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Abstract

Adversarial attacks against graph neural networks (GNNs) through perturbations
of the graph structure are increasingly common in social network tasks like rumor
detection. Social media platforms capture diverse attack sequence samples through
both machine and manual screening processes. Investigating effective ways to lever-
age these adversarial samples to enhance robustness is imperative. We improve the
maximum entropy inverse reinforcement learning (IRL) method with the mixture-
of-experts approach to address multi-source graph adversarial attacks. This method
reconstructs the attack policy, integrating various attack models and providing
feature-level explanations, subsequently generating additional adversarial samples
to fortify the robustness of detection models. We develop precise sample guidance
and a bidirectional update mechanism to reduce the deviation caused by impre-
cise feature representation and negative sampling within the large action space
of social graphs, while also accelerating policy learning. We take rumor detector
as an example targeted GNN model on real-world rumor datasets. By utilizing a
small subset of samples generated by various graph adversarial attack methods, we
reconstruct the attack policy, closely approximating the performance of the original
attack method. We validate that samples generated by the learned policy enhance
model robustness through adversarial training and data augmentation.

1 Introduction

Social media platforms such as Weibo and Twitter host complex relationship networks that exhibit
a typical graph structure. Graph neural networks play a crucial role in analyzing social graphs,
demonstrating significant efficacy in a range of social network tasks, including rumor detection
[1, 2, 3, 4, 5], spam detection [6, 7] and stance detection [8, 9].

Extensive research [10, 11] has demonstrated that GNNs are vulnerable to adversarial attacks,
allowing adversaries to manipulate downstream node classification outcomes by flipping a small
number of edges or features within the graph. For instance, in rumor detection, rumor spreaders may
manipulate the graph structure to evade detection by reposting messages and following users. Recent
research efforts have shifted towards acquiring such attack samples [1, 12], which can be obtained
through manual supervision or effective detection models. Analyzing these samples allows platforms
to profile attackers, uncover their motives, and understand their attack patterns, thereby crucially
enhancing the robustness of detectors to defend against similar attacks.
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Figure 1: An X(Twitter) rumor published on Politifact. Three instances of the rumor’s propagation on
X are listed, which imply different attack styles and sequences: (1) User A, who has a notable number
of followers, posted the rumor and gained considerable attention. The attack sequence involved
purchasing followers and posting the rumor. (2) User B, with a large number of followers, retweeted
the rumor originally posted by User A. This extends the last sequence to constitute a sequence of
purchasing followers, posting, and retweeting. (3) User C, with almost no followers, copied the
content posted by User A and published it again, forming a one-step attack sequence. Repeated
similar attacks can be seen as a sequence.

Utilizing adversarial training, which augments model generalization by introducing perturbed samples
into training data, is a common and effective approach [13, 14, 15, 16, 17]. The effectiveness of
defense hinges crucially on the adversarial samples employed in adversarial training [18]. Current
research on graph adversarial training primarily concentrates on devising effective attack methods to
produce adversarial samples, thus fortifying the model’s robustness against these attacks. However,
within social networks, numerous attackers with diverse goals pose a challenge in developing attack
methods that can simulate the wide array of real-world attacks, each characterized by different
motives and styles, thus achieving comprehensive defense. Hence, we aim to reconstruct the attack
policy to simulate multiple attackers as accurately as possible with the adversarial samples captured
by social media platforms. It not only aids in gaining a more comprehensive understanding of the
attackers but also facilitates the acquisition of additional samples for adversarial training.

A natural idea is to use the captured attack samples as training data for supervised learning, known as
Behavior Cloning (BC) [19], which constitutes a form of simple imitation learning. However, within
social networks, attack samples frequently demonstrate interdependencies, as attackers commonly
execute multiple steps of graph perturbation behaviors to accomplish their ultimate objectives. For
example, [1] proposed various camouflage behaviors aimed at deceiving rumor detectors. Rumor
spreaders could combine several camouflage behaviors to evade from detection as shown in Figure 1.
In sequential decision-making scenarios, BC encounters the challenge of compounding error [20, 21],
as it leads to continual deviations from the observed sample distribution when faced with unknown
states. Consequently, we can turn to inverse reinforcement learning (IRL) methods [22]. Diverging
from reinforcement learning (RL) [23], IRL has access to some expert demonstrations while lacking
knowledge of the reward function. Although the agent can interact with the environment, it does
not obtain rewards; instead, it deduces the reward function concerning sample features from expert
demonstrations and subsequently leverages reinforcement learning to uncover the optimal actor. IRL
simulates adversarial attack policies based on observed data. Moreover, when employing linear
reward functions and interpretable features, IRL offers feature-level post-hoc explanations [24], thus
better aiding platform operators in understanding attack behaviors.

Reconstructing interpretable attack policies in social networks using inverse reinforcement learning
poses two primary challenges. Firstly, expert demonstrations gathered from social media platforms
originate from diverse attackers. Thus, it is imperative to develop a policy capable of simulating
multiple experts as well as achieving similar attack performance. Secondly, while linear reward
functions and interpretable features provide transparent interpretations, their application to represent
graph structure data within the large action space of social graphs poses significant challenges.
Similar sample features may correspond to entirely disparate ground true rewards [12], which make
difficulties in inverse reinforcement learning.

