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ABSTRACT

Retrieving specific information from a large corpus of documents is a widely
prevalent industrial use case of modern AI, notably due to the popularity of
Retrieval-Augmented Generation (RAG) systems. Although neural document re-
trieval models have historically operated exclusively in the text space, Visual Doc-
ument Retrieval (VDR) models – large vision–language decoders repurposed as
embedding models which directly work with page screenshots as inputs – are
increasingly popular due to the performance and indexing latency gains they of-
fer. In this work, we show that, while cost-efficient, this approach of repurposing
generative models bottlenecks retrieval performance. Through controlled experi-
ments, we revisit the entire training pipeline, and establish a principled recipe for
improving visual document retrieval models. We notably measure the impact of
attention masking, image resolution, modality alignment data regimes, and late
interaction centered contrastive objectives which emerge as central performance
factors. Building on these insights, we release ModernVBERT , a compact 250M-
parameter vision–language encoder that outperforms recent models up to 10 times
larger when fine-tuned on document retrieval tasks, enabling efficient inference
on cheap CPU hardware and greatly reducing latency and costs while maintaining
strong performance. Models, code and data are available in the public version of
this work under an open license.

1 INTRODUCTION
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Figure 1: Pareto efficiency. ColModernVBERT out-
performs models in its category on ViDoRe, achiev-
ing a leading performance-size tradeoff.

The ability to quickly locate specific infor-
mation in vast document collections is a
core building block of digital systems to-
day, supporting use cases that range from
web search and virtual assistants to enter-
prise knowledge management. Neural infor-
mation retrieval (IR) models, and in particu-
lar dense retrievers, have become the de facto
backbone of modern search systems thanks
to their strong semantic matching capabili-
ties and good scalability properties (Reimers
& Gurevych, 2019; Karpukhin et al., 2020;
Wang et al., 2022).

This trend is amplified by the widespread
adoption of Retrieval-Augmented Genera-
tion (RAG) (Lewis et al., 2020), where a re-
triever is used to select a small set of rele-
vant documents that condition a downstream
generator. In such systems, the first-stage re-
trieval module is a well-known bottleneck:
its recall directly upper-bounds the quality of
the generated answers, while its latency and
indexing costs partially drive the overall system efficiency (Lin & Byrne, 2022). As a result, im-
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proving document retrieval, especially for long, complex files such as PDFs, scientific articles, and
reports, is a key lever for making industrial RAG deployments more accurate and cost-effective.

Visual Document Retrieval. Historically, document retrieval in these settings has operated purely
in the text space. To index PDFs or scans, practitioners first run heavy preprocessing pipelines that
include Optical Character Recognition (OCR), layout analysis, and heuristic passage segmentation,
before embedding the resulting text spans with a neural encoder. This approach suffers from sev-
eral limitations: OCR and layout parsing can be brittle and slow, complex visual elements such as
tables, figures, and typography are often poorly captured, and any error or bias introduced during
preprocessing is propagated to the retriever.

Visual Document Retrieval (VDR) has emerged as a compelling alternative to such text-based sys-
tems. Rather than indexing pre-extracted textual content, VDR models directly operate on page
screenshots: given a user query, they retrieve relevant document pages by matching the query against
image-based representations of the pages (Faysse et al., 2025). By bypassing OCR and layout pars-
ing, VDR yields simpler end-to-end pipelines, significantly reduces indexing latency, and better ex-
ploits visual cues such as layout, figures, and fonts, while achieving strong performance on visually
rich benchmarks like ViDoRe.

Limits of Generative VLM Repurposing. Most current VDR systems are obtained by repur-
posing large generative vision–language decoders (Alayrac et al., 2022) as retrieval encoders via
post-hoc contrastive fine-tuning (Ma et al., 2024; Faysse et al., 2025; Jiang et al., 2025). While cost-
efficient, this design choice bottlenecks retrieval performance and efficiency: model sizes, attention
patterns, image resolutions, and training objectives are designed for generative use cases rather than
optimized for retrieval which has been shown in text models to be suboptimal (Lee et al., 2025;
Gisserot-Boukhlef et al., 2025). Furthermore, scaling trends (Wei et al., 2022) are less pronounced
for embedding models; while correlated with model size, strong retrieval performance remains at-
tainable with small models (Clavié, 2024).

Recent papers and model releases in the visual retrieval space have claimed performance improve-
ments by scaling the amount of contrastive data and the compute budget (Zhang et al., 2025a; Xu
et al., 2025), modifying the attention mask (Chen et al., 2025), increasing image resolutions (Cohere,
2024) or by introducing more diverse tasks and data sources (Jiang et al., 2025).

In this work, we attempt to centralize these efforts and systematically disentangle the impact of
core design decisions in visual retriever training. Through controlled experiments—ranging from
language model pretraining to multi-stage, domain-specific fine-tuning, we aim to answer a central
question:

Which design choices best boost performance in modern visual document retrievers?

Contribution 1. We revisit core assumptions in visual retriever design, showing that token-level
training objectives benefit retrievers by strengthening image–text token alignment—rather than
merely producing stronger image embeddings. Our results indicate that causal attention is subopti-
mal in document retrieval, with bidirectional masking offering clear improvements in multi-vector
settings, and that other parameters such as image resolution data mixes should not be overlooked in
the training pipeline.

Contribution 2: ModernVBERT. Building on these insights, we release ModernVBERT , a small
250M multimodal encoder that aligns a pretrained language encoder with a vision encoder through
Masked Language Modeling (MLM) objective, and ColModernVBERT a variant fine-tuned for doc-
ument retrieval. Despite its modest size and limited training budget, ColModernVBERT matches
models 10x larger on standard visual document retrieval benchmarks, demonstrating the interest
of designing a retrieval focused model from the ground up. We release the model, intermediate
checkpoints, and the training code in the public version of the paper.

2 METHODOLOGY

Our analysis aims at quantifying the impact of design decisions made when training visual retriev-
ers. In opposition to previous work, we begin our analysis as early as language model modality

2
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Figure 2: MLM-based early fusion architecture. The visual encoder produces patch representa-
tions, which are passed to a language model. Our end-to-end bidirectional attention fused architec-
ture is trained with Masked Language Modeling objectives and is perfectly suited for sequence and
token-level representation tasks.

alignment and iteratively study design choices by modifying design choices independently to re-
duce confounding factors as much as possible (Allen-Zhu & Li, 2025).

Controlled Experimental Setup. A central point of interest is the impact of causal and bidirec-
tional attention masks. While recently studied for textual representation applications (Gisserot-
Boukhlef et al., 2025; Weller et al., 2025), we extend the experiment to the vision modality. We use
checkpoints released by Gisserot-Boukhlef et al. (2025) which consist in a series of identical 210M
parameter transformer models based on the Llama architecture (Touvron et al., 2023) trained on
100B tokens that differ only in their attention masking strategy during language model training but
that are perfectly identical in terms of training data seen, model size and architecture, learning rate
scheduling, etc... The checkpoints we use are enc a bidirectional encoder trained with Masked Lan-
guage Modeling (MLM), dec, a causal decoder trained with next token prediction, and dec-enc
a causal decoder annealed over the end of its textual training by removing the causal mask and
switching the training objective to MLM. For the vision tower, we employ the vision component of
siglip2-base-16b-512 (Tschannen et al., 2025), a 86M parameter vision transformer con-
trastively trained on billions of text-image pairs. All ablations thus stem from iso-data controlled
setups, and as further described, are further trained on the same data sequence, with the same batch
sizes, optimizers, schedulers and on the same hardware.

