
Delta Decompression for MoE-based LLMs Compression

Hao Gu * 1 Wei Li * 2 Lujun Li * 1 Qiyuan Zhu 1 Mark Lee 2 Shengjie Sun 3 Wei Xue 1 Yike Guo 1

Abstract
Mixture-of-Experts (MoE) architectures in large
language models (LLMs) achieve exceptional per-
formance, but face prohibitive storage and mem-
ory requirements. To address these challenges,
we present D2-MoE, a new delta decompression
compressor for reducing the parameters of MoE
LLMs. Based on observations of expert diversity,
we decompose their weights into a shared base
weight and unique delta weights. Specifically,
our method first merges each expert’s weight into
the base weight using the Fisher information ma-
trix to capture shared components. Then, we
compress delta weights through Singular Value
Decomposition (SVD) by exploiting their low-
rank properties. Finally, we introduce a semi-
dynamical structured pruning strategy for the base
weights, combining static and dynamic redun-
dancy analysis to achieve further parameter re-
duction while maintaining input adaptivity. In
this way, our D2-MoE successfully compacts
MoE LLMs to high compression ratios without
additional training. Extensive experiments high-
light the superiority of our approach, with over
13% performance gains than other compressors on
Mixtral|Phi-3.5|DeepSeek|Qwen2 MoE LLMs at
40∼60% compression rates. Codes are available
in https://github.com/lliai/D2MoE.

1. Introduction
Recent advances in Large Language Models (LLMs) in-
creasingly favor Mixture of Experts (MoE) (Cai et al., 2024)
architectures for their ability to scale model capacity through
specialized expert networks while maintaining computa-
tional efficiency via sparse activation. The success of MoE
is evident in recent LLMs like DeepSeek-V3 (DeepSeek-AI

*Equal contribution 1Hong Kong University of Science and
Technology 2University of Birmingham 3AISpeech Co., Ltd.. Cor-
respondence to: Mark Lee <M.G.Lee@bham.ac.uk>, Yike Guo
<yikeguo@ust.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Table 1. Comparison of our method with other MoE compressors.
Diversity means retaining individual per-expert information. Max-
imum ratio denotes the maximum parameter compression ratio.

Method Strategy Structured Train-free Diversity Max-Ratio

NAEE (2024b) Prune ! % % 50%
MoE-Compress (2024) Prune % ! % 50%
MoE-Pruner (2024) Prune % % % 50%
MoE-I2 (2024) Prune ! % % 55%

MC-SMoE (2023b) Merge % % % 75%
HC-SMoE (2024) Merge ! ! % 50%
EEP (2024a) Merge ! ! % 75%

D2-MoE (Ours) Delta ! ! ! 80%

et al., 2024) and MiniMax-01 (MiniMax et al., 2025), which
demonstrate unprecedented capabilities in language under-
standing and generation tasks. Despite their compelling
advantages, MoE LLMs face critical challenges in practical
deployment scenarios (Tang et al., 2024; Zhong et al., 2024;
Hwang et al., 2024). Their substantial parameter foot-
print, coupled with considerable memory overhead from
storing multiple expert weights (Song et al., 2023), creates
significant barriers to resource-constrained environments.

To address these challenges, MoE compression methods
have recently gained significant attention. As illustrated in
Table 1, current approaches broadly categorized into expert
pruning and expert merging methods. (1) Expert pruning
approaches, represented by MoE-Pruner (Xie et al., 2024),
NAEE (Lu et al., 2024a), and MoE-I2(Yang et al., 2024), im-
plement inter-expert pruning and intra-expert weight sparsi-
fication. While these approaches achieve significant param-
eter reduction, they often result in substantial performance
degradation due to the irreversible loss of expert knowl-
edge. The direct removal of expert weights compromises
the model’s specialized capabilities, frequently necessitating
additional fine-tuning to partially recover performance. (2)
Expert merging methods, on the other hand, aim to consol-
idate multiple experts into fewer, more compact representa-
tions. Methods like EEP (Liu et al., 2024a), MC-SMoE (Li
et al., 2023b), and HC-SMoE (Chen et al., 2024) develop
various weighting schemes for weighted summation of dif-
ferent experts’ weights. While these approaches preserve
more information than direct pruning, it introduces new
challenges. The merging process assumes significant over-
lap in expert functionalities, but in practice, experts often
possess distinct, complementary specializations. This leads

1

Delta Decompression for MoE-based LLMs Compression

Figure 1. Centered Kernel Alignment (CKA) similarity of experts
weights of Mixtral-8x7B, Phi-3.5-MoE, DeepSeekMoE-16B-Base.

to a fundamental dilemma: experts with similar weights can
be effectively merged, but those with dissimilar yet impor-
tant weights resist efficient compression, resulting in either
suboptimal compression ratios or performance degradation.
These challenges present the question: How can we design
new frameworks beyond pruning and merging meth-
ods in effectively balancing compression and preserving
expert diversity?

"Diversity is not about how we differ. Diversity is about
embracing one another’s uniqueness."

— Ola Joseph

As the quote goes, recent fine-tuning methods (Ping et al.,
2024) quantize delta weights between fine-tuned and origi-
nal models to effectively capture both similarities and varia-
tions. Inspired by these successes, we investigate whether
it is possible to recycle the difference (delta) weights that
are always discarded during expert merging to maintain per-
formance without introducing excessive computational or
memory overhead. Specifically, we brainstorm the idea to
efficiently reallocate these abandoned delta weights (differ-
ences between merged expert weights and original weights)
to preserve the diversity and specialization of experts. To
explore this, we conduct two key experiments to analyze the
properties of expert weights in MoE LLMs: (1) We evaluate
expert similarity using centered kernel alignment (CKA)
metrics. As shown in Figure 1, the similarity between dif-
ferent expert weights consistently falls within the 0.3 to 0.5
range. This indicates a moderate overlap in their feature
spaces, suggesting that while some aspects of their weights
can be merged, preserving expert diversity remains crucial.
(2) We examine distributions of single values energy reten-
tion for different expert weight decompositions (detailed
in Appendix B.2). As illustrated in Figure 2, the larger
singular values of energy retentions in the delta weights
show that most of the matrix’s information is concentrated
in a small number of singular vectors, indicating a strong
low-rank structure. This shows that these delta weights
can be efficiently approximated using low-rank decomposi-
tion methods without excessive degradation of information.
These findings underscore that reutilizing delta weights to
expert merging is a promising way for MoE compression

Figure 2. Single values energy retention of experts original
weights, merged base weights and delta weights (difference in
original weights and merged base weights) from Mixtral-8x7B,
Phi-3.5-MoE, DeepSeekMoE-16B-Base.

that balances efficiency, diversity, and performance.

Building on these insights, we develop D2-MoE, a novel
compression framework to address the growing challenges
of parameter redundancy, memory overhead, and storage
inefficiency in MoE LLMs while preserving model perfor-
mance and scalability. Rather than directly removing or
merging experts, our approach strategically decomposes ex-
pert weights into a shared base weight, which captures the
commonalities across all experts, and a delta weight, which
encodes the expert-specific variations. This decomposition
not only reduces redundancy but also facilitates efficient
compression of delta weights by exploiting their inherent
low-rank structure. To ensure that the shared base weight
accurately represents the most critical information across
experts, D2-MoE incorporates a Fisher-weighted averaging
mechanism. This approach computes the shared base weight
by weighting each expert’s contribution based on its Fisher
importance, which quantifies the sensitivity of the model’s
parameters to the input data. By prioritizing the contribu-
tions of the most important experts, Fisher-weighted aver-
aging balances the trade-off between redundancy reduction
and representational fidelity. To further compress the delta
weights, D2-MoE employs a truncation-aware SVD method
that integrates activation statistics into the decomposition
process. This method adjusts the singular value truncation
threshold based on the input activation patterns, ensuring
that essential information is preserved while compressing
delta weights. Finally, D2-MoE proposes semi-dynamical
structured pruning on the shared base weight, combining
static and dynamic pruning phases to eliminate redundant
parameters while adapting to the input distribution in real-
time. With these new schemes, our D2-MoE enjoys the
benefits of being structured and acceleratable, requiring no
extra training, preserving expert diversity and performance,
and realizing high compression ratios (see Table 1).

Our extensive experimental evaluation highlights the ex-
ceptional performance of D2-MoE across multiple state-of-
the-art MoE language models and a wide range of bench-
marks. For models like Mixtral-8×7B and DeepSeekMoE-
16B-Base, D2-MoE achieves the lowest perplexity on lan-
guage modeling datasets and the highest average accuracy

2

Delta Decompression for MoE-based LLMs Compression

on reasoning benchmarks, even at high compression ra-
tios (e.g.0.52 average accuracy at 60% compression for
Mixtral-8×7B, compared to 0.36 for NAEE). On large-scale
models such as Phi-3.5-MoE and Qwen2-57B-A14B, D2-
MoE maintains strong performance, delivering accuracy
close to the original model while significantly outperform-
ing methods like MoE-I2. The consistent superiority of
D2-MoE across diverse MoE LLMs and tasks demonstrates
its general applicability and effectiveness in preserving ex-
pert specialization and task performance while achieving
substantial efficiency gains, setting a new standard for MoE
compression.

