

# 000 001 002 003 004 005 *ModernVBERT: TOWARDS SMALLER VISUAL DOCUMENT RETRIEVERS*

006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
054  
055  
056  
057  
058  
059  
060  
061  
062  
063  
064  
065  
066  
067  
068  
069  
070  
071  
072  
073  
074  
075  
076  
077  
078  
079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1

054 proving document retrieval, especially for long, complex files such as PDFs, scientific articles, and  
 055 reports, is a key lever for making industrial RAG deployments more accurate and cost-effective.  
 056

057 **Visual Document Retrieval.** Historically, document retrieval in these settings has operated purely  
 058 in the text space. To index PDFs or scans, practitioners first run heavy preprocessing pipelines that  
 059 include Optical Character Recognition (OCR), layout analysis, and heuristic passage segmentation,  
 060 before embedding the resulting text spans with a neural encoder. This approach suffers from sev-  
 061 eral limitations: OCR and layout parsing can be brittle and slow, complex visual elements such as  
 062 tables, figures, and typography are often poorly captured, and any error or bias introduced during  
 063 preprocessing is propagated to the retriever.  
 064

065 *Visual Document Retrieval* (VDR) has emerged as a compelling alternative to such text-based sys-  
 066 tems. Rather than indexing pre-extracted textual content, VDR models directly operate on page  
 067 screenshots: given a user query, they retrieve relevant document pages by matching the query against  
 068 image-based representations of the pages (Faysse et al., 2025). By bypassing OCR and layout pars-  
 069 ing, VDR yields simpler end-to-end pipelines, significantly reduces indexing latency, and better ex-  
 070 ploits visual cues such as layout, figures, and fonts, while achieving strong performance on visually  
 071 rich benchmarks like ViDoRe.  
 072

073 **Limits of Generative VLM Repurposing.** Most current VDR systems are obtained by repur-  
 074 posing large generative vision–language decoders (Alayrac et al., 2022) as retrieval encoders via  
 075 post-hoc contrastive fine-tuning (Ma et al., 2024; Faysse et al., 2025; Jiang et al., 2025). While cost-  
 076 efficient, this design choice bottlenecks retrieval performance and efficiency: model sizes, attention  
 077 patterns, image resolutions, and training objectives are designed for generative use cases rather than  
 078 optimized for retrieval which has been shown in text models to be suboptimal (Lee et al., 2025;  
 079 Gisserot-Boukhlef et al., 2025). Furthermore, scaling trends (Wei et al., 2022) are less pronounced  
 080 for embedding models; while correlated with model size, strong retrieval performance remains at-  
 081tainable with small models (Clavié, 2024).  
 082

083 Recent papers and model releases in the visual retrieval space have claimed performance improve-  
 084 ments by scaling the amount of contrastive data and the compute budget (Zhang et al., 2025a; Xu  
 085 et al., 2025), modifying the attention mask (Chen et al., 2025), increasing image resolutions (Cohere,  
 086 2024) or by introducing more diverse tasks and data sources (Jiang et al., 2025).  
 087

088 In this work, we attempt to centralize these efforts and systematically disentangle the impact of  
 089 core design decisions in visual retriever training. Through controlled experiments—ranging from  
 090 language model pretraining to multi-stage, domain-specific fine-tuning, we aim to answer a central  
 091 question:  
 092

093 *Which design choices best boost performance in modern visual document retrievers?*  
 094

095 **Contribution 1.** We revisit core assumptions in visual retriever design, showing that token-level  
 096 training objectives benefit retrievers by strengthening image–text token alignment—rather than  
 097 merely producing stronger image embeddings. Our results indicate that causal attention is suboptimal  
 098 in document retrieval, with bidirectional masking offering clear improvements in multi-vector  
 099 settings, and that other parameters such as image resolution data mixes should not be overlooked in  
 100 the training pipeline.  
 101

102 **Contribution 2: *ModernVBERT*.** Building on these insights, we release *ModernVBERT*, a small  
 103 250M multimodal encoder that aligns a pretrained language encoder with a vision encoder through  
 104 Masked Language Modeling (MLM) objective, and *ColModernVBERT* a variant fine-tuned for doc-  
 105 ument retrieval. Despite its modest size and limited training budget, *ColModernVBERT* matches  
 106 models 10x larger on standard visual document retrieval benchmarks, demonstrating the interest  
 107 of designing a retrieval focused model from the ground up. **We release the model, intermediate  
 108 checkpoints, and the training code in the public version of the paper.**  
 109

## 110 2 METHODOLOGY

111 Our analysis aims at quantifying the impact of design decisions made when training visual retriev-  
 112 ers. In opposition to previous work, we begin our analysis as early as language model modality



Figure 2: **MLM-based early fusion architecture.** The visual encoder produces patch representations, which are passed to a language model. Our end-to-end bidirectional attention fused architecture is trained with Masked Language Modeling objectives and is perfectly suited for sequence and token-level representation tasks.

alignment and iteratively study design choices by modifying design choices independently to reduce confounding factors as much as possible (Allen-Zhu & Li, 2025).

**Controlled Experimental Setup.** A central point of interest is the impact of causal and bidirectional attention masks. While recently studied for textual representation applications (Gisserot-Boukhlef et al., 2025; Weller et al., 2025), we extend the experiment to the vision modality. We use checkpoints released by Gisserot-Boukhlef et al. (2025) which consist in a series of identical 210M parameter transformer models based on the Llama architecture (Touvron et al., 2023) trained on 100B tokens that differ only in their attention masking strategy during language model training but that are perfectly identical in terms of training data seen, model size and architecture, learning rate scheduling, etc... The checkpoints we use are `enc` a bidirectional encoder trained with Masked Language Modeling (MLM), `dec`, a causal decoder trained with next token prediction, and `dec-enc` a causal decoder annealed over the end of its textual training by removing the causal mask and switching the training objective to MLM. For the vision tower, we employ the vision component of `siglip2-base-16b-512` (Tschannen et al., 2025), a 86M parameter vision transformer contrastively trained on billions of text-image pairs. All ablations thus stem from iso-data controlled setups, and as further described, are further trained on the same data sequence, with the same batch sizes, optimizers, schedulers and on the same hardware.

**Model Architecture.** Our analysis are not centered around model architectures and to draw broadly applicable insights, we design vision-language models following current standard training practices. In line with most recent work, we employ the early fusion architecture (Alayrac et al., 2022) illustrated in Figure 2, in which visual patch embeddings produced by the vision encoder are projected into the language model input embedding space and concatenated with text token embeddings to encourage joint processing (Li et al., 2022; Alayrac et al., 2022; Wang et al., 2024; Yang et al., 2025; Marafioti et al., 2025). As described in subsection 2.1, we generalize the training loss to function both with causal and masked language modeling objectives. To handle dynamic resolutions, we split large images into  $512 \times 512$  pixel tiles as expected by the SigLIP encoder<sup>1</sup>. Following current standard practices, we further process a downsampled version of the full image to improve inter-tile consistency and global visual understanding (Lin et al., 2023; Ye et al., 2023). **The vision tower produces 1024 pixel patch representations for each tile<sup>2</sup>, which we compress to 64 tokens through pixel shuffling (Shi et al., 2016)** with a compression ratio  $r = 4$ , following prior work on models

<sup>1</sup>Images are downsampled (or upscaled) so that the lengths and widths reach a multiple of 512 pixels to preserve the aspect ratio, padding is used on the smaller side when necessary (i.e. a 1024x1000 px image would be padded to 1024x1024 px).

<sup>2</sup>The SigLIP tower takes 512x512 px images and process them by 16x16 px patches (Dosovitskiy et al., 2020). This results in  $(512/16)^2 = 1024$  patches.

162 of comparable size (Marafioti et al., 2025). We highlight the impact of image resolution and this  
 163 parameter on the number of visual tokens in Appendix C.6.1.

164 **Training Procedure.** Our experiments focus on retrieval performance. We employ a standard bipha-  
 165 sic training procedure, in which we first run modality alignment to train a pretrained textual language  
 166 model to understand visual inputs through language modeling objectives (Liu et al., 2023b) (sub-  
 167 section 2.1), then rely on a second text-image contrastive learning phase to learn efficient image  
 168 representations (Radford et al., 2021) (subsection 2.2). We further describe the general setup, and  
 169 detail specific modifications to the default training procedure in the experiment section.

## 171 2.1 MODALITY ALIGNMENT

172 We align the vision encoder tower with the language model by training the image embedding projec-  
 173 tion layer to map visual features into the language model embedding space. The pretrained language  
 174 model is also fine-tuned with Low-Rank Adapters (LoRA) (Hu et al., 2021), allowing both image and  
 175 text models to adapt jointly while reducing the risk of monomodal performance collapse (Alayrac  
 176 et al., 2022; Liu et al., 2023b; Laurençon et al., 2024c; McKinzie et al., 2024; Marafioti et al., 2025).

177 **Alignment Loss.** For decoder-based models, we train with Causal Language Modeling (CLM) loss  
 178 on the text tokens, as standardly done in VLM modality alignment:

$$179 \mathcal{L}_{\text{CLM}} = - \sum_{t=1}^T \log P_{\theta}(x_t | x_{<t}), \quad (1)$$

180 where  $x_{<t}$  denotes all tokens preceding position  $t$ . We generalize this training scheme to bidirec-  
 181 tional encoders models, by using the Masked Language Modeling (MLM) loss on the textual tokens:

$$182 \mathcal{L}_{\text{MLM}} = - \sum_{t \in \mathcal{M}} \log P_{\theta}(x_t | x_{\setminus \mathcal{M}}), \quad (2)$$

183 where  $\mathcal{M}$  is the set of masked token positions and  $x_{\setminus \mathcal{M}}$  is the input with those tokens masked out.

184 **Modality Alignment Corpus.** Models are modality aligned on a large corpus in large parts de-  
 185 rived from The Cauldron 2 (Laurençon et al., 2024c) and Docmatix (Laurençon et al., 2024a). Our  
 186 objective being to train document focused retrieval models, we use an adjusted training mixture  
 187 that upsamples images containing text and documents with varying level of complexities. Our final  
 188 training corpus consists of approximately 2B text tokens, and includes diverse sources such as web  
 189 pages, books, and scientific papers. Mixture details are given in Appendix A.3.1. We note that con-  
 190 trolling the exact data distribution during this phase enables the models we train to specialize early  
 191 and achieve good document focused downstream performances which many large models struggle  
 192 with (Liu et al., 2023a).

193 **Parameters.** All models are trained using a masking ratio of 0.5 and user-prompt masking to avoid  
 194 overfitting on chat-template format (Huerta-Enochian & Ko, 2024; Shi et al., 2024; Allal et al.,  
 195 2025). We employ WSD scheduler (Hu et al., 2024b) with the first 5% of the training as warmup,  
 196 the last 20% as decay and a maximum learning rate of 1e-4. The ablation models are aligned on  
 197 3.5B tokens. We provide additional details on the training setup in Appendix A.1.

## 204 2.2 CONTRASTIVE POST-TRAINING

205 Once the language model has learned to process image tokens jointly with text tokens, we specialize  
 206 models through a contrastive post-training stage designed to enhance the semantic representation of  
 207 the output embeddings produced by the model (Reimers & Gurevych, 2019).

208 **Post-training Pairs.** The post-training dataset used as starting point in our ablations comprises  
 209 118k document-query pairs from the ColPali corpus Faysse et al. (2025) as well as another 118k of  
 210 natural image-description pairs from the MSCOCO train set (Lin et al., 2015).