Model Architecture. Our analysis are not centered around model architectures and to draw broadly
applicable insights, we design vision-language models following current standard training practices.
In line with most recent work, we employ the early fusion architecture (Alayrac et al., 2022) illus-
trated in Figure 2, in which visual patch embeddings produced by the vision encoder are projected
into the language model input embedding space and concatenated with text token embeddings to
encourage joint processing (Li et al., 2022; Alayrac et al., 2022; Wang et al., 2024; Yang et al.,
2025; Marafioti et al., 2025). As described in subsection 2.1, we generalize the training loss to func-
tion both with causal and masked language modeling objectives. To handle dynamic resolutions, we
split large images into 512×512 pixel tiles as expected by the SigLIP encoder1. Following current
standard practices, we further process a downscaled version of the full image to improve inter-tile
consistency and global visual understanding (Lin et al., 2023; Ye et al., 2023). The vision tower
produces 1024 pixel patch representations for each tile2, which we compress to 64 tokens through
pixel shuffling (Shi et al., 2016) with a compression ratio r = 4, following prior work on models

1Images are downscaled (or upscaled) so that the lengths and widths reach a multiple of 512 pixels to
preserve the aspect ratio, padding is used on the smaller side when necessary (i.e. a 1024x1000 px image
would be padded to 1024x1024 px).

2The SigLIP tower takes 512x512 px images and process them by 16x16 px patches (Dosovitskiy et al.,
2020). This results in (512/16)2 = 1024 patches.
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of comparable size (Marafioti et al., 2025). We highlight the impact of image resolution and this
parameter on the number of visual tokens in Appendix C.6.1.

Training Procedure. Our experiments focus on retrieval performance. We employ a standard bipha-
sic training procedure, in which we first run modality alignment to train a pretrained textual language
model to understand visual inputs through language modeling objectives (Liu et al., 2023b) (sub-
section 2.1), then rely on a second text-image contrastive learning phase to learn efficient image
representations (Radford et al., 2021) (subsection 2.2). We further describe the general setup, and
detail specific modifications to the default training procedure in the experiment section.

2.1 MODALITY ALIGNMENT

We align the vision encoder tower with the language model by training the image embedding projec-
tion layer to map visual features into the language model embedding space. The pretrained language
model is also fine-tuned with Low-Rank Adapters (LoRA) (Hu et al., 2021), allowing both image and
text models to adapt jointly while reducing the risk of monomodal performance collapse (Alayrac
et al., 2022; Liu et al., 2023b; Laurençon et al., 2024c; McKinzie et al., 2024; Marafioti et al., 2025).

Alignment Loss. For decoder-based models, we train with Causal Language Modeling (CLM) loss
on the text tokens, as standardly done in VLM modality alignment:

LCLM = −
T∑

t=1

logPθ

(
xt | x<t

)
, (1)

where x<t denotes all tokens preceding position t. We generalize this training scheme to bidirec-
tional encoders models, by using the Masked Language Modeling (MLM) loss on the textual tokens:

LMLM = −
∑
t∈M

logPθ

(
xt | x\M

)
, (2)

where M is the set of masked token positions and x\M is the input with those tokens masked out.

Modality Alignment Corpus. Models are modality aligned on a large corpus in large parts de-
rived from The Cauldron 2 (Laurençon et al., 2024c) and Docmatix (Laurençon et al., 2024a). Our
objective being to train document focused retrieval models, we use an adjusted training mixture
that upsamples images containing text and documents with varying level of complexities. Our final
training corpus consists of approximately 2B text tokens, and includes diverse sources such as web
pages, books, and scientific papers. Mixture details are given in Appendix A.3.1. We note that con-
trolling the exact data distribution during this phase enables the models we train to specialize early
and achieve good document focused downstream performances which many large models struggle
with (Liu et al., 2023a).

Parameters. All models are trained using a masking ratio of 0.5 and user-prompt masking to avoid
overfitting on chat-template format (Huerta-Enochian & Ko, 2024; Shi et al., 2024; Allal et al.,
2025). We employ WSD scheduler (Hu et al., 2024b) with the first 5% of the training as warmup,
the last 20% as decay and a maximum learning rate of 1e-4. The ablation models are aligned on
3.5B tokens. We provide additional details on the training setup in Appendix A.1.

2.2 CONTRASTIVE POST-TRAINING

Once the language model has learned to process image tokens jointly with text tokens, we specialize
models through a contrastive post-training stage designed to enhance the semantic representation of
the output embeddings produced by the model (Reimers & Gurevych, 2019).

Post-training Pairs. The post-training dataset used as starting point in our ablations comprises
118k document-query pairs from the ColPali corpus Faysse et al. (2025) as well as another 118k of
natural image-description pairs from the MSCOCO train set (Lin et al., 2015).

Contrastive Loss. We employ the InfoNCE loss (van den Oord et al., 2019), defined as

LInfoNCE(q,d
+) = − log

Φ(q,d+)

Φ(q,d+) +
∑

d−∈Nq
Φ(q,d−)

, (3)
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where d+ denotes the positive target for the query q, Nq = N in
q ∪ N hard

q the set of negative tar-
gets (in-batch and hard negatives when mentioned), and Φ(q,d) a similarity function between the
token(s) of the query and the documents.3. For general-domain post-training we compute the loss
symmetrically (Radford et al., 2021).

Batches Curation. In contrastive learning, batch diversity critically impacts retrieval entropy.
Overly heterogeneous batches lead to trivial retrievals, while curated batches yield richer training
signals. We employ task-aware batching (Li et al., 2023), grouping documents by source to ensure
a homogeneous batch composition.

2.3 ABLATION EVALUATION SETUP

The contrastively trained models are evaluated on retrieval and zero-shot classification tasks across
multiple domains. Although the main focus remains document retrieval capabilities, evaluated by
aggregating scores from the ViDoRe and ViDoRe v24 (Macé et al., 2025) benchmarks (nDCG@5),
we also assess more generalist image retrieval capabilities by selecting tasks from MIEB (Xiao
et al., 2025a). For natural image retrieval, we aggregate MSCOCO retrieval (Lin et al., 2015)
and Flickr30k retrieval (nDCG@10) (Plummer et al., 2016) test sets. Finally, following practices
in (Muennighoff et al., 2022), we assess both zero-shot and fine-tuning abilities of our models on
general classification tasks. Specifically, we measure classification accuracy by fine-tuning a logis-
tic regression head on top of our model’s embedding on Stanford Cars (Krause et al., 2013) and
Food101 (Bossard et al., 2014), and we evaluate zero-shot performance on FER2013 (Khaireddin &
Chen, 2021) and EuroSAT (Helber et al., 2019) and aggregate the results.

3 WHAT MAKES A GREAT VISUAL RETRIEVER?

Document
Retrieval

Image/Caption
Retrieval

Image
Classification

0

20

40

60

80

S
co

re 43.8

57.6

33.9

42.2

58.0

36.337.7

76.8
71.0

43.0

79.0
74.1

enc dec SigLIP2-FT SigLIP2-FT (Large)

Figure 3: Impact of Modality Alignment objec-
tive on downstream tasks. Early Fusion of vision
and text models boosts document retrieval tasks
regardless of the LM objective, but degrades nat-
ural image and classification tasks w.r.t. the stan-
dalone fine-tuned vision model SigLIP. Reported
scores are aggregated MIEB scores (nDCG, Ac-
curacy.)