2. Related Work
Mixture of Experts Compression methods (see Table 1)
reduce parameter redundancy and minimize storage in
MoE models. For example, MoE-Pruner (Xie et al., 2024)
achieves compression by pruning weights based on their
activations and router importance. However, these unstruc-
tured methods typically provide only limited inference ac-
celeration. For structured pruning, NAEE (Lu et al., 2024a)
skips non-redundant experts and trims unimportant weight
connections, while MoE-I2(Yang et al., 2024) combines
inter-expert pruning with intra-expert low-rank decompo-
sition. Yet, these methods involve a serious loss of expert
knowledge, requiring additional fine-tuning. Our approach
differs from these methods by avoiding the direct removal of
experts and no need for retraining. Expert merging methods
like EEP (Liu et al., 2024a) introduce a two-stage pipeline
where experts are first pruned and then merged into con-
solidated representations. Similarly, MC-SMoE (Li et al.,
2023b) groups experts based on routing policies and merges
each group into a single expert. However, merging experts
inherently reduces the diversity of the model, potentially
harming its ability to generalize across diverse input distribu-
tions. Methods like HC-SMoE (Chen et al., 2024) mitigate
retraining requirements but are still limited by the trade-off
between compression and preserving the model’s capac-
ity. In contrast, our framework strategically isolates shared
knowledge into a base weight while retaining expert-specific
variations as delta weights. In addition, our semi-dynamic
pruning and other techniques also do not exist in the previ-
ous methods.

Delta compression in LLMs has emerged as a critical tech-
nique to reduce the storage and computational costs of de-
ploying multiple fine-tuned models by compressing the dif-
ferences (delta weights) between a base model and its fine-
tuned variants. Recent advancements, GPT-Zip (Isik et al.,
2023) and BitDelta Liu et al. (2024b) successfully quan-
tize the delta weights into ultra-low bit. Delta-CoMe (Ping
et al., 2024) employs mixed-precision quantization to the
varying singular vectors of decomposed delta weights. An-

other approach, DeltaZip (Yao & Klimovic, 2023) develops
a multi-tenant serving system by compressing delta weights.
In contrast to these quantization and system-level works,
we not only first introduce delta compression into MoE
compression, but also propose new techniques like MoE-
specific SVD and semi-dynamic pruning, achieving the
optimal performance-efficiency trade-off.

3. Methodology
3.1. Delta Compression in MoE LLMs

MoE Formulation. MoE architectures enhance the capacity
and efficiency of LLMs by employing expert-based Feed-
Forward Network (FFN) layers. The output y of the MoE-
FFN layer for an input x is computed as:

y =

N∑
i=1

G(x)i · Ei(x), (1)

where N is the total number of experts, G(x) ∈ RN repre-
sents the gating weights, and Ei(x) is the output of the i-th
expert. The sparsity is achieved through a top-k selection
mechanism:

G(x) := Softmax(TopK[x ·Wg]) (2)

where TopK[·] selects the k experts with highest gating
weights, and Softmax normalizes their weights. This results
in a sparse activation of experts for efficiency. Each expert
Ei is a standard FFN layer, typically consisting of two or
three fully connected layers. These experts constitute the
majority of the weights in MoE models (e.g.96% for Mixtral-
8x7B), making them the most focus of compressors (e.g.,
MC-MoE and our D2-MoE).

Experts Delta Decomposition. MoE models are highly
parameterized due to the presence of multiple experts, lead-
ing to significant redundancy among expert weights. Di-
rectly compressing these weights often results in perfor-
mance degradation, as shared structures across experts are
not fully exploited. To address this, we introduce a delta
compression strategy that decomposes the weights of each
expert into two components: a shared base weight that cap-
tures commonalities across all experts and a delta weight
that encodes expert-specific variations. This decomposition
reduces redundancy, facilitates efficient compression, and
minimizes performance loss. Let Wi ∈ Rm×n represent the
weight matrix of the i-th expert, where m and n denote the
input and output dimensions of the FFN layer, respectively.
We express Wi as the sum of a shared base weight Wb and
an expert-specific delta weight ∆Wi:

Wi = Wb +∆Wi. (3)

Here, Wb ∈ Rm×n is shared across all experts, and
∆Wi ∈ Rm×n represents the unique characteristics of the

3

Delta Decompression for MoE-based LLMs Compression

431 2

Router

Output Hidden

Figure 3. Overall Process of D2-MoE. We first merge original expert weights into a shared base weight, weighted according to their
Fisher importance. Then, we derive delta weights and compress them using Singular Value Decomposition (SVD). Finally, we apply a
two-step pruning strategy: static column-wise pruning followed by dynamic column-wise pruning to further optimize the base weight.

i-th expert. By separating the shared and expert-specific
components, we ensure that Wb captures the common struc-
ture, reducing redundancy in the delta weights ∆Wi.

3.2. Experts Fisher Merging

To effectively derive base weights that represent the shared
knowledge across subset of experts K ⊆ {1, . . . , N} (of
size K = |K|) while retaining essential diversity, our goal
is to compute a merged base weight Wb that minimizes re-
dundancy and preserves the critical information required
for downstream tasks. Traditional methods, such as simple
averaging, compute the merged weight as the element-wise
arithmetic mean of the weights of all experts, performed as
Wb =

1
K

∑
i∈K Wi. Although simple averaging is computa-

tionally efficient, it fails to consider the varying importance
of different experts. This can lead to under-representation
of critical weights in the base weight Wb and increase the
difficulty of compressing delta weights ∆Wi in later stages.
To address this, we incorporate the Fisher information ma-
trix (Matena & Raffel, 2022), which captures the importance
of the parameters of each expert in the merging process. Our
merging function uses Fisher-weighted averaging to com-
pute the base weight Wb. The importance of each expert
is quantified using the Fisher information matrix, which
measures the sensitivity of the model’s parameters to the
log-likelihood of the data. Specifically, the Fisher informa-
tion for the i-th expert is given by:

Fi = Ex∼Di
Ey∼pθ(y|x)

[
∇θi log pθ(y|x)2

]
, (4)

where Di represents the data distribution handled by expert
i, pθ(y|x) is the predicted probability of label y given input
x, and ∇θi log pθ(y|x) is the gradient of the log-likelihood
with respect to the parameters θi of the i-th expert. Intu-
itively, Fi measures the average magnitude of the gradient
norm, with higher values indicating that the expert’s param-
eters are more critical for the model’s performance. Using
the Fisher importance Fi, we compute the Fisher-weighted
base weight Wb as:

Wb =

∑
i∈K FiWi∑
i∈K Fi

. (5)

Here, Fi acts as a weight that amplifies the influence of more
important experts in the merging process. By normalizing
the weights using the sum of Fisher importance values, we
ensure that the merged base weight remains appropriately
scaled and the delta weights ∆Wi are more compact and
exhibit stronger low-rank properties. This facilitates the
application of low-rank compression techniques, such as
Singular Value Decomposition (SVD), in later stages of our
framework (see Section 3.3). The improved compressibil-
ity of delta weights reduces both storage requirements and
memory overhead during inference.

3.3. Truncation-aware Singular Value Decomposition

To compress the delta weights ∆Wi, we apply the
truncation-aware SVD approach in SVD-LLM (Wang et al.,
2024) that enhances traditional decomposition methods by
incorporating activation statistics. For each delta weight
∆Wi, we first compute its activation-weighted representa-
tion, Wscale, as:

Wscale = ∆WiSi, (6)

where Si ∈ Rn×n is derived from the activation Gram ma-
trix XiX

T
i , with Xi representing the i th expert’s activation

matrix. Specifically, Si is computed using Cholesky decom-
position of the Gram matrix. Using Wscale, we perform SVD
to decompose it into three components:

Wscale = UΣV T , (7)

where U ∈ Rm×k and V ∈ Rn×k are orthogonal matrices,
and Σ ∈ Rk×k is a diagonal matrix containing the singular
values. We then truncate the smallest singular values in Σ
to retain only the top-k components, then the compressed
delta U matrix and V matrix are as follows:

∆Ui = U
√

Trunc(Σ)

∆Vi =
√

Trunc(Σ)V TS−1
i

(8)

This truncation-aware SVD approach mitigates reconstruc-
tion loss caused by activation outliers and ensures a mapping
between singular values and compression loss to preserve
the essential characteristics of the original weight distribu-
tion, enabling a more effective compression process.

