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ABSTRACT

Multimodal embedding models are gaining prevalence, notably for document re-
trieval as efficient alternatives to text-only pipelines. These models are typi-
cally built by finetuning large vision—-language decoders (VLMs) with contrastive
losses on text—image pairs. In this work, we show that, while cost-efficient,
this repurposing approach often bottlenecks retrieval performance. Through con-
trolled experiments, we establish a principled recipe for improving visual doc-
ument retrieval models. We notably measure the impact of attention masking,
image resolution, modality alignment data regimes, and late interaction cen-
tered contrastive objectives which emerge as central performance factors. Build-
ing on these insights, we release ModernVBERT, a compact 250M-parameter
vision—language encoder that outperforms models up to 10 times larger when
finetuned on document retrieval tasks. Models and code are made available at
huggingface.co/XXX in the public version of this work.

1 INTRODUCTION

A core challenge in visual retrieval is learn-
ing text-image embeddings that faithfully en-
code complex, multi-level semantics—from
fine-grained details to high-level concepts. For
many years, contrastive pre-training of dual en- ColModernVBERT

coders, typically pairing a vision transformer g0 @ CoIPaIi. AMoCa-3B
(ViT) (Dosovitskiy et al., [2021)) with a text en-
coder, was the standard approach for generat-
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ing cross-modal embeddings (Radford et al.|
2021 |Zhai et al.| [2023). Owing to the per-
formance improvements enabled by genera-
tive vision—-language models (VLMs), recent
work has increasingly explored repurposing
these models as multimodal encoders through
extended contrastive post-training (Ma et al.
2024; Faysse et al., 2025; Jiang et al., 2025).

While this approach capitalizes on the inherent
capabilities of the backbone generative model
to address complex visual tasks, it is unclear
whether the design decisions made for gener-
ative purposes hinder the models when repur-
posed for representation learning. Typically,
VLM-based encoders inherit the causal atten-
tion masks VLMs are trained with, which has
been repeatedly shown to be suboptimal for em-
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Figure 1: Pareto efficiency. ColModernVBERT
outperforms models in its category on ViDoRe,
achieving a leading performance-size tradeoff.

bedding tasks (Li et al., 2023} BehnamGhader et al.| 2024} [Lee et al., 2025} |Springer et al.| |2025}
Gisserot-Boukhlef et al.| |2025). Another notable architectural property of contemporary VLMs is
their high parameter counts. LLMs exhibit emergent abilities in reasoning and knowledge use as
they grow in size (Wei et al.,|2022), and most openly released decoders and their vision-augmented
variants are at least several billion parameters. Interestingly, scaling trends are less pronounced for
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embedding models: while size remains a performance factor, compact encoders often almost ri-
val the performance of much larger ones, indicating diminishing returns with additional parameters
(Muennighoff et al.,2022)). This suggests it is likely possible to achieve strong visual representation
quality with relatively small, well-trained models, especially leveraging late interaction methods
(Clavig, [2024).

Recent papers and model releases in the visual retrieval space have claimed performance improve-
ments by scaling the amount of contrastive data and the compute budget (Zhang et al., |2025a; [Xu
et al., 2025), modifying the attention mask (Chen et al., 2025), increasing image resolutions (Co-
here}, [2024) or by introducing more diverse tasks and data sources (Jiang et al.l 2025)). In this work,
we attempt to centralize these efforts and systematically disentangle the impact of core design de-
cisions in visual retriever training. Through controlled experiments—ranging from language model
pretraining to multi-stage, domain-specific finetuning, we aim to answer a central question:

Which design choices best boost performance in modern visual document retrievers?

Contribution 1. We revisit core assumptions in visual retriever design, showing that token-level
training objectives benefit retrievers by strengthening image—text token alignment—rather than
merely producing stronger image embeddings. Our results indicate that causal attention is subopti-
mal in document retrieval, with bidirectional masking offering clear improvements in multi-vector
settings, and that other parameters such as image resolution data mixes should not be overlooked in
the training pipeline.

Contribution 2: ModernVBERT. Building on these insights, we release ModernVBERT, a small
250M multimodal encoder that aligns a pretrained language encoder with a vision encoder through
Masked Language Modeling (MLM) objective, and ColModernVBERT a variant finetuned for doc-
ument retrieval. Despite its modest size and limited training budget, ColModernVBERT matches
models 10x larger on standard visual document retrieval benchmarks, demonstrating the interest of
designing a retrieval focused model from the ground up. We publicly release the model, intermediate
checkpoints, and the training code at huggingface.com/XXX.

2 METHODOLOGY

Our analysis aims at quantifying the impact of design decisions made when training visual retriev-
ers. In opposition to previous work, we begin our analysis as early as language model modality
alignment and iteratively study design choices by modifying design choices independently to re-
duce confounding factors as much as possible (Allen-Zhu & Lil 2025)).

Controlled Experimental Setup. A central point of interest is the impact of causal and bidirec-
tional attention masks. While recently studied for textual representation applications (Gisserot-
Boukhlef et al.| 2025; Weller et al.l 2025])), we extend the experiment to the vision modality. We use
checkpoints released by (Gisserot-Boukhlef et al.| (2025) which consist in a series of identical 210M
parameter transformer models based on the Llama architecture (Touvron et al.l [2023) trained on
100B tokens that differ only in their attention masking strategy during language model training but
that are perfectly identical in terms of training data seen, model size and architecture, learning rate
scheduling, etc... The checkpoints we use are enc a bidirectional encoder trained with Masked Lan-
guage Modeling (MLM), dec, a causal decoder trained with next token prediction, and dec-enc a
causal decoder annealed over the end of its textual training by removing the causal mask and switch-
ing the training objective to MLM. For the vision tower, we employ siglip2-base-16b-51 2
(Tschannen et al., [2025), a 86M parameter vision transformer contrastively trained on billions of
text-image pairs. All ablations thus stem from iso-data controlled setups, and as further described,
are further trained on the same data sequence, with the same batch sizes, optimizers, schedulers and
on the same hardware.