Vision-language retrievers built upon existing
generative VLMs often inherit design choices
and weights that may not be well suited for
all embedding tasks. Here, we analyze these
critical design choices hoping to derive clear
insights for developing efficient visual retriev-
ers. Importantly, although we assess design
decisions at different stages of the training
pipelines, evaluation are always done end-to-
end on the final evaluation signal.

3.1 MODALITY ALIGNMENT DESIGN

Language modeling Modality Alignment im-
proves document understanding. Accord-
ing to benchmarks such as MIEB (Xiao et al.,
2025a), dual encoder models explicitly trained
on contrastive image-text tasks outperform re-
purposed VLMs in natural image classifica-
tion tasks. To assess this, we train an encoder
and a decoder vision-language model using the
methodology described in section 2 on a mix of natural image and document data (alignment and
contrastive training). We compare them with SigLIP2-FT, the 378M dual vision encoder model
whose vision component is used by the vision tower of both VLMs, and with the larger SigLIP2-
FT Large (881M parameters). Both SigLIP-FT models are finetuned in the same conditions as the
VLMs, and initialized from pre-trained weights from scratch on billions of text-image pairs. 5. As
shown in Figure 3, the two early fusion VLM variants severely underperform the SigLIP2-FT dual

3We use the last (EOS) token for causal models, and mean pool all sequence tokens for bidirectional en-
coders for single-vector models. Alternatively, we use all document and query tokens without pooling for late
interaction matching (Faysse et al., 2025). Details in Appendix A.2

4We report only the English splits of ViDoRe v2, as our base models are trained on English data only.
5We report the performance of the untrained off-the-shelf SigLIP in Appendix C.1
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Figure 4: Modality alignment scaling of early fusion encoders for up to 1 epoch (3.5B tokens)
of data. The dashed line indicates the vision encoder evaluated standalone without further training.
Our findings show that retrieval tasks benefits from extended modality alignment phase, particularly
in document retrieval, where performance quickly surpasses that of the standalone vision encoder.

encoders on natural image tasks. In contrast, they achieve significant gains on document retrieval
tasks (+6.1 nDCG@5 on ViDoRe and ViDoRe v2 datasets w.r.t. base), even edging out SigLIP2-FT
Large that contains 3.5x vision parameters more than both VLMs.

This confirms large-scale contrastive training remains best for high-level image representation tasks
(natural images), but sequentially combining a vision model with a pretrained language model fa-
cilitates document representation tasks, even with significantly less contrastive post-training. As
the rest of this paper shows, steering away from the dual encoder architecture further enables im-
proving performance through many avenues other than text to image contrastive training, for which
supervised training samples can be hard to obtain.

Scaling the modality alignment phase for better token representations. Prior work shows that
scaling the modality alignment phase of VLMs improves their generative abilities (Beyer et al.,
2024; McKinzie et al., 2024; Wang et al., 2024). We test whether similar gains hold in retrieval
by contrastively fine-tuning enc checkpoints during MLM modality alignment. Figure 4 illustrates
the results of post-trained checkpoints on diverse tasks. Although document retrieval improves
consistently with more modality alignment data – largely surpassing the vision tower evaluated in
isolation and showing clear scaling benefits – natural image tasks plateau past 1B tokens, far from
the standalone dual encoder baseline. This shows that document and natural image retrieval leverage
different mechanisms and should not be optimized the same way. Document Retrieval benefits from
learning fine-grained interactions between image and text tokens through the language model, while
the LM has limited utility for high level natural image tasks.

Bidirectional attention fully unlocks Late Interaction. Inspired by the effectiveness of bidirec-
tional attention in text-only retrieval (Gisserot-Boukhlef et al., 2025; Weller et al., 2025)6, we in-
vestigate if it surpasses causal attention in visual document retrieval, particularly when using the
multi-vector late interaction matching common in SOTA visual retrievers (Khattab & Zaharia, 2020;
Faysse et al., 2025). Figure 5 reports single vector and late interaction results on the ViDoRe bench-
mark for various model variants. On top of the standard enc (MLM) and dec (CLM) models, we
evaluate the dec-enc and the dec models modality aligned with MLM objectives to determine
whether bidirectional attention capabilities can be obtained in later stages of training.

Single-vector embedding results are close between bidirectional and causal attention models for
document retrieval, with enc slightly outperforming dec by +1.6 nDCG@5.

Intuitively however, bidirectional attention makes a huge difference when used in late interaction
settings, substantially exceeding the causal counterpart by +10.6 nDCG@5. Causal decoders are
incapable of correctly contextualizing image or text token representations seen at the beginning of
the sequences. This is a key result as almost all current visual retrievers, including late interaction
variants, are causal models, clearly indicating some performance is left on the table.

6Chen et al. (2025) investigate post-hoc removal of the attention mask during visual retrieval fine-tuning.
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Figure 5: Impact of attention masks
and training objectives on document re-
trieval performances. We report the average
nDCG@5 on English splits of ViDoRe bench-
marks for models post-trained on ColPali.
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512px ✗ 30.7 58.8 41.4 43.6
1024px ✗ 42.2 58.9 37.2 46.1
2048px ✗ 43.8 57.6 33.9 45.1
2048px ✓ 45.8 57.8 33.7 45.8

Table 1: Effect of image resolution on VL
encoder abilities. Document retrieval per-
formance increases with higher image resolu-
tion. Further annealing the encoder on high-
resolution images (HR Cooldown) at the end
of modality alignment yields additional gains.
By contrast, for non-document tasks, raising the
resolution tends to degrade performance.

Removing the causal attention mask during training does not suffice to recover the enc late interac-
tion performance at these data regimes. This indicates converting trained decoders as late interaction
retrievers is highly non trivial, and confirms the insights from Weller et al. (2025); when possible,
training encoder models from scratch remain better for retrieval tasks.

3.2 CONTRASTIVE TRAINING DESIGN

The previous subsection established bidirectional encoder models to often be the best option when
training visual retrievers. In the following experiments, we assess contrastive training choices and
only report results for the encoder model for simplicity.

Image resolution benefits are task-specific. Image resolution plays a critical role in VLM gener-
ative capabilities, notably in document-focused tasks, as higher-resolution inputs enables the model
to capture finer visual cues (Hu et al., 2024a; Marafioti et al., 2025). Modality alignment is done at a
fixed image resolution of 1024 pixels (longer side) and we report scores of contrastive training runs
with varying settings in Table 1. To vary the resolution, images of the highest quality available are
scaled to the desired size (often downscaled) before being fed to the image tokenizer. Our findings
confirm that embedding tasks are strongly sensitive to image-resolution. In particular, training with
higher resolution inputs substantially improves the results on visual document retrieval benchmarks,
consistent with prior work in generative settings Beyer et al. (2024); McKinzie et al. (2024). Fur-
thermore, adding a cool-down phase by showing higher-resolution images towards the end of the
modality alignment phase yields additional gains. This suggests that models can adapt their atten-
tion mechanisms to finer details when exposed to increased resolution. Interestingly, these findings
do not hold in natural image tasks, where high resolution can even degrade performance.