211 **Contrastive Loss.** We employ the InfoNCE loss (van den Oord et al., 2019), defined as

$$212 \mathcal{L}_{\text{InfoNCE}}(\mathbf{q}, \mathbf{d}^+) = - \log \frac{\Phi(\mathbf{q}, \mathbf{d}^+)}{\Phi(\mathbf{q}, \mathbf{d}^+) + \sum_{\mathbf{d}^- \in \mathcal{N}_q} \Phi(\mathbf{q}, \mathbf{d}^-)}, \quad (3)$$

216 where  $\mathbf{d}^+$  denotes the positive target for the query  $\mathbf{q}$ ,  $\mathcal{N}_{\mathbf{q}} = \mathcal{N}_{\mathbf{q}}^{\text{in}} \cup \mathcal{N}_{\mathbf{q}}^{\text{hard}}$  the set of negative targets (in-batch and hard negatives when mentioned), and  $\Phi(\mathbf{q}, \mathbf{d})$  a similarity function between the token(s) of the query and the documents.<sup>3</sup>. For general-domain post-training we compute the loss symmetrically (Radford et al., 2021).

217 **Batches Curation.** In contrastive learning, batch diversity critically impacts retrieval entropy.  
218 Overly heterogeneous batches lead to trivial retrievals, while curated batches yield richer training  
219 signals. We employ task-aware batching (Li et al., 2023), grouping documents by source to ensure  
220 a homogeneous batch composition.

### 225 2.3 ABLATION EVALUATION SETUP

226 The contrastively trained models are evaluated on retrieval and zero-shot classification tasks across  
227 multiple domains. Although the main focus remains document retrieval capabilities, evaluated by  
228 aggregating scores from the ViDoRe and ViDoRe v2<sup>4</sup> (Macé et al., 2025) benchmarks (nDCG@5),  
229 we also assess more generalist image retrieval capabilities by selecting tasks from MIEB (Xiao  
230 et al., 2025a). For natural image retrieval, we aggregate MSCOCO retrieval (Lin et al., 2015)  
231 and Flickr30k retrieval (nDCG@10) (Plummer et al., 2016) test sets. Finally, following practices  
232 in (Muennighoff et al., 2022), we assess both zero-shot and fine-tuning abilities of our models on  
233 general classification tasks. Specifically, we measure classification accuracy by fine-tuning a logis-  
234 tic regression head on top of our model’s embedding on Stanford Cars (Krause et al., 2013) and  
235 Food101 (Bossard et al., 2014), and we evaluate zero-shot performance on FER2013 (Khaireddin &  
236 Chen, 2021) and EuroSAT (Helber et al., 2019) and aggregate the results.

## 238 3 WHAT MAKES A GREAT VISUAL RETRIEVER?

239 Vision-language retrievers built upon existing  
240 generative VLMs often inherit design choices  
241 and weights that may not be well suited for  
242 all embedding tasks. Here, we analyze these  
243 critical design choices hoping to derive clear  
244 insights for developing efficient visual retriev-  
245 ers. Importantly, although we assess design  
246 decisions at different stages of the training  
247 pipelines, evaluation are always done end-to-  
248 end on the final evaluation signal.

### 251 3.1 MODALITY ALIGNMENT DESIGN

252 **Language modeling Modality Alignment im-**  
253 **proves document understanding.** According-  
254 to benchmarks such as MIEB (Xiao et al.,  
255 2025a), dual encoder models explicitly trained  
256 on contrastive image-text tasks outperform re-  
257 purposed VLMs in natural image classifica-  
258 tion tasks. To assess this, we train an encoder  
259 and a decoder vision-language model using the  
260 methodology described in section 2 on a mix of natural image and document data (alignment and  
261 contrastive training). **We compare them with *SigLIP2-FT*, the 378M dual vision encoder model**  
262 **whose vision component is used by the vision tower of both VLMs, and with the larger *SigLIP2-FT Large* (881M parameters).** Both *SigLIP-FT* models are finetuned in the same conditions as the  
263 **VLMs, and initialized from pre-trained weights from scratch on billions of text-image pairs.**<sup>5</sup> As  
264 shown in Figure 3, the two early fusion VLM variants severely underperform the *SigLIP2-FT* dual



265 **Figure 3: Impact of Modality Alignment objec-  
266 tive on downstream tasks.** Early Fusion of vision  
267 and text models boosts document retrieval tasks  
268 regardless of the LM objective, but degrades nat-  
269 ural image and classification tasks w.r.t. the stan-  
270 dardalone *fine-tuned* vision model *SigLIP*. Reported  
271 scores are aggregated MIEB scores (nDCG, Ac-  
272 curacy.)

<sup>3</sup>We use the last (EOS) token for causal models, and mean pool all sequence tokens for bidirectional encoders for single-vector models. Alternatively, we use all document and query tokens without pooling for late interaction matching (Faysse et al., 2025). Details in Appendix A.2

<sup>4</sup>We report only the English splits of ViDoRe v2, as our base models are trained on English data only.

<sup>5</sup>We report the performance of the untrained *off-the-shelf* *SigLIP* in Appendix C.1



Figure 4: **Modality alignment scaling of early fusion encoders for up to 1 epoch (3.5B tokens) of data.** The dashed line indicates the vision encoder evaluated standalone without further training. Our findings show that retrieval tasks benefit from extended modality alignment phase, particularly in document retrieval, where performance quickly surpasses that of the standalone vision encoder.

encoders on natural image tasks. In contrast, they achieve significant gains on document retrieval tasks (+6.1 nDCG@5 on ViDoRe and ViDoRe v2 datasets w.r.t. base), even edging out *SigLIP2-FT Large* that contains 3.5x vision parameters more than both VLMs.

This confirms large-scale contrastive training remains best for high-level image representation tasks (natural images), but sequentially combining a vision model with a pretrained language model facilitates document representation tasks, even with significantly less contrastive post-training. **As the rest of this paper shows, steering away from the dual encoder architecture further enables improving performance through many avenues other than text to image contrastive training, for which supervised training samples can be hard to obtain.**

**Scaling the modality alignment phase for better token representations.** Prior work shows that scaling the modality alignment phase of VLMs improves their generative abilities (Beyer et al., 2024; McKinzie et al., 2024; Wang et al., 2024). We test whether similar gains hold in retrieval by contrastively fine-tuning `enc` checkpoints during MLM modality alignment. Figure 4 illustrates the results of post-trained checkpoints on diverse tasks. Although document retrieval improves consistently with more modality alignment data – largely surpassing the vision tower evaluated in isolation and showing clear scaling benefits – natural image tasks plateau past 1B tokens, far from the standalone dual encoder baseline. This shows that document and natural image retrieval leverage different mechanisms and should not be optimized the same way. *Document Retrieval benefits from learning fine-grained interactions between image and text tokens through the language model, while the LM has limited utility for high level natural image tasks.*

**Bidirectional attention fully unlocks Late Interaction.** Inspired by the effectiveness of bidirectional attention in text-only retrieval (Gisserot-Boukhlef et al., 2025; Weller et al., 2025)<sup>6</sup>, we investigate if it surpasses causal attention in *visual document retrieval*, particularly when using the multi-vector late interaction matching common in SOTA visual retrievers (Khattab & Zaharia, 2020; Faysse et al., 2025). Figure 5 reports single vector and late interaction results on the ViDoRe benchmark for various model variants. On top of the standard `enc` (MLM) and `dec` (CLM) models, we evaluate the `dec-enc` and the `dec` models modality aligned with MLM objectives to determine whether bidirectional attention capabilities can be obtained in later stages of training.

Single-vector embedding results are close between bidirectional and causal attention models for document retrieval, with `enc` slightly outperforming `dec` by +1.6 nDCG@5.

Intuitively however, bidirectional attention makes a huge difference when used in late interaction settings, substantially exceeding the causal counterpart by +10.6 nDCG@5. Causal decoders are incapable of correctly contextualizing image or text token representations seen at the beginning of the sequences. *This is a key result as almost all current visual retrievers, including late interaction variants, are causal models, clearly indicating some performance is left on the table.*

<sup>6</sup>Chen et al. (2025) investigate post-hoc removal of the attention mask during visual retrieval fine-tuning.



Figure 5: **Impact of attention masks and training objectives on document retrieval performances.** We report the average nDCG@5 on English splits of ViDore benchmarks for models post-trained on ColPali.

Removing the causal attention mask during training does not suffice to recover the `enc` late interaction performance at these data regimes. This indicates converting trained decoders as late interaction retrievers is highly non trivial, and confirms the insights from Weller et al. (2025); when possible, training encoder models from scratch remain better for retrieval tasks.

### 3.2 CONTRASTIVE TRAINING DESIGN

The previous subsection established bidirectional encoder models to often be the best option when training visual retrievers. In the following experiments, we assess contrastive training choices and only report results for the encoder model for simplicity.

**Image resolution benefits are task-specific.** Image resolution plays a critical role in VLM generative capabilities, notably in document-focused tasks, as higher-resolution inputs enables the model to capture finer visual cues (Hu et al., 2024a; Marafioti et al., 2025). Modality alignment is done at a fixed image resolution of 1024 pixels (longer side) and we report scores of contrastive training runs with varying settings in Table 1. **To vary the resolution, images of the highest quality available are scaled to the desired size (often downsampled) before being fed to the image tokenizer.** Our findings confirm that embedding tasks are strongly sensitive to image-resolution. In particular, *training with higher resolution inputs substantially improves the results on visual document retrieval benchmarks*, consistent with prior work in generative settings Beyer et al. (2024); McKinzie et al. (2024). Furthermore, adding a cool-down phase by showing higher-resolution images towards the end of the modality alignment phase yields additional gains. This suggests that models can adapt their attention mechanisms to finer details when exposed to increased resolution. Interestingly, these findings do not hold in natural image tasks, where high resolution can even degrade performance.

|                              | Document Retrieval | Image/Caption Retrieval | Image Classification | Average     |
|------------------------------|--------------------|-------------------------|----------------------|-------------|
| Baseline CL Mix              | 43.9               | <b>57.2</b>             | 36.1                 | 45.7        |
| + <i>Text→Text Pairs</i>     | 45.6               | 53.2                    | 35.7                 | 44.8        |
| + <i>Image→Caption Pairs</i> | <b>45.8</b>        | 54.4                    | <b>49.9</b>          | <b>50.0</b> |

Table 2: **Impact of contrastive training mixtures on downstream tasks.** Incorporating text-only pairs improves performance on document retrieval, but degrades other performances. Adding natural images-captions pairs substantially enhances performance on classification tasks.

378 **Increasing the pool of contrastive pairs.** A severe limitation that current visual retrievers face is  
 379 the lack of large volumes of high quality (document image, query pairs). Previous work (Ma et al.,  
 380 2024; Faysse et al., 2025; Jiang et al., 2025; Zhang et al., 2025a) has relied on a mix of repurposed  
 381 existing visual question answering datasets and synthetically generated queries with external LLMs.  
 382 Even put together however, the field is only a year old, and these datasets remain small in size and  
 383 often of poor quality.

384 A central question in our study is whether the abundance of *text-only* query–document pairs can  
 385 be exploited to improve *visual* retrieval via cross-modal capability transfer. To probe this, we run  
 386 contrastive training under three regimes. Unlike prior work that “warms up” visual retrievers or  
 387 trains exclusively with text-only pairs (Ma et al., 2024; Jiang et al., 2024), we *interleave* text-only  
 388 pairs and text–image pairs throughout training at a 1:1 ratio. The dataset sources are detailed in  
 389 Appendix A.3.3

390 As reported in Table 2, incorporating text-only pairs yields a sizeable improvement on visual doc-  
 391 ument retrieval (+1.7 nDCG@5), indicating clear cross-modal transfer—likely facilitated by the  
 392 backbone’s jointly learned text–image embedding space. This result suggests that domain-specific  
 393 training corpora can be assembled irrespective of native modality, reducing duplication of effort and  
 394 lowering data-collection costs.