Model Architecture. Our analysis are not centered around model architectures and to draw broadly
applicable insights, we design vision-language models following current standard training practices.
In line with most recent work, we employ the early fusion architecture (Alayrac et al.| [2022) illus-
trated in Figure [2] in which visual patch embeddings produced by the vision encoder are projected

'https://huggingface.co/google/siglip2-base-patchl6-512
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Figure 2: MLM-based early fusion architecture. The visual encoder produces patch representa-
tions, which are passed to a language model. Our end-to-end bidirectional attention fused architec-
ture is trained with Masked Language Modeling objectives and is perfectly suited for sequence and
token-level representation tasks.

into the language model input embedding space and concatenated with text token embeddings to en-
courage joint processing (Li et all}, 2022} [Alayrac et al., 2022} [Wang et al.}, 2024} [Yang et al, 2025}
Marafioti et al [2025). As described in [subsection 2.1 we generalize the training loss to function
both with causal and masked language modeling objectives. To handle dynamic resolutions, we split
large images into 512x512 pixel patches as expected by the SigL.IP encoder, and further concate-
nate a downscaled version of the full image to improve inter-patch consistency and global visual
understanding following current standard practices (Lin et al., 2023} [Ye et al} 2023). To compress
the information from sequences of large images, we apply pixel shuffling (Shi et al.,[2016) with a
ratio of r = 4, following prior work on models of comparable size (Marafioti et al., 2025)).

Training Procedure. Our experiments focus on retrieval performance. We employ a standard
biphasic training procedure, in which we first run modality alignement to train a pretrained tex-
tual language model to understand visual inputs through language modeling objectives
[2023b) (subsection 2.1)), then rely on a second text-image contrastive learning phase to learn effi-
cient image representations (Radford et al.} 202T)) (subsection 2.2). We further describe the general
setup, and detail specific modifications to the default training procedure in the experiment section.

2.1 MODALITY ALIGNMENT

We align the vision encoder tower with the language model by training the image embedding projec-
tion layer to map visual features into the language model embedding space. The pretrained language
model is also finetuned with Low-Rank Adapters (LoRA)(Hu et al.|[2021)), allowing both image and
text models to adapt jointly while reducing the risk of monomodal performance collapse

letal],2022;[Liu et all 2023b} [Laurencon et al., 2024c}; [McKinzie et al.| 2024} [Marafioti et al., [2025).

Alignment Loss. For decoder-based models, we train with Causal Language Modeling (CLM) loss
on the text tokens, as standardly done in VLM modality alignement:

T
Loim = — Zlong(xt | 2<t), (1)

t=1

where x ., denotes all tokens preceding position ¢t. We generalize this training scheme to bidirec-
tional encoders models, by using the Masked Language Modeling (MLM) loss on the textual tokens:

Lyvim = — Z log Pe(xt | 95\/\/1), (2)
teM

where M is the set of masked token positions and z\ x is the input with those tokens masked out.
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Modality Alignment Corpus. Models are modality aligned on a large corpus in large parts de-
rived from The Cauldron 2 (Laurencon et al., 2024c) and Docmatix (Laurencon et al.,[2024a). Our
objective being to train document focused retrieval models, we use an adjusted training mixture
that upsamples images containing text and documents with varying level of complexities. Our final
training corpus consists of approximately 2B text tokens, and includes diverse sources such as web
pages, books, and scientific papers. Mixture details are given in Appendix [A.3.1] We note that con-
trolling the exact data distribution during this phase enables the models we train to specialize early
and achieve good document focused downstream performances which many large models struggle
with (Liu et al., [2023a).

Parameters. All models are trained using a masking ratio of 0.5 and user-prompt masking to avoid
overfitting on chat-template format (Huerta-Enochian & Kol [2024} |Shi et al., 2024; |Allal et al.,
2025). We employ WSD scheduler (Hu et al.| 2024b) with the first 5% of the training as warmup,
the last 20% as decay and a maximum learning rate of le-4. The ablation models are aligned on
3.5B tokens. We provide additional details on the training setup in Appendix

2.2 CONTRASTIVE POST-TRAINING

Once the language model has learned to process image tokens jointly with text tokens, we specialize
models through a contrastive post-training stage designed to enhance the semantic representation of
the output embeddings produced by the model (Reimers & Gurevych, 2019).

Post-training Pairs. The post-training dataset used as starting point in our ablations comprises
118M document-query pairs from the ColPali corpus [Faysse et al.| (2025)) as well as another 118M
of natural image-description pairs from the MSCOCO train set (Lin et al.| | 2015).

Contrastive Loss. We employ the InfoNCE loss (van den Oord et al.,2019), defined as

®(q,d")
Q. d¥) + g en, Pl@,d7)’

Lintonce(q,dt) = —log B 3)

where d* denotes the positive target for the query q, Ny = J\/’é" U Ngard the set of negative tar-
gets (in-batch and hard negatives when mentioned), and ®(q, d) a similarity function between the
token(s) of the query and the documentsﬂ For general-domain post-training we compute the loss
symmetrically (Radford et al.l 2021).

Batches Curation. In contrastive learning, batch diversity critically impacts retrieval entropy.
Overly heterogeneous batches lead to trivial retrievals, while curated batches yield richer training
signals. We employ task-aware batching (Li et al.,|2023), grouping documents by source to ensure
a homogeneous batch composition.

2.3 ABLATION EVALUATION SETUP

The contrastively trained models are evaluated on retrieval and zero-shot classification tasks across
multiple domains. Although the main focus remains document retrieval capabilities, evaluated by
aggregating scores from the ViDoRe and ViDoRe VQEI (Macé et al., [2025) benchmarks (nDCG@)5),
we also assess more generalist image retrieval capabilities by selecting tasks from MIEB (Xiao
et al., |2025a). For natural image retrieval, we aggregate MSCOCO retrieval (Lin et al [2015)
and Flickr30k retrieval (nDCG@10) (Plummer et al., [2016) test sets. Finally, following practices
in (Muennighoff et al., 2022), we assess both zero-shot and fine-tuning abilities of our models on
general classification tasks. Specifically, we measure classification accuracy by finetuning a logis-
tic regression head on top of our model’s embedding on Stanford Cars (Krause et al., 2013) and
Food101 (Bossard et al.|[2014), and we evaluate zero-shot performance on FER2013 (Khaireddin &
Chen, |2021) and EuroSAT (Helber et al.}2019) and aggregate the results.

2We use the last (EOS) token for causal models, and mean pool all sequence tokens for bidirectional en-
coders for single-vector models. Alternatively, we use all document and query tokens without pooling for late
interaction matching (Faysse et al.||2025)). Details in Appendix

3We report only the English splits of ViDoRe v2, as our base models are trained on English data only.
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3 WHAT MAKES A GREAT VISUAL RETRIEVER?