Document Retrieval Image/Caption Retrieval Image Classification Average

Baseline CL Mix 43.9 57.2 36.1 45.7
+ Text→Text Pairs 45.6 53.2 35.7 44.8
+ Image→Caption Pairs 45.8 54.4 49.9 50.0

Table 2: Impact of contrastive training mixtures on downstream tasks. Incorporating text-only
pairs improves performance on document retrieval, but degrades other performances. Adding natural
images-captions pairs substantially enhances performance on classification tasks.
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Increasing the pool of contrastive pairs. A severe limitation that current visual retrievers face is
the lack of large volumes of high quality (document image, query pairs). Previous work (Ma et al.,
2024; Faysse et al., 2025; Jiang et al., 2025; Zhang et al., 2025a) has relied on a mix of repurposed
existing visual question answering datasets and synthetically generated queries with external LLMs.
Even put together however, the field is only a year old, and these datasets remain small in size and
often of poor quality.

A central question in our study is whether the abundance of text-only query–document pairs can
be exploited to improve visual retrieval via cross-modal capability transfer. To probe this, we run
contrastive training under three regimes. Unlike prior work that “warms up” visual retrievers or
trains exclusively with text-only pairs (Ma et al., 2024; Jiang et al., 2024), we interleave text-only
pairs and text–image pairs throughout training at a 1:1 ratio. The dataset sources are detailed in
Appendix A.3.3

As reported in Table 2, incorporating text-only pairs yields a sizeable improvement on visual doc-
ument retrieval (+1.7 NDCG@5), indicating clear cross-modal transfer—likely facilitated by the
backbone’s jointly learned text–image embedding space. This result suggests that domain-specific
training corpora can be assembled irrespective of native modality, reducing duplication of effort and
lowering data-collection costs.

We further evaluate training with NatCap, a corpus of natural images paired with synthetic, highly
detailed captions (see Appendix A.3.2). This scaling step improves downstream performance across
the board—most notably on natural-image tasks, and with a smaller but consistent gain on document
retrieval (+0.2 NDCG@5). Together, these findings underscore the importance of scaling contrastive
learning with high-quality data, but which doesn’t need to be exclusively image document focused.

4 BUILDING A SMALL YET MIGHTY VISUAL RETRIEVER.

4.1 TRAINING.

Recipe. Putting together the results from our experiments, we devise a training recipe for a small
visual document retriever ModernVBERT . It combines a state-of-the-art 150M text bidirectional en-
coder (Weller et al., 2025) with the ModernBERT architecture (Warner et al., 2024a) and a small
vision encoder SigLIP2-16B-512 of 100M parameters (Tschannen et al., 2025). We modality align
both models with a MLM objective for 10B tokens, 3 times longer than during our experiments. To
boost document understanding, we augment the input image resolution from 1024px to 2048px dur-
ing a modality alignment cooldown stage (2B tokens). We call the resulting model ModernVBERT .
Following the findings of Section 3.2, we then scale the contrastive training mix from previous ex-
periments to combine document–query pairs with text-only pairs, and use 1 hard negatives for each
document-query pair and 2 for each text-only pairs. We opt for a 2/1 text-to-image ratio following
our ablation results introduced in Appendix C.3.1. This results in ColModernVBERT , a compact
late interaction model. For reference, we also train BiModernVBERT , a single vector variant. More
training details are provided in Appendix A.1.

4.2 RESULTS.

ColModernVBERT. The resulting model, ColModernVBERT showcases strong performances on
visual document retrieval benchmarks, especially relative to its size category (Figure 1). Despite
having over 10 times less parameters than models such as ColPali released only a year ago, it is only
0.6 nDCG@5 points below on the aggregated ViDoRe benchmark scores (Table 3). It also edges
many larger single-vector repurposed VLM models released within the year (Chen et al., 2025; Jiang
et al., 2024; 2025). It however falls short of top model performance on ViDoRe which are built on
larger decoder VLMs pretrained and aligned on billions of tokens of text and image data.

Most sub-1B parameter models evaluated on document retrieval benchmarks are dual encoder mod-
els, since early fusion generative models that perform well are not common at this scale. The most
related model is a 176M late interaction model, ColFlor (Masry & Hoque, 2024), trained from the
Florence2 model (Xiao et al., 2023). ColFlor is 12.7 nDCG@5 points under ColModernVBERT .
ColModernVBERT also largely outperforms off-the-shelf dual encoders, even when those have sub-
stantially larger parameter counts. These results highlights the benefits of multi-phase training and
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≥ 1B Parameters
MoCa-3B (Chen et al., 2025) 3.75 80.1 53.8 66.9 158
VLM2Vec (Jiang et al., 2025) 4.15 49.8 36.5 43.1 211
GME-Qwen2 (Zhang et al., 2025a) 8.29 89.9 61.8 75.8 412
E5-V (Jiang et al., 2024) 8.36 62.7 49.4 56.1 434
ColPali (Faysse et al., 2025) ✓ 2.92 81.6 56.8 69.2 175
ColQwen2.5 (Faysse et al., 2025) ✓ 3.75 89.5 61.5 75.5 158
Jina-v4 (Günther et al., 2025) ✓ 3.75 90.4 60.1 75.2 158
NemoRetriever-3B (Xu et al., 2025) ✓ 4.40 91.0 66.3 78.7 155

≤ 1B Parameters
Jina CLIP∗ (Koukounas et al., 2024) 0.22 17.6 14.0 15.8 14
BGE Visualized M3∗ (Zhou et al., 2024) 0.87 12.4 10.2 11.3 38
SigLIP2-L-512/16∗ (Tschannen et al., 2025) 0.88 43.8 27.0 35.4 25
ColFlor (Masry & Hoque, 2024) ✓ 0.17 68.8 43.0 55.9 17
BiModernVBERT (ours) 0.25 63.6 35.7 49.7 20
ColModernVBERT (ours) ✓ 0.25 81.2 56.0 68.6 20

Table 3: Performance on ViDoRe. Our model ColModernVBERT offers the best performance-
size tradeoff, significantly outperforming existing sub-1B models and matching the performance of
models up to 10x larger with substantially lower inference CPU latency Details and GPU latencies
in Appendix C.6.2. Models marked with ∗ are not specifically trained for VDR. Bold values indicate
the best performance amongst sub-1B models.

early fusion architectures for multi-modal document related tasks, even at smaller parameter counts.
We also attribute the strong performance of ColModernVBERT at smaller model sizes to the symbio-
sis of native bidirectional attention and Late Interaction matching, which largely boosts performance
relative to comparable decoder models (Section 3.1).

Speed. As noted by Xiao et al. (2025b), multi-vector visual retrievers are not bottlenecked in their
inference speed by the late interaction matching operation, but rather by the latency required to
encode queries with the text model. Our model demonstrates that strong performance is not incom-
patible with speed, even when running inference on consumer CPUs, which is the standard setting in
most industrial local deployments of text embedding models. Latencies are computed by averaging
query encoding times of all NanoBEIR queries, which are 23.4 word and 147.5 character long on
average, and are run with batch size 1 to replicate online use cases. To prevent RAM bottlenecks,
we benchmark on very high RAM (2TB) CPU cloud environments, but note models larger than 3B
parameter require more than 12 GB RAM to run optimally.7 (Table 3). ModernVBERT achieves
more than a 7x speedup on CPU over models with similar performances on ViDoRe. We further
report model latency results on GPU hardware in Appendix C.6.2. We notably demonstrate that
with batched inference, ModernVBERT based query encoders are able to encode 5000 queries per
second on Nvidia H100 GPUs. ModernVBert’s small model size also enables efficient batching
when encoding documents.