395 We further evaluate training with *NatCap*, a corpus of natural images paired with synthetic, highly  
 396 detailed captions (see Appendix A.3.2). This scaling step improves downstream performance across  
 397 the board—most notably on natural-image tasks, and with a smaller but consistent gain on document  
 398 retrieval (+0.2 nDCG@5). Together, these findings underscore the importance of scaling contrastive  
 399 learning with high-quality data, but which doesn’t need to be exclusively image document focused.

## 4 BUILDING A SMALL YET MIGHTY VISUAL RETRIEVER.

### 4.1 TRAINING.

405 **Recipe.** Putting together the results from our experiments, we devise a training recipe for a small  
 406 visual document retriever *ModernVBERT*. It combines a state-of-the-art 150M text bidirectional en-  
 407 coder (Weller et al., 2025) with the ModernBERT architecture (Warner et al., 2024a) and a small  
 408 vision encoder SigLIP2-16B-512 of 100M parameters (Tschannen et al., 2025). We modality align  
 409 both models with a MLM objective for 10B tokens, 3 times longer than during our experiments. To  
 410 boost document understanding, we augment the input image resolution from 1024px to 2048px dur-  
 411 ing a modality alignment cooldown stage (2B tokens). We call the resulting model *ModernVBERT*.  
 412 Following the findings of Section 3.2, we then scale the contrastive training mix from previous ex-  
 413 periments to combine document–query pairs with text-only pairs, and use 1 hard negatives for each  
 414 document–query pair and 2 for each text-only pairs. We opt for a 2/1 text-to-image ratio following  
 415 our ablation results introduced in Appendix C.3.1. This results in *ColModernVBERT*, a compact  
 416 late interaction model. For reference, we also train *BiModernVBERT*, a single vector variant. More  
 417 training details are provided in Appendix A.1.

### 4.2 RESULTS.

420 **ColModernVBERT.** The resulting model, *ColModernVBERT* showcases strong performances on  
 421 visual document retrieval benchmarks, especially relative to its size category (Figure 1). Despite  
 422 having over 10 times less parameters than models such as ColPali released only a year ago, it is only  
 423 0.6 nDCG@5 points below on the aggregated ViDoRe benchmark scores (Table 3). It also edges  
 424 many larger single-vector repurposed VLM models released within the year (Chen et al., 2025; Jiang  
 425 et al., 2024; 2025). It however falls short of top model performance on ViDoRe which are built on  
 426 larger decoder VLMs pretrained and aligned on billions of tokens of text and image data.

427 Most sub-1B parameter models evaluated on document retrieval benchmarks are dual encoder mod-  
 428 els, since early fusion generative models that perform well are not common at this scale. The most  
 429 related model is a 176M late interaction model, ColFlor (Masry & Hoque, 2024), trained from the  
 430 Florence2 model (Xiao et al., 2023). ColFlor is 12.7 nDCG@5 points under *ColModernVBERT*.  
 431 *ColModernVBERT* also largely outperforms off-the-shelf dual encoders, even when those have sub-  
 432 stantially larger parameter counts. These results highlights the benefits of multi-phase training and

|                                            | Late Interaction | Model Size (B) | ViDoRe(v1)  | ViDoRe(v2, eng) | Average     | Latency (ms) |
|--------------------------------------------|------------------|----------------|-------------|-----------------|-------------|--------------|
| <b><math>\geq 1B</math> Parameters</b>     |                  |                |             |                 |             |              |
| MoCa-3B (Chen et al., 2025)                |                  | 3.75           | 80.1        | 53.8            | 66.9        | 158          |
| VLM2Vec (Jiang et al., 2025)               |                  | 4.15           | 49.8        | 36.5            | 43.1        | 211          |
| GME-Qwen2 (Zhang et al., 2025a)            |                  | 8.29           | 89.9        | 61.8            | 75.8        | 412          |
| E5-V (Jiang et al., 2024)                  |                  | 8.36           | 62.7        | 49.4            | 56.1        | 434          |
| ColPali (Fayssse et al., 2025)             | ✓                | 2.92           | 81.6        | 56.8            | 69.2        | 175          |
| ColQwen2.5 (Fayssse et al., 2025)          | ✓                | 3.75           | 89.5        | 61.5            | 75.5        | 158          |
| Jina-v4 (Günther et al., 2025)             | ✓                | 3.75           | 90.4        | 60.1            | 75.2        | 158          |
| NemoRetriever-3B (Xu et al., 2025)         | ✓                | 4.40           | 91.0        | 66.3            | 78.7        | 155          |
| <b><math>\leq 1B</math> Parameters</b>     |                  |                |             |                 |             |              |
| Jina CLIP* (Koukounas et al., 2024)        |                  | 0.22           | 17.6        | 14.0            | 15.8        | <b>14</b>    |
| BGE Visualized M3* (Zhou et al., 2024)     |                  | 0.87           | 12.4        | 10.2            | 11.3        | 38           |
| SigLIP2-L-512/16* (Tschannen et al., 2025) |                  | 0.88           | 43.8        | 27.0            | 35.4        | 25           |
| ColFlor (Masry & Hoque, 2024)              | ✓                | 0.17           | 68.8        | 43.0            | 55.9        | 17           |
| <i>BiModernVBERT</i> (ours)                |                  | 0.25           | 63.6        | 35.7            | 49.7        | 20           |
| <b><i>ColModernVBERT</i> (ours)</b>        | ✓                | 0.25           | <b>81.2</b> | <b>56.0</b>     | <b>68.6</b> | 20           |

Table 3: **Performance on ViDoRe.** Our model *ColModernVBERT* offers the best performance-size tradeoff, significantly outperforming existing sub-1B models and matching the performance of models up to 10x larger with substantially lower inference CPU latency **Details and GPU latencies in Appendix C.6.2. Models marked with \*** are not specifically trained for VDR. Bold values indicate the best performance amongst sub-1B models.

early fusion architectures for multi-modal document related tasks, even at smaller parameter counts. We also attribute the strong performance of *ColModernVBERT* at smaller model sizes to the symbiosis of native bidirectional attention and Late Interaction matching, which largely boosts performance relative to comparable decoder models (Section 3.1).

**Speed.** As noted by Xiao et al. (2025b), multi-vector visual retrievers are not bottlenecked in their inference speed by the late interaction matching operation, but rather by the latency required to encode queries with the text model. Our model demonstrates that strong performance is not incompatible with speed, even when running inference on consumer CPUs, which is the standard setting in most industrial local deployments of text embedding models. Latencies are computed by averaging query encoding times of all NanoBEIR queries, which are 23.4 word and 147.5 character long on average, and are run with batch size 1 to replicate online use cases. To prevent RAM bottlenecks, we benchmark on very high RAM (2TB) CPU cloud environments, but note models larger than 3B parameter require more than 12 GB RAM to run optimally.<sup>7</sup> (Table 3). *ModernVBERT* achieves more than a 7x speedup on CPU over models with similar performances on ViDoRe. We further report model latency results on GPU hardware in Appendix C.6.2. We notably demonstrate that with batched inference, *ModernVBERT* based query encoders are able to encode 5000 queries per second on Nvidia H100 GPUs. *ModernVBERT*’s small model size also enables efficient batching when encoding documents.

## 5 RELATED WORK

**Repurposing VLMs for Representation Learning.** Motivated by the zero-shot performances of generative VLMs (Alayrac et al., 2022; Lucas Beyer\* et al., 2024; Bai et al., 2023), recent studies have explored repurposing these for multimodal embedding tasks (Ma et al., 2024; Fayssse et al., 2025; Jiang et al., 2025; Zhang et al., 2025a). As backbone generative models improved, retriever

<sup>7</sup>With more standard CPU RAM settings such as those found in low-end servers or Google Colab (12GB RAM), models above 3B parameters must rely on memory offloading to run, which adds up to dozens of seconds of latency per query.

486 performance improved as well showcasing the central impact of language model pretraining and  
 487 modality alignment (Xu et al., 2025; Nussbaum et al., 2025). These model remain inherently con-  
 488 strained by their causal attention mechanisms which has been shown in text settings to limits repre-  
 489 sential efficiency (Gisserot-Boukhlef et al., 2025; Weller et al., 2025). Recent work attempts to  
 490 address this issue by modifying VLM attention during continual pretraining (Chen et al., 2025) or  
 491 contrastive tuning (Jiang et al., 2025; Xu et al., 2025), but no recent work attempts to align natively  
 492 bidirectional language encoder models with vision encoders. The recent release of long sequence  
 493 text encoders (Warner et al., 2024a; Boizard et al., 2025) makes this possible.

494 **Late Interaction in Visual Document Retrieval** To further boost performance, visual document  
 495 retrievers leverage the late interaction mechanism (Khattab & Zaharia, 2020) which matches multi-  
 496 ple query embeddings with multiple document embeddings through the MaxSim operation (Faysse  
 497 et al., 2025; Günther et al., 2025; Xu et al., 2025). This enables more granular interactions between  
 498 image and query tokens, at the cost of additional storage and a slight compute overhead during the  
 499 matching operation. Efficiency gains have come from improving the storage costs through quanti-  
 500 zation (Bergum, 2025), token pruning (Faysse et al., 2024) and more recently the use of Matrioshka  
 501 losses to compact multi-token representations (Xiao et al., 2025b). Ultimately, the performance bot-  
 502 tleneck when running visual retrieval inference with such models now resides mostly in the necessity  
 503 to rely on costly GPU hardware to encode queries, which sets apart text from vision retrieval. This  
 504 paper fills this gap by using encoders that run on CPU, of parameter sizes comparable to commonly  
 505 used local text embedding models (Chen et al., 2024; Enevoldsen et al., 2025).

## 506 6 CONCLUSION

507 In this paper we question design decisions of current VLM-based retriever models, providing cru-  
 508 cial insights into what matters when training early-fusion vision encoders. Our study notably shows  
 509 that these models generally do not improve retrieval on natural-image tasks compared to dual en-  
 510 coders, yet strong vision-language alignment is essential for document-centric retrieval. We uncover  
 511 a tight synergy between bidirectional attention and late-interaction retrieval, which underscores a  
 512 fundamental limitation of repurposing decoder-style generative VLMs for retrieval. To mitigate  
 513 data scarcity in contrastive learning, we propose augmenting limited image-document/text-query  
 514 pairs with larger, lower-cost corpora from other modalities. Guided by these insights, we trained  
 515 *ColModernVBERT*, a compact yet powerful 250M-parameter multimodal encoder that matches the  
 516 performance of models up to 10 $\times$  larger on visual retrieval benchmarks. We release models and  
 517 training code to help practitioners reduce cost and latency when deploying visual retrievers in real-  
 518 world applications, and to encourage research on efficient multimodal embedding models.

519 **Future Work & Limitations.** By design, our analysis targets relatively small models. An important  
 520 next step is to test whether the observed patterns persist at larger scales—for example, to more rigor-  
 521 ously probe the interplay between late interaction and bidirectional attention. Our study also focuses  
 522 exclusively on English. While we expect the broad trends to generalize and see clear value in re-  
 523 leasing multilingual variants, it remains unclear how allocating parameters to additional languages  
 524 trades off against the understanding of the vision modality, and to what extent this penalizes En-  
 525 glish retrieval performance as the number of languages are scaled (Fernandes et al., 2023). Finally,  
 526 although we center on retrieval and sequence-level zero-shot classification, the modality-aligned en-  
 527 coder can be fine-tuned for a range of token-level tasks, including OCR error detection, token-level  
 528 classification, visual named entity recognition, visually grounded token-level object detection, con-  
 529 textual embeddings (Conti et al., 2025). We release our base model to encourage exploration of  
 530 these directions.