Vision-language retrievers built upon existing
generative VLMs often inherit design choices
and weights that may not be well suited for
all embedding tasks. Here, we analyze these
critical design choices hoping to derive clear
insights for developing efficient visual retriev-
ers. Importantly, although we assess design
decisions at different stages of the training
pipelines, evaluation are always done end-to-
end on the final evaluation signal.

Document Image/Caption Image

3.1 MODALITY ALIGNMENT DESIGN Retrieval Retrieval Classification

B enc BN dec . SiglIP
Language modeling Modality Alignment im-

proves document understanding. Accord- Figure 3: Impact of Modality Alignment ob-
ing to benchmarks such as MIEB jective on downstream tasks. FEarly Fusion
2025a), dual encoder models explicitly trained  of vision and text models boosts document re-
on contrastive image-text tasks outperform re- trieval tasks regardless of the LM objective, but
purposed VLMs in natural image classifica- degrades natural image and classification tasks
tion tasks. To assess this, we train an encoder w.rt. the standalone off-the-shelf vision model
and a decoder vision-language model using the  SigI.IP. Reported scores are aggregated MIEB

methodology described in on a mix scores (nDCG, Accuracy.)
of natural image and document data (alignment

and contrastive training). Then, we compare them with the (unfinetuned) standalone model (SigLIP)
used as the vision tower, which has been contrastively trained from scratch on billions of text-image
pairs. As shown in Figure [3] the two early fusion VLMs variants severely underperform the dual
encoder on natural image tasks. In contrast, they achieve significant gains in document retrieval
tasks (+10.9 nDCG@5 on ViDoRe and ViDoRe v2 datasets). This confirms high-level representa-
tion tasks do not benefit from the granular interactions between image and text tokens learned during
the VLM modality alignment phase, but large-scale contrastive training remains superior. However,
pairing a vision model with an LM enables token level interactions that create richer document
understanding, aiding specific tasks even with less contrastive post-training.

Scaling the modality alignment phase for better token representations. Prior work shows that
scaling the modality alignment phase of VLMs improves their generative abilities
2024, McKinzie et all, 2024; [Wang et al.| 2024). We test whether similar gains hold in retrieval
by contrastively finetuning enc checkpoints during MLM modality alignment. Figure []illustrates
the results of post-trained checkpoints on diverse tasks. Although document retrieval improves
consistently with more modality alignment data — largely surpassing the vision tower evaluated in
isolation and showing clear scaling benefits — natural image tasks plateau past 1B tokens, far from
the standalone dual encoder baseline. This shows that document and natural image retrieval leverage
different mechanisms and should not be optimized the same way. Document Retrieval benefits from
learning fine-grained interactions between image and text tokens through the language model, while
the LM has limited utility for high level natural image tasks.

Bidirectional attention fully unlocks Late Interaction. Inspired by the effectiveness of bidirec-
tional attention in text-only retrieval (Gisserot-Boukhlef et al.| 2025 [Weller et al}, 2025)f] we in-
vestigate if it surpasses causal attention in visual document retrieval, particularly when using the
multi-vector late interaction matching common in SOTA visual retrievers (Khattab & Zaharial, 2020}
Faysse et al,[2025)). Figure[5]reports single vector and late interaction results on the ViDoRe bench-
mark for various model variants. On top of the standard enc (MLM) and dec (CLM) models, we
evaluate the dec—-enc and the dec models modality aligned with MLM objectives to determine
whether bidirectional attention capabilities can be obtained in later stages of training.

Single-vector embedding results are close between bidirectional and causal attention models for
document retrieval, with enc slightly outperforming dec by +1.6 nDCG@5.

“Chen et al.|(2025) investigate post-hoc removal of the attention mask during visual retrieval finetuning.
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Figure 4: Modality alignment scaling of early fusion encoders for up to 1 epoch (3.5B tokens)
of data. The dashed line indicates the vision encoder evaluated standalone without further training.
Our findings show that retrieval tasks benefits from extended modality alignment phase, particularly
in document retrieval, where performance quickly surpasses that of the standalone vision encoder.

3
>
64.8 . Single-Vector _ 0 -
0 Multi-Vector % &L: g
Y 54.2 531 g = é
g © 503 & = Z
[} = = kS
: E 8 © g
% 40 g ) o &
on &n St
: 2 E E 2
> % HR Cooldlown o & & &
[J}
§ 20 512px X 30.7 588 414 436
s 1024px X 422 S8. 372  46.1
1o 2048px X 438 576 339 451
2048px v 458 578 337 458
B o S £
N2 (/\/ 0’ “\\/ @\/ . . .
N o Table 1: Effect of image resolution on VL
& encoder abilities. Document retrieval per-

formance increases with higher image resolu-
tion. Further annealing the encoder on high-
resolution images (HR Cooldown) at the end
of modality alignment yields additional gains.
By contrast, for non-document tasks, raising the
resolution tends to degrade performance.

Figure 5: Impact of attention masks
and training objectives on document re-
trieval performances. We report the average
nDCG@5 on English splits of ViDoRe bench-
marks for models post-trained on ColPali.

Intuitively however, bidirectional attention makes a huge difference when used in late interaction
settings, substantially exceeding the causal counterpart by +10.6 nDCG@5. Causal decoders are
incapable of correctly contextualizing image or text token representations seen at the beginning of
the sequences. This is a key result as almost all current visual retrievers, including late interaction
variants, are causal models, clearly indicating some performance is left on the table.

Removing the causal attention mask during training does not suffice to recover the enc late interac-
tion performance at these data regimes. This indicates converting trained decoders as late interaction
retrievers is highly non trivial, and confirms the insights from [Weller et al.| (2025); when possible,
training encoder models from scratch remain better for retrieval tasks.

3.2 CONTRASTIVE TRAINING DESIGN

The previous subsection established bidirectional encoder models to often be the best option when
training visual retrievers. In the following experiments, we assess contrastive training choices and
only report results for the encoder model for simplicity.