Therefore, we propose MoE-BiEntIRL, an explainable bidirectional update maximum entropy inverse
reinforcement learning method with the mindset of mixture-of-experts. It improves maximum entropy
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inverse reinforcement learning (EntIRL) [25] to estimate interpretable linear reward function and
recover the attack policy. It makes use of mixture-of-experts (MoE) model to cluster expert samples
during the IRL process and learns optimal policies by leveraging the strengths of each expert, and
provides feature-level explanations. To address the issue of suboptimal linear feature representation
of graph structure data, we introduce precise sample guidance and bidirectional update mechanism to
speed up the exploration of reinforcement learning and reward function learning.

Contributions. i) It studies a novel problem of reconstructing the attack policy with collected
adversarial samples on social media. ii) Our approach enhances IRL techniques to handle the graph
structured attack samples from diverse adversaries with large social graphs, while also offering inter-
pretability. iii) On the real-world rumor datasets, we validate the policy reconstruction effectiveness
of our method for multiple graph adversarial attack methods, and enhance the robustness of the GNNs
rumor detector through data argumentation and adversarial training with additional samples generated
by the reconstructed policies.

2 Background

Reinforcement learning. A Markov Decision Process (MDP) is defined as a tuple (S,A,P, r, δ),
where S is a set of states, A is a set of actions, P is the state transition probability function, r is the
reward function, and δ is the discount factor. The core objective in RL is to learn a policy π : S → A
that maximizes the expected sum of discounted rewards: Vπ(s) = Eπ [

∑∞
t=0 δ

tr(St, At) | S0 = s],
where Vπ(s) is the state-value function under policy π. RL algorithms typically learn the action-value
function Qπ(s, a), which represents the expected return of taking action a in state s and following
policy π thereafter. According to the Bellman Optimality Equation, the optimal action-value function
is defined asQ∗(s, a) = E [r(St, At) + δmaxa′ Q∗(St+1, a

′) | St = s,At = a]. The agent interacts
with the environment to collect experiences, and then updates its policy or value functions to improve
decision-making over time.

Inverse reinforcement learning. The core idea of IRL is to assume that the observed behavior
is optimal with respect to some unknown reward function. The task is then to recover this reward
function such that the learned policy is (near-)optimal under the recovered rewards. A classical
formulation is Maximum Entropy IRL (EntIRL) [25]. Given a set of expert demonstrations D, it
seeks to recover the reward function with the principle of maximum entropy along the trajectory
τ = {s0, a0, ..., sT }. Thus, the objective of EntIRL is defined as:

max
∑

τ∈D
−p(τ) log p(τ)

s.t.
∑

τ∈D
p(τ)fτ = f̃ ,

∑
τ∈D

p(τ) = 1,
(1)

where p(τ) is the probability distribution of the trajectory, fτ is the trajectory feature, and f̃ is the
expert feature expectation. EntIRL assumes that p(τ) ∝ eRθ(τ), where Rθ(τ) =

∑
t rθ(st, at) is the

cumulative reward with the reward function parameter θ. With the limitation of feature matching, the
maximum likelihood method naturally aligns with the maximum entropy principle [26]. Thus, the
loss function for EntIRL is the likelihood as: L(θ) =

∑
τ∈D log p(τ |θ). The locally optimal example

like [27, 28] is considered here. It segments the trajectory as state-action pairs. Denoting the action a
from state s along the trajectory τ , the previous assumption becomes p(a|s) ∝ eQ

∗(s,a) [25]. With
a discounting factor δ = 0, the action probability is proportional to the exponential of the rewards
encountered along τ :

p(a|s) = 1

Z
exp(rθ(s, a)), (2)

where Z is the partition factor. The EntIRL loss function then becomes

L(θ) =
∑

a∈As

log p(a|s), (3)

where As is the action space under the state s. The linear reward function rθ(s, a) = θ⊤f(s, a) is
adopted here with feature extraction method f . Then, the reward function is employed to train the
learner policy πL.

Mixture-of-experts. MoE is an ensemble model that consists of a gating network α and K expert
networks {p1, p2, ..., pK}. Each expert is used to learn and store knowledge from different fields, and
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Figure 2: The framework of our proposal. There are three stages: attack, reconstruction and defense.
An example of attack trajectory in social networks is shown at the top right.

the gating network determines the expert network used for the inference based on the input. For each
input, the gating network dynamically selects expert networks for activation, which can be indicated
as p(y|x) =

∑
k α(x)pk(y|x).

Graph adversarial attack on social networks. The social network graph is denoted as G=(V, E).
The node set V consists of the nodes representing messages, users and comments. The edge set E
consists of pairs (vi, vj), where vi, vj ∈ V . Each edge or potential edge can be mapped to its relation
type with the fucntion ψ : {(vi, vj)} → L. The relation type set L includes user-message, user-user
and message-comment. The communities in social network are represented by a set of connected
components {G1, ..., Gm} in G, which are termed the subgraph in the sequel.