4

Delta Decompression for MoE-based LLMs Compression

3.4. Semi-dynamical Structured Pruning

The base weight matrix Wb in our framework represents
a combination of multiple expert weights, making them
full-rank and highly expressive. However, their high dimen-
sionality introduces significant redundancy, which increases
storage and computational costs during inference. Tradi-
tional low-rank decomposition or static pruning methods
often fail to effectively compress these base weights without
incurring substantial performance degradation, owing to the
unique structure of the base weights that stores information
from all experts. Through empirical analysis, we observe a
key phenomenon: while a subset of the columns in the base
weights matrix consistently exhibits negligible contribu-
tions across different inputs (static redundancy), the relative
importance of the remaining columns varies significantly
depending on the input batch (dynamic redundancy). This
insight motivates us to develop new two-phase (first static
then dynamic) pruning paradigm that separately handles
these two types of redundancies: In the static pruning
phase, we identify and prune columns of Wb that consis-
tently contribute the least across all inputs. To achieve this,
we compute a column-wise pruning metric that combines
the magnitude of the weights and their interaction with the
input activations. Specifically, the pruning metric for the
j-th column of Wb is computed as:

Cj = ∥Wb[:, j]∥2 · ∥X[j, :]∥2, (9)

where Wb ∈ Rm×n with m number of rows and n num-
ber of columns (channels), X ∈ Rn×b represent the in-
put activations for a batch of size b. ∥Wb[:, j]∥2 is the L2

norm of the j-th column of Wb, and ∥X[j, :]∥2 is the L2

norm of the activations corresponding to the j-th column.
We then sort all columns by their pruning metric Cj in
ascending order and prune the lowest-scoring columns to
achieve half of the target sparsity level. In the dynamic
pruning phase, we handle input-dependent redundancies
by dynamically updating the pruning metrics for the remain-
ing columns based on the current input batch. For a given
batch of inputs X , we recompute the column-wise pruning
metric: C dynamic

j = ∥Wb[:, j]∥2 · ∥X[j, :]∥2, but only for
the columns retained after static pruning. We then prune
the lowest-scoring columns to achieve the remaining half
of the target sparsity. This dynamic pruning ensures that
the model adapts to the specific input distribution of each
batch, optimizing the number of active parameters during
inference.

3.5. Overall Algorithm Procedure

The overall algorithm flow is summarized in Figure 3,
which outlines the main steps of our framework, includ-
ing Fisher-weighted merging of base weights, delta weight
compression, and semi-dynamical structured pruning for
base weights. In the forward pass, the process uses sparse

gating to activate only the top-k delta weights for each in-
put. For example, the gating function selects the top-k most
relevant experts’ delta weights based on G(x), and their con-
tributions are aggregated along with the shared base weight.
The forward computation can be expressed as:

y = Wbx+

K∑
i=1

G(x)i ·∆Ui∆Vi x[selected token], (10)

where ∆Ui and ∆Vi are the decomposed delta weights of
selected experts. This structure ensures efficient sparse
computation while leveraging the specialized knowledge of
the selected experts.

Parameter Compression Analysis. For n experts with m
the size of individual parameters, we assign p% the com-
pression ratio for delta weights, and s% the compression
ratio for the base weight after pruning. For static parameter
storage, the original model requires n ·m parameters for the
experts. After delta decomposition, the storage requirement
increases slightly to (n + 1)m due to the addition of the
shared base weight Wb. After static compression, storage
parameters can be expressed as:(n ·p%+s%/2)m, For acti-
vation parameter reduction, the original activation storage
requirement is k ·m, as top-k experts are active at a time.
After compression, the activation parameter requirement
becomes: (k · p%+ s%)m.

4. Experiments
In this section, we conduct a comprehensive series of experi-
ments to evaluate the effectiveness of our proposed D2-MoE
method. We first compare our approach with state-of-the-art
compression methods across various MoE models at dif-
ferent compression ratios. To provide deeper insights into
our method’s performance, we also conduct detailed abla-
tion studies on D2-MoE. All experiments are performed on
NVIDIA A100 GPUs.

4.1. Experimental Setups

Models and Datasets. To showcase the versatility of our
D2-MoE method, we assess its effectiveness on common
MoE models: Mixtral-8×7B, DeepSeek-moe-16b-base, Phi-
3.5-MoE and Qwen2-57B-A14B. Mixtral-8×7B employs 8
experts, and Phi-3.5-MoE features 16 experts, each with 3.8
billion parameters. In comparison, DeepSeek-moe-16b-base
and Qwen2-57B-A14B adopt an even more fine-grained
expert architecture, leveraging 64 experts. We conduct
experiments on MoE models with fewer experts, such as
Mixtral-8x7B and Phi-3.5-MoE, as well as those with a
greater number of experts, such as DeepSeekMoE-16B-
Base and Qwen2-57B-A14B, to demonstrate the versatility
of D2-MoE. We evaluate our method across 10 datasets,
encompassing 3 language modeling datasets (WikiText-

5

Delta Decompression for MoE-based LLMs Compression

Table 2. Performance of D2-MoE for Mixtral-8×7B,DeepSeekMoE-16B-Base, Phi-3.5-MoE and Qwen2-57B-A14B on 3 language
modeling datasets (measured by perplexity (↓)) and 7 common sense reasoning datasets (measured by accuracy (↑)).

Ratio Method WikiText-2↓ PTB↓ C4↓ Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average↑

Mixtral-8×7B
0% Original 3.98 12.99 6.78 0.36 0.84 0.76 0.65 0.57 0.82 0.43 0.63

20%

NAEE (2024b) 4.77 16.09 8.89 0.32 0.76 0.72 0.58 0.47 0.79 0.40 0.58
MoE-I2 (2024) 4.86 26.50 11.07 0.32 0.79 0.74 0.55 0.48 0.78 0.37 0.57

D2-MoE (Ours) 4.65 16.32 8.59 0.33 0.80 0.75 0.61 0.51 0.81 0.39 0.60

40%

NAEE (2024b) 6.44 22.15 13.86 0.25 0.63 0.64 0.46 0.36 0.72 0.35 0.48
MoE-I2 (2024) 6.74 60.45 22.44 0.26 0.71 0.66 0.43 0.38 0.69 0.31 0.49

D2-MoE (Ours) 5.28 20.54 10.10 0.32 0.78 0.73 0.57 0.47 0.78 0.34 0.57

60%

NAEE (2024b) 11.43 47.28 31.16 0.17 0.42 0.55 0.33 0.23 0.62 0.26 0.36
MoE-I2 (2024) 13.52 182.99 74.62 0.18 0.44 0.55 0.32 0.22 0.58 0.23 0.36

D2-MoE (Ours) 6.46 23.63 12.76 0.28 0.72 0.71 0.51 0.38 0.73 0.31 0.52

DeepSeekMoE-16B-Base
0% Original 6.38 9.47 9.82 0.32 0.76 0.70 0.58 0.44 0.79 0.31 0.56

20%

NAEE (2024b) 9.44 15.02 15.34 0.32 0.71 0.66 0.55 0.40 0.77 0.29 0.53
MoE-I2 (2024) 7.69 11.59 13.72 0.26 0.71 0.68 0.49 0.38 0.73 0.29 0.50

D2-MoE (Ours) 6.84 11.10 11.88 0.30 0.74 0.69 0.55 0.41 0.76 0.31 0.54

40%

NAEE (2024b) 8.55 14.47 17.98 0.23 0.67 0.67 0.41 0.32 0.69 0.26 0.46
MoE-I2 (2024) 9.73 15.75 19.75 0.23 0.64 0.66 0.41 0.31 0.68 0.26 0.45

D2-MoE (Ours) 7.93 14.07 15.18 0.26 0.69 0.65 0.45 0.36 0.72 0.28 0.49

60%

NAEE (2024b) 23.20 49.89 48.63 0.17 0.49 0.58 0.33 0.24 0.61 0.23 0.38
MoE-I2 (2024) 15.83 32.2 38.60 0.17 0.48 0.58 0.32 0.23 0.61 0.22 0.37

D2-MoE (Ours) 11.67 27.73 27.63 0.21 0.54 0.61 0.35 0.29 0.63 0.24 0.41

Phi-3.5-MoE
0% Original 3.48 8.43 8.22 0.40 0.77 0.76 0.68 0.56 0.79 0.38 0.62

40%
NAEE (2024b) 8.18 20.07 16.11 0.35 0.73 0.73 0.61 0.48 0.76 0.37 0.57
MoE-I2 (2024) 7.46 20.95 20.95 0.29 0.59 0.67 0.27 0.40 0.70 0.25 0.45

D2-MoE (Ours) 6.07 13.79 14.01 0.34 0.72 0.73 0.65 0.53 0.78 0.38 0.60

Qwen2-57B-A14B
0% Original 5.12 9.18 8.86 0.33 0.75 0.74 0.63 0.46 0.81 0.39 0.59

40%
NAEE (2024b) 6.81 11.34 11.57 0.31 0.73 0.73 0.55 0.46 0.76 0.36 0.55
MoE-I2 (2024) 24.90 77.05 22.50 0.26 0.70 0.46 0.71 0.41 0.75 0.30 0.51

D2-MoE (Ours) 8.19 11.23 12.70 0.33 0.75 0.75 0.61 0.45 0.79 0.36 0.58

2 (Merity et al., 2017), PTB (Marcus et al., 1993), and
C4 (Raffel et al., 2020)), along with 7 common sense
reasoning datasets (OpenbookQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2020), HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al., 2020), MathQA (Amini
et al., 2019), ARC-e, and ARC-c (Clark et al., 2018)) in a
zero-shot setting using the LM-Evaluation-Harness frame-
work (Gao et al., 2023).

Implementation Details. For fair comparisons, we use
512 random samples from WikiText-2 as calibration data
to conduct all experiments. We focus on compressing the
model without retraining the full model parameters. See
Appendix A for more details.