Image resolution benefits are task-specific. Image resolution plays a critical role in VLM gener-
ative capabilities, notably in document-focused tasks, as higher-resolution inputs enables the model

to capture finer visual cues (Hu et al) 2024} [Marafioti et al}, 2025). Modality alignment is done
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at a fixed image resolution of 1024 x 1024 pixels and we report scores of contrastive training runs
with varying settings in Table Our findings confirm that embedding tasks are strongly sensi-
tive to image-resolution. In particular, training with higher resolution inputs substantially improves
the results on visual document retrieval benchmarks, consistent with prior work in generative set-
tings [Beyer et al.| (2024); McKinzie et al.| (2024)). Furthermore, adding a cool-down phase by show-
ing higher-resolution images towards the end of the modality alignment phase yields additional
gains. This suggests that models can adapt their attention mechanisms to finer details when exposed
to increased resolution. Interestingly, these findings do not hold in natural image tasks, where image
up-scaling can even degrade performance.

Increasing the pool of contrastive pairs. A severe limitation that current visual retrievers face is
the lack of large volumes of high quality (document image, query pairs). Previous work (Ma et al.,
2024; Faysse et al.| 2025} Jiang et al.l 2025} [Zhang et al., 2025a) has relied on a mix of repurposed
existing visual question answering datasets and synthetically generated queries with external LLMs.
Even put together however, the field is only a year old, and these datasets remain small in size and
often of poor quality.

A central question in our study is whether the abundance of fext-only query—document pairs can
be exploited to improve visual retrieval via cross-modal capability transfer. To probe this, we run
contrastive training under three regimes. Unlike prior work that “warms up” visual retrievers or
trains exclusively with text-only pairs (Ma et al., 2024; Jiang et al., [2024), we interleave text-only
pairs and text—image pairs throughout training at a 1:1 ratio. The dataset sources are detailed in
Appendix [A.3.3]

As reported in Table [2] incorporating text-only pairs yields a sizeable improvement on visual doc-
ument retrieval (+1.7 NDCG@5), indicating clear cross-modal transfer—likely facilitated by the
backbone’s jointly learned text-image embedding space. This result suggests that domain-specific
training corpora can be assembled irrespective of native modality, reducing duplication of effort and
lowering data-collection costs.

We further evaluate training with NatCap, a corpus of natural images paired with synthetic, highly
detailed captions (see Appendix[A.3.2). This scaling step improves downstream performance across
the board—most notably on natural-image tasks, and with a smaller but consistent gain on document
retrieval (+0.2 NDCG @5). Together, these findings underscore the importance of scaling contrastive
learning with high-quality data, but which doesn’t need to be exclusively image document focused.

4 BUILDING A SMALL YET MIGHTY VISUAL RETRIEVER.

4.1 TRAINING.

Recipe. Putting together the results from our experiments, we devise a training recipe for a small
visual document retriever ModernVBERT . It combines a state-of-the-art 150M text bidirectional en-
coder (Weller et al.l [2025) with the ModernBERT architecture (Warner et al.l [2024) and a small
vision encoder SigL.IP2-16B-512 of 100M parameters (T'schannen et al.| |2025). We modality align
both models with a MLM objective for 10B tokens, 3 times longer than during our experiments. To
boost document understanding, we augment the input image resolution from 1024px to 2048px dur-
ing a modality alignement cooldown stage (2B tokens). We call the resulting model ModernVBERT .
Following the findings of Section [3.2] we then scale the contrastive training mix from previous ex-
periments to combine document—query pairs with text-only pairs, and use 1 hard negatives for each
document-query pair and 2 for each text-only pairs. We opt for a 2/1 text-to-image ratio following

Document Retrieval Image/Caption Retrieval ~ Image Classification — Average

Baseline CL Mix 439 57.2 36.1 45.7
+ Text— Text Pairs 45.6 53.2 35.7 44.8
+ Image— Caption Pairs 45.8 544 49.9 50.0

Table 2: Impact of contrastive training mixtures on downstream tasks. Incorporating text-only
pairs improves performance on document retrieval, but degrades other performances. Adding natural
images-captions pairs substantially enhances performance on classification tasks.
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MoCa-3B (Chen et al.|[2025) 3.75 80.1 538 66.9 X
GME-Qwen?2 (Zhang et al.|[2025a) 3.75 899 61.8 758 X
VLM2Vec (Jiang et al.|[2025) 4.15 49.8 36,5 431 X
E5-V (Jiang et al.|[2024) 8.36 627 494 56.1 X
ColPali (Faysse et al..[2025) v 2.92 81.6 56.8 69.2 222
ColQwen2.5 (Faysse et al.|[2025) v 3.75 89.5 615 755 246
Jina-v4 (Giinther et al.][2025) v 3.75 904 60.1 752 X
NemoRetriever-3B (Xu et al.}[2025) v 4.40 91.0 66.3 787 445
< IB Parameters
Jina CLIP (Koukounas et al.,[2024) 0.22 176 140 158 .023
BGE Visualized M3 (Zhou et al.|[2024) 0.87 124 102 113 .018
SigLIP2-L-512/16 (Tschannen et al.||2025) 0.88 438 27.0 354 .004
ColFlor (Masry & Hoque![2024) v 0.17 68.8 43.0 559 .010
BiModernVBERT (ours) 0.25 63.6 357 49.7 .031
ColModernVBERT (ours) v 0.25 812 56.0 68.6 .032

Table 3: ViDoRe Leaderboard. Our model ColModernVBERT offers the best performance-size
tradeoff, significantly outperforming existing sub-1B models and matching the performance of mod-
els up to 10x larger with substantially lower inference latency. Latency correspond to average query
encoding latency on CPU. Models too large to run on standard CPUs are denoted with X.

our ablation results introduced in Appendix This results in ColModernVBERT, a compact
late interaction model. For reference, we also train BiModernVBERT, a single vector variant. More
training details are provided in Appendix

4.2 RESULTS.

ColModernVBERT . The resulting model, ColModernVBERT showcases strong performances on
visual document retrieval benchmarks, especially relative to its size category (Figure [I). Despite
having over 10 times less parameters than models such as ColPali released only a year ago, it is only
0.6 nDCG@5 points below on the aggregated ViDoRe benchmark scores (Table 3). It also edges
many larger single-vector repurposed VLM models released within the year (Chen et al., 2025} Jiang
et al., 2024;12025). It however falls short of top model performance on ViDoRe which are built on
larger decoder VLMs pretrained and aligned on billions of tokens of text and image data.

