogate estimate. The parameter set that achieves the lower loss is
retained as the final prediction. Optimization was terminated once convergence was achieved, i.e.
when the change in MSE between successive iterations dropped below 1077,
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Figure 2: Overview of our neural surrogate optimization. The goal is to estimate the optimal
PDE coefficients that explain the brain tumor. (a) The direct prediction model estimates the PDE
coefficients that explain the given tumor concentration, thus it solves the inverse prediction within one
inference run. (b) A differentiable neural surrogate model is trained on the forward tumor simulation
problem. It inputs the PDE coefficients and the brain tissue and outputs a tumor concentration.
Finally, the patient-specific coefficients are estimated using gradient-based optimization.

We evaluate surrogate- and solver-generated tumor fields with five complementary metrics. Mean-
squared error (MSE) captures the total energy of numerical deviations and harshly penalizes large
local mistakes, while mean absolute error (MAE) reports the voxel-wise bias in the same physical
units as the data. Because raw errors scale with lesion size, we also report volume-normalized MSE
and MAE, dividing each by the ground-truth tumor volume so results remain comparable across
samples with different tumor extents. Normalized cross-correlation (NCC) measures how well the
spatial pattern of low- and high-concentration regions aligns, independent of any global scale or
offset. This metric is particularly interesting for radiotherapy planning, which acts on the relative
radiation distribution.

We used a dataset generated by the TUMORGROWTHTOOLKIT [2], designed to match tumor sizes
seen in the BRATS dataset [[16]]. We trained on 28,000 samples, validated on 1,000, and tested on



500. Due to cost constraints, we evaluated the full-resolution CMA-ES only on a subset of 25. We
used an NVIDIA Quadro RTX 8000 and an AMD EPYC 7313 16-Core Processor for all experiments.

3 Results

The goal of our approach is to determine the optimal set of coefficients that describes the patient’s
tumor, resulting in a fitting tumor concentration (Table [T). The classical pipeline that couples
the numerical solver with CMA-ES attains a low simulation error, even though we found that the
recovered coefficients deviate substantially from the ground truth. This apparent contradiction arises
from the ill-posed nature of the inverse problem: multiple parameter combinations can reproduce
the observed tumor distribution similarly well, enabling the optimiser to explain the data without
converging to the true coefficients. The results of the surrogate-based methods and direct inverse
prediction show worse performance compared to the classical solver. By investigating the per-
sample errors, we observed a heavily skewed distribution for the optimization approaches, resulting
in the larger standard error (Table[I). A few failed optimization runs dominate the mean values.
By applying our hybrid approach, which utilizes the direct inverse prediction as initialization for
the subsequent gradient-based optimization, we can dramatically reduce those failure cases. This
results in significantly better performance, even outperforming classical optimization on the clinically
relevant NCC metric, with a focus on relative differences.

Table 1: Main findings. Performance comparison for the final forward run with a classical solver
following strict physical constraints. We compare mean squared error (MSE), mean absolute error
(MAE), also normalized by the ground truth tumor volume (MSE / MAE Normalized), the normalized
cross correlation (NCC), and the runtime. We report the mean and the standard error. Bold indicates
best, underlined indicates second best.

MSE (1) MAE () MSEnorm. (}) MAEnorm. (}) NCC()  Runtime ({)

Model (x1073) (x1073) (x107%) (x107%) (x1071H (min)
CMA-ES classical solver 0.34 £0.08 1.55+0.24 0.77 £ 0.22 4.00 +0.70 8.95+0.37 2300
CMA-ES Neural Surrogate 542 +0.59 8.10 £0.65 4.59 £043 8.07 +£0.47 7.81£0.13 2.5
Direct Inverse Prediction 481+0.20 8.87+0.32 5.02+£0.23 10.08 + 0.40 8.47 +£0.04 0.1
GB Neural Surrogate 591+0.65 8.53+0.73 4.88 £0.48 7.99 £0.53 8.19+0.11 0.7
(Ours) Inverse Prediction

and GB Optimization 1.35+0.19 3.29+0.29 1.36 +0.15 4.05+0.25 9.15 +0.10 0.8

4 Discussion

We find that differentiable neural surrogates can drastically accelerate the personalization of medical
simulations. We have demonstrated that learning the well-posed forward path and optimizing it
works better than predicting the ill-posed problem directly. By enabling efficient gradient-based
optimization for the inverse problem, we achieved a speedup from days to seconds in calibrating
brain tumor models, for this "train forwards, optimize backwards" approach. However, occasional
optimization runs converged to suboptimal local minima, impacting mean error metrics. The optimal
surrogate architecture may vary for different physical systems, and performance inherently depends
on the training dataset’s quality and scope. Furthermore, our current approach largely sidesteps the
complexities of explicit imaging functions by focusing on synthetic cases.

In ongoing work, we focus on enhancing optimization robustness and extending our framework to
further medical simulation tasks, including more complex biophysical models with additional param-
eters that are currently infeasible to optimize due to their computational cost [20} 3]]. Additionally,
we are exploring its application to other medical domains, such as modeling Alzheimer’s disease
progression and multi-body mechanical spine modeling. Especially for high-dimensional problems,
we expect gradient-based optimization to provide a decisive advantage. We believe that differentiable
neural surrogates represent a transformative step toward rapid and precise personalized medicine.
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