4.2. Compression Performance and Comparisons

Main Results in Multiple MoE LLMs. Our experimen-
tal results shown in Table 2 demonstrate the superior per-
formance of D2-MoE across different MoE models and
compression ratios. On Mixtral-8×7B, at 20% compres-
sion, D2-MoE achieves an average score of 0.60 (95.2%

of the original performance 0.63), outperforming NAEE
(0.58) and MoE-I2 (0.57). Even at 60% compression, our
method maintains a competitive score of 0.52, significantly
surpassing both baselines (0.36). The advantages extend
to models with more experts. For DeepSeek-MoE-16B-
Base, our method achieves average scores of 0.54, 0.49,
and 0.41 at 20%, 40%, and 60% compression respectively,
showing significant improvements over baselines, particu-
larly in perplexity metrics. Similar superior performance is
observed on Phi-3.5-MoE and Qwen2-57B-A14B, demon-
strating the effectiveness of D2-MoE across different model
scales. More detail results are shown in Appendix A.1.

Comparing to Different Compressors. We compare D2-
MoE against three categories of compression methods on
Mixtral-8x7B at 20% compression ratio: pruning-based
methods (SparseGPT, NAEE), SVD-based methods (ASVD,
MoE-I2), and hybrid methods (LoSparse, MC-SMoE, MoE-
Compress). As shown in Table 3, D2-MoE achieves the best
overall performance with an average score of 0.60 (95.2% of
original 0.63), outperforming all baselines across multiple
metrics. Our method shows competitive perplexity scores

6

Delta Decompression for MoE-based LLMs Compression

Table 3. Performance of Mixtral-8×7B compressed by D2-MoE under 20% compression ratios.

Methods WikiText-2↓ PTB↓ C4↓ Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average↑
Original 3.98 12.99 6.78 0.36 0.84 0.76 0.65 0.57 0.82 0.43 0.63

NAEE (2024b) 4.77 16.09 8.89 0.32 0.76 0.72 0.58 0.47 0.79 0.40 0.58
SparseGPT(2:4) (2023) 4.69 21.11 9.19 0.30 0.77 0.74 0.56 0.45 0.77 0.35 0.56

MoE-I2 (2024) 4.86 26.50 11.07 0.32 0.79 0.74 0.55 0.48 0.78 0.37 0.57
ASVD (2023b) 9.44 47.29 20.30 0.25 0.71 0.66 0.48 0.40 0.73 0.35 0.51

LoSparse (2023d) 953.51 805.16 1273.12 0.20 0.27 0.49 0.28 0.26 0.53 0.20 0.32
MC-SMoE (2024f) 1341.36 1316.52 1478.13 0.26 0.28 0.51 0.29 0.25 0.54 0.19 0.33
MoE-Compress (2024) 6.12 14.67 11.61 0.30 0.73 0.70 0.54 0.46 0.73 0.33 0.54

D2-MoE 4.65 16.32 8.59 0.33 0.80 0.75 0.61 0.51 0.81 0.39 0.60

Table 4. Throughput (Tokens/sec), Memory of Mixtral-8x7B
model under 60%, 70%, 80% compress ratio of different methods.
And the perplexity on WikiText-2 of 60%, 70%, 80% is 6.35, 8.15,
12.95 respectively which gain well performance under high com-
pression ratio.

Methods BSZ=64, Ratio=60% BSZ=64, Ratio=70% BSZ=64, Ratio=80%
Model Size 18.68B 14.01B 9.33B
Memory 34.8G 26.1G 17.3G

TFLOPs Tokens/sec TFLOPs Tokens/sec TFLOPs Tokens/sec

NAEE 481 271.89 386 272.66 290 278.53
MoE-I2 838 227.60 743 252.55 647 294.04
LoSparse 1150 158.90 1240 191.45 1330 198.04
D2-MoE 481 277.72 386 300.33 290 313.29

Table 5. Perplexity of different merge methods for Base Weights.

Method WikiText-2↓ PTB↓ C4↓

Original 3.98 12.99 6.78

Mean average 7.66 46.85 24.39
TIES (2024) 12.45 87.31 29.10
RegMean (2022) 187.19 1206.05 612.70
Frequency (2023c) 6.42 35.12 13.79
Fisher (Ours) 5.28 20.54 10.10

on WikiText-2 (4.65), PTB (16.32), and C4 (8.59), surpass-
ing both pruning and SVD-based methods. For downstream
tasks, D2-MoE achieves superior performance on reason-
ing tasks like ARC-e (0.80) and WinoG (0.75). While hy-
brid methods show significant degradation, especially in
perplexity metrics, our method maintains consistent per-
formance across all evaluations, demonstrating an optimal
balance between compression and model capabilities. See
Appendix A.2 to get more detail results analysis.

Inference Speed Acceleration and Memory Reduc-
tion.Table 4 demonstrates the inference efficiency of various
methods on Mixtral-8×7B (batch size=64) under high com-
pression settings. At 60% compression, D2-MoE achieves
277.72 tokens/sec with only 481 TFLOPs, surpassing NAEE
in throughput while matching its computational efficiency.
MoE-I2 and LoSparse require significantly more TFLOPs
(838 and 1150) but deliver lower throughput. The advan-
tages become more evident at 80% compression, where
D2-MoE achieves 313.29 tokens/sec with 290 TFLOPs, out-

Table 6. Perplexity of compressors for Base and Delta Weights.

Part Method WikiText-2↓ PTB↓ C4↓

Wb

Truncation-aware SVD 5.63 27.40 12.65
Static Pruner 5.31 20.43 10.75
Semi-dynamic Pruner 5.28 20.54 10.10

∆Wi

Pruning 5.74 20.83 11.48
Vanilla SVD 6.22 22.54 10.72
Activation-aware SVD 5.91 22.63 11.31
Truncation-aware SVD 5.28 20.54 10.10

performing NAEE by 12.5% and MoE-I2 by 6.5%. In con-
trast, LoSparse uses 4.6× more TFLOPs (1330) but achieves
only 198.04 tokens/sec. Meanwhile, our method maintains
reasonable perplexity on WikiText-2 (6.35, 8.15, and 12.95
at 60%, 70%, and 80% compression), demonstrating an
optimal balance between efficiency and performance. Refer
to Appendix A.3 to see detail results analysis.

4.3. Ablation study

Various Merger for Base Weights. Table 5 delves into the
performance of different merge methods for base weights,
demonstrate the effectiveness of our Fisher merge (Matena
& Raffel, 2022) method compared to other base weight
merging techniques, including mean average, expert fre-
quency average (Li et al., 2023c), RegMean (Jin et al., 2022),
and TIES (Yadav et al., 2024). The analysis reveals that
while expert frequency merging which uses expert activation
frequency for weighted averaging on base weights demon-
strates promising results, our Fisher merge method selec-
tively extracts important weights from different experts and
integrates them into the base weights which achieves the
lowest perplexity scores on WikiText-2 (5.28), PTB (20.54),
and C4 (10.10) on Mixtral-8x7B under 40% compression
ratios setting.

Varying Compressors for Base and Delta Weights. Ta-
ble 6 unveils the different methods to compress both base
and delta weights. For base weights, our dynamic pruning
method achieves superior performance, with the lowest per-
plexity scores on the WikiText-2 (5.28), PTB (20.60), and
C4 (10.12)datasets, outperforming both truncation-aware

7

Delta Decompression for MoE-based LLMs Compression

Figure 4. Expanding D2-MoE via Delta Weights Trimming.

Table 7. Perplexity of various individual ratios for Base and Delta
Weights on Mixtral-8x7B 40% compression ratios.

Wb ∆Wi WikiText-2↓ PTB↓ C4↓

10% 52.66% 5.63 27.40 12.65
20% 51.41% 5.31 20.43 10.75
30% 50.16% 5.28 20.54 10.10
40% 48.90% 5.74 20.83 11.48
50% 47.67% 6.22 22.54 10.72
60% 46.42% 5.28 20.54 10.10

SVD with a scale matrix using in SVD-LLM and static
pruning (Wanda-sp). For delta weights, we compare prun-
ing, Vanilla SVD without scale matrix, activation-aware
SVD (Yuan et al., 2023a). Our truncation-aware SVD
method with scale matrix achieves the best performance.
Finally, we use semi-dynamic pruning for base weights and
truncation-aware SVD for delta weights in our D2-MoE.

Sensitivity of Compression Ratio Hyperparameters. Ta-
ble 7 demonstrate the sensitivity of compression ratio be-
tween base weights and delta weights. Under the setting
of 40% compression of Mixtral-8x7B model, we observe
that less compression of the base weights generally leads to
better performance, as it preserves more critical information
among all experts and maintains model accuracy. However,
there is a trade-off between the compression ratio and in-
ference time speedup, as higher compression ratios of base
weights typically result in faster inference but may degrade
performance. After careful evaluation, we choose a bal-
anced ratio that optimizes both performance and inference
efficiency, and more Hyperparameters are in Appendix B.5.