Most sub-1B parameter models evaluated on document retrieval benchmarks are dual encoder mod-
els, since early fusion generative models that perform well are not common at this scale. The most
related model is a 176M late interaction model, ColFlor (Masry & Hoquel [2024), trained from the
Florence2 model (Xiao et al., [2023). ColFlor is 12.7 nDCG @S5 points under ColModernVBERT .
ColModernVBERT also largely outperforms off-the-shelf dual encoders, even when those have sub-
stantially larger parameter counts. These results highlights the benefits of multi-phase training and
early fusion architectures for multi-modal document related tasks, even at smaller parameter counts.
We also attribute the strong performance of ColModernVBERT at smaller model sizes to the symbio-
sis of native bidirectional attention and Late Interaction matching, which largely boosts performance
relative to comparable decoder models (Section [3.1).

Speed. As noted by Xiao et al.| (2025b), multi-vector visual retrievers are not bottlenecked in their
inference speed by the late interaction matching operation, but rather by the latency required to
encode queries with the text model. Our model demonstrates that strong performance is not incom-
patible with speed, even when running inference on consumer CPUs, a standard setting in practical
text retrieval applications. Latencies are computed by averaging query encoding times over 1000
varied queries, which are 60 character long on average, and ran on standard Google Colab CPU
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environments (Table 3). ModernVBERT achieves almost a 7x speedup on CPU over models with
similar performances on ViDoRe, while models in its size category fall far behind .

5 RELATED WORK

Repurposing VLMs for Representation Learning. Motivated by the zero-shot performances of
generative VLMs (Alayrac et al., 2022} |[Lucas Beyer* et al. [2024; Bai et al., 2023), recent studies
have explored repurposing these for multimodal embedding tasks (Ma et al., [2024; Faysse et al.,
2025; Jiang et al.l 2025} Zhang et al.| [2025a)). As backbone generative models improved, retriever
performance improved as well showcasing the central impact of language model pretraining and
modality alignement (Xu et al.l [2025; Nussbaum et al.l [2025). These model remain inherently
constrained by their causal attention mechanisms which has been shown in text settings to limits
represational efficiency (Gisserot-Boukhlef et al.l 2025} Weller et al.}[2025)). Recent work attempts
to address this issue by modifying VLM attention during continual pretraining (Chen et al.,2025) or
contrastive tuning (Jiang et al., 2025} |Xu et al., [2025), but no recent work attempts to align natively
bidirectional language encoder models with vision encoders. The recent release of long sequence
text encoders (Warner et al.,[2024} |Boizard et al.,2025) makes this possible.

Late Interaction in Visual Document Retrieval To further boost performance, visual document
retrievers leverage the late interaction mechanism (Khattab & Zaharial 2020) which matches multi-
ple query embeddings with multiple document embeddings through the MaxSim operation (Faysse
et al., [2025} |Giinther et al.| 2025} Xu et al.,2025). This enables more granular interactions between
image and query tokens, at the cost of additional storage and a slight compute overhead during the
matching operation. Efficiency gains have come from improving the storage costs through quanti-
zation (Bergum, 2025)), token pruning (Faysse et al.,|2024) and more recently the use of Matrioshka
losses to compact multi-token representations (Xiao et al., 2025b). Ultimately, the performance bot-
tleneck when running visual retrieval inference with such models now resides mostly in the necessity
to rely on costly GPU hardware to encode queries, which sets apart text from vision retrieval. This
paper fills this gap by using encoders that run on CPU, of parameter sizes comparable to commonly
used local text embedding models (Chen et al., 2024} Enevoldsen et al., [ 2025).

6 CONCLUSION

In this paper we question design decisions of current VLM-based retriever models, providing crucial
insights into what matters when training early fusion vision encoders. Our study notably shows that
early-fusion vision encoders generally do not improve retrieval on natural-image tasks, whereas
strong vision—language alignment is essential for document-centric retrieval. We also uncovered
a tight synergy between bidirectional attention and late-interaction retrieval, which underscores a
fundamental limitation of repurposing decoder-style generative VLMs for retrieval.

To mitigate data scarcity in contrastive learning, we proposed augmenting limited image-document:
text-query pairs with larger, lower-cost corpora from other modalities (e.g., text:text pairs). Guided
by these insights, we trained ModernVBERT, a compact yet powerful 250M-parameter multimodal
encoder that matches the performance of models up to 10x larger on visual retrieval benchmarks.
We release models and training code to help practitioners reduce cost and latency when deploying
visual retrievers in real-world applications, and to catalyze research on efficient multimodal embed-
ding models.

Future Work & Limitations. By design, our analysis targets relatively small models. An im-
portant next step is to test whether the observed patterns persist at larger scales—for example, to
more rigorously probe the interplay between late interaction and bidirectional attention. Our study
also focuses exclusively on English. While we expect the broad trends to generalize and see clear
value in releasing multilingual variants, it remains unclear how allocating parameters to additional
languages trades off against the understanding of the vision modality, and to what extent this penal-
izes English retrieval performance as the number of languages are scaled (Fernandes et al., [2023).
Finally, although we center on retrieval and sequence-level zero-shot classification, the modality-
aligned encoder can be fine-tuned for a range of token-level tasks, including OCR error detection,
token-level classification, visual named entity recognition, and visually grounded token-level object
detection. We release our base model to encourage exploration of these directions.
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ETHICS STATEMENT

Environmental Costs. Training ColModernVBERTrequired approximately 2,000 H100 GPU-hours
in total, which we estimate corresponds to 41 kg of COZE], based on standard assumptions of GPU
power draw, datacenter efficiency, and grid carbon intensity. This estimate follows methodologies
such as Green Algorithms (Lannelongue et al., 2021) and related analyses of the carbon footprint
of machine learning (Strubell et al., [2019; [Patterson et al., 2021). Across the entire project, all
combined experiments totaled about 18k H100-hours. To mitigate costs and promote sustainable
research practices, we release all model checkpoints and training artifacts to facilitate reuse, exten-
sion, and reproducibility without necessitating retraining. Additionally, this work shows efficiency
gains with smaller models to aim to limit the inference costs of visual retrieval, and consequently re-
duce the environmental footprint. Our model performs query encoding efficiently on CPUs, keeping
inference costs low and reducing barriers to adoption.

Safety and Bias. From a safety perspective, our encoder-only retriever poses less risk than gener-
ative models: it produces fixed-length embeddings rather than free-form content, reducing avenues
for harmful content generation, hallucination, or deceptive outputs; nonetheless, retrieval systems
can still propagate biases present in the underlying data, which we address through dataset curation
open release.