We focus on node classification task utilizing a GNN model, denoted as g. Each node vi in G is
associated with a corresponding node label yi ∈ Y . Our setting is transductive, where the test nodes
are observed during training without their labels. Within social networks, attackers aim to deceive the
trained classifier g through evasion attacks. We assume that the attackers can only observe a limited
number of nodes and manipulate a subset of edges. The observable node set is denoted by V ′ ⊂ V .
Here the modifiable edge set is defined as E ′ = {(vi, vj) | vi ∈ V ′, vj ∈ V ′, ψ((vi, vj)) ∈ L},
enabling the manipulation between observable nodes. Additionally, there is a target set O ⊂ V ,
allowing attackers to conduct global or targeted attacks within the controllable range by specifying
the target set. The attacker modifies the graph G into G̃. The objective of attackers is to maximize the
cost function LA =

∑
vi∈O L(g(vi), yi) in G̃, where L(·, ·) is the loss between two input values.

3 Method

3.1 Framework

As shown in Figure 2, there are three stages in our situation: attack, reconstruction, and defense.
Initially, the attacker on social media perturbs the social network with a sequence of manipulations,
constituting an MDP trajectory. Multiple attackers generateN trajectories, denoted as {τ1, τ2, ..., τN},
where each τj = (s

(0)
j , a

(0)
j , s

(1)
j , . . . , a

(T−1)
j , s

(T )
j ). With the variety of attack styles and purposes,

our proposal assumes distinct policies π ∈ {π0, π1, ...} decide the action at each step. To expedite
learning in large social network graphs, it decomposes edge flipping into three steps: source subgraph
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selection, destination subgraph selection, and node pair selection. The final reward of the trajectory
is r, which remains unknown to the targeted social media platform. Each state-action pair at time t
could be seen as an observed expert sample, with feature extraction method f employed to represent
these pairs. Given the features of samples, the MoE policy is introduced to enhance the EntIRL
method, deducing the reward function with EM algorithm. Then, with the improvement of precise
sample guidance and bidirectional update mechanism, the learner policy πL is optimized continuously.
The policy πL could generate more trajectories {τN+1, τN+2, ...} to simulate real attack samples.
With data augmentation or adversarial training, it could enhance the robustness of the targeted model.
Furthermore, by analyzing the reward function, it provides feature-level explanations of the attack
samples.

3.2 Mixture-of-experts maximum entropy inverse reinforcement learning

3.2.1 Mixture-of-experts policy

With N observed trajectories {τ1, τ2, ..., τN} and τj = (s
(0)
j , a

(0)
j , s

(1)
j , . . . , a

(T−1)
j , s

(T )
j ), we as-

sume that the trajectory is generated by the following model

p(τ |θ) = p(s(0))×
∏T−1

t=0
p(a(t)|s(t))p(s(t+1)|s(t), a(t)), (4)

and the policy is the mixture-of-experts model as

p(a(t)|s(t), θ) =
∑K

k=1
αk(s

(t), φ)p(a(t)|s(t), θk), (5)

where αk(s
(t), φ) is the gate function parametered by φ, and

∑K
k=1 αk(s

(t), φ) = 1 with given t.
There are K experts with parameters θ = (θ1, ..., θK) and each component p(a(t)|s(t), θk) represents
an expert. With Eq. (2) and rθ(s, a) = θ⊤f(s, a), we formulate the k-th expert at time t:

p(a(t)|s(t), θk) =
exp(θ⊤k f(s

(t), a(t)))∑
a∈As,t

exp(θ⊤k f(s
(t), a))

, (6)

where As,t is the action space under the state s(t) of the expert sample, and the denominator could be
estimated with sampling.

3.2.2 EM algorithm

Each state-action pair is an observed sample. The expert to produce the t-th state-action pair in the
observed trajectory τj is unknown. The latent variable γjkt = 1 if the t-th state-action pair of the
trajectory τj is decided by the k-th expert, otherwise γjkt = 0. The complete data include observed
trajectory τj and unobserved γjkt with j = 1, 2, .., N . The likelihood function of complete data is

P (τ, γ|θ) =
N∏
j=1

P (τj , γj,1,0, γj,2,0, ..., γjKT )

=

N∏
j=1

[
p(s

(0)
j )×

T−1∏
t=0

p(s
(t+1)
j |s(t)j , a

(t)
j )

]
×

N∏
j=1

T−1∏
t=0

K∏
k=1

[
αk(s

(t)
j )p(a

(t)
j |s(t)j , θk)

]γjkt

.

(7)
Then parameters θ are estimated by EM algorithm [29]:

E-Step: Given the observed data (s
(t)
j , a

(t)
j ) and current parameters θ(i), it computes the Q function

as
Q(θ, θ(i)) = E

[
logP (τ, γ|θ)|a(t)j , s

(t)
j , θ(i)

]
=

T−1∑
t=0

K∑
k=1

N∑
j=1

(
γ̂jkt logαk(s

(t)
j ) + γ̂jkt log p(a

(t)
j |s(t)j , θk)

)
,

(8)

where γ̂jkt = E[γjkt] is the responsibility for the observed sample as

γ̂jkt = P (γjkt = 1|a(t)j , s
(t)
j , θ(i)) =

αk(s
(t)
j )p

(
a
(t)
j |s(t)j , θ

(i)
k

)
∑K

k=1 αk(s
(t)
j )p(a

(t)
j |s(t)j , θ

(i)
k )

. (9)
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M-Step: The goal is updating θ with
θ(i+1) = argmax

θ
Q(θ, θ(i)). (10)

Then the gate function loss and the expert loss for the k-th expert are respectively