Expanding D2-MoE via Delta Weights Trimming. Fig-
ure 4 shows how delta weights trimming affects D2-MoE’s
performance. As trimming increases, perplexity rises grad-

Table 8. Perplexity of 40% compressed Mixtral-8×7B via calibra-
tion data with varying number from WikiText-2 and C4

Method 32 64 128 256 512

WikiText-2↓ 5.81 5.56 5.48 5.37 5.28
C4↓ 10.92 10.79 10.65 10.52 10.10

Table 9. Perplexity of varying calibration data on Mixtral-8x7B
40% compression ratios.

Calibration WikiText-2↓ PTB↓ C4↓

Wikitext-2 5.28 20.54 10.10
C4 5.37 21.03 11.52

ually, but our method maintains competitive performance
across different compression ratios (43%-81%). With 1
trimming delta weight (43% compression), we achieve a
WikiText-2 perplexity of 6.43, comparable to non-trim mod-
els. Even with 7 trimming experts (75% compression), the
perplexity remains reasonable at 14.71, demonstrating effec-
tive balance between compression and performance. More
detailed results can be found in Appendix B.1.

Impact of Calibration Data. Table 9 demonstrates that the
choice of calibration data, whether WikiText-2 or C4, has
minimal influence on overall task performance, highlighting
the robustness of our method across diverse datasets. Table 9
explores the effects of varying the number of calibration
samples. Results indicate that increasing the number of
data samples generally leads to a decrease in perplexity,
suggesting improved performance with more samples.

5. Conclusion
In this work, we present D2-MoE, a unified framework for
compressing MoE LLMs by addressing the inherent redun-
dancy in their weight structures. Our approach systemati-
cally integrates delta decomposition, Fisher-weighted merg-
ing, truncation-aware singular value decomposition (SVD),
and semi-dynamical structured pruning to achieve efficient
parameter reduction while maintaining the performance of
MoE models. By decomposing expert weights into a shared
base weight and expert-specific delta weights, we effectively
isolate common structures and reduce redundancy. Our em-
pirical analysis demonstrates that D2-MoE achieves signifi-
cant parameter compression while preserving the predictive
performance of MoE models on benchmark tasks. Future
work may explore integrating D2-MoE with advanced train-
ing techniques, such as knowledge distillation and parameter
quantization. We hope that the proposed framework con-
tributes to the broader field of efficient large-scale modeling,
offering a practical pathway for deploying high-capacity
MoE models in real-world applications.

8

Delta Decompression for MoE-based LLMs Compression

Limitations Our D2-MoE involves decomposition and
pruning steps with some complexity (see more analysis
in Appendix A.4). We aim to simplify it in future work.

Acknowledgements
The research was supported by Theme-based Research
Scheme (T45-205/21-N) from Hong Kong RGC, and Gener-
ative AI Research and Development Centre from InnoHK.

Impact Statement
The primary focus of this work is to develop and evaluate
technical approaches for improving the storage and reason-
ing efficiency of MoE LLMs. By addressing the inherent
redundancy in MoE architectures, our D2-MoE framework
contributes to the ongoing effort to design green and easy-to-
use LLMs. All evaluations and experiments are performed
on publicly available benchmarks, ensuring transparency
and reproducibility. We believe that our framework will not
be controversial in ethical impacts and expected societal
implications.

References
Amini, A., Gabriel, S., Lin, S., Koncel-Kedziorski, R., Choi,

Y., and Hajishirzi, H. Mathqa: Towards interpretable math
word problem solving with operation-based formalisms.
In NAACL-HLT (1), pp. 2357–2367. Association for Com-
putational Linguistics, 2019.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
PIQA: reasoning about physical commonsense in natural
language. In AAAI, pp. 7432–7439. AAAI Press, 2020.

Cai, W., Jiang, J., Wang, F., Tang, J., Kim, S., and Huang,
J. A survey on mixture of experts. arXiv preprint
arXiv:2407.06204, 2024.

Chen, I., Liu, H.-S., Sun, W.-F., Chao, C.-H., Hsu, Y.-C.,
Lee, C.-Y., et al. Retraining-free merging of sparse
mixture-of-experts via hierarchical clustering. arXiv
preprint arXiv:2410.08589, 2024.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018.

DeepSeek-AI et al. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437, 2024.

Dong, P., Li, L., and Wei, Z. Diswot: Student architecture
search for distillation without training. In CVPR, 2023a.

Dong, P., Li, L., Wei, Z., Niu, X., Tian, Z., and Pan, H.
Emq: Evolving training-free proxies for automated mixed

precision quantization. arXiv preprint arXiv:2307.10554,
2023b.

Dong, P., Li, L., Tang, Z., Liu, X., Pan, X., Wang, Q., and
Chu, X. Pruner-zero: Evolving symbolic pruning metric
from scratch for large language models. In ICML, 2024.

Dong, P., Li, L., Tang, Z., Liu, X., Wei, Z., Wang, Q., and
Chu, X. Parzc: Parametric zero-cost proxies for efficient
nas. In AAAI, 2025a.

Dong, P., Li, L., Zhong, Y., Du, D., Fan, R., Chen, Y., Tang,
Z., Wang, Q., Xue, W., Guo, Y., et al. Stbllm: Breaking
the 1-bit barrier with structured binary llms. In ICLR,
2025b.

Frantar, E. and Alistarh, D. SparseGPT: Massive language
models can be accurately pruned in one-shot. arXiv
preprint arXiv:2301.00774, 2023.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
12 2023. URL https://zenodo.org/records/
10256836.

He, S., Dong, D., Ding, L., and Li, A. Demystifying the com-
pression of mixture-of-experts through a unified frame-
work. arXiv preprint arXiv:2406.02500, 2024.

Hwang, R., Wei, J., Cao, S., Hwang, C., Tang, X., Cao, T.,
and Yang, M. Pre-gated moe: An algorithm-system co-
design for fast and scalable mixture-of-expert inference.
In 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA), pp. 1018–1031. IEEE,
2024.

Isik, B., Kumbong, H., Ning, W., Yao, X., Koyejo, S., and
Zhang, C. Gpt-zip: Deep compression of finetuned large
language models. In Workshop on Efficient Systems for
Foundation Models@ ICML2023, 2023.

Jin, X., Ren, X., Preotiuc-Pietro, D., and Cheng, P. Data-
less knowledge fusion by merging weights of language
models. arXiv preprint arXiv:2212.09849, 2022.

Li, L. Self-regulated feature learning via teacher-free feature
distillation. In ECCV, 2022.

Li, L. and Jin, Z. Shadow knowledge distillation: Bridging
offline and online knowledge transfer. In NeuIPS, 2022.

Li, L., Dong, P., Wei, Z., and Yang, Y. Automated knowl-
edge distillation via monte carlo tree search. In ICCV,
2023a.

9

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

Delta Decompression for MoE-based LLMs Compression

Li, L., Bao, Y., Dong, P., Yang, C., Li, A., Luo, W., Liu,
Q., Xue, W., and Guo, Y. Detkds: Knowledge distillation
search for object detectors. In ICML, 2024a.

Li, L., Dong, P., Li, A., Wei, Z., and Yang, Y. Kd-zero:
Evolving knowledge distiller for any teacher-student pairs.
NeuIPS, 2024b.

Li, L., Peijie, Tang, Z., Liu, X., Wang, Q., Luo, W., Xue,
W., Liu, Q., Chu, X., and Guo, Y. Discovering sparsity al-
location for layer-wise pruning of large language models.
In NeuIPS, 2024c.

Li, L., Sun, H., Li, S., Dong, P., Luo, W., Xue, W., Liu,
Q., and Guo, Y. Auto-gas: Automated proxy discovery
for training-free generative architecture search. ECCV,
2024d.

Li, L., Wei, Z., Dong, P., Luo, W., Xue, W., Liu, Q., and
Guo, Y. Attnzero: efficient attention discovery for vision
transformers. In ECCV, 2024e.

Li, P., Zhang, Z., Yadav, P., Sung, Y.-L., Cheng, Y., Bansal,
M., and Chen, T. Merge, then compress: Demystify
efficient smoe with hints from its routing policy. arXiv
preprint arXiv:2310.01334, 2023b.

Li, P., Zhang, Z., Yadav, P., Sung, Y.-L., Cheng, Y., Bansal,
M., and Chen, T. Merge, then compress: Demystify
efficient smoe with hints from its routing policy. arXiv
preprint arXiv:2310.01334, 2023c.

Li, P., Zhang, Z., Yadav, P., Sung, Y.-L., Cheng, Y., Bansal,
M., and Chen, T. Merge, then compress: Demystify ef-
ficient SMoe with hints from its routing policy. In The
Twelfth International Conference on Learning Represen-
tations, 2024f. URL https://openreview.net/
forum?id=eFWG9Cy3WK.

Li, W., Li, L., Lee, M., and Sun, S. Als: Adaptive layer spar-
sity for large language models via activation correlation
assessment. In NeuIPS, 2024g.

Li, Y., Yu, Y., Zhang, Q., Liang, C., He, P., Chen, W., and
Zhao, T. Losparse: Structured compression of large lan-
guage models based on low-rank and sparse approxima-
tion. In International Conference on Machine Learning,
pp. 20336–20350. PMLR, 2023d.