## 531 532 ETHICS STATEMENT

533 **Environmental Costs.** Training *ColModernVBERT* required approximately 2,000 H100 GPU-hours  
 534 in total, which we estimate corresponds to 41 kg of CO<sub>2</sub><sup>8</sup>, based on standard assumptions of GPU  
 535 power draw, datacenter efficiency, and grid carbon intensity. This estimate follows methodologies

536 <sup>8</sup>Carbon footprint estimated with *Green Algorithms* (Lannelongue et al., 2021):  $E = t \times P \times$   
 537 PUE, CO<sub>2</sub>e =  $E \times \text{CI}$ . With  $t = 2000 \text{ GPUh}$ ,  $P = 0.35 \text{ kW}$  (H100 PCIe), PUE = 1.3, and CI = 45  
 538 gCO<sub>2</sub>/kWh, this gives  $E \approx 910 \text{ kWh}$  and CO<sub>2</sub>e  $\approx 41 \text{ kg}$ .

such as Green Algorithms (Lannelongue et al., 2021) and related analyses of the carbon footprint of machine learning (Strubell et al., 2019; Patterson et al., 2021). Across the entire project, all combined experiments totaled about 18k H100-hours. To mitigate costs and promote sustainable research practices, we release all model checkpoints and training artifacts to facilitate reuse, extension, and reproducibility without necessitating retraining. Additionally, this work shows efficiency gains with smaller models to aim to limit the inference costs of visual retrieval, and consequently reduce the environmental footprint. Our model performs query encoding efficiently on CPUs, keeping inference costs low and reducing barriers to adoption.

**Safety and Bias.** From a safety perspective, our encoder-only retriever poses less risk than generative models: it produces fixed-length embeddings rather than free-form content, reducing avenues for harmful content generation, hallucination, or deceptive outputs; nonetheless, retrieval systems can still propagate biases present in the underlying data, which we address through dataset curation open release.

**AI Assistance.** Parts of this paper were prepared with the assistance of an AI-based writing tool used for copy editing and stylistic refinement. All generated text was carefully reviewed, verified, and revised by the authors, who take full responsibility for the accuracy and originality of the final manuscript.

## REPRODUCIBILITY STATEMENT

For transparency and to foster future work, we release our training data, model checkpoints (base models and adapters), and the complete codebase under the MIT License, as detailed in the main paper and repository. The supplementary material specifies training configurations for all models (also provided in the corresponding HuggingFace repositories), describes our synthetic data generation process, and reports expanded evaluation results to support exact replication.

## REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon, Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saeid, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyra Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone, 2024. URL <https://arxiv.org/abs/2404.14219>. Version Number: 2.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language model for few-shot learning, 2022. URL <https://arxiv.org/abs/2204.14198>.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo, Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav, Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model, 2025. URL <https://arxiv.org/abs/2502.02737>.

594 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, learning hierarchical lan-  
 595 guage structures, 2025. URL <https://arxiv.org/abs/2305.13673>.

596

597 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang  
 598 Zhou, and Jingren Zhou. Qwen-VL: A Versatile Vision-Language Model for Understanding,  
 599 Localization, Text Reading, and Beyond. 2023. doi: 10.48550/ARXIV.2308.12966. URL  
 600 <https://arxiv.org/abs/2308.12966>. Publisher: arXiv Version Number: 3.

601 Jo Bergum. Scaling ColPali to billions of PDFs with Vespa — blog.vespa.ai. <https://blog.vespa.ai/scaling-colpali-to-billions/>, 2025.

602

603 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,  
 604 Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, Thomas  
 605 Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey Gritsenko,  
 606 Neil Houlsby, Manoj Kumar, Keran Rong, Julian Eisenschlos, Rishabh Kabra, Matthias Bauer,  
 607 Matko Bošnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender, Ioana Bica, Ivana Balazevic,  
 608 Joan Puigcerver, Pinelopi Papalampidi, Olivier Henaff, Xi Xiong, Radu Soricut, Jeremiah Harm-  
 609 sen, and Xiaohua Zhai. Paligemma: A versatile 3b vlm for transfer, 2024. URL <https://arxiv.org/abs/2407.07726>.

610

611 Nicolas Boizard, Hippolyte Gisserot-Boukhlef, Duarte M. Alves, André Martins, Ayoub Hammal,  
 612 Caio Corro, Céline Hudelot, Emmanuel Malherbe, Etienne Malaboeuf, Fanny Jourdan, Gabriel  
 613 Hautreux, João Alves, Kevin El-Haddad, Manuel Faysse, Maxime Peyrard, Nuno M. Guerreiro,  
 614 Patrick Fernandes, Ricardo Rei, and Pierre Colombo. Eurobert: Scaling multilingual encoders for  
 615 european languages, 2025. URL <https://arxiv.org/abs/2503.05500>.

616

617 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-  
 618 ponents with random forests. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars  
 619 (eds.), *Computer Vision – ECCV 2014*, pp. 446–461, Cham, 2014. Springer International Publish-  
 620 ing. ISBN 978-3-319-10599-4.

621

622 Antoine Chaffin. Gte-moderncolbert, 2025. URL <https://huggingface.co/lightonai/GTE-ModernColBERT-v1>.

623

624 Haonan Chen, Hong Liu, Yuping Luo, Liang Wang, Nan Yang, Furu Wei, and Zhicheng Dou. Moca:  
 625 Modality-aware continual pre-training makes better bidirectional multimodal embeddings, 2025.  
 626 URL <https://arxiv.org/abs/2506.23115>.

627

628 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. BGE M3-  
 629 Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through  
 630 Self-Knowledge Distillation, 2024. URL <https://arxiv.org/abs/2402.03216>. Ver-  
 631 sion Number: 3.

632

633 Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear  
 634 memory cost, 2016. URL <https://arxiv.org/abs/1604.06174>.

635

636 Benjamin Clavié. Towards better monolingual japanese retrievers with multi-vector models, 2024.  
 637 URL <https://arxiv.org/abs/2312.16144>.

638

639 Cohere. Introducing Rerank 3: A New Foundation Model for Efficient Enterprise Search & Re-  
 640 trieval, April 2024. URL <https://cohere.com/blog/rerank-3>.

641

642 Max Conti, Manuel Faysse, Gautier Viaud, Antoine Bosselut, Céline Hudelot, and Pierre Colombo.  
 643 Context is gold to find the gold passage: Evaluating and training contextual document embed-  
 644 dings. *arXiv preprint arXiv:2505.24782*, 2025.

645

646 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL  
 647 <https://arxiv.org/abs/2307.08691>.

648

649 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
 650 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-  
 651 reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at  
 652 Scale. 2020. doi: 10.48550/ARXIV.2010.11929. URL <https://arxiv.org/abs/2010.11929>. Publisher: arXiv Version Number: 2.

648 Sebastian Dziadzio, Vishaal Udandarao, Karsten Roth, Ameya Prabhu, Zeynep Akata, Samuel Al-  
 649 banie, and Matthias Bethge. How to merge your multimodal models over time?, 2024. URL  
 650 <https://arxiv.org/abs/2412.06712>.  
 651

652 Kenneth Enevoldsen, Isaac Chung, Imene Kerboua, Márton Kardos, Ashwin Mathur, David Stap,  
 653 Jay Gala, Wissam Siblini, Dominik Krzemiński, Genta Indra Winata, Saba Sturua, Saiteja Ut-  
 654 pala, Mathieu Ciancone, Marion Schaeffer, Gabriel Sequeira, Diganta Misra, Shreeya Dhakal,  
 655 Jonathan Rystrøm, Roman Solomatin, Ömer Çağatan, Akash Kundu, Martin Bernstorff, Shitao  
 656 Xiao, Akshita Sukhlecha, Bhavish Pahwa, Rafal Poświaty, Kranthi Kiran GV, Shawon Ashraf,  
 657 Daniel Auras, Björn Plüster, Jan Philipp Harries, Loïc Magne, Isabelle Mohr, Mariya Hendrik-  
 658 sen, Dawei Zhu, Hippolyte Gisserot-Boukhlef, Tom Aarsen, Jan Kostkan, Konrad Wojtasik,  
 659 Taemin Lee, Marek Šuppa, Crystina Zhang, Roberta Rocca, Mohammed Hamdy, Andrianos  
 660 Michail, John Yang, Manuel Faysse, Aleksei Vatolin, Nandan Thakur, Manan Dey, Dipam Vasani,  
 661 Pranjal Chitale, Simone Tedeschi, Nguyen Tai, Artem Snegirev, Michael Günther, Mengzhou  
 662 Xia, Weijia Shi, Xing Han Lù, Jordan Clive, Gayatri Krishnakumar, Anna Maksimova, Sil-  
 663 van Wehrli, Maria Tikhonova, Henil Panchal, Aleksandr Abramov, Malte Ostendorff, Zheng  
 664 Liu, Simon Clematide, Lester James Miranda, Alena Fenogenova, Guangyu Song, Ruqiya Bin  
 665 Safi, Wen-Ding Li, Alessia Borghini, Federico Cassano, Hongjin Su, Jimmy Lin, Howard Yen,  
 666 Lasse Hansen, Sara Hooker, Chenghao Xiao, Vaibhav Adlakha, Orion Weller, Siva Reddy, and  
 667 Niklas Muenninghoff. Mmteb: Massive multilingual text embedding benchmark, 2025. URL  
<https://arxiv.org/abs/2502.13595>.  
 668

669 Manuel Faysse, Patrick Fernandes, Nuno M. Guerreiro, António Loison, Duarte M. Alves, Caio  
 670 Corro, Nicolas Boizard, João Alves, Ricardo Rei, Pedro H. Martins, Antoni Bigata Casademunt,  
 671 François Yvon, André F. T. Martins, Gautier Viaud, Céline Hudelot, and Pierre Colombo. Crois-  
 672 santLLM: A Truly Bilingual French-English Language Model. 2024. doi: 10.48550/ARXIV.  
 673 2402.00786. URL <https://arxiv.org/abs/2402.00786>. Publisher: arXiv Version  
 Number: 3.  
 674

675 Manuel Faysse, Hugues Sibille, Tony Wu, Bilel Omrani, Gautier Viaud, Céline Hudelot, and Pierre  
 676 Colombo. Colpali: Efficient document retrieval with vision language models, 2025. URL  
<https://arxiv.org/abs/2407.01449>.  
 677

678 Patrick Fernandes, Behrooz Ghorbani, Xavier Garcia, Markus Freitag, and Orhan Firat. Scaling laws  
 679 for multilingual neural machine translation. In Andreas Krause, Emma Brunskill, Kyunghyun  
 680 Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th*  
 681 *International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning*  
 682 *Research*, pp. 10053–10071. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/fernandes23a.html>.  
 683

684 Hippolyte Gisserot-Boukhlef, Nicolas Boizard, Manuel Faysse, Duarte M. Alves, Emmanuel Mal-  
 685 herbe, André F. T. Martins, Céline Hudelot, and Pierre Colombo. Should we still pretrain encoders  
 686 with masked language modeling?, 2025. URL <https://arxiv.org/abs/2507.00994>.  
 687

688 Michael Günther, Saba Sturua, Mohammad Kalim Akram, Isabelle Mohr, Andrei Ungureanu,  
 689 Bo Wang, Sedigheh Eslami, Scott Martens, Maximilian Werk, Nan Wang, and Han Xiao.  
 690 jina-embeddings-v4: Universal embeddings for multimodal multilingual retrieval, 2025. URL  
<https://arxiv.org/abs/2506.18902>.  
 691

692 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset  
 693 and deep learning benchmark for land use and land cover classification, 2019. URL <https://arxiv.org/abs/1709.00029>.  
 694

695 Anwen Hu, Haiyang Xu, Liang Zhang, Jiabo Ye, Ming Yan, Ji Zhang, Qin Jin, Fei Huang, and  
 696 Jingren Zhou. mplug-docowl2: High-resolution compressing for ocr-free multi-page document  
 697 understanding, 2024a. URL <https://arxiv.org/abs/2409.03420>.  
 698

699 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 700 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.  
 701

702 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,  
 703 Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng Thai, Kaihuo Zhang, Chongyi Wang,  
 704 Yuan Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang  
 705 Zeng, Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of small  
 706 language models with scalable training strategies, 2024b. URL <https://arxiv.org/abs/2404.06395>.