Al Assistance. Parts of this paper were prepared with the assistance of an Al-based writing tool
used for copy editing and stylistic refinement. All generated text was carefully reviewed, verified,
and revised by the authors, who take full responsibility for the accuracy and originality of the final
manuscript.

REPRODUCIBILITY STATEMENT

For transparency and to foster future work, we release our training data, model checkpoints (base
models and adapters), and the complete codebase under the MIT License, as detailed in the main pa-
per and repository. The supplementary material specifies training configurations for all models (also
provided in the corresponding HuggingFace repositories), describes our synthetic data generation
process, and reports expanded evaluation results to support exact replication.
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A TRAINING

A.1 IMPLEMENTATION AND RESOURCES

Model Batch Size  Learning Rate  Training Steps  Training GPU Hours
Modality Alignment

ModernVBERT-base (Table 4096 le-4 5500 1920h
Contrastive Learning

Generalist contrastive training (Table 256 2e-4 3917 80h
Document Specialization

Document-focused contrastive training w/ hard negatives (Table 64 2e-4 19602 160h

Table 4: Training details of our final models at each training stage. GPU Hours are on 80GB H100
GPUs.

We list hyperparameters and resource details in for the various training stages of our final
models. We employ ZeRO stage 1 optimizer (Rajbhandari et al.,[2020) for our modality alignment
runs. All ablation models are contrastively trained with gradient checkpointing (Chen et al., [2016))
to reduce memory usage. All training runs are performed with FlashAttention 2.0 (Dao, |2023). For
LoRA configurations, we consistently use a rank r of 32, Lora_alpha of 32, and a dropout of 0.1.
For the implementation, we start from m4E] and ColPal codebases for training, and use the MTEBﬂ
repository for evaluationﬂ

A.2 SIMILARITY FUNCTIONS

Single-Vector Similarity. For single-vector models, we apply mean pooling for MLM-aligned en-
coders and end-of-sequence (EOS) pooling for CLM-based models and compute the cosine similar-
ity of a query ¢ and a document d as

(pCosSim(qa d) = eXP(COS(Em Ed)/T) “4)

Multi-Vector Similarity. For multi-vector models, we adopt the standard late-interaction scoring
function defined as:

Pud)= > max (BPEY). 5)
i€[1,N4] ’

where E((Ii) and Eéj ) denote token-level embeddings for the query and document, respectively.

A.3 DATA
A.3.1 MODALITY ALIGNMENT MIXTURE

For our modality alignment trainings, we rely on The Cauldron dataset (Laurencon et al.,2024b) and
its Docmatix extension (Laurengon et al.,[2024a)). [Table 3| provides further details on the constitution
of this dataset.

A.3.2 NatCap

To enrich our contrastive learning data mixture, we construct NatCap (Natural Captions), a
large-scale dataset containing around 333000 contextualized image—caption pairs. This dataset
is created by generating synthetic captions, along with cross-class and in-class discriminative
tags, from existing image classification datasets (see Table [6). For this purpose, we leverage
Gemini-flash-2. which produces captions conditioned on both the image content and the
accompanying dataset metadata, as illustrated in Figure[6] We detail the prompt below.

6SmolVLM trainer, https://github.com/huggingface/smollm
"https://github.com/illuin-tech/colpali
$https://github.com/embeddings—benchmark/mteb

“We will release our training codebases in the public version of this paper
Yhttps://ai.google.dev/gemini-api/docs/models?hl=fr#gemini-2.5-flash
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Dataset Subsection # Images # QA Pairs # Tokens % Mix
Captioning 609,843 612,768 62,906,011 3.13
Real-world VQA 457,360 2,125,615 23,318,335 1.16
OCR, Document Understanding 2,499,258 11,415,478 426,806,479 21.21
Chart/Figure Understanding 539,743 24,444,120 30,315,784 1.51
Table Understanding 163,568 229,077 21,371,931 1.06
Reasoning, Logic, Maths 490,870 2,212,629 32,450,213 1.61
Screenshot to Code 547,974 548,296 336,299,551 16.71
Text-only Instructions 0 21,482,682 1,079,001,075 53.61
Total 5308616 63070665 2012469379  100.00

Table 5: Aggregated statistics of modality alignment datasets from The Cauldron 2 (Laurencon et al.}
2024c) and Docmatix (Laurencon et al.,|2024a), showing image counts, QA pairs, token counts, and
the proportional contribution of each subsection to the overall mixture.

Dataset Description # Items
Caltech101 General objects. 3.000
Caltech256 General objects. 30.000
Cars Car model classification. 8.000
Country211 Country where the picture is taken. 28.000
DTD Describable textures (texture attributes). 4.000
EuroSat Land use / area zone type. 16.000
FER2013 Facial emotion recognition. 28.000
FGCVAircraft  Aircraft model recognition. 3.000
Food101 Food categories. 75.000
OxfordPets Dog/cat species. 3.000
RESISC45 Aerial scene / area zone type. 18.000
SUN397 General scenes. 109.000
VOC2007 General objects. 8.000
TOTAL 333000

Table 6: NatCap Dataset Composition. NatCap spans 13 different sources covering various images
types. The total dataset is composed of 333k pairs

A.3.3 CONTRASTIVE TRAINING MIX

In this subsection, we describe the composition of our data mixes used in the contrastive training
stages. outlines the datasets included in each mix, including the Document-Focused variant
employed for ColModernVBERT .

B BASELINES DETAILS

In this section, we describe the models evaluated in as comparison to our document retriever model.

MoCa-3B (Chen et al.| 2025). A modality-aware continual pretraining model that transforms a
causal vision-language model into a bidirectional multimodal embedding model, using interleaved
image-text reconstruction and contrastive alignment to support cross-modal retrieval.

GME-Qwen2 (Zhang et al.| [2025a). A unified multimodal embedder built on Qwen2-VL (Wang
et al.} 2024), which produces shared embedding representations across text, image, and fused input
modalities, enabling universal multimodal retrieval.

VLM2Vec (Jiang et al.|[2025). A method that trains a vision-language encoder by converting a VLM
through extensive contrastive post-training. Flagship model is based on the model Phi-3.5 (Abdin
et al., [2024).
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Class label: “Aston Martin V8
Vantage Coupe 2012”

NatCap caption: “A white 2012
Aston Martin V8 Vantage Coupe
is showcased against a blurred
background featuring a large car
wheel.”