Lgate(φ) =

T−1∑
t=0

K∑
k=1

N∑
j=1

γ̂jkt logαk(s
(t)
j ), (11)

Lex(θk) =

T−1∑
t=0

N∑
j=1

γ̂jkt log p(a
(t)
j |s(t)j , θk). (12)

The expert loss shares a conceptual basis with the EntIRL loss as Eq. (3), thus the EM algorithm can
be employed to solve the IRL problem. With Eq. (6), the gradient of the normalized expert loss is

∇Lex(θk) = f̃k − 1

NT

T−1∑
t=0

N∑
j=1

γ̂jkt
∑

a∈Asj,t

p(a|s(t)j , θk)f(s
(t)
j , a). (13)

where Asj ,t is the action space for state s(t)j , and f̃k is the feature expectations for the k-th expert:

f̃k =
1

NT

T−1∑
t=0

N∑
j=1

γ̂jktf(s
(t)
j , a

(t)
j ). (14)

It updates each θk with gradient ascent and action space sampling. With learned θk, the reward can
be estimated by

rθ(s, a) =
∑K

k=1
αk(s)θ

⊤
k f(s, a). (15)

3.3 Improvement mechanism

Precise sample guidance. In inverse reinforcement learning, the objective is to obtain an accurate
reward function from expert demonstrations, enabling the learner policy to approximate the expert’s
behavior. Adversaries utilize specific feature extraction methods f ′, to obtain embeddings for each
attack behavior. However, in the context of social media, the feature extraction method f ′ employed
by the attack model is unknown. The surrogate feature extraction method f is employed to simulate
the input of the attack model, replacing f ′ with f . This imprecise feature representation implies a
sensitive mapping from features to rewards, where minor discrepancies could lead to significantly
different attack rewards [12, 30].

According to the reconstruction process along the black arrows in Figure 2, the learner policy πL
cannot directly observe the raw expert samples. The information delivering of expert samples involves
feature extraction, reward function estimation and RL policy update. This process necessitates both
computations and sampling. Deviations in feature representation can accumulate, resulting in
a reward function that inadequately guides policy learning. Consequently, we introduce expert
structural perturbations directly during the policy learning process, allowing the learner policy to
replicate expert sample actions rather than relying on the imprecise features. Specifically, in the initial
stage of policy learning, we enforce the learner policy to execute expert actions at a predetermined
frequency and assign maximum reward values to the trajectory.

Bidirectional update mechanism. While the precise guidance mechanism speeds up exploration
in reinforcement learning, it does not facilitate reward function learning in inverse reinforcement
learning. Reward function learning relies solely on the EM algorithm with expert demonstrations
as input, as indicated by Eq. (13). Both feature representation deviations and action space sampling
also impact reward function learning. By executing expert demonstrations through precise guidance
and assuming they yield maximum rewards, we can incorporate this information into the parameter
updates of the reward function. Specifically, during the precise sample guidance phase, we perform
inverse updates with the loss

Linv(θk) = αk(s)L(r̂, θ
⊤
k f(s, a)). (16)

where (s, a) is the expert sample selected for enforcement and r̂ is the maximum historical reward
value. This process provides feedback opposite to the output of the reward function, ensuring
synchronized learning of the learner policy and the reward function. During normal reinforcement
learning phases without precise sample guidance, we update θk according to Eq. (13).
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3.4 Threat model and defense on social networks

Algorithm 1: MoE-BiEntIRL
Input: Expert demonstration set D, number of expert

demonstration N , number of experts K, length of
trajectories T , number of episodes E, feature
extraction function f , gate function α, reward
function parameters θ = (θ1, . . . , θK), learner
policy πL, negative sample set D′, responsibility
matrix γ ∈ RN×T×K , inverse update episode set Λ

Output: Learner policy πL

1 for e = 1, 2, . . . , E do
2 s = env_reset();
3 for t = 1, 2, . . . , T do
4 if e ∈ Λ then
5 s′, a = precise_sample_guidance(D);
6 r = max_reward();
7 else
8 s′, a = env_step(s, πL);
9 r = obtain_reward(α, f(s, a), θ) as Eq. (15);

10 πL = update_policy(s, a, s′, r);
11 s = s′;

12 γ = calculate_responsibility(α,D,D′, θ) as Eq. (9);
13 for k = 1, 2, . . . ,K do
14 if e ∈ Λ then
15 θk = inverse_update(α,D, θk) as Eq. (16);
16 else
17 θk = gradient_ascent(γ,D,D′, θk) as

Eq. (13);

18 α = gradient_ascent(γ) with the loss as Eq. (11);

With precise sample guidance and bidi-
rectional update mechanism, we im-
prove the mixture-of-experts EntIRL to
MoE-BiEntIRL as the threat model to
reconstruct the attack policy. The over-
all algorithm is as shown in Algorithm
1 and the time complexity analysis is
shown in Appendix D. There are some
details of MoE-BiEntIRL for the node
classification task on social media.

Hierarchical reinforcement learning.
Inspired by [12], the hierarchical RL is
employed and improved here, which in-
cludes three layers as illustrated in Fig-
ure 2: the source subgraph, the desti-
nation subgraph, and the node pair. In
the source or destination subgraph layer,
the state is the graph G and the action
is a subgraph Gi or Gj at time t. In
the node pair layer, the state and the ac-
tion are the subgraph pair (Gi, Gj) and
a node pair (vm, vn), respectively. Each
layer is governed by a policy. The state-
action pairs correspond to the selection
of source subgraph Gi, destination sub-
graph Gj or node pair (vm, vn). We
employ a linear action-value function to
learn the policy with LinUCB algorithm
[31], and it could be replaced with other
RL methods.