5 RELATED WORK

Repurposing VLMs for Representation Learning. Motivated by the zero-shot performances of
generative VLMs (Alayrac et al., 2022; Lucas Beyer* et al., 2024; Bai et al., 2023), recent studies
have explored repurposing these for multimodal embedding tasks (Ma et al., 2024; Faysse et al.,
2025; Jiang et al., 2025; Zhang et al., 2025a). As backbone generative models improved, retriever

7With more standard CPU RAM settings such as those found in low-end servers or Google Colab (12GB
RAM), models above 3B parameters must rely on memory offloading to run, which adds up to dozens of
seconds of latency per query.
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performance improved as well showcasing the central impact of language model pretraining and
modality alignment (Xu et al., 2025; Nussbaum et al., 2025). These model remain inherently con-
strained by their causal attention mechanisms which has been shown in text settings to limits repre-
sational efficiency (Gisserot-Boukhlef et al., 2025; Weller et al., 2025). Recent work attempts to
address this issue by modifying VLM attention during continual pretraining (Chen et al., 2025) or
contrastive tuning (Jiang et al., 2025; Xu et al., 2025), but no recent work attempts to align natively
bidirectional language encoder models with vision encoders. The recent release of long sequence
text encoders (Warner et al., 2024a; Boizard et al., 2025) makes this possible.

Late Interaction in Visual Document Retrieval To further boost performance, visual document
retrievers leverage the late interaction mechanism (Khattab & Zaharia, 2020) which matches multi-
ple query embeddings with multiple document embeddings through the MaxSim operation (Faysse
et al., 2025; Günther et al., 2025; Xu et al., 2025). This enables more granular interactions between
image and query tokens, at the cost of additional storage and a slight compute overhead during the
matching operation. Efficiency gains have come from improving the storage costs through quanti-
zation (Bergum, 2025), token pruning (Faysse et al., 2024) and more recently the use of Matrioshka
losses to compact multi-token representations (Xiao et al., 2025b). Ultimately, the performance bot-
tleneck when running visual retrieval inference with such models now resides mostly in the necessity
to rely on costly GPU hardware to encode queries, which sets apart text from vision retrieval. This
paper fills this gap by using encoders that run on CPU, of parameter sizes comparable to commonly
used local text embedding models (Chen et al., 2024; Enevoldsen et al., 2025).

6 CONCLUSION

In this paper we question design decisions of current VLM-based retriever models, providing cru-
cial insights into what matters when training early-fusion vision encoders. Our study notably shows
that these models generally do not improve retrieval on natural-image tasks compared to dual en-
coders, yet strong vision-language alignment is essential for document-centric retrieval. We uncover
a tight synergy between bidirectional attention and late-interaction retrieval, which underscores a
fundamental limitation of repurposing decoder-style generative VLMs for retrieval. To mitigate
data scarcity in contrastive learning, we propose augmenting limited image-document/text-query
pairs with larger, lower-cost corpora from other modalities. Guided by these insights, we trained
ColModernVBERT , a compact yet powerful 250M-parameter multimodal encoder that matches the
performance of models up to 10× larger on visual retrieval benchmarks. We release models and
training code to help practitioners reduce cost and latency when deploying visual retrievers in real-
world applications, and to encourage research on efficient multimodal embedding models.

Future Work & Limitations. By design, our analysis targets relatively small models. An important
next step is to test whether the observed patterns persist at larger scales—for example, to more rigor-
ously probe the interplay between late interaction and bidirectional attention. Our study also focuses
exclusively on English. While we expect the broad trends to generalize and see clear value in re-
leasing multilingual variants, it remains unclear how allocating parameters to additional languages
trades off against the understanding of the vision modality, and to what extent this penalizes En-
glish retrieval performance as the number of languages are scaled (Fernandes et al., 2023). Finally,
although we center on retrieval and sequence-level zero-shot classification, the modality-aligned en-
coder can be fine-tuned for a range of token-level tasks, including OCR error detection, token-level
classification, visual named entity recognition, visually grounded token-level object detection, con-
textual embeddings (Conti et al., 2025). We release our base model to encourage exploration of
these directions.

ETHICS STATEMENT

Environmental Costs. Training ColModernVBERTrequired approximately 2,000 H100 GPU-hours
in total, which we estimate corresponds to 41 kg of CO2

8, based on standard assumptions of GPU
power draw, datacenter efficiency, and grid carbon intensity. This estimate follows methodologies

8Carbon footprint estimated with Green Algorithms (Lannelongue et al., 2021): E = t × P ×
PUE, CO2e = E × CI. With t = 2000 GPUh, P = 0.35 kW (H100 PCIe), PUE = 1.3, and CI = 45
gCO2/kWh, this gives E ≈ 910 kWh and CO2e ≈ 41 kg.
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such as Green Algorithms (Lannelongue et al., 2021) and related analyses of the carbon footprint
of machine learning (Strubell et al., 2019; Patterson et al., 2021). Across the entire project, all
combined experiments totaled about 18k H100-hours. To mitigate costs and promote sustainable
research practices, we release all model checkpoints and training artifacts to facilitate reuse, exten-
sion, and reproducibility without necessitating retraining. Additionally, this work shows efficiency
gains with smaller models to aim to limit the inference costs of visual retrieval, and consequently re-
duce the environmental footprint. Our model performs query encoding efficiently on CPUs, keeping
inference costs low and reducing barriers to adoption.

Safety and Bias. From a safety perspective, our encoder-only retriever poses less risk than gener-
ative models: it produces fixed-length embeddings rather than free-form content, reducing avenues
for harmful content generation, hallucination, or deceptive outputs; nonetheless, retrieval systems
can still propagate biases present in the underlying data, which we address through dataset curation
open release.

AI Assistance. Parts of this paper were prepared with the assistance of an AI-based writing tool
used for copy editing and stylistic refinement. All generated text was carefully reviewed, verified,
and revised by the authors, who take full responsibility for the accuracy and originality of the final
manuscript.

REPRODUCIBILITY STATEMENT

For transparency and to foster future work, we release our training data, model checkpoints (base
models and adapters), and the complete codebase under the MIT License, as detailed in the main pa-
per and repository. The supplementary material specifies training configurations for all models (also
provided in the corresponding HuggingFace repositories), describes our synthetic data generation
process, and reports expanded evaluation results to support exact replication.
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A TRAINING

A.1 IMPLEMENTATION AND RESOURCES

Model Batch Size Learning Rate Training Steps Training GPU Hours

Modality Alignment
ModernVBERT-base (Table 5) 4096 1e-4 5500 1920h

Contrastive Learning
Generalist contrastive training (Table 7) 256 2e-4 3917 80h

Document Specialization
Document-focused contrastive training w/ hard negatives (Table 7) 64 2e-4 19602 160h

Table 4: Training details of our final models at each training stage. GPU Hours are on 80GB H100
GPUs.

We list hyperparameters and resource details in Table 4 for the various training stages of our final
models. We employ ZeRO stage 1 optimizer (Rajbhandari et al., 2020) for our modality alignment
runs. All ablation models are contrastively trained with gradient checkpointing (Chen et al., 2016)
to reduce memory usage. All training runs are performed with FlashAttention 2.0 (Dao, 2023). For
LoRA configurations, we consistently use a rank r of 32, lora alpha of 32, and a dropout of
0.1. For the implementation, we start from m49 and ColPali10 codebases for training, and use the
MTEB11 repository for evaluation.12

A.2 SIMILARITY FUNCTIONS

Single-Vector Similarity. For single-vector models, we apply mean pooling for MLM-aligned en-
coders and end-of-sequence (EOS) pooling for CLM-based models and compute the cosine similar-
ity of a query q and a document d as

ΦCosSim(q,d) = exp(cos(Eq,Ed)/τ) (4)

Multi-Vector Similarity. For multi-vector models, we adopt the standard late-interaction scoring
function defined as:

ΦLI(q, d) =
∑

i∈J1,NqK

max
j∈J1,NdK

〈
E(i)

q ,E
(j)
d

〉
, (5)

where E
(i)
q and E

(j)
d denote token-level embeddings for the query and document, respectively.