Figure 6: Example from the NatCap dataset

Source Description Pairs Epochs

Generalist Mix

ColPali (Faysse et al.,[2025) Query—Document images for visual retrieval 118k 1
MSCOCO (Lin et al.,2014) Natural images with human-written captions 118k 1
NatCap (ours, subsampled) Diverse images with synthetic captions 118k 1
RLHN (IThakur et al.l, |2025[) Text—text pairs for complex retrieval 680k 1
TOTAL 1030k
Document-Focused Mix

ColPali (Faysse et al.,[2025) Query—Document images for visual retrieval 118k 3
RLHN (Thakur et al.,|2025) Text—text pairs for complex retrieval 300k 3

TOTAL 1254k

Table 7: Data mixes for contrastive trainings. The Generalist Mix spans over 1M diverse pairs,
while the Document-Focused Mix emphasizes document retrieval with extra ColPali epochs.

ES-V (Jiang et al [2024). An adaptation of the E5 embedding approach to multimodal models: it
trains only on text pairs yet bridges the modality gap to handle image inputs, reducing cost while
achieving universal embeddings.

ColPali (Faysse et al}, [2025). A vision-based document retrieval model that processes document
pages as images (no OCR) and produces multi-vector embeddings via a late-interaction mechanism
over PaliGemma (Beyer et al.}[2024), enabling efficient and accurate retrieval.

ColQwen2.5 (Faysse et al [2025). An extension of ColPali (Faysse et al} 2025) using Qwen2-

VL (Wang et al., [2024) as the backbone, carrying forward the late interaction retrieval paradigm
over page image embeddings, capturing layout and textual context without OCR.

Jina-v4 (Giinther et al.}[2025). A multimodal embedding model combining visual and textual inputs
with support for multi-vector (late interaction) embeddings, using adapters over a unified backbone
to excel on visually rich document retrieval.

NemoRetriever (Xu et al.,[2025). An LI retriever that combines vision-language embeddings with
a ColEmbed design, enabling high performance on visual document retrieval with structured patch
matching and efficient similarity.

Jina CLIP (Koukounas et al], 2024). A smaller scale vision-language model using CLIP embed-
dings, applied to document retrieval tasks; although not LI, it offers a lightweight multimodal base-
line.

BGE Visualized M3 (Zhou et al.}[2024). A vision-enhanced version of BGE M3 (Chen et al., [2024)

that supports visual inputs and extends embedding models into multimodal domains.

20



Under review as a conference paper at ICLR 2026

SigLIP2-L-512/16 (Tschannen et al.l [2025). A multilingual vision-language bi-encoder model,
which combines image and text modalities to yield unified embeddings across languages. This
configuration handles images of 512x512 pixels and create subpatches of 16x16 pixels.

ColFlor (Masry & Hoque, [2024). A lightweight OCR-free visual document retriever with only
174M parameters built over Florence-2 and DaViT, delivering strong performance near ColPali with
much lower computational cost and much faster encoding.

C ADDITIONAL ABLATIONS

C.1 SCALING DYNAMICS OF ATTENTION MASKS

We study the different training dynamics of the different training objectives. We compare the enc
(MLM) approach with a traditional dec (CLM) objective. Figure [/| presents the performance of
the two training objectives across a diverse set of tasks. While starting dec offers an advantage in
low-data regimes, enc seems to catches up. In document retrieval tasks, it eventually surpasses dec
and scales better.

. ViDoRe(v1) ViDoRe(v2) MSCOCO Flickr30k
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Figure 7: Attention masks impact on modality alignment phase scaling. The dashed line marks
the vision tower baseline. The orange curve shows the model initialized from a decoder LM with a
CLM objective, and the blue curve shows the model trained with an MLM objective from an encoder
LM. CLM performs better in low-data regimes, but MLM scales more effectively, surpassing CLM
in document retrieval, while captioning and classification remain below the CLIP baseline.

C.2 BRIDGING THE GAP WITH LONGER CONTRASTIVE TRAINING

We study the impact of additional in-distribution training pairs on embedding tasks by scaling the
contrastive training stage. Starting from the final checkpoint of our encoder-based ablation model,
we double the contrastive dataset size at each step and train until convergencelﬂ This setup tests
whether scaling continues to improve performance. Figure [§] shows the scaling behavior. Perfor-
mance improves overall with more in-distribution data. The vision-tower baseline is quickly sur-
passed on visual document benchmarks, and scaling narrows the gap on other taskﬁ We note a
plateau in captioning and classification, pointing to the need for more diverse data.

C.2.1 OpPTIMAL TEXT-TO-IMAGE RATIO FOR DOCUMENT RETRIEVAL

Our findings in subsection [3.2]indicate that incorporating additional text-only pairs boosts document
retrieval performance. While our initial experiment employed a 1:1 text-to-image ratio, we further
investigate how varying this ratio impacts our broad set of tasks. We start from the best contrastive

"To avoid overfitting, we set an early stopping on an eval set. We limit the number of step to one epoch on
the full dataset.

2Note that the models probably won’t fully recover baseline vision-tower performance. This highlights the
need to choose models according to use case (e.g., lightweight CLIP-like models for image classification).
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Figure 8: Contrastive training scaling. Each dot on the blue curve represents one fraction of the base-
line contrastive training mix (ColPali + MSCOCO). Performance improves with more in-distribution
data, surpassing the baseline on document benchmarks and narrowing the gap on image captioning.
There is no clear improvement in image classification, highlighting the need for more diverse pairs.

mix in Table[2] and vary the text-to-image ratio. As shown in Figure[9] increasing the number of text-
only pairs for a fixed amount of image pairs consistently enhances retrieval performance. However,
for natural image classification tasks, adding more text does not appear to provide benefits.
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Figure 9: Optimal text-to-image ratio in contrastive training mix. Increasing the ratio in retrieval
tasks consistently improves the performances.

C.3 LATE INTERACTION FOR NON-DOCUMENTAL RETRIEVAL

We want to study if the multi-vector gains transfer to non-documental retrieval. To do so, we con-
trastively post-train our base model on our generalist post-training mix presented in Table[7} The late
interaction generalist exhibits superior performance in retrieval setting, improving its single-vector
performance by +20.2% (11.5 points), matching the performance of substantially larger VLM-based
retrievers like E5-V (8.3B parameters, 67.5 points) and surpassing dual encoders like SigLIP (882M
parameters, 56.7 points). This matches the capabilities observed in Section [3.1] for documental set-
tings for models with native bidirectional attention, extending it to natural image tasks. This result
extends the prevailing understanding from the document retrieval community, where the superior-
ity of late-interaction is well-documented (Khattab & Zaharial (2020), (Chaffin (2025)), Faysse et al.
(2025)). While this performance gap is widely accepted for document retrieval, its applicability to
caption matching tasks has not really been addressed. Our findings provide strong evidence that the
fine-grained matching capabilities of late-interaction models are a key driver of performance in this
domain too.