708  
 709 Mathew Huerta-Enochian and Seung Yong Ko. Instruction fine-tuning: Does prompt loss matter?,  
 710 2024. URL <https://arxiv.org/abs/2401.13586>.

711 Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Si-  
 712 mon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpo-  
 713 lating weights, 2022. URL <https://arxiv.org/abs/2208.05592>.

714  
 715 Ting Jiang, Minghui Song, Zihan Zhang, Haizhen Huang, Weiwei Deng, Feng Sun, Qi Zhang,  
 716 Deqing Wang, and Fuzhen Zhuang. E5-v: Universal embeddings with multimodal large language  
 717 models, 2024. URL <https://arxiv.org/abs/2407.12580>.

718  
 719 Ziyan Jiang, Rui Meng, Xinyi Yang, Semih Yavuz, Yingbo Zhou, and Wenhui Chen. Vlm2vec:  
 720 Training vision-language models for massive multimodal embedding tasks, 2025. URL <https://arxiv.org/abs/2410.05160>.

721  
 722 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi  
 723 Chen, and Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering, 2020.  
 724 URL <https://arxiv.org/abs/2004.04906>. Version Number: 3.

725  
 726 Yousif Khaireddin and Zhuofa Chen. Facial emotion recognition: State of the art performance on  
 727 fer2013, 2021. URL <https://arxiv.org/abs/2105.03588>.

728  
 729 Omar Khattab and Matei Zaharia. ColBERT: Efficient and Effective Passage Search via Con-  
 730 textualized Late Interaction over BERT. 2020. doi: 10.48550/ARXIV.2004.12832. URL  
 731 <https://arxiv.org/abs/2004.12832>.

732  
 733 Andreas Koukounas, Georgios Mastrapas, Michael Günther, Bo Wang, Scott Martens, Isabelle  
 734 Mohr, Saba Sturua, Mohammad Kalim Akram, Joan Fontanals Martínez, Saahil Ognawala, Su-  
 735 sanna Guzman, Maximilian Werk, Nan Wang, and Han Xiao. Jina CLIP: Your CLIP Model Is  
 736 Also Your Text Retriever, 2024. URL <https://arxiv.org/abs/2405.20204>. Version  
 737 Number: 1.

738  
 739 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained  
 740 categorization. In *2013 IEEE International Conference on Computer Vision Workshops*, pp. 554–  
 561, 2013. doi: 10.1109/ICCVW.2013.77.

741  
 742 Loïc Lannelongue, Joe Grealey, and Michael Inouye. Green algorithms: Quantifying the carbon  
 743 footprint of computation. *Advances in Science*, 7(34):eabf3899, 2021. doi: 10.1126/sciadv.  
 744 abf3899.

745  
 746 Hugo Laurençon, Andrés Marafioti, Victor Sanh, and Léo Tronchon. Building and better under-  
 747 standing vision-language models: insights and future directions., 2024a.

748  
 749 Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when build-  
 750 ing vision-language models?, May 2024b. URL [http://arxiv.org/abs/2405.02246](https://arxiv.org/abs/2405.02246).  
 arXiv:2405.02246 [cs].

751  
 752 Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building  
 753 vision-language models?, 2024c. URL <https://arxiv.org/abs/2405.02246>.

754  
 755 Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,  
 and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding  
 models, 2025. URL <https://arxiv.org/abs/2405.17428>.

756 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,  
 757 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe  
 758 Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, 2020. URL  
 759 <https://arxiv.org/abs/2005.11401>. Version Number: 4.  
 760

761 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image  
 762 pre-training for unified vision-language understanding and generation, 2022. URL <https://arxiv.org/abs/2201.12086>.  
 763

764 Mingxin Li, Zhijie Nie, Yanzhao Zhang, Dingkun Long, Richong Zhang, and Pengjun Xie. Im-  
 765 proving general text embedding model: Tackling task conflict and data imbalance through model  
 766 merging, 2024. URL <https://arxiv.org/abs/2410.15035>.  
 767

768 Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards  
 769 general text embeddings with multi-stage contrastive learning, 2023. URL <https://arxiv.org/abs/2308.03281>.  
 770

771 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro  
 772 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft COCO: Common  
 773 Objects in Context, 2014. URL <https://arxiv.org/abs/1405.0312>. Version Number:  
 774 3.  
 775

776 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro  
 777 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects  
 778 in context, 2015. URL <https://arxiv.org/abs/1405.0312>.  
 779

780 Weizhe Lin and Bill Byrne. Retrieval augmented visual question answering with outside knowl-  
 781 edge. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the*  
 782 *2022 Conference on Empirical Methods in Natural Language Processing*, pp. 11238–11254,  
 783 Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-  
 784 tics. doi: 10.18653/v1/2022.emnlp-main.772. URL <https://aclanthology.org/2022.emnlp-main.772>.  
 785

786 Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi  
 787 Shao, Keqin Chen, Jiaming Han, Siyuan Huang, Yichi Zhang, Xuming He, Hongsheng Li, and  
 788 Yu Qiao. Sphinx: The joint mixing of weights, tasks, and visual embeddings for multi-modal  
 789 large language models, 2023. URL <https://arxiv.org/abs/2311.07575>.  
 790

791 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved Baselines with Visual Instruc-  
 792 tion Tuning, 2023a. URL <https://arxiv.org/abs/2310.03744>. Version Number: 2.  
 793

794 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023b. URL  
<https://arxiv.org/abs/2304.08485>.  
 795

796 Lucas Beyer\*, Andreas Steiner\*, André Susano Pinto\*, Alexander Kolesnikov\*, Xiao Wang\*, Xiao-  
 797 hua Zhai\*, Daniel Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Jeremiah  
 798 Harmsen, Daniel Keysers, Neil Houlsby, Xi Chen, Emanuele Bugliarello, Thomas Unterthiner,  
 799 Keran Rong, Matthias Minderer, Ioana Bica, Ivana Balazevic, Joan Puigcerver, Julian Eisen-  
 800 schlos, Manoj Kumar, Matko Bošnjak, Matthias Bauer, Fangyu Liu, Adam Grycner, Alexey  
 801 Gritsenko, Paul Voigtlaender, Pinelopi Papalampidi, Olivier Henaff, Skanda Koppula, Xi Xiong,  
 802 Radu Soricut, Model release contributors and general support, Tris Warkentin, Kat Black, Luiz  
 803 Gustavo Martins, Glenn Cameron, Raj Gundluru, Manvinder Singh, Meg Risdal, Nilay Chauhan,  
 804 Nate Keating, Nesh Devanathan, Elisa Bandy, Joe Fernandez, Antonia Paterson, Jenny Brennan,  
 805 Tom Eccles, Pankil Botadra, Ben Bariach, Lav Rai, Minwoo Park, Dustin Luong, Daniel Vlasic,  
 806 Bo Wu, Wenming Ye, Divyashree Sreepathihalli, Kiranbir Sodhia, Alek Andreev, Armand Joulin,  
 807 Surya Bhupatiraju, Minh Giang, Joelle Barral, and Zoubin Ghahramani. PaliGemma, 2024. URL  
<https://www.kaggle.com/m/23393>.  
 808

809 Xueguang Ma, Sheng-Chieh Lin, Minghan Li, Wenhui Chen, and Jimmy Lin. Unifying multi-  
 810 modal retrieval via document screenshot embedding, 2024. URL <https://arxiv.org/abs/2406.11251>.

810 Quentin Macé, António Loison, and Manuel Faysse. Vidore benchmark v2: Raising the bar for  
 811 visual retrieval. *arXiv preprint arXiv:2505.17166*, 2025.

812

813 Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan, Elie Bakouch, Pedro Cuenca, Cyril Za-  
 814 kka, Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, Vaibhav Srivastav, Joshua Lochner,  
 815 Hugo Larcher, Mathieu Morlon, Lewis Tunstall, Leandro von Werra, and Thomas Wolf. Smolvlm:  
 816 Redefining small and efficient multimodal models, 2025. URL <https://arxiv.org/abs/2504.05299>.

817

818 Ahmed Masry and Enamul Hoque. Colflor: Towards bert-size vision-language document retrieval  
 819 models. 2024.

820

821 Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,  
 822 Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, Anton Belyi, Haotian Zhang, Karanjeet  
 823 Singh, Doug Kang, Ankur Jain, Hongyu Hè, Max Schwarzer, Tom Gunter, Xiang Kong, Aonan  
 824 Zhang, Jianyu Wang, Chong Wang, Nan Du, Tao Lei, Sam Wiseman, Guoli Yin, Mark Lee,  
 825 Zirui Wang, Ruoming Pang, Peter Grasch, Alexander Toshev, and Yinfei Yang. Mml1: Methods,  
 826 analysis & insights from multimodal lilm pre-training, 2024. URL <https://arxiv.org/abs/2403.09611>.

827

828 Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. MTEB: Massive Text Embed-  
 829 ding Benchmark, 2022. URL <https://arxiv.org/abs/2210.07316>. Version Number:  
 830 3.

831

832 Zach Nussbaum, John X. Morris, Brandon Duderstadt, and Andriy Mulyar. Nomic embed: Training  
 833 a reproducible long context text embedder, 2025. URL <https://arxiv.org/abs/2402.01613>.

834

835 David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Haisam Munguia, Daniel Rothchild,  
 836 David So, Maud Texier, and Jeff Dean. The carbon footprint of machine learning training will  
 837 plateau, then shrink. *IEEE Computer*, 54(12):18–28, 2021. doi: 10.1109/MC.2021.3120015.

838

839 Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hockenmaier, and  
 840 Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer  
 841 image-to-sentence models, 2016. URL <https://arxiv.org/abs/1505.04870>.

842

843 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-  
 844 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya  
 845 Sutskever. Learning transferable visual models from natural language supervision, 2021. URL  
 846 <https://arxiv.org/abs/2103.00020>.

847

848 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations  
 849 toward training trillion parameter models, 2020. URL <https://arxiv.org/abs/1910.02054>.

850

851 Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using Siamese BERT-  
 852 Networks, 2019. URL <https://arxiv.org/abs/1908.10084>. Version Number: 1.

853

854 Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel  
 855 Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient  
 856 sub-pixel convolutional neural network, 2016. URL <https://arxiv.org/abs/1609.05158>.

857

858 Zhengyan Shi, Adam X. Yang, Bin Wu, Laurence Aitchison, Emine Yilmaz, and Aldo Lipani. In-  
 859 struction tuning with loss over instructions, 2024. URL <https://arxiv.org/abs/2405.14394>.

860

861 Ken Shoemake. Animating rotation with quaternion curves. 19(3):245–254, July 1985. ISSN  
 862 0097-8930. doi: 10.1145/325165.325242. URL <https://doi.org/10.1145/325165.325242>.

864 Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep  
 865 learning in nlp. In *Proceedings of the 57th Annual Meeting of the Association for Computational  
 866 Linguistics*, pp. 3645–3650. Association for Computational Linguistics, 2019. doi: 10.18653/v1/  
 867 P19-1355.