Liu, E., Zhu, J., Lin, Z., Ning, X., Blaschko, M. B., Yan, S.,
Dai, G., Yang, H., and Wang, Y. Efficient expert pruning
for sparse mixture-of-experts language models: Enhanc-
ing performance and reducing inference costs. arXiv
preprint arXiv:2407.00945, 2024a.

Liu, J., Xiao, G., Li, K., Lee, J. D., Han, S., Dao, T., and
Cai, T. Bitdelta: Your fine-tune may only be worth one
bit. arXiv preprint arXiv:2402.10193, 2024b.

Lu, X., Liu, Q., Xu, Y., Zhou, A., Huang, S., Zhang, B.,
Yan, J., and Li, H. Not all experts are equal: Efficient
expert pruning and skipping for mixture-of-experts large
language models, 2024a.

Lu, X., Liu, Q., Xu, Y., Zhou, A., Huang, S., Zhang, B., Yan,
J., and Li, H. Not all experts are equal: Efficient expert
pruning and skipping for mixture-of-experts large lan-
guage models. arXiv preprint arXiv:2402.14800, 2024b.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
Building a large annotated corpus of english: The penn
treebank. Comput. Linguistics, 19(2):313–330, 1993.

Matena, M. S. and Raffel, C. A. Merging models with fisher-
weighted averaging. Advances in Neural Information
Processing Systems, 35:17703–17716, 2022.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In ICLR (Poster). OpenRe-
view.net, 2017.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? A new dataset for open
book question answering. In EMNLP, pp. 2381–2391.
Association for Computational Linguistics, 2018.

MiniMax, Li, A., Gong, B., Yang, B., Shan, B., Liu, C.,
Zhu, C., Zhang, C., Guo, C., Chen, D., Li, D., Jiao, E.,
Li, G., Zhang, G., Sun, H., Dong, H., Zhu, J., Zhuang, J.,
Song, J., Zhu, J., Han, J., Li, J., Xie, J., Xu, J., Yan, J.,
Zhang, K., Xiao, K., Kang, K., Han, L., Wang, L., Yu,
L., Feng, L., Zheng, L., Chai, L., Xing, L., Ju, M., Chi,
M., Zhang, M., Huang, P., Niu, P., Li, P., Zhao, P., Yang,
Q., Xu, Q., Wang, Q., Wang, Q., Li, Q., Leng, R., Shi, S.,
Yu, S., Li, S., Zhu, S., Huang, T., Liang, T., Sun, W., Sun,
W., Cheng, W., Li, W., Song, X., Su, X., Han, X., Zhang,
X., Hou, X., Min, X., Zou, X., Shen, X., Gong, Y., Zhu,
Y., Zhou, Y., Zhong, Y., Hu, Y., Fan, Y., Yu, Y., Yang,
Y., Li, Y., Huang, Y., Li, Y., Huang, Y., Xu, Y., Mao, Y.,
Li, Z., Li, Z., Tao, Z., Ying, Z., Cong, Z., Qin, Z., Fan,
Z., Yu, Z., Jiang, Z., and Wu, Z. Minimax-01: Scaling
foundation models with lightning attention, 2025. URL
https://arxiv.org/abs/2501.08313.

Ping, B., Wang, S., Wang, H., Han, X., Xu, Y., Yan, Y.,
Chen, Y., Chang, B., Liu, Z., and Sun, M. Delta-come:
Training-free delta-compression with mixed-precision for
large language models. In Thirty-eighth Conference on
Neural Information Processing Systems, 2024.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

10

https://openreview.net/forum?id=eFWG9Cy3WK
https://openreview.net/forum?id=eFWG9Cy3WK
https://arxiv.org/abs/2501.08313

Delta Decompression for MoE-based LLMs Compression

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. In AAAI, pp. 8732–8740. AAAI Press, 2020.

Song, Y., Mi, Z., Xie, H., and Chen, H. Powerinfer: Fast
large language model serving with a consumer-grade gpu,
2023.

Tang, P., Liu, J., Hou, X., Pu, Y., Wang, J., Heng, P.-A.,
Li, C., and Guo, M. Hobbit: A mixed precision expert
offloading system for fast moe inference. arXiv preprint
arXiv:2411.01433, 2024.

uyuk, C., Lasby, M., Yassin, M., Evci, U., and Ioannou, Y.
Learning parameter sharing with tensor decompositions
and sparsity. arXiv preprint arXiv:2411.09816, 2024.

Wang, X., Zheng, Y., Wan, Z., and Zhang, M. Svd-
llm: Truncation-aware singular value decomposition
for large language model compression. arXiv preprint
arXiv:2403.07378, 2024.

Xie, Y., Zhang, Z., Zhou, D., Xie, C., Song, Z., Liu, X.,
Wang, Y., Lin, X., and Xu, A. Moe-pruner: Pruning
mixture-of-experts large language model using the hints
from its router. arXiv preprint arXiv:2410.12013, 2024.

Yadav, P., Tam, D., Choshen, L., Raffel, C. A., and Bansal,
M. Ties-merging: Resolving interference when merging
models. Advances in Neural Information Processing
Systems, 36, 2024.

Yang, C., Sui, Y., Xiao, J., Huang, L., Gong, Y., Duan,
Y., Jia, W., Yin, M., Cheng, Y., and Yuan, B. Moe-i2:
Compressing mixture of experts models through inter-
expert pruning and intra-expert low-rank decomposition.
arXiv preprint arXiv:2411.01016, 2024.

Yao, X. and Klimovic, A. Deltazip: Multi-tenant language
model serving via delta compression. arXiv preprint
arXiv:2312.05215, 2023.

Yuan, Z., Shang, Y., Song, Y., Wu, Q., Yan, Y., and Sun,
G. Asvd: Activation-aware singular value decomposition
for compressing large language models. arXiv preprint
arXiv:2312.05821, 2023a.

Yuan, Z., Shang, Y., Song, Y., Wu, Q., Yan, Y., and Sun,
G. ASVD: activation-aware singular value decompo-
sition for compressing large language models. CoRR,
abs/2312.05821, 2023b.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y.
Hellaswag: Can a machine really finish your sentence? In
ACL (1), pp. 4791–4800. Association for Computational
Linguistics, 2019.

Zhong, S., Liang, L., Wang, Y., Wang, R., Huang, R., and
Li, M. Adapmoe: Adaptive sensitivity-based expert gat-
ing and management for efficient moe inference. arXiv
preprint arXiv:2408.10284, 2024.

11

Delta Decompression for MoE-based LLMs Compression

Appendix
This appendix provides additional details and analyses to complement the experiments and methodology described in the
main paper. We first present an extended discussion of experimental results, including comparisons with other methods,
analyses of compression efficiency, and the impact of the calibration dataset. Next, we provide detailed information about our
experimental setups, including the evaluated Mixture-of-Experts (MoE) models, datasets, hyperparameters, and experimental
configurations. Finally, we include algorithmic tables and pseudo-code for key components of the D2-MoE framework to
ensure clarity and reproducibility of our approach.

A. More Discussion and Experimental Results
A.1. Detail Analysis of Main Results

Our experimental results demonstrate the superior performance of D2-MoE across different MoE models and compression
ratios. On Mixtral-8×7B, our method consistently outperforms existing approaches across all compression ratios (20%, 40%,
and 60%). At 20% compression, D2-MoE achieves an average score of 0.60, maintaining 95.2% of the original model’s
performance (0.63), while NAEE and MoE-I2 only achieve 0.58 and 0.57 respectively. Notably, even at aggressive 60%
compression, D2-MoE maintains a competitive average score of 0.52, significantly surpassing NAEE (0.36) and MoE-I2

(0.36). The advantages of D2-MoE are further validated on models with more experts. For DeepSeek-MoE-16B-Base,
our method maintains stable performance across different compression ratios, achieving average scores of 0.54, 0.49, and
0.41 at 20%, 40%, and 60% compression respectively. This represents a significant improvement over baseline methods,
particularly in perplexity metrics (WikiText-2↓, PTB↓, and C4↓) where our method shows orders of magnitude better results
compared to MoE-I2. Similar patterns are observed in Phi-3.5-MoE and Qwen2-57B-A14B, where D2-MoE consistently
maintains higher performance scores while achieving target compression ratios. Most remarkably, our method exhibits
exceptional stability in maintaining model performance across different evaluation tasks. For instance, on downstream tasks
such as ARC-e, WinoG, and PIQA, D2-MoE consistently preserves close to 90% of the original model’s performance at 20%
compression across all tested models. This demonstrates that our compression method not only achieves high compression
ratios but also preserves the model’s general language understanding and reasoning capabilities.