Interpretable features. For feature ex-
traction method f , comprehensible fea-

tures can be employed to represent attack actions within the graph, as suggested by [32], facilitating
the derivation of an interpretable reward function. The graph and node features designed in [12] are
utilized here, focusing specifically on targeting rumor detectors. The details are shown in Appendix C.

Sampling. In the process of IRL, two sampling procedures are involved, as indicated in Eq. (6)
and Eq. (13). These procedures necessitate the sampling of state-action pairs to represent the action
space. Here similarity negative sampling is adopted under specified assumptions. This method selects
state-action pairs (s, a) based on the following criteria: i) Samples with a high similarity to expert
samples are prioritized, under the condition that the cosine similarity cos(f(s, a), f(s′, a′)) < µ,
where (s′, a′) ∈ D represents an expert sample. ii) In cases where (s, a) represents the selection
of a subgraph, there must be target nodes in the source subgraph Gi and controllable nodes in the
destination subgraph Gj .

Defense with adversarial samples. With the trained learner policy parameterized by ω, we can
generate additional samples to attack the targeted model g parameterized by σ. Denoting the ground
truth for node vi as yi, the predictions on clean and perturbed graphs are represented by y′i and ỹi′,
respectively. Robustness of the targeted model can be improved through offline data augmentation or
online adversarial training. The overall loss is given by

LD =
∑
i

Lσ(yi, y
′
i) + β

∑
i

Lσ,ω(yi, ỹi
′). (17)

In data augmentation, σ is updated while ω remains fixed. In adversarial training, the process can
be viewed as a minimax game: minσ maxω LD(σ, ω). The attacker adjusts ω to maximize the loss,
while the defender alternately updates σ to minimize the loss.
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4 Experiments

Table 1: Dataset statistics.
Weibo Pheme

Nodes 10,280 2,708
Edges 16,412 4,401
Rumors 1,538 284
Non-rumors 1,849 859
Users 2,440 1,008
Comments 4,453 557

Dataset. Our focus is on the rumor detection task, for which
we conduct experiments on two real-world datasets: Weibo [33]
and Pheme (event ferguson in [34]). These datasets contain both
rumors and non-rumors, along with associated user, reposting,
and comment data. Specifically, due to the limited number of
following relationships among users, we connect edges between
user nodes as described in [12], leveraging the potential user com-
munities inferred from their posting messages. Dataset statistics
are provided in Table 1. The datasets are split into training and
testing sets using a 7:3 ratio. We reconstruct the policy during
the training phase and implement the defense during the testing
phase. In the training set, 20% of the authors and their posting
messages are designated as controllable nodes, while all nodes in the testing set are considered
controllable. All rumor nodes in the controllable set are regarded as target nodes, forming the set O.
Attackers are only permitted to add edges between controllable users and messages.

Target model. The rumor detection model is a 2-layer GCN [35]. The detection accuracy is shown
in Table 3. The hidden layer dimension is 64. Message node embedding is represented using a fixed
text embedding layer during attacks. It is trained over 60 and 120 epochs for Weibo and Pheme,
respectively, and employs the Adam optimizer with a learning rate of 0.0001.

Metric. Attack performance is measured using

∆LA = LA(0)− LA(T ). (18)

Here, the attack loss LA =
∑

vi∈O(g(vi)−yi) represents the total loss between the rumor probability
and the ground truth for the target nodes in O. LA(0) and LA(T ) denote the attack loss in the clean
graph and after T -step attacks, respectively. T serves as the horizon for RL and defines the budget
for graph adversarial attacks. Specifically, it limits the modification of T edges when attacking.

Attack method. The expert samples are collected through four graph adversarial attack methods,
categorized based on their attack cost. Rule-based PageRank and black-box GC-RWCS are considered
low-cost attacks. High-cost attacks include PR-BCD with a white-box setting and AdRumor-RL with
complete feature knowledge.

• PageRank. This method establishes connections between users and messages with high influence,
measured using the PageRank algorithm. Inspired by [1] and [12], it selectively links rumors with
normal users or non-rumors with malicious users.

• GC-RWCS [11]. Utilizing a black-box node selection strategy, this method employs a greedy
procedure to determine node importance scores. Here it connects messages with high importance
scores to influential users, utilizing the same influence measure and limited edge types as PageRank.

• PR-BCD [36]. This is a sparsity-aware first-order optimization graph adversarial attack method
targeting GNNs in a white-box setting. It proposes the surrogate loss for global attacks.

• AdRumor-RL [12]. This hierarchical contextual bandit attack framework targets GCN-based rumor
detectors using interpretable features. It is an RL-based method to produce the serialized attack
trajectories with a black-box setting.