A.3 DATA

A.3.1 MODALITY ALIGNMENT MIXTURE

For our modality alignment trainings, we rely on The Cauldron dataset (Laurençon et al., 2024b) and
its Docmatix extension (Laurençon et al., 2024a). Table 5 provides further details on the constitution
of this dataset.

A.3.2 NatCap

To enrich our contrastive learning data mixture, we construct NatCap (Natural Captions), a
large-scale dataset containing around 333000 contextualized image–caption pairs. This dataset
is created by generating synthetic captions, along with cross-class and in-class discriminative
tags, from existing image classification datasets (see Table 6). For this purpose, we leverage
Gemini-flash-2.513 which produces captions conditioned on both the image content and the
accompanying dataset metadata, as illustrated in Figure 6. We detail the prompt below.

9SmolVLM trainer, https://github.com/huggingface/smollm
10https://github.com/illuin-tech/colpali
11https://github.com/embeddings-benchmark/mteb
12We will release our training codebases in the public version of this paper
13https://ai.google.dev/gemini-api/docs/models?hl=fr#gemini-2.5-flash
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Dataset Subsection # Images # QA Pairs # Tokens % Mix

Captioning 609,843 612,768 62,906,011 3.13
Real-world VQA 457,360 2,125,615 23,318,335 1.16
OCR, Document Understanding 2,499,258 11,415,478 426,806,479 21.21
Chart/Figure Understanding 539,743 24,444,120 30,315,784 1.51
Table Understanding 163,568 229,077 21,371,931 1.06
Reasoning, Logic, Maths 490,870 2,212,629 32,450,213 1.61
Screenshot to Code 547,974 548,296 336,299,551 16.71
Text-only Instructions 0 21,482,682 1,079,001,075 53.61

Total 5308616 63070665 2012469379 100.00

Table 5: Aggregated statistics of modality alignment datasets from The Cauldron 2 (Laurençon et al.,
2024c) and Docmatix (Laurençon et al., 2024a), showing image counts, QA pairs, token counts, and
the proportional contribution of each subsection to the overall mixture.

Dataset Description # Items

Caltech101 General objects. 3.000

Caltech256 General objects. 30.000

Cars Car model classification. 8.000

Country211 Country where the picture is taken. 28.000

DTD Describable textures (texture attributes). 4.000

EuroSat Land use / area zone type. 16.000

FER2013 Facial emotion recognition. 28.000

FGCVAircraft Aircraft model recognition. 3.000

Food101 Food categories. 75.000

OxfordPets Dog/cat species. 3.000

RESISC45 Aerial scene / area zone type. 18.000

SUN397 General scenes. 109.000

VOC2007 General objects. 8.000

TOTAL 333000

Table 6: NatCap Dataset Composition. NatCap spans 13 different sources covering various images
types. The total dataset is composed of 333k pairs

A.3.3 CONTRASTIVE TRAINING MIX

In this subsection, we describe the composition of our data mixes used in the contrastive training
stages. Table 7 outlines the datasets included in each mix, including the Document-Focused variant
employed for ColModernVBERT .

B BASELINES DETAILS

In this section, we describe the models evaluated in as comparison to our document retriever model.

MoCa-3B (Chen et al., 2025). A modality-aware continual pretraining model that transforms a
causal vision-language model into a bidirectional multimodal embedding model, using interleaved
image-text reconstruction and contrastive alignment to support cross-modal retrieval.

GME-Qwen2 (Zhang et al., 2025a). A unified multimodal embedder built on Qwen2-VL (Wang
et al., 2024), which produces shared embedding representations across text, image, and fused input
modalities, enabling universal multimodal retrieval.

VLM2Vec (Jiang et al., 2025). A method that trains a vision-language encoder by converting a VLM
through extensive contrastive post-training. Flagship model is based on the model Phi-3.5 (Abdin
et al., 2024).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Class label: “Aston Martin V8 
Vantage Coupe 2012”

NatCap caption: “A white 2012 
Aston Martin V8 Vantage Coupe 
is showcased against a blurred 
background featuring a large car 
wheel.”

Figure 6: Example from the NatCap dataset

Source Description Pairs Epochs

Generalist Mix
ColPali (Faysse et al., 2025) Query–Document images for visual retrieval 118k 1
MSCOCO (Lin et al., 2014) Natural images with human-written captions 118k 1
NatCap (ours, subsampled) Diverse images with synthetic captions 118k 1
RLHN (Thakur et al., 2025) Text–text pairs for complex retrieval 680k 1

TOTAL 1030k

Document-Focused Mix
ColPali (Faysse et al., 2025) Query–Document images for visual retrieval 118k 3
RLHN (Thakur et al., 2025) Text–text pairs for complex retrieval 300k 3

TOTAL 1254k

Table 7: Data mixes for contrastive trainings. The Generalist Mix spans over 1M diverse pairs,
while the Document-Focused Mix emphasizes document retrieval with extra ColPali epochs.

E5-V (Jiang et al., 2024). An adaptation of the E5 embedding approach to multimodal models: it
trains only on text pairs yet bridges the modality gap to handle image inputs, reducing cost while
achieving universal embeddings.

ColPali (Faysse et al., 2025). A vision-based document retrieval model that processes document
pages as images (no OCR) and produces multi-vector embeddings via a late-interaction mechanism
over PaliGemma (Beyer et al., 2024), enabling efficient and accurate retrieval.

ColQwen2.5 (Faysse et al., 2025). An extension of ColPali (Faysse et al., 2025) using Qwen2-
VL (Wang et al., 2024) as the backbone, carrying forward the late interaction retrieval paradigm
over page image embeddings, capturing layout and textual context without OCR.

Jina-v4 (Günther et al., 2025). A multimodal embedding model combining visual and textual inputs
with support for multi-vector (late interaction) embeddings, using adapters over a unified backbone
to excel on visually rich document retrieval.

NemoRetriever (Xu et al., 2025). An LI retriever that combines vision-language embeddings with
a ColEmbed design, enabling high performance on visual document retrieval with structured patch
matching and efficient similarity.

Jina CLIP (Koukounas et al., 2024). A smaller scale vision-language model using CLIP embed-
dings, applied to document retrieval tasks; although not LI, it offers a lightweight multimodal base-
line.

BGE Visualized M3 (Zhou et al., 2024). A vision-enhanced version of BGE M3 (Chen et al., 2024)
that supports visual inputs and extends embedding models into multimodal domains.
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Figure 7: Impact of Modality Alignment objective on downstream tasks. Early Fusion of vision
and text models boosts document retrieval tasks regardless of the LM objective, but degrades natural
image and classification tasks w.r.t. the standalone off-the-shelf vision model SigLIP. Reported
scores are aggregated MIEB scores (nDCG, Accuracy.)

SigLIP2-L-512/16 (Tschannen et al., 2025). A multilingual vision-language bi-encoder model,
which combines image and text modalities to yield unified embeddings across languages. This
configuration handles images of 512x512 pixels and create subpatches of 16x16 pixels.