868  
 869 Yi-Lin Sung, Linjie Li, Kevin Lin, Zhe Gan, Mohit Bansal, and Lijuan Wang. An empirical study  
 870 of multimodal model merging, 2023. URL <https://arxiv.org/abs/2304.14933>.

871 Nandan Thakur, Crystina Zhang, Xueguang Ma, and Jimmy Lin. Fixing data that hurts performance:  
 872 Cascading llms to relabel hard negatives for robust information retrieval, 2025. URL <https://arxiv.org/abs/2505.16967>.

873  
 874 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-  
 875 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,  
 876 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy  
 877 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,  
 878 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel  
 879 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,  
 880 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,  
 881 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,  
 882 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh  
 883 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen  
 884 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,  
 885 Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models.  
 886 2023. doi: 10.48550/ARXIV.2307.09288. URL <https://arxiv.org/abs/2307.09288>.  
 887 Publisher: arXiv Version Number: 2.

888 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-  
 889 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,  
 890 Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language  
 891 encoders with improved semantic understanding, localization, and dense features, 2025. URL  
 892 <https://arxiv.org/abs/2502.14786>.

893 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-  
 894 tive coding, 2019. URL <https://arxiv.org/abs/1807.03748>.

895  
 896 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-  
 897 jumder, and Furu Wei. Text Embeddings by Weakly-Supervised Contrastive Pre-training, 2022.  
 898 URL <https://arxiv.org/abs/2212.03533>. Version Number: 2.

899 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,  
 900 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng  
 901 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's  
 902 perception of the world at any resolution, 2024. URL <https://arxiv.org/abs/2409.12191>.

903  
 904 Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said  
 905 Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin  
 906 Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirec-  
 907 tional encoder for fast, memory efficient, and long context finetuning and inference, 2024a. URL  
 908 <https://arxiv.org/abs/2412.13663>.

909  
 910 Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said  
 911 Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin  
 912 Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirec-  
 913 tional encoder for fast, memory efficient, and long context finetuning and inference, 2024b. URL  
 914 <https://arxiv.org/abs/2412.13663>.

915 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-  
 916 gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol  
 917 Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,  
 918 2022. URL <https://arxiv.org/abs/2206.07682>.

918 Orion Weller, Kathryn Ricci, Marc Marone, Antoine Chaffin, Dawn Lawrie, and Benjamin Van  
 919 Durme. Seq vs seq: An open suite of paired encoders and decoders, 2025. URL <https://arxiv.org/abs/2507.11412>.  
 920

921 Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,  
 922 and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks, 2023.  
 923 URL <https://arxiv.org/abs/2311.06242>.  
 924

925 Chenghao Xiao, Isaac Chung, Imene Kerboua, Jamie Stirling, Xin Zhang, Márton Kardos, Roman  
 926 Solomatkin, Noura Al Moubayed, Kenneth Enevoldsen, and Niklas Muennighoff. Mieb: Massive  
 927 image embedding benchmark, 2025a. URL <https://arxiv.org/abs/2504.10471>.  
 928

929 Zilin Xiao, Qi Ma, Mengting Gu, Chun cheng Jason Chen, Xintao Chen, Vicente Ordonez, and  
 930 Vijai Mohan. Metaembed: Scaling multimodal retrieval at test-time with flexible late interaction,  
 931 2025b. URL <https://arxiv.org/abs/2509.18095>.  
 932

933 Mengyao Xu, Gabriel Moreira, Ronay Ak, Radek Osmulski, Yauhen Babakhin, Zhiding Yu,  
 934 Benedikt Schifferer, and Even Oldridge. Llama nemoretriever colembed: Top-performing text-  
 935 image retrieval model, 2025. URL <https://arxiv.org/abs/2507.05513>.  
 936

937 An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,  
 938 Jianhong Tu, Jianwei Zhang, Jingren Zhou, Junyang Lin, Kai Dang, Kexin Yang, Le Yu, Mei Li,  
 939 Minmin Sun, Qin Zhu, Rui Men, Tao He, Weijia Xu, Wenbiao Yin, Wenyuan Yu, Xiafei Qiu,  
 940 Xingzhang Ren, Xinlong Yang, Yong Li, Zhiying Xu, and Zipeng Zhang. Qwen2.5-1m technical  
 941 report, 2025. URL <https://arxiv.org/abs/2501.15383>.  
 942

943 Jiabo Ye, Anwen Hu, Haiyang Xu, Qinghao Ye, Ming Yan, Guohai Xu, Chenliang Li, Junfeng Tian,  
 944 Qi Qian, Ji Zhang, Qin Jin, Liang He, Xin Alex Lin, and Fei Huang. Ureader: Universal ocr-  
 945 free visually-situated language understanding with multimodal large language model, 2023. URL  
 946 <https://arxiv.org/abs/2310.05126>.  
 947

948 Xin Zhang, Yanzhao Zhang, Wen Xie, Mingxin Li, Ziqi Dai, Dingkun Long, Pengjun Xie, Meishan  
 949 Zhang, Wenjie Li, and Min Zhang. Gme: Improving universal multimodal retrieval by multimodal  
 950 llms, 2025a. URL <https://arxiv.org/abs/2412.16855>.  
 951

952 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun  
 953 Xie, An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embed-  
 954 ding: Advancing text embedding and reranking through foundation models, 2025b. URL  
 955 <https://arxiv.org/abs/2506.05176>.  
 956

957 Junjie Zhou, Zheng Liu, Shitao Xiao, Bo Zhao, and Yongping Xiong. Vista: Visualized text em-  
 958 bedding for universal multi-modal retrieval, 2024. URL <https://arxiv.org/abs/2406.04292>.  
 959

960

961

962

963

964

965

966

967

968

969

970

971

972 

## A TRAINING

973 

### A.1 IMPLEMENTATION AND RESOURCES

| Model                                                             | Batch Size | Learning Rate | Training Steps | Training GPU Hours |
|-------------------------------------------------------------------|------------|---------------|----------------|--------------------|
| <b>Modality Alignment</b>                                         |            |               |                |                    |
| ModernVBERT-base (Table 5)                                        | 4096       | 1e-4          | 5500           | 1920h              |
| <b>Contrastive Learning</b>                                       |            |               |                |                    |
| Generalist contrastive training (Table 7)                         | 256        | 2e-4          | 3917           | 80h                |
| <b>Document Specialization</b>                                    |            |               |                |                    |
| Document-focused contrastive training w/ hard negatives (Table 7) | 64         | 2e-4          | 19602          | 160h               |

983 Table 4: Training details of our final models at each training stage. GPU Hours are on 80GB H100  
984 GPUs.  
985986 We list hyperparameters and resource details in Table 4 for the various training stages of our final  
987 models. We employ ZeRO stage 1 optimizer (Rajbhandari et al., 2020) for our modality alignment  
988 runs. All ablation models are contrastively trained with gradient checkpointing (Chen et al., 2016)  
989 to reduce memory usage. All training runs are performed with FlashAttention 2.0 (Dao, 2023). For  
990 LoRA configurations, we consistently use a rank  $r$  of 32, `lora_alpha` of 32, and a dropout of  
991 0.1. For the implementation, we start from m4<sup>9</sup> and ColPali<sup>10</sup> codebases for training, and use the  
992 MTEB<sup>11</sup> repository for evaluation.<sup>12</sup>  
993994 

### A.2 SIMILARITY FUNCTIONS

995 **Single-Vector Similarity.** For single-vector models, we apply mean pooling for MLM-aligned en-  
996 coders and end-of-sequence (EOS) pooling for CLM-based models and compute the cosine similar-  
997 ity of a query  $q$  and a document  $d$  as  
998

999 
$$\Phi_{\text{CosSim}}(\mathbf{q}, \mathbf{d}) = \exp(\cos(\mathbf{E}_q, \mathbf{E}_d)/\tau) \quad (4)$$

1000 **Multi-Vector Similarity.** For multi-vector models, we adopt the standard late-interaction scoring  
1001 function defined as:  
1002

1003 
$$\Phi_{\text{LI}}(q, d) = \sum_{i \in \llbracket 1, N_q \rrbracket} \max_{j \in \llbracket 1, N_d \rrbracket} \langle \mathbf{E}_q^{(i)}, \mathbf{E}_d^{(j)} \rangle, \quad (5)$$

1004 where  $\mathbf{E}_q^{(i)}$  and  $\mathbf{E}_d^{(j)}$  denote token-level embeddings for the query and document, respectively.  
10051006 

### A.3 DATA

1007 

#### A.3.1 MODALITY ALIGNMENT MIXTURE

1008 For our modality alignment trainings, we rely on The Cauldron dataset (Laurençon et al., 2024b) and  
1009 its Docmatix extension (Laurençon et al., 2024a). Table 5 provides further details on the constitution  
1010 of this dataset.  
10111012 

#### A.3.2 *NatCap*

1013 To enrich our contrastive learning data mixture, we construct *NatCap* (Natural Captions), a  
1014 large-scale dataset containing around 333000 contextualized image–caption pairs. This dataset  
1015 is created by generating synthetic captions, along with cross-class and in-class discriminative  
1016 tags, from existing image classification datasets (see Table 6). For this purpose, we leverage  
1017 Gemini-flash-2.5<sup>13</sup> which produces captions conditioned on both the image content and the  
1018 accompanying dataset metadata, as illustrated in Figure 6. We detail the prompt below.  
10191020 <sup>9</sup>SmolVLM trainer, <https://github.com/huggingface/smollm>  
1021 <sup>10</sup><https://github.com/illuin-tech/colpali>  
1022 <sup>11</sup><https://github.com/embeddings-benchmark/mteb>  
1023 <sup>12</sup>We will release our training codebases in the public version of this paper  
1024 <sup>13</sup><https://ai.google.dev/gemini-api/docs/models?hl=fr#gemini-2.5-flash>

| 1026 | Dataset Subsection          | # Images       | # QA Pairs      | # Tokens          | % Mix         |
|------|-----------------------------|----------------|-----------------|-------------------|---------------|
| 1027 | Captioning                  | 609,843        | 612,768         | 62,906,011        | 3.13          |
| 1028 | Real-world VQA              | 457,360        | 2,125,615       | 23,318,335        | 1.16          |
| 1029 | OCR, Document Understanding | 2,499,258      | 11,415,478      | 426,806,479       | 21.21         |
| 1030 | Chart/Figure Understanding  | 539,743        | 24,444,120      | 30,315,784        | 1.51          |
| 1031 | Table Understanding         | 163,568        | 229,077         | 21,371,931        | 1.06          |
| 1032 | Reasoning, Logic, Maths     | 490,870        | 2,212,629       | 32,450,213        | 1.61          |
| 1033 | Screenshot to Code          | 547,974        | 548,296         | 336,299,551       | 16.71         |
| 1034 | Text-only Instructions      | 0              | 21,482,682      | 1,079,001,075     | 53.61         |
| 1035 | <b>Total</b>                | <b>5308616</b> | <b>63070665</b> | <b>2012469379</b> | <b>100.00</b> |

1037  
1038 Table 5: Aggregated statistics of modality alignment datasets from The Cauldron 2 (Laurençon et al.,  
1039 2024c) and Docmatix (Laurençon et al., 2024a), showing image counts, QA pairs, token counts, and  
1040 the proportional contribution of each subsection to the overall mixture.

| 1041 | Dataset      | Description                                | # Items       |
|------|--------------|--------------------------------------------|---------------|
| 1043 | Caltech101   | General objects.                           | 3.000         |
| 1044 | Caltech256   | General objects.                           | 30.000        |
| 1045 | Cars         | Car model classification.                  | 8.000         |
| 1046 | Country211   | Country where the picture is taken.        | 28.000        |
| 1047 | DTD          | Describable textures (texture attributes). | 4.000         |
| 1048 | EuroSat      | Land use / area zone type.                 | 16.000        |
| 1049 | FER2013      | Facial emotion recognition.                | 28.000        |
| 1050 | FGCVAircraft | Aircraft model recognition.                | 3.000         |
| 1051 | Food101      | Food categories.                           | 75.000        |
| 1052 | OxfordPets   | Dog/cat species.                           | 3.000         |
| 1053 | RESISC45     | Aerial scene / area zone type.             | 18.000        |
| 1054 | SUN397       | General scenes.                            | 109.000       |
| 1055 | VOC2007      | General objects.                           | 8.000         |
| 1056 | <b>TOTAL</b> |                                            | <b>333000</b> |

1057  
1058 Table 6: **NatCap Dataset Composition.** *NatCap* spans 13 different sources covering various images  
1059 types. The total dataset is composed of 333k pairs

### 1061 A.3.3 CONTRASTIVE TRAINING MIX

1063 In this subsection, we describe the composition of our data mixes used in the contrastive training  
1064 stages. Table 7 outlines the datasets included in each mix, including the Document-Focused variant  
1065 employed for *ColModenVBERT*.