A.2. Comparison with Other Methods

Our experimental results demonstrate the superior effectiveness of D2-MoE in compressing the Mixtral-8x7B model at a 20%
compression ratio, outperforming various state-of-the-art compression methods across multiple metrics, as shown in Table 3.
Specifically, we compare our method against three categories of compression approaches: (1) pruning-based methods
(SparseGPT, NAEE), (2) SVD-based methods (ASVD, MoE-I2), and (3) hybrid methods that combine multiple compression
techniques (LoSparse, MC-SMoE, MoE-Compress). D2-MoE achieves the best overall performance with an average score
of 0.60, maintaining 95.2% of the original model’s capabilities (0.63). In perplexity evaluations, our method achieves
competitive scores on WikiText-2 (4.65), PTB (16.32), and C4 (8.59), matching or outperforming pure pruning methods like
NAEE and SparseGPT. Notably, our approach significantly outperforms SVD-based methods such as ASVD and MoE-I2,
which achieve average scores of 0.51 and 0.57 respectively. For downstream tasks, D2-MoE demonstrates remarkable
performance, particularly in reasoning tasks such as ARC-e (0.80) and WinoG (0.75), surpassing all baseline methods. The
hybrid methods (LoSparse and MC-SMoE) show significant degradation in performance, especially in perplexity metrics,
while our method maintains stable performance across all evaluation dimensions. Other model compression methods follow
different technical approaches—targeting either dense models (Dong et al., 2024; Li et al., 2024c;g; uyuk et al., 2024),
smaller architectures (Li et al., 2024d;e), or addressing other aspects of compression such as quantization (Dong et al.,
2025b; 2023b), AutoML (Dong et al., 2025a; 2023a), or distillation (Li et al., 2024a;b; 2023a; Li & Jin, 2022; Li, 2022).

This comprehensive comparison validates that D2-MoE effectively preserves model capabilities while achieving the desired
compression ratio, striking an optimal balance between model efficiency and performance.

A.3. Analysis of Runtime SpeedUp and Memory Usage

Table 4 demonstrates significant hardware inference acceleration across high compression ratios. We evaluate the inference
efficiency of various methods on Mixtral-8×7B with a batch size of 64 under high compression settings (60%, 70%, and
80%). Our D2-MoE achieves superior throughput while maintaining the lowest TFLOPs among all compared methods. At
60% compression (18.68B parameters, 34.8G memory), D2-MoE achieves 277.72 tokens/sec throughput while requiring

12

Delta Decompression for MoE-based LLMs Compression

only 481 TFLOPs, matching NAEE’s computational efficiency but with 2.1% higher throughput. In contrast, MoE-I2

and LoSparse require substantially higher computational resources (838 and 1150 TFLOPs respectively) while delivering
lower throughput. The efficiency advantages of D2-MoE become more pronounced at higher compression ratios. At 80%
compression (9.33B parameters, 17.3G memory), our method achieves 313.29 tokens/sec, outperforming NAEE by 12.5%
and MoE-I2 by 6.5% in throughput while maintaining the lowest TFLOPs (290). Notably, LoSparse, despite using 4.6× more
TFLOPs (1330), achieves only 198.04 tokens/sec, demonstrating the superior efficiency of our approach. While achieving
these significant speedups, D2-MoE maintains reasonable model performance. The perplexity scores on WikiText-2 at 60%,
70%, and 80% compression ratios are 6.35, 8.15, and 12.95 respectively, showing a gradual and controlled degradation
even at extreme compression levels. These results highlight that D2-MoE not only achieves better compression quality but
also delivers practical benefits in terms of inference speed and computational efficiency, making it particularly attractive for
real-world deployments where both model size and inference speed are critical considerations.

A.4. Computational Cost Discussion of D2-MoE

We present a detailed computational cost analysis for each stage of our compressing procedure. The D2-MoE merging
approach encompasses two principal stages: 1.Metric calculate and 2.Merging expert weights. To begin with, the Fisher
metric is calculated by feeding a calibration dataset through the model and computing gradients with respect to each weight
parameter. Secondly, Expert weights merging is performed through Fisher-weighted averaging, where the Fisher metric
of each parameter serves as its importance weight in the merging process. This Process spends 11mins when conducting
on Mixtral-8x7B. Then, we compute the scale matrix for SVD and decompose the delta weights using Singular Value
Decomposition (SVD). In terms of computational cost, collecting the scale matrix through calibration takes 19 minutes,
while performing SVD decomposition on delta weights requires 25 minutes on Mixtral models. These two steps constitute
the main computational overhead of our method. Time of other models are shown in Table 10.

Table 10. Compressing time and memory used of different models
Stage Metric Mixtral-8x7B DeepSeekMoE-16B-Base Phi3.5-MoE Qwen2-57B-A14B

Merging Time Cost 11 mins 8 mins 13 mins 23 mins
Memory Cost 131.01 GB 34.6 GB 118.27 GB 127.21 GB

SVD Time Cost 44 mins 15 mins 35 mins 59 mins
Memory Cost 109.45 GB 52.9 GB 117.41 GB 126.41 GB

A.5. Additional Results on Compression Ratios between Base Weights and Delta Weights

In Table 7, we provide additional results for Mixtral-8x7B across a range of compression ratios. These results highlight the
flexibility of D2-MoE in balancing compression and performance. For example, at the 40% compression ratio, D2-MoE
achieves a WikiText-2 perplexity of 5.28, significantly lower than competing methods. We ultimately selected a 10% pruning
ratio for the Base weights and a corresponding SVD decomposition ratio for the Delta weights to preserve performance, as
the Base weights contain more shared knowledge across all experts. Additionally, a 60% pruning ratio for the Base weights
is chosen when prioritizing throughput efficiency.

A.6. Pushing the Limit of Compressing Delta Weight

Based on the CKA (Centered Kernel Alignment) similarity analysis demonstrated in Figure 5 of delta weights among V
matrices and U matrices in the Mixtral-8x7B model, we observe that all V matrices exhibit extremely high CKA similarity
scores of approximately 0.9. This significant finding motivates us to share a single V matrix among experts to further
compress the delta weights. Furthermore, the U matrices demonstrate moderate CKA similarity scores around 0.3, indicating
considerable redundancy among them. This observation suggests that we can merge the U matrices in a manner similar
to base weight compression(e.g.fisher merge), thereby achieving additional parameter reduction in U matrices. Refer to
Table 11 to see the results.

A.7. Adaptive Compression Ratio for Delta Weight

Given the observed layer-wise sensitivity shown in Figure6 in the importance of delta weights, we propose an adaptive
compression strategy that allocates more parameters to sensitive layers while maintaining the same total parameter budget.
As illustrated in Figure 6, our analysis reveals significant variations in layer sensitivity, with layer 2 exhibiting the highest

13

Delta Decompression for MoE-based LLMs Compression

Methods WikiText-2↓ PTB↓ C4↓ Tokens/sec
ShareV 80% ratio 12.95 33.30 17.14 337.82
MergeU 80% ratio 13.21 40.07 19.50 290.55
ShareV+MergeU 85% ratio 18.93 61.18 24.94 328.04

Table 11. Perplexity and Throughput of ShareV and MergeU methods on extremly high compression ratio

Figure 5. CKA of Delta V weights and Delta U weights of Mixtral-8x7B

sensitivity to compression while layer 1 showing the least sensitivity. Based on these findings, we implement an adaptive
parameter allocation strategy where layer 2 receives the largest parameter budget, and layer 1 is assigned the smallest share
of parameters, optimizing the distribution of compression ratios according to layer-wise sensitivity. This approach optimizes
the distribution of parameters across layers based on their relative importance, potentially leading to better performance
compared to uniform compression across all layers.

B. More Detailed Experimental Details
B.1. Details of Delta Weights Trimming

Figure 4 provides insights into the impact of delta weights trimming of D2-MoE’s performance. We utilize expert frequency
as the criterion for trimming decisions, every time the lowest router sampling frequency expert’s delta weight is trimed.
The results show a general trend of raising perplexity as the number of trimmed delta weights increases, indicating a
trade-off between model size reduction and performance retention. However, our method achieves significant compression
ratios, ranging from 43% to 81%, while maintaining relatively low perplexity scores compared to baseline methods. For
instance, with 1 trimming delta weight, we achieve a 43% compression ratio with a WikiText-2 perplexity of 6.43, which is
competitive with non-trim compressed model. Even at higher compression ratios, such as 75% with 7 trimming experts,
our method maintains a reasonable perplexity of 14.71 on WikiText-2, demonstrating its robustness. This highlights the
advantage of our approach in balancing model efficiency and performance, making it suitable for resource-constrained
environments without substantial degradation in language modeling quality.

Figure 6. layer wise sensitivity of Mixtral-8x7B

14

Delta Decompression for MoE-based LLMs Compression

B.2. Motivation of CKA Similarity between experts and Single Value energy Retention

The CKA Similarity between experts reflects the redundancy among experts, which motivates us to merge their base weights
to capture shared knowledge, as formulated in Equation 11. Energy-Retention quantifies the amount of information preserved
after singular value truncation in the SVD decomposition process. As formulated in Equation 12, where k represents
the number of largest singular values retained, this metric helps us evaluate the effectiveness of our compression while
maintaining essential information.

CKA(W1,W2) =
tr(HKHL)√

tr(HKHK)tr(HLHL)
(11)

Energy-Retention =

∑k
i=1 λi∑n
i=1 λi

, where λi = σ2
i (12)

B.3. Evaluated MoE Models and Datasets

We evaluate D2-MoE on a range of common MoE large language models (LLMs), including:

- Mixtral-8x7B: A state-of-the-art MoE model developed by Mistral AI, featuring 8 experts with each expert containing 7
billion parameters represent large experts MoE model in our experiment. It employs a top-2 routing mechanism where two
experts are activated for each token, demonstrating strong performance across various tasks while maintaining computational
efficiency.