Attack performance evaluation of policy reconstruction. We reconstruct policies using expert
samples generated by the aforementioned attack methods via MoE-BiEntIRL. The IRL process
consists of 1000 episodes. The precise sample guidance and bidirectional update mechanism is
applied every two episodes during the first 500 episodes. For each attack method, we select the top
one to three attack trajectories based on performance as expert samples. The number of experts,
K, is estimated using DBSCAN and is typically adjusted to range from 1 to 25, often being less
than 10. The gate function is pre-trained with the labels generated by Gaussian Mixture Model
(GMM) clustering. To prevent cluster collapse, we adopt the weighted sum of one-hot labels and gate
function outputs as the MoE gate. Each expert sample is augmented with 100 negative samples with
a sampling upper bound µ = 0.8. All experiments are conducted using GTX 2080Ti (11GB) GPUs.

We compare MoE-BiEntIRL with two classical IRL methods: (i) Apprenticeship Learning [37], which
is based on maximum margin and faces an ill-posed problem introducing ambiguity. (ii) EntIRL
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Table 2: The attack performance of policy reconstruction evaluated using the average value of the last
100 episodes in the metric ∆LA as shown in Eq. (18). A higher ∆LA means better performance. The
rows and columns correspond to the IRL methods and attack models used to generate expert samples,
respectively. The row Expert is the average performance of the expert samples. In the column of
Mixture, we display the performance of the policy reconstructed with expert samples from all low or
high cost attack methods.

High-Cost Attack Low-Cost Attack

PRBCD AdRumor Mixture PageRank GC-RWCS Mixture

Weibo
T=5

Expert 4.865 4.877 - 3.000 3.000 -
Apprenticeship 1.275 0.788 0.704 0.850 0.763 1.071
EntIRL 4.650 4.770 4.550 5.000 4.950 4.950
MoE-BiEntIRL 4.989 4.990 4.929 4.860 4.900 4.900

Weibo
T=20

Expert 19.521 19.854 - 5.449 5.160 -
Apprenticeship 1.142 3.066 3.945 0.030 0.040 0.020
EntIRL 19.030 19.749 19.199 19.830 20.000 20.000
MoE-BiEntIRL 19.876 19.936 19.979 19.970 19.700 18.749

Pheme
T=5

Expert 4.804 5.947 - 2.991 3.990 -
Apprenticeship 1.788 3.387 2.619 0.000 0.000 0.000
EntIRL 0.000 0.018 0.010 0.000 0.062 0.000
MoE-BiEntIRL 2.205 4.965 4.277 1.488 2.105 1.549

Figure 3: The smoothed curves of the ablation experiments for precise sample guidance and bidi-
rectional update mechanism when recovering the policy of AdRumor-RL. The terms w/o Bi.Update
and w/o P&B denote the removal of the bidirectional update mechanism and the removal of both
improvement modules, respectively.

[25], which applies the maximum entropy theory to IRL to alleviate ambiguity. The performance
is shown in Table 2. Our findings indicate that: i) MoE-BiEntIRL outperforms the expert policy
on Weibo. ii) Our method excels in reconstructing policies for high-cost attacks, while for simple
low-cost attacks, EntIRL often outperforms due to Occam’s Razor; however, our method also achieves
comparable results. iii) Despite suboptimal effects on Pheme compared to experts, other IRL methods
struggle to learn the policy, showcasing the difficulty of policy recovery. Furthermore, we validate
the effectiveness of the precise sample guidance and bidirectional update mechanism, as depicted in
Figure 3, particularly advantageous in challenging policy reconstruction scenarios.

The improvement of robustness with generated samples. We assess the efficacy of samples
produced by MoE-BiEntIRL in enhancing robustness by subjecting the target model to attacks from
PageRank, GC-RWCS, and PR-BCD. Evaluation is conducted under various conditions: no defense,
data augmentation with expert samples (EDA), data augmentation with generated samples (DA), and
adversarial training (AT). The trade-off parameter β in Eq. (17) is set to 8. Results are presented in
Table 3. Simply using all expert samples for data augmentation does not yield effective defensive
results. In contrast, employing additional samples generated by MoE-BiEntIRL exhibit the highest or
second-highest improvement in robustness while maintaining accuracy in the clean graph.

Case study for interpretability. Our analysis focuses on the expert samples generated by AdRumor-
RL, which relies on a linear action-value function, with the policy parameter providing insight into
feature importance. In our approach, we determine the feature importance of the sample (s, a)
through the calculation

∑
θ⊤k αk(s). Table 4 illustrates the top eight important features elucidated
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Table 3: The test accuracy decline (%) of the GCN rumor
detector with T = 5 on Weibo dataset. The first row displays
the attack method. The first column is the way to enhance
the robustness with adversarial samples. The second column
is the method to generate the samples. The column under
w/o Att. reflects test accuracy without attacks, while results
under other columns reflect accuracy decline. The second row
(w/o Def.) shows the accuracy (decline) without any defense
method. Boldfaced font and ∗ mean the best performance
and the runner-up among all methods respectively.

w/o Att. PageRank GC-RWCS PR-BCD

w/o Def. 70.4031 -0.4042 -0.4406 -0.1966

E
D

A

PageRank 70.5998 -0.1821 -0.2440 0.0000
GC-RWCS 70.7965 -0.4043 -0.4407 -0.1967
PR-BCD 70.3048 -0.2185 -0.2440 0.0000
AdRumor-RL 70.7965 ∗-0.2076 -0.2440 0.0000
All above 70.7965 -0.2805 -0.3424 -0.0984