## 1067 B BASELINES DETAILS

1069 In this section, we describe the models evaluated in as comparison to our document retriever model.

1071 **MoCa-3B** (Chen et al., 2025). A modality-aware continual pretraining model that transforms a  
1072 causal vision-language model into a bidirectional multimodal embedding model, using interleaved  
1073 image-text reconstruction and contrastive alignment to support cross-modal retrieval.

1074 **GME-Qwen2** (Zhang et al., 2025a). A unified multimodal embedder built on Qwen2-VL (Wang  
1075 et al., 2024), which produces shared embedding representations across text, image, and fused input  
1076 modalities, enabling universal multimodal retrieval.

1078 **VLM2Vec** (Jiang et al., 2025). A method that trains a vision-language encoder by converting a VLM  
1079 through extensive contrastive post-training. Flagship model is based on the model Phi-3.5 (Abdin  
et al., 2024).



Figure 6: Example from the NatCap dataset

| Source                           | Description                                | Pairs        | Epochs |
|----------------------------------|--------------------------------------------|--------------|--------|
| <b>Generalist Mix</b>            |                                            |              |        |
| ColPali (Faysse et al., 2025)    | Query–Document images for visual retrieval | 118k         | 1      |
| MSCOCO (Lin et al., 2014)        | Natural images with human-written captions | 118k         | 1      |
| <i>NatCap (ours, subsampled)</i> | Diverse images with synthetic captions     | 118k         | 1      |
| RLHN (Thakur et al., 2025)       | Text–text pairs for complex retrieval      | 680k         | 1      |
| <b>TOTAL</b>                     |                                            | <b>1030k</b> |        |
| <b>Document-Focused Mix</b>      |                                            |              |        |
| ColPali (Faysse et al., 2025)    | Query–Document images for visual retrieval | 118k         | 3      |
| RLHN (Thakur et al., 2025)       | Text–text pairs for complex retrieval      | 300k         | 3      |
| <b>TOTAL</b>                     |                                            | <b>1254k</b> |        |

Table 7: **Data mixes for contrastive trainings.** The *Generalist Mix* spans over 1M diverse pairs, while the *Document-Focused Mix* emphasizes document retrieval with extra ColPali epochs.

**E5-V** (Jiang et al., 2024). An adaptation of the E5 embedding approach to multimodal models: it trains only on text pairs yet bridges the modality gap to handle image inputs, reducing cost while achieving universal embeddings.

**ColPali** (Faysse et al., 2025). A vision-based document retrieval model that processes document pages as images (no OCR) and produces multi-vector embeddings via a late-interaction mechanism over PaliGemma (Beyer et al., 2024), enabling efficient and accurate retrieval.

**ColQwen2.5** (Faysse et al., 2025). An extension of ColPali (Faysse et al., 2025) using Qwen2-VL (Wang et al., 2024) as the backbone, carrying forward the late interaction retrieval paradigm over page image embeddings, capturing layout and textual context without OCR.

**Jina-v4** (Günther et al., 2025). A multimodal embedding model combining visual and textual inputs with support for multi-vector (late interaction) embeddings, using adapters over a unified backbone to excel on visually rich document retrieval.

**NemoRetriever** (Xu et al., 2025). An LI retriever that combines vision-language embeddings with a ColEmbed design, enabling high performance on visual document retrieval with structured patch matching and efficient similarity.

**Jina CLIP** (Koukounas et al., 2024). A smaller scale vision-language model using CLIP embeddings, applied to document retrieval tasks; although not LI, it offers a lightweight multimodal baseline.

**BGE Visualized M3** (Zhou et al., 2024). A vision-enhanced version of BGE M3 (Chen et al., 2024) that supports visual inputs and extends embedding models into multimodal domains.



Figure 7: **Impact of Modality Alignment objective on downstream tasks.** Early Fusion of vision and text models boosts document retrieval tasks regardless of the LM objective, but degrades natural image and classification tasks w.r.t. the standalone *off-the-shelf* vision model SigLIP. Reported scores are aggregated MIEB scores (nDCG, Accuracy.)

**SigLIP2-L-512/16** (Tschanne et al., 2025). A multilingual vision-language bi-encoder model, which combines image and text modalities to yield unified embeddings across languages. This configuration handles images of 512x512 pixels and create subpatches of 16x16 pixels.

**ColFlor** (Masry & Hoque, 2024). A lightweight OCR-free visual document retriever with only 174M parameters built over Florence-2 and DaViT, delivering strong performance near ColPali with much lower computational cost and much faster encoding.

## C ADDITIONAL ABLATIONS

### C.1 PERFORMANCE AGAINST OFF-THE-SHELF DUAL ENCODER

We study whether using *off-the-shelf* performances of the standalone vision tower are not outweighing the burden of adding language parameters and re-training through language modeling, as proposed in our work. Figure 7 shows the results of the various models on the tasks described in Section 2. Similarly to Section 3.1, we observe that the early fusion model trained with LM objective significantly outperform the standalone vision tower on document retrieval tasks (+10.9 nDCG@5). It even surpass the larger dual encoder (+4.8 nDCG@5) on these latest tasks. We note that the standalone vision tower largely outperform the early fusion models on the other natural images tasks, supporting for the use of the SigLIP model for these tasks as found in various general benchmarks (Xiao et al., 2025a).

### C.2 SCALING DYNAMICS OF ATTENTION MASKS

We study the different training dynamics of the different training objectives. We compare the `enc` (MLM) approach with a traditional `dec` (CLM) objective. Figure 8 presents the performance of the two training objectives across a diverse set of tasks. While starting `dec` offers an advantage in low-data regimes, `enc` seems to catch up. In document retrieval tasks, it eventually surpasses `dec` and scales better.

### C.3 BRIDGING THE GAP WITH LONGER CONTRASTIVE TRAINING

We study the impact of additional in-distribution training pairs on embedding tasks by scaling the contrastive training stage. Starting from the final checkpoint of our encoder-based ablation model,



Figure 8: **Attention masks impact on modality alignment phase scaling.** The dashed line marks the vision tower baseline. The orange curve shows the model initialized from a decoder LM with a *CLM* objective, and the blue curve shows the model trained with an *MLM* objective from an encoder LM. CLM performs better in low-data regimes, but MLM scales more effectively, surpassing CLM in document retrieval, while captioning and classification remain below the CLIP baseline.

we double the contrastive dataset size at each step and train until convergence<sup>14</sup>. This setup tests whether scaling continues to improve performance. Figure 9 shows the scaling behavior. Performance improves overall with more in-distribution data. The vision-tower baseline is quickly surpassed on visual document benchmarks, and scaling narrows the gap on other tasks<sup>15</sup>. We note a plateau in captioning and classification, pointing to the need for more diverse data.



Figure 9: Contrastive training scaling. Each dot on the blue curve represents one fraction of the baseline contrastive training mix (ColPali + MSCOCO). Performance improves with more in-distribution data, surpassing the baseline on document benchmarks and narrowing the gap on image captioning. There is no clear improvement in image classification, highlighting the need for more diverse pairs.

### C.3.1 OPTIMAL TEXT-TO-IMAGE RATIO FOR DOCUMENT RETRIEVAL

Our findings in subsection 3.2 indicate that incorporating additional text-only pairs boosts document retrieval performance. While our initial experiment employed a 1:1 text-to-image ratio, we further investigate how varying this ratio impacts our broad set of tasks. We start from the best contrastive mix in Table 2, and vary the text-to-image ratio. As shown in Figure 10, increasing the number of text-only pairs *for a fixed amount of image pairs* consistently enhances retrieval performance. However, for natural image classification tasks, adding more text does not appear to provide benefits.

<sup>14</sup>To avoid overfitting, we set an early stopping on an eval set. We limit the number of step to one epoch on the full dataset.

<sup>15</sup>Note that the models probably won't fully recover baseline vision-tower performance. This highlights the need to choose models according to use case (e.g., lightweight CLIP-like models for image classification).



Figure 10: **Optimal text-to-image ratio in contrastive training mix.** Increasing the ratio in retrieval tasks consistently improves the performances.

#### C.4 LATE INTERACTION FOR NON-DOCUMENTAL RETRIEVAL

|                                          | Model Size | Document Retrieval |            | Image/Caption Retrieval |                 | Average     |
|------------------------------------------|------------|--------------------|------------|-------------------------|-----------------|-------------|
|                                          |            | ViDoRe(v1)         | ViDoRe(v2) | MSCOCO (T→I)            | Flickr30k (T→I) |             |
| <i>CLIP Encoders</i>                     |            |                    |            |                         |                 |             |
| siglip2-base-patch16-512                 | 376M       | 36.6               | 23.4       | 66.2                    | 86.9            | 53.3        |
| siglip2-large-patch16-512                | 882M       | 43.8               | 27.0       | 67.1                    | 88.9            | 56.7        |
| clip-vit-base-patch16                    | 151M       | 25.5               | 20.4       | 50.3                    | 76.8            | 43.3        |
| clip-vit-large-patch14                   | 428M       | 38.0               | 28.6       | 52.7                    | 79.3            | 49.6        |
| <i>VLM-based Encoders</i>                |            |                    |            |                         |                 |             |
| VLM2Vec-Full                             | 4150M      | 49.8               | 36.5       | 59.5                    | 81.8            | 56.9        |
| e5-v                                     | 8360M      | 62.7               | 49.4       | 68.1                    | 89.8            | 67.5        |
| <i>Early Fusion Encoders</i>             |            |                    |            |                         |                 |             |
| bge-visualized-base                      | 196M       | 10.3               | 9.0        | 50.0                    | 74.1            | 35.9        |
| bge-visualized-m3                        | 873M       | 12.4               | 10.2       | 39.6                    | 69.0            | 32.8        |
| <b>Modern VBERT-embed</b>                | 252M       | 58.4               | 36.9       | 56.5                    | 76.0            | 56.9        |
| <b>Modern VBERT-embed (multi-vector)</b> | 252M       | 76.5               | 53.9       | 61.8                    | 81.4            | <b>68.4</b> |

Table 8: **Generalist retrieval performances.** Late interaction benefits extend to non-documental retrieval tasks. Our multi-vector model increases its single-vector counterpart across all tasks, surpassing larger VLM-based retrievers.