- DeepSeekMoE-16B-Base: An advanced MoE architecture with 16 experts and a shared expert, where each expert contains
1 billion parameters represent small and fine-grained experts MoE model in our experiment. The model incorporates a
shared expert mechanism to capture common knowledge across tasks, while specialized experts focus on domain-specific
features. Its routing strategy dynamically selects the most relevant experts for each input token.

- Phi-3.5-MoE: Developed by Microsoft, this model features 16 experts, each containing 3.5 billion parameters. It
implements a unique expert configuration that balances model capacity and computational efficiency. The model utilizes a
sophisticated routing mechanism to effectively distribute computational load across experts.

- Qwen2-57B-A14B: A large-scale MoE model developed by Alibaba, comprising 64 experts and a shared expert, with a
total of 57 billion parameters (14B active). The model employs an advanced sparse gating mechanism that activates only a
small subset of experts for each token, achieving remarkable parameter efficiency despite its scale. The shared expert serves
as a knowledge hub while specialized experts capture domain-specific features.

These models represent different design philosophies in MoE architecture, varying in their number of experts, parameter
distribution, and routing strategies, providing a comprehensive testbed for evaluating our compression method.

We test these models on 10 datasets, including 3 language modeling datasets (WikiText-2, PTB, and C4) and 7 common-sense
reasoning datasets (OpenbookQA, WinoGrande, HellaSwag, PIQA, MathQA, ARC-easy, and ARC-challenge).

B.4. Calibration Dataset

We use WikiText-2 as the primary calibration dataset, selecting 512 random samples for all experiments. To assess the
effect of calibration data type, we also use samples from C4. As shown in Table 9, WikiText-2 consistently outperforms
C4 in terms of compression quality. The calibration data size plays an important role in our method’s performance. While
increasing calibration samples generally improves results, we observe that using 2048 samples leads to a slight performance
degradation. Therefore, considering the trade-off between performance and computational efficiency, we choose 512 samples
as our optimal calibration set size.

B.5. Hyperparameters and Experimental Configurations

Table 12 lists the key hyperparameters used in our experiments, including the target compression ratios, SVD truncation
thresholds, and sparsity levels for static and dynamic pruning.

15

Delta Decompression for MoE-based LLMs Compression

Table 12. Hyperparameter Settings for D2-MoE Experiments.

Hyperparameter 20% ratio 40% ratio 60% ratio 70% ratio 80% ratio
Pruning ratio for Performance 10% of Base weights
Pruning ratio for Throughput 60% of Base weights

SVD Truncation Threshold for Performance preserve 68.05% preserve 47.34% preserve 26.62% preserve 16.26% preserve 5.93%
SVD Truncation Threshold for Throughput preserve 74.30% preserve 53.58% preserve 32.86% preserve 22.54% preserve 12.18%

Static Pruning Sparsity for Performance 5% of Base weights
Dynamic Pruning Sparsity for Performance 5% of Base weights

Static Pruning Sparsity for Throughput 30% of Base weights
Dynamic Pruning Sparsity for Throughput 30% of Base weights

Calibration Dataset Size 512 samples
Batch Size 128

C. Algorithm Tables and Pseudo-Code
We provide pseudo-code for key components of D2-MoE to ensure reproducibility.

C.1. Pytorch like Implement of D2MoE layer

C.2. Pytorch like Implement of SVD and Merge Process

Algorithm 2 Base Weight Merge and Delta SVD Decomposition for D2MoE

class D2_MoE_Block(nn.Module):
input original experts weights, fisher_info, scale matrix
def merge(original_experts, fisher_info, scale_matrix)

merge Base weight with fisher information
weighted_sum = sum(fisher_info[idx] * original_experts[idx].weight for idx in range(self.num_experts))
self.Base_W = weighted_sum / sum(fisher_info[idx] for idx in range(self.num_experts))

for idx in range(self.num_experts):
calculate Delta weight
Delta_W = original_experts[idx].weight - self.Base_W
decomposite Delta weight with Truncation-Aware SVD
U, V = SVD(Delta_W, scale_matrix[idx])
self.D2_experts[idx].Delta_U, self.D2_experts[idx].Delta_V = U, V

def SVD(W, scale):
Truncation-Aware scale
W_scale = W * scale

inv_scale = torch.linalg.inv(scale)
U, sigma, V = torch.linalg.svd(W_scale)

truc_sigma = torch.diag(sigma[: num_trunc])
svd_u = U[: num_trunc] * torch.sqrt(truc_sigma)

absorb scale into V
svd_v = torch.sqrt(truc_sigma) * V[num_trunc :] * inv_scale

return svd_u, svd_v

16

Delta Decompression for MoE-based LLMs Compression

Algorithm 1 D2MoE layer Implement

class D2_MoE_Block(nn.Module):
def __init__():

self.Base_W #Base Weight among all experts
self.num_experts
self.gate #router function of MoE Block
self.D2_experts = nn.ModuleList(D2_MoE_expert())
dynamic pruning function
self.dynamic_pruner = two_phase_pruning(self.Base_W, X_calibration, target_sparsity)

def forward(x):
routing_weights = F.softmax(self.gate(x))

select expert mask for each token
expert_mask = torch.top2(routing_weights, dim = 1)

dynamic pruning indice during inference
pruned_indices = self.dynamic_pruner(x)
Base hidden states pre calculate for all experts with sparse inference
Base_hidden_states = self.Base_W(x, pruned_indices)
final_hidden_states = torch.zeros_like(x)

for expert_idx in range(self.num_experts):
current_expert = self.D2_experts[expert_idx]

selected token for current expert
current_state = x[expert_mask]

correspond Base hidden states for current expert
current_Base_hidden_states = Base_hidden_states[expert_mask]

calculate selected token hidden state with D2MoE expert
current_hidden_states = current_expert(current_state,current_Base_hidden_states)

multiply current hidden state with router weights
current_hidden_states *= routing_weights

add current hidden state to final hidden state
final_hidden_states.add(current_hidden_states)

return final_hidden_states

class D2_MoE_expert(nn.Module):
def __init__():

low rank representation weights of Delta Weights
self.Delta_U
self.Delta_V

def forward(x, current_Base_hidden_states):
get current_Base_hidden_states calculate from Base weights
Delta_hidden_states = self.Delta_U(self.Delta_V(x))
return current_Base_hidden_states + Delta_hidden_states

17

Delta Decompression for MoE-based LLMs Compression

C.3. Pytorch like Implement of two stage Semi-Dynamic Pruning Process

Algorithm 3 Semi-Dynamic Pruning on Base Weight for D2MoE

def two_phase_pruning(W_b, X, target_sparsity):
"""
W_b: base weight matrix [m, n]
X: input activations [n, b]
target_sparsity: desired sparsity ratio (e.g., 0.5 means 50% pruned)
"""
Phase 1: Static Pruning
static_metrics = []
for j in range(n):

static pruning metric
C_j = norm_L2(W_b[:, j]) * norm_L2(X[j, :])
static_metrics.append((j, C_j))

sort the pruning metric
static_metrics.sort(key=lambda x: x[1])
static_k = int(n * target_sparsity * 0.5)
static_pruned = set(idx for idx, _ in static_metrics[:static_k])

Phase 2: Dynamic Pruning
def dynamic_prune(X_batch):

dynamic_metrics = []
for j in range(n):

if j not in static_pruned:
C_j = norm_L2(W_b[:, j]) * norm_L2(X_batch[j, :])
dynamic_metrics.append((j, C_j))

dynamic_metrics.sort(key=lambda x: x[1])
dynamic_k = int(n * target_sparsity * 0.5)
dynamic_pruned = set(idx for idx, _ in dynamic_metrics[:dynamic_k])

return static_pruned | dynamic_pruned

return dynamic prune function
return dynamic_prune

C.4. Weighted Merge for Base Weights

Algorithm 4 Delta Decomposition for MoE Models

0: Input: Expert weights {Wi}Ni=1, Metric
0: Output: Base weight Wb, delta weights {∆Wi}Ni=1

0: Wb :=
∑

i∈N Metrici·Wi∑
i∈N Metrici

{Frequency mean, Fisher-weighted mean, and other merging methods...}
0: for each expert i ∈ {1, . . . , N} do
0: Compute ∆Wi = Wi −Wb

0: return Wb, {∆Wi}Ni=1 =0

C.5. Truncation-Aware SVD Algorithm

Algorithm 5 Truncation-Aware SVD Compression

0: Input: Delta weight ∆Wi, activation matrix X
0: Output: Compressed delta weight ∆Ui,∆Vi

0: Compute activation Gram matrix S = XXT

0: Perform SVD: ∆Wi · S = U · Σ · V T

0: Truncate Σ: Σtrunc = TopK(Σ)
0: Reconstruct: ∆Ui = U ·

√
Σtrunc; ∆Vi =

√
Σtrunc · V T · S−1

0: return ∆Ui,∆Vi =0

18