D
A

PageRank 70.6981 -0.5025 -0.5390 -0.2950
GC-RWCS 70.5015 -0.3059 -0.2440 0.0000
PR-BCD 70.4031 -0.1092 -0.1456 0.0984
AdRumor-RL 70.6981 -0.3059 -0.3423 -0.0983
MoE-BiEntIRL 70.6981 -0.1092 -0.1456 0.0984

A
T

PageRank 71.0914 -0.2075 -0.2440 0.0000
GC-RWCS 70.2065 -0.4042 -0.4407 -0.1967
PR-BCD 70.4031 -0.3059 -0.3423 -0.0983
AdRumor-RL 70.6981 -0.3059 -0.3423 -0.0983
MoE-BiEntIRL 72.0747 ∗-0.2731 ∗-0.2589 0.0000

Table 4: The top-8 important features
for subgraph selection with T = 5 on
Weibo dataset, reflected by AdRumor-
RL expert samples and the learned re-
ward function, respectively. The over-
lapping features are marked with the
gray background. The features are de-
scribed in Appendix C.

Expert sample Reward function

The Source Subgraph

max potential rumor review
rumor review n nodes
avg degree n edges
n nodes max degree
author ratio max potential
n edges message ratio
avg potential max rumor inf
author inf min review ratio

The Destination Subgraph

avg potential user inf min
rumor ratio avg user inf
min user inf avg author inf
min author inf min author inf
avg user inf max user inf
avg author inf max author inf
max author inf max nonrumor inf
max user inf avg nonrumor inf

by both AdRumor-RL and our method. The reward function enables the capture of the majority of
important features.

5 Related Work

Graph adversarial attack and defense. Graph adversarial attacks include poisoning [38] and
evasion attacks [39], as well as global [40] and targeted attacks [10], spanning both white-box and
black-box approaches [10, 11]. Adversarial samples are utilized in numerous studies to train robust
GNNs through adversarial training techniques [18, 13, 14]. As for rumor detection, some studies
explore graph adversarial attacks on social networks, as evidenced by [1, 4, 12, 41, 42, 43, 44].

Inverse reinforcement learning. It includes maximum margin-based approaches like apprenticeship
learning [37] and probability model-based methods such as EntIRL [25] and REIRL [45]. Regarding
explainable IRL, [46] explores potential clustering factors in demonstrations, offering expert-level
explanations. [24] quantifies the importance of different goals in ICU hypotension management with
linear reward function. Additionally, [47] also explores the combination of MoE and EntIRL based
on decision trees.

6 Conclusion

We propose MoE-BiEntIRL, a threat model to recover the graph adversarial attack policy against
GNN model on social media. It utilizes the multi-source graph structured attack trajectories to
learn a generalized policy based on IRL techniques and MoE mindset, and provides feature-level
explanations. The precise sample guidance and bidirectional update mechanism are designed to
deal with the deviation caused by feature representation and negative sampling. Leveraging samples
produced by the reconstructed policy, it could enhance the robustness of the target model. The broader
impact and the limitation of our work are shown in Appendix A and B, respectively.
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A Broader impact

Our method, rooted in social media analysis, harnesses platform data to bolster model robustness
against attacks. Attackers face substantial data capture expenses and may find our method unsuitable
for their particular objectives. In conclusion, we posit that the benefits of our approach surpass its
drawbacks concerning social impact.

B Limitation

IRL commonly suffers from suboptimal expert samples, leading to noise in policy learning. The
diverse nature of attackers on social media results in varied sample effects, and platforms may
erroneously capture normal samples. In this work, we categorize expert samples based on attack cost
to mitigate excessive variance in their true reward within an IRL context. Nonetheless, real-world
implementation of such grouping may encounter challenges in accuracy and feasibility. Future
research will focus on enhancing IRL resilience to noise and developing effective pre-classification
methods. In addition, it faces the distribution shift problem [48] due to the different distribution
among the adversaries training data, the negative sampling data and the RL action space.

C Interpretable features

The interpretable features are designed by [12]. Detailed descriptions are provided in Table 5 and
Table 6. Features not within the range [0,1] are normalized using Min-Max normalization. With
regard to the features present in Table 4, as long as the features have the same suffix, they are
considered to capture the same important feature.

Table 5: The subgraph level features. # refers to the number of. a : b means the ratio of a to b. * can be replaced
with avg/max/min here, which means average/maximum/minimum.

Name Description Name Description

Structural features

n nodes # nodes. clustering coeff. The global clustering coefficient.
n edges # edges. * degree The avg/max/min node degree.

Social features

message rat. # message nodes : # nodes. author rat. # author nodes : # nodes.
rumor rat. # rumor nodes : # message nodes. bad author rat. # bad author nodes : # author

nodes.
retweeter rat. # retweeter nodes : # nodes. review rat. # comment nodes : # nodes.
rumor
retweet

# retweeter nodes who connect to
rumor nodes : # retweeter nodes.

rumor review # comment nodes who connect to
rumor nodes : # comment nodes.

Influence features

* author inf The avg/max/min influence of
author/user nodes.

* rumor inf The avg/max/min influence of
(non-)rumor nodes.* user inf * nonrumor inf

Attack potential features

* potential The avg/max/min probability of
target rumors.

attack degree # added edges in the previous
steps : horizon T .