We want to study if the multi-vector gains transfer to non-documental retrieval. To do so, we contrastively post-train our base model on our generalist post-training mix presented in Table 7. The late interaction generalist exhibits superior performance in retrieval setting, improving its single-vector performance by +20.2% (11.5 points), matching the performance of substantially larger VLM-based retrievers like E5-V (8.3B parameters, 67.5 points) and surpassing dual encoders like SigLIP (882M parameters, 56.7 points). This matches the capabilities observed in Section 3.1 for documental settings for models with native bidirectional attention, extending it to natural image tasks. This result extends the prevailing understanding from the document retrieval community, where the superiority of late-interaction is well-documented (Khattab & Zaharia (2020), Chaffin (2025), Faysse et al. (2025)). While this performance gap is widely accepted for document retrieval, its applicability to caption matching tasks has not really been addressed. Our findings provide strong evidence that the fine-grained matching capabilities of late-interaction models are a key driver of performance in this domain too.

1296  
1297

## C.4.1 MODEL MERGING

1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322

Our contrastive learning stage provides direct performance trade-offs on different tasks. Following recent trends, we evaluate how model merging techniques allow to mitigate performance degradation on specific tasks, while maintaining the performance enabled by the contrastive training (Sung et al., 2023; Dziadzio et al., 2024; Li et al., 2024; Zhang et al., 2025b). We merge our ablation model after modality alignment with the checkpoint after the full contrastive learning with two methods: SLERP (Ilharco et al., 2022) and average merging (Shoemaker, 1985). For SLERP, we compare three values for the  $\lambda$  coefficient (0.25, 0.5, 0.75). Figure 11 displays the the trends with the best method (SLERP,  $\lambda = 0.75$ ). As we can see, the merged model mitigates the performance drop in Image/Caption Retrieval tasks, while maintaining significant gains on Image Classification tasks. However, merging strongly degrades performance on Document Retrieval, showing that benefits of merging embedding models are task-dependent.



1323

Figure 11: Merging model results across tasks. Benefits are task-dependent, with performance degradation w.r.t. both original models in Document Retrieval.

1324  
1325  
1326

## C.4.2 CURRICULUM FOR DOCUMENT RETRIEVER CONTRASTIVE POST-TRAINING

1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343

We conduct an ablation study to determine the optimal contrastive training curriculum for specializing *ModernVBERT* in document retrieval. Specifically, we investigate whether a preliminary generalist contrastive training phase, intended to leverage a larger dataset, improves downstream performance. As shown in Table 9, our results demonstrate that this initial generalist phase is detrimental to final performance ( $-0.5\%$ ). The optimal strategy is to specialize the model on the target task directly after its initial Masked Language Modeling (MLM) alignment.

1344  
1345  
1346  
1347  
1348  
1349

## C.5 TEXT-ONLY RETRIEVAL

The results in Table 10 detail the performance of *ColModernVBERT* and other baselines on the NanoBEIR text retrieval benchmark. It achieves an average NDCG@5 score competitive with single and multi vector models specialized for text, even without explicit optimization for this modality. This performance

|                                                                    | ViDoRe(v1)  | ViDoRe(v2)  | Average     |
|--------------------------------------------------------------------|-------------|-------------|-------------|
| <i>Document retrieval contrastive training starting checkpoint</i> |             |             |             |
| <i>ModernVBERT</i> -base                                           | <b>81.2</b> | <b>56.0</b> | <b>68.6</b> |
| + multi-vector generalist CL                                       | 80.7        | 55.4        | 68.1        |
| + single-vector generalist CL                                      | 80.6        | 54.0        | 67.3        |

Table 9: **Performance of *ModernVBERT* Document Specialisation Curriculums.** This table presents the performance of various contrastive training curriculums starting from *ModernVBERT*-base, on the ViDoRe(v1) and ViDoRe(v2) benchmarks. The generalist contrastive learning mix used in the last two models is detailed in Table 7. We see that a preliminary stage of generalist contrastive learning harms the final document retrieval performance, regardless of whether a multi-vector approach is used.

| Model                        | Params (M) | NDCG@5 |
|------------------------------|------------|--------|
| <b>Statistical</b>           |            |        |
| BM25s                        | —          | 0.559  |
| <b>Single Vector</b>         |            |        |
| Jina Embeddings v4           | 3577*      | 0.623  |
| E5-large-v2                  | 335        | 0.605  |
| bge-m3 (Bi Encoder)          | 567        | 0.590  |
| Qwen3-Embedding-0.6B         | 600        | 0.567  |
| <b>Multi Vector</b>          |            |        |
| LightOn GTE-ModernColBERT v1 | 149        | 0.669  |
| Jina ColBERT v2              | 137        | 0.642  |
| bge-m3 (Late Interaction)    | 567        | 0.606  |
| ColBERT v2                   | 110        | 0.593  |
| Colqwen2-v1.0                | 1580*      | 0.593  |
| <i>ColModernVBERT</i>        | 150*       | 0.589  |
| Colqwen2.5-v0.2              | 3145*      | 0.589  |

Table 10: Average NDCG@5 of *ColModernVBERT* on NanoBEIR, a text retrieval benchmark with multiple sub domains. \*For multimodal models, we only consider parameters of the text encoder

is encouraging and indicates a promising direction for training a unified model for both text and image retrieval.

## C.6 MODEL LATENCY

### C.6.1 IMAGE RESOLUTION TRADEOFFS

Figure 12 presents the pixel shuffling trade-off. Processing larger images creates more visual tokens, leading to very long sequences (around 17'500 tokens for a 2048x2048 px image with no pixel shuffling). Pixel shuffling allow to compress these sequence by concatenating the embeddings of spatially close patches. This diminishes the number of tokens for longer visual token embeddings. Table 11 presents the latency to process one image of various resolutions on one L4 GPU and CPU.



Figure 12: **Image processing parameters impact on visual tokens.** Here we assume a square image for simplicity. Scaling the image size introduces naturally more tokens, but having a large enough pixel shuffling ratio ( $r \geq 4$ ) allows to counterbalance by concatenating spatially close patch representations.

|        | Num. Visual Tokens | CPU Latency (ms)     | GPU Latency (ms)   |
|--------|--------------------|----------------------|--------------------|
| 512px  | 128                | 287.2( $\pm 7.8$ )   | 43.6( $\pm 1.4$ )  |
| 1024px | 320                | 1015.8( $\pm 58.1$ ) | 150.3( $\pm 2.5$ ) |
| 2048px | 1088               | 2572.0( $\pm 63.9$ ) | 363.4( $\pm 4.6$ ) |

Table 11: **ModernVBERT image processing latency**. Computing the average time to process a single image on GPU and CPU. The average is computed on 100 images. The values represent the mean latency in milliseconds, with the standard deviation included in parenthesis.

|                              | Late Interaction | Model Size (B) | CPU Latency (ms) | GPU Latency (ms) | GPU Batching (ms) |
|------------------------------|------------------|----------------|------------------|------------------|-------------------|
| $\geq 1B$ Parameters         |                  |                |                  |                  |                   |
| MoCa-3B                      |                  | 3.75           | 158( $\pm 147$ ) | 26( $\pm 3$ )    | 4.54              |
| VLM2Vec                      |                  | 4.15           | 211( $\pm 253$ ) | 21( $\pm 3$ )    | 2.82              |
| GME-Qwen2-7B                 |                  | 8.29           | 412( $\pm 411$ ) | 25( $\pm 1$ )    | 9.07              |
| E5-V                         |                  | 8.36           | 434( $\pm 379$ ) | 22( $\pm 2$ )    | 9.55              |
| ColPali                      | ✓                | 2.92           | 175( $\pm 113$ ) | 14( $\pm 1$ )    | 3.07              |
| ColQwen2.5                   | ✓                | 3.75           | 158( $\pm 147$ ) | 26( $\pm 2$ )    | 26                |
| Jina-v4                      | ✓                | 3.75           | 158( $\pm 147$ ) | 26( $\pm 2$ )    | 4.54              |
| NemoRetriever-3B             | ✓                | 4.40           | 155( $\pm 118$ ) | 20( $\pm 2$ )    | 4.59              |
| $\leq 1B$ Parameters         |                  |                |                  |                  |                   |
| Jina CLIP                    |                  | .22            | 14( $\pm 7$ )    | 6( $\pm 2$ )     | .69               |
| BGE Visualized M3            |                  | .87            | 38( $\pm 42$ )   | 10( $\pm 2$ )    | .77               |
| SigLIP2-L-512/16             |                  | .88            | 25( $\pm 8$ )    | 6( $\pm 1$ )     | .10               |
| ColFlor                      | ✓                | .17            | 17( $\pm 9$ )    | 8( $\pm 2$ )     | .31               |
| <i>BiModernVBERT</i> (ours)  |                  | .25            | 20( $\pm 11$ )   | 14( $\pm 2$ )    | .20               |
| <i>ColModernVBERT</i> (ours) | ✓                | .25            | 20( $\pm 11$ )   | 14( $\pm 2$ )    | .20               |

Table 12: **Text query encoding latency**. The latency is computed both on high-end CPUs (1TB RAM, 128 cores) and GPU (Nvidia H100, 80GB) (mean  $\pm$  std). Since only 649 queries are used, standard deviations are not reported in GPU batching mode (batches of 512 queries by default), for which we report the inverse throughput (average latency per batch divided by the batch size).

#### C.6.2 ONLINE QUERY ENCODING LATENCY

We evaluate the query embedding speed of our model on GPU. We use a single Nvidia H100 with 80GB of VRAM. As for Section 4.2, latencies are computed in batch size 1 to simulate online situations, and are averaged over all NanoBEIR queries. Only the text parameters are loaded and run, to minimize memory usage. Parameters are cast to bfloat16 and Flash Attention 2 is used. The resulting speeds are often much faster than those obtained by running inference through each model’s reference implementation. Results are shown in Table 12). Interestingly in this setup where memory is not a bottleneck, model depth seems to be a large performance driver, sometimes more the parameter count. We finally evaluate batched GPU throughput. We use batches of size 512 by default and iteratively half it when memory is insufficient. We observe that *ModernVBERT* based models are extremely fast and can process 5000 queries per second. In the table, the reported figures correspond to the inverted throughput (latency per batch divided by the number of queries per batch). These speed and throughput gains are made possible due to a combination of size, and efficient hardware-informed design as well as the support of flash attention and sequence packing other models of the size often lack (Warner et al., 2024b).

1458  
1459***NatCap Annotation Prompt***1460  
1461

You are an image annotator expert.

1462  
1463

You will receive an image along with its classification label and the classification task scope, and your task is to provide contextualized metadata about it.

1464  
1465

The output should be a JSON object with the following metadata fields:

1466  
1467

- **`caption`**: A descriptive caption of the image accounting for its label. This should be a **unique** and concise sentence that describes the image in detail.
- **`class_tags`**: A list of tags that represents the image and can help identify the class. (e.g., for a car image with its model as a class, this could be some specific attribute of the car)
- **`other_tags`**: A list of tags that represents the image but can help identify the image among others of the same class. (e.g., for a car image with its model as a class, this could be its color or the background of the image)
- **`is_image_class_explicit`**: Boolean, could the class be inferred from the image alone? (e.g., the class is a country and you cannot necessarily infer it from the image alone, so this would be `false`)

1471  
1472

Please ensure that the output is in valid JSON format.

1473  
1474**Example:**1475  
1476

You receive an image of what is clearly a car with its model as a class (here Audi TTS coupe 2012) for a car model classification task.

1477  
1478

The output could be a JSON object like this:

1479  
1480

```
{
  "caption": "A red Audi TTS coupe 2012 car parked on a sunny street
              in front of a sport shop.",
  "class_tags": ["sport coupe", "four door coupe", "17'' alloy wheels"],
  "other_tags": ["sunny street", "parked", "red", "sport shop"],
  "is_image_class_explicit": true
}
```

1481  
1482

Classification scope: {task\_info}

1483  
1484

Image label: {label}

1485  
1486

Answer:

1487  
14881489  
14901491  
14921493  
14941495  
14961497  
14981499  
15001501  
15021503  
15041505  
15061507  
15081509  
1510

1511