ColFlor (Masry & Hoque, 2024). A lightweight OCR-free visual document retriever with only
174M parameters built over Florence-2 and DaViT, delivering strong performance near ColPali with
much lower computational cost and much faster encoding.

C ADDITIONAL ABLATIONS

C.1 PERFORMANCE AGAINST OFF-THE-SHELF DUAL ENCODER

We study whether using off-the-shelf performances of the standalone vision tower are not out-
weighing the burden of adding language parameters and re-training through language modeling,
as proposed in our work. Figure 7 shows the results of the various models on the tasks described
in Section 2. Similarly to Section 3.1, we observe that the early fusion model trained with LM
objective significantly outperform the standalone vision tower on document retrieval tasks (+10.9
nDCG@5). It even surpass the larger dual encoder (+4.8 nDCG@5) on these latest tasks. We note
that the standalone vision tower largely outperform the early fusion models on the other natural im-
ages tasks, supporting for the use of the SigLIP model for these tasks as found in various general
benchmarks (Xiao et al., 2025a).

C.2 SCALING DYNAMICS OF ATTENTION MASKS

We study the different training dynamics of the different training objectives. We compare the enc
(MLM) approach with a traditional dec (CLM) objective. Figure 8 presents the performance of
the two training objectives across a diverse set of tasks. While starting dec offers an advantage in
low-data regimes, enc seems to catches up. In document retrieval tasks, it eventually surpasses dec
and scales better.

C.3 BRIDGING THE GAP WITH LONGER CONTRASTIVE TRAINING

We study the impact of additional in-distribution training pairs on embedding tasks by scaling the
contrastive training stage. Starting from the final checkpoint of our encoder-based ablation model,

22
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Figure 8: Attention masks impact on modality alignment phase scaling. The dashed line marks
the vision tower baseline. The orange curve shows the model initialized from a decoder LM with a
CLM objective, and the blue curve shows the model trained with an MLM objective from an encoder
LM. CLM performs better in low-data regimes, but MLM scales more effectively, surpassing CLM
in document retrieval, while captioning and classification remain below the CLIP baseline.

we double the contrastive dataset size at each step and train until convergence14. This setup tests
whether scaling continues to improve performance. Figure 9 shows the scaling behavior. Perfor-
mance improves overall with more in-distribution data. The vision-tower baseline is quickly sur-
passed on visual document benchmarks, and scaling narrows the gap on other tasks15. We note a
plateau in captioning and classification, pointing to the need for more diverse data.
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Figure 9: Contrastive training scaling. Each dot on the blue curve represents one fraction of the base-
line contrastive training mix (ColPali + MSCOCO). Performance improves with more in-distribution
data, surpassing the baseline on document benchmarks and narrowing the gap on image captioning.
There is no clear improvement in image classification, highlighting the need for more diverse pairs.

C.3.1 OPTIMAL TEXT-TO-IMAGE RATIO FOR DOCUMENT RETRIEVAL

Our findings in subsection 3.2 indicate that incorporating additional text-only pairs boosts document
retrieval performance. While our initial experiment employed a 1:1 text-to-image ratio, we further
investigate how varying this ratio impacts our broad set of tasks. We start from the best contrastive
mix in Table 2, and vary the text-to-image ratio. As shown in Figure 10, increasing the number
of text-only pairs for a fixed amount of image pairs consistently enhances retrieval performance.
However, for natural image classification tasks, adding more text does not appear to provide benefits.

14To avoid overfitting, we set an early stopping on an eval set. We limit the number of step to one epoch on
the full dataset.

15Note that the models probably won’t fully recover baseline vision-tower performance. This highlights the
need to choose models according to use case (e.g., lightweight CLIP-like models for image classification).
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Figure 10: Optimal text-to-image ratio in contrastive training mix. Increasing the ratio in re-
trieval tasks consistently improves the performances.

C.4 LATE INTERACTION FOR NON-DOCUMENTAL RETRIEVAL
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CLIP Encoders
siglip2-base-patch16-512 376M 36.6 23.4 66.2 86.9 53.3
siglip2-large-patch16-512 882M 43.8 27.0 67.1 88.9 56.7
clip-vit-base-patch16 151M 25.5 20.4 50.3 76.8 43.3
clip-vit-large-patch14 428M 38.0 28.6 52.7 79.3 49.6

VLM-based Encoders
VLM2Vec-Full 4150M 49.8 36.5 59.5 81.8 56.9
e5-v 8360M 62.7 49.4 68.1 89.8 67.5

Early Fusion Encoders
bge-visualized-base 196M 10.3 9.0 50.0 74.1 35.9
bge-visualized-m3 873M 12.4 10.2 39.6 69.0 32.8
ModernVBERT-embed 252M 58.4 36.9 56.5 76.0 56.9
ModernVBERT-embed (multi-vector) 252M 76.5 53.9 61.8 81.4 68.4

Table 8: Generalist retrieval performances. Late interaction benefits extend to non-documental
retrieval tasks. Our multi-vector model increases its single-vector counterpart across all tasks, sur-
passing larger VLM-based retrievers.

We want to study if the multi-vector gains transfer to non-documental retrieval. To do so, we con-
trastively post-train our base model on our generalist post-training mix presented in Table 7. The late
interaction generalist exhibits superior performance in retrieval setting, improving its single-vector
performance by +20.2% (11.5 points), matching the performance of substantially larger VLM-based
retrievers like E5-V (8.3B parameters, 67.5 points) and surpassing dual encoders like SigLIP (882M
parameters, 56.7 points). This matches the capabilities observed in Section 3.1 for documental set-
tings for models with native bidirectional attention, extending it to natural image tasks. This result
extends the prevailing understanding from the document retrieval community, where the superior-
ity of late-interaction is well-documented (Khattab & Zaharia (2020), Chaffin (2025), Faysse et al.
(2025)). While this performance gap is widely accepted for document retrieval, its applicability to
caption matching tasks has not really been addressed. Our findings provide strong evidence that the
fine-grained matching capabilities of late-interaction models are a key driver of performance in this
domain too.
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C.4.1 MODEL MERGING

Our contrastive learning stage provides direct performance trade-offs on different tasks. Following
recent trends, we evaluate how model merging techniques allow to mitigate performance degradation
on specific tasks, while maintaining the performance enabled by the contrastive training (Sung et al.,
2023; Dziadzio et al., 2024; Li et al., 2024; Zhang et al., 2025b). We merge our ablation model
after modality alignment with the checkpoint after the full contrastive learning with two methods:
SLERP (Ilharco et al., 2022) and average merging (Shoemake, 1985). For SLERP, we compare
three values for the λ coefficient (0.25, 0.5, 0.75). Figure 11 displays the the trends with the best
method (SLERP, λ = 0.75). As we can see, the merged model mitigates the performance drop in
Image/Caption Retrieval tasks, while maintaining significant gains on Image Classification tasks.
However, merging strongly degrades performance on Document Retrieval, showing that benefits of
merging embedding models are task-dependent.
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Figure 11: Merging model results across tasks. Benefits are task-dependent, with performance
degradation w.r.t. both original models in Document Retrieval.