Ranking help message features

* rhm
suspicious

The avg/max/min probability of
non-target rumors. - -

D The time complexity

The time complexity of MoE-BiEntIRL. There are three principal phases of MoE-BiEntIRL and
we indicate the corresponding lines of Algorithm 1 as follows.
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Table 6: The node level features. # refers to the number of. a : b means the ratio of a to b. * can be replaced
with avg/max/min here, which means average/maximum/minimum.

Name Description Name Description

Structural features

degree The degree of the node. ego n edges # edges in the ego network.

Social features

good bad 0 if the node is good author or
non-rumor, 1 if the node is bad
author or rumor.

ego rumor
rat.
ego bu rat.

ego review
rat.

# rumor nodes : # nodes in the
ego network.
# bad author nodes : # nodes in
the ego network.
# comment nodes : # nodes in
the ego network.

node type The one-hot vector to indicate the
node type (rumor, non-rumor,
good author, bad author).

Influence features

ego user inf The average influence of the user/
message nodes in the ego network.

node inf The influence of the node.
ego message inf

Attack potential features

* node potential The avg/max/min probability of
target rumors within 1-hop insides.

n node attack
degree

n targets
distance

# added edges that connect to
the node in the previous steps :
horizon T .
The average distance from the
node to the target rumors within
the node 3-hop insides.

* neighbor
suspicious

The avg/max/min probability of
target rumors within the node
3-hop insides.

n targets # target rumors within the node
k-hop insides.

Ranking help message features

* rhm suspicious The avg/max/min probability of
non-target rumors within the node
3-hop insides.

- -

• Phase I - interaction (line 8): Our proposal conducts T -step attacks and interacts with the environ-
ment. Each attack step requires feature updates for the involved subgraphs and nodes, including a
forward pass on the target model. For the L-layer GCN as the target model, the time complexity of
the forward pass is approximately O(LNed+ LNnd

2), where Nn and Ne denote the numbers of
nodes and edges in the input graph, respectively, and d is the feature dimension.

• Phase II - reward acquisition (line 12, 17 and 18): The reward is estimated with the IRL module,
including responsibility calculation, gradient ascent, and gate function updates. The time complexity
for an episode is O(NTKd(S + K)), where N is the number of expert trajectories, T is the
trajectory length, K is the number of experts, d is the feature dimension, and S is the number of
negative samples.

• Phase III - policy update (line 10): In our work, we employ the LinUCB algorithm, characterized
by a policy update time complexity of O(d2).

Overall, the total time complexity for an episode is approximatelyO(TLNed+TLNnd
2+NTKd(S+

K) + d2). Here the precise sample guidance (line 5 and 6) and bidirectional update mechanism (line
15) are not considered, which would reduce the time complexity in practice.

The time complexity analysis of baselines. The time complexities of our proposal and baselines
are summarized in Table 7. The complexities of the interaction phase and policy update phase in the
baseline models are identical to those in the proposed model, differing only in the reward acquisition
phase. The time complexities of the reward acquisition phase within the baselines are

• Apprenticeship Learning: O(NTd);
• EntIRL: O(NTdS).

Summary. Based on Table 7, the time complexities of our proposal and the baseline methods
primarily diverge during the reward acquisition phase of IRL. Our approach introduces K experts
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Table 7: This table outlines the time complexity and runtime of the MoE-BiEntIRL model proposed
herein, alongside two baseline models. Time complexity is delineated across three principal phases:
(I) interaction, (II) reward acquisition, and (III) policy update. The reported total running time denotes
the average duration of a single episode. Additionally, specific attention is given to the runtime of
reward acquisition phase for clarity and comprehensive evaluation. The runtime of experiments on
Weibo and Pheme is displayed with T=5 and N=3.

Time complexity Total / Phase II Runtime

Phase I Phase II Phase III Weibo Pheme

Apprenticeship O(TLNed+ TLNnd
2) O(NTd) O(d2) 4.52 / 0.02 0.55 / 0.02

EntIRL O(TLNed+ TLNnd
2) O(NTdS) O(d2) 5.01 / 0.09 0.67 / 0.07

MoE-BiEntIRL O(TLNed+ TLNnd
2) O(NTKd(S +K)) O(d2) 5.31 / 0.36 0.81 / 0.24

to manage multi-source attack trajectories with diverse motivations, thereby increasing the time
complexity. Notably, the complexity associated with reward acquisition is independent of the input
graph size and hinges solely on the predefined hyperparameter K, typically ranging from 1 to 10,
rendering the increased complexity manageable. Moreover, the predominant computational effort
across all models is concentrated in the interaction phase, which further mitigates the impact of
introducing multiple experts. Table 7 details the runtimes of complete episodes and the phase II.
Despite the extended runtime of the MoE-BiEntIRL approach in the reward acquisition phrase, it
exerts negligible influence on the total runtime. Both the analysis of time complexity and experimental
findings emphasize that the actual runtime is largely influenced by the interaction phase. Therefore,
the additional complexity introduced by employing MoE within the reward acquisition phase remains
manageable.
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the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumption is stated in section 2 and the complete inference is shown in
section 3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the details of the framework presented in this paper in Sections 2,
3, and 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: According to the content of the paper, our work is reproducible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We state the training and testing details in section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We state our sufficient information on the computer resources in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss that in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the public datasets and tag the sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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