C.4.2 CURRICULUM FOR DOCUMENT RETRIEVER CONTRASTIVE POST-TRAINING

V
iD
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e(

v1
)

V
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oR
e(

v2
)

Av
er

ag
e

Document retrieval contrastive training starting checkpoint

ModernVBERT-base 81.2 56.0 68.6
+ multi-vector generalist CL 80.7 55.4 68.1
+ single-vector generalist CL 80.6 54.0 67.3

Table 9: Performance of ModernVBERT Doc-
ument Specialisation Curriculums. This ta-
ble presents the performance of various con-
trastive training curriculums starting from Mod-
ernVBERT-base, on the ViDoRe(v1) and Vi-
DoRe(v2) benchmarks. The generalist contrastive
learning mix used in the last two models is de-
tailed in Table 7. We see that a preliminary stage
of generalist contrastive learning harms the fi-
nal document retrieval performance, regardless of
whether a multi-vector approach is used.

We conduct an ablation study to determine the
optimal contrastive training curriculum for spe-
cializing ModernVBERT in document retrieval.
Specifically, we investigate whether a prelim-
inary generalist contrastive training phase, in-
tended to leverage a larger dataset, improves
downstream performance. As shown in Table
9, our results demonstrate that this initial gen-
eralist phase is detrimental to final performance
(−0.5%). The optimal strategy is to special-
ize the model on the target task directly after
its initial Masked Language Modeling (MLM)
alignment.

C.5 TEXT-ONLY RETRIEVAL

The results in Table 10 detail the performance
of ColModernVBERT and other baselines on
the NanoBEIR text retrieval benchmark. It
achieves an average NDCG@5 score compet-
itive with single and multi vector models spe-
cialized for text, even without explicit opti-
mization for this modality. This performance
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Model Params (M) NDCG@5

Statistical
BM25s — 0.559

Single Vector
Jina Embeddings v4 3577* 0.623
E5-large-v2 335 0.605
bge-m3 (Bi Encoder) 567 0.590
Qwen3-Embedding-0.6B 600 0.567

Multi Vector
LightOn GTE-ModernColBERT v1 149 0.669
Jina ColBERT v2 137 0.642
bge-m3 (Late Interaction) 567 0.606
ColBERT v2 110 0.593
Colqwen2-v1.0 1580* 0.593
ColModernVBERT 150* 0.589
Colqwen2.5-v0.2 3145* 0.589

Table 10: Average NDCG@5 of ColModernVBERT on NanoBEIR, a text retrieval benchmark with
multiple sub domains. *For multimodal models, we only consider parameters of the text encoder

is encouraging and indicates a promising direc-
tion for training a unified model for both text and image retrieval.

C.6 MODEL LATENCY

C.6.1 IMAGE RESOLUTION TRADEOFFS

Figure 12 presents the pixel shuffling trade-off. Processing larger images creates more visual tokens,
leading to very long sequences (around 17′500 tokens for a 2048x2048 px image with no pixel
shuffling). Pixel shuffling allow to compress these sequence by concatenating the embeddings of
spatially close patches. This diminishes the number of tokens for longer visual token embeddings.
Table 11 presents the latency to process one image of various resolutions on one L4 GPU and CPU.
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Figure 12: Image processing parameters impact on visual tokens. Here we assume a square
image for simplicity. Scaling the image size introduces naturally more tokens, but having a large
enough pixel shuffling ratio (r ≥ 4) allows to counterbalance by concatenating spatially close patch
representations.
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Num. Visual Tokens CPU Latency (ms) GPU Latency (ms)

512px 128 287.2(±7.8) 43.6(±1.4)

1024px 320 1015.8(±58.1) 150.3(±2.5)

2048px 1088 2572.0(±63.9) 363.4(±4.6)

Table 11: ModernVBERT image processing latency. Computing the average time to process a
single image on GPU and CPU. The average is computed on 100 images. The values represent the
mean latency in milliseconds, with the standard deviation included in parenthesis.

Late Interaction Model Size (B) C
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g
(m

s)

≥ 1B Parameters
MoCa-3B 3.75 158(±147) 26(±3) 4.54
VLM2Vec 4.15 211(±253) 21(±3) 2.82
GME-Qwen2-7B 8.29 412(±411) 25(±1) 9.07
E5-V 8.36 434(±379) 22(±2) 9.55
ColPali ✓ 2.92 175(±113) 14(±1) 3.07
ColQwen2.5 ✓ 3.75 158(±147) 26(±2) 26
Jina-v4 ✓ 3.75 158(±147) 26(±2) 4.54
NemoRetriever-3B ✓ 4.40 155(±118) 20(±2) 4.59

≤ 1B Parameters
Jina CLIP .22 14(±7) 6(±2) .69
BGE Visualized M3 .87 38(±42) 10(±2) .77
SigLIP2-L-512/16 .88 25(±8) 6(±1) .10
ColFlor ✓ .17 17(±9) 8(±2) .31
BiModernVBERT (ours) .25 20(±11) 14(±2) .20
ColModernVBERT (ours) ✓ .25 20(±11) 14(±2) .20

Table 12: Text query encoding latency. The latency is computed both on high-end CPUs (1TB
RAM, 128 cores) and GPU (Nvidia H100, 80GB) (mean ± std). Since only 649 queries are used,
standard deviations are not reported in GPU batching mode (batches of 512 queries by default), for
which we report the inverse throughput (average latency per batch divided by the batch size).

C.6.2 ONLINE QUERY ENCODING LATENCY

We evaluate the query embedding speed of our model on GPU. We use a single Nvidia H100 with
80GB of VRAM. As for Section 4.2, latencies are computed in batch size 1 to simulate online
situations, and are averaged over all NanoBEIR queries. Only the text parameters are loaded and
run, to minimize memory usage. Parameters are cast to bfloat16 and Flash Attention 2 is used.
The resulting speeds are often much faster than those obtained by running inference through each
model’s reference implementation. Results are shown in Table 12). Interestingly in this setup where
memory is not a bottleneck, model depth seems to be a large performance driver, sometimes more
the parameter count. We finally evaluate batched GPU throughput. We use batches of size 512
by default and iteratively half it when memory is insufficient. We observe that ModernVBERT
based models are extremely fast and can process 5000 queries per second. In the table, the reported
figures correspond to the inverted throughput (latency per batch divided by the number of queries
per batch). These speed and throughput gains are made possible due to a combination of size, and
efficient hardware-informed design as well as the support of flash attention and sequence packing
other models of the size often lack (Warner et al., 2024b).
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NatCap Annotation Prompt

You are an image annotator expert.

You will receive an image along with its classification label and the classification
task scope, and your task is to provide contextualized metadata about it.

The output should be a JSON object with the following metadata fields:
• caption: A descriptive caption of the image accounting for its label. This should

be a unique and concise sentence that describes the image in detail.
• class tags: A list of tags that represents the image and can help identify the class.

(e.g., for a car image with its model as a class, this could be some specific attribute
of the car)

• other tags: A list of tags that represents the image but can help identify the image
among others of the same class. (e.g., for a car image with its model as a class, this
could be its color or the background of the image)

• is image class explicit: Boolean, could the class be inferred from the image alone?
(e.g., the class is a country and you cannot necessarily infer it from the image alone,
so this would be false)

Please ensure that the output is in valid JSON format.

Example:
You receive an image of what is clearly a car with its model as a class (here Audi TTS coupe
2012) for a car model classification task.
The output could be a JSON object like this:

{
"caption": "A red Audi TTS coupe 2012 car parked on a sunny street

in front of a sport shop.",
"class_tags": ["sport coupe","four door coupe","17’’ alloy wheels"],
"other_tags": ["sunny street","parked","red","sport shop"],
"is_image_class_explicit": true

}

——
Classification scope: {task info}
Image label: {label}
Answer:
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