C.3.1 MODEL MERGING

Our contrastive learning stage provides direct performance trade-offs on different tasks. Following
recent trends, we evaluate how model merging techniques allow to mitigate performance degradation
on specific tasks, while maintaining the performance enabled by the contrastive training (Sung et al.,
2023}, |Dziadzio et all) 2024 [Li et al.| [2024; |Zhang et al., |2025b). We merge our ablation model
after modality alignment with the checkpoint after the full contrastive learning with two methods:
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Document Retrieval Image/Caption Retrieval

- .t i
2z = o =
- z 4
- T B 3
p= = > = = <
CLIP Encoders
siglip2-base-patch16-512 376M  36.6 234 66.2 86.9 53.3
siglip2-large-patch16-512 882M 438 27.0 67.1 88.9 56.7
clip-vit-base-patch16 I5IM 255 20.4 50.3 76.8 433
clip-vit-large-patch14 428M  38.0 28.6 52.7 79.3 49.6
VLM-based Encoders
VLM2Vec-Full 4150M  49.8 36.5 59.5 81.8 56.9
e5-v 8360M  62.7 494 68.1 89.8 67.5
Early Fusion Encoders
bge-visualized-base 196M 103 9.0 50.0 74.1 359
bge-visualized-m3 873M 124 10.2 39.6 69.0 32.8
ModernVBERT-embed 252M 584 36.9 56.5 76.0 56.9
ModernVBERT-embed (multi-vector)  252M  76.5 539 61.8 81.4 68.4

Table 8: Generalist retrieval performances. Late interaction benefits extend to non-documental
retrieval tasks. Our multi-vector model increases its single-vector counterpart across all tasks, sur-
passing larger VLM-based retrievers.

SLERP (Ilharco et al] [2022) and average merging (Shoemake] [1985). For SLERP, we compare
three values for the A coefficient (0.25, 0.5, 0.75). [Figure 10| displays the the trends with the best

method (SLERP, A = 0.75). As we can see, the merged model mitigates the performance drop in
Image/Caption Retrieval tasks, while maintaining significant gains on Image Classification tasks.
However, merging strongly degrades performance on Document Retrieval, showing that benefits of
merging embedding models are task-dependent.

60

B Base model
I Base model + CL
[ SLERP

46.09

Document retrieval Image Captioning Image Classification

Figure 10: Merging model results across tasks. Benefits are task-dependent, with performance
degradation w.r.t. both original models in Document Retrieval.
C.3.2 CURRICULUM FOR DOCUMENT RETRIEVER CONTRASTIVE POST-TRAINING

We conduct an ablation study to determine the optimal contrastive training curriculum for specializ-
ing ModernVBERT in document retrieval. Specifically, we investigate whether a preliminary gener-
alist contrastive training phase, intended to leverage a larger dataset, improves downstream perfor-
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mance. As shown in Table[9] our results demonstrate that this initial generalist phase is detrimental
to final performance (—0.5%). The optimal strategy is to specialize the model on the target task
directly after its initial Masked Language Modeling (MLM) alignment.

ViDoRe(v1)
ViDoRe(v2)
Average

Document retrieval contrastive training starting checkpoint

ModernVBERT-base 81.2 56.0 68.6
+ multi-vector generalist CL ~ 80.7 554  68.1
+ single-vector generalist CL  80.6 54.0 67.3

Table 9: Performance of ModernVBERT Document Specialisation Curriculums. This table
presents the performance of various contrastive training curriculums starting from ModernVBERT -
base, on the ViDoRe(vl) and ViDoRe(v2) benchmarks. The generalist contrastive learning mix
used in the last two models is detailed in Table [/} We see that a preliminary stage of generalist
contrastive learning harms the final document retrieval performance, regardless of whether a multi-
vector approach is used.

C.4 TEXT-ONLY RETRIEVAL

Model Params (M) NDCG@5
Statistical

BM25s — 0.559
Single Vector

Jina Embeddings v4 3577* 0.623
E5-large-v2 335 0.605
bge-m3 (Bi Encoder) 567 0.590
Qwen3-Embedding-0.6B 600 0.567
Multi Vector

LightOn GTE-ModernColBERT vl 149 0.669
Jina ColBERT v2 137 0.642
bge-m3 (Late Interaction) 567 0.606
ColBERT v2 110 0.593
Colgqwen2-v1.0 1580* 0.593
ColModernVBERT 150* 0.589
Colgwen2.5-v0.2 3145% 0.589

Table 10: Average NDCG@5 of ColModernVBERT on NanoBEIR, a text retrieval benchmark with
multiple sub domains. *For multimodal models, we only consider parameters of the text encoder

The results in Table |10] detail the performance of ColModernVBERT and other baselines on the
NanoBEIR text retrieval benchmark. It achieves an average NDCG @5 score competitive with single
and multi vector models specialized for text, even without explicit optimization for this modality.
This performance is encouraging and indicates a promising direction for training a unified model for
both text and image retrieval.
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NatCap Annotation Prompt

You are an image annotator expert.

You will receive an image along with its classification label and the classification task scope,
and your task is to provide contextualized metadata about it.

The output should be a JSON object with the following metadata fields:

 caption: A descriptive caption of the image accounting for its label. This should
be a unique and concise sentence that describes the image in detail.

* class_tags: A list of tags that represents the image and can help identify the class.
(e.g., for a car image with its model as a class, this could be some specific attribute
of the car)

 other_tags: A list of tags that represents the image but can help identify the image
among others of the same class. (e.g., for a car image with its model as a class, this
could be its color or the background of the image)

* is_image_class_explicit: Boolean, could the class be inferred from the image alone?
(e.g., the class is a country and you cannot necessarily infer it from the image alone,
so this would be false)

Please ensure that the output is in valid JSON format.

Example:

You receive an image of what is clearly a car with its model as a class (here Audi TTS coupe
2012) for a car model classification task.

The output could be a JSON object like this:

{
"caption": "A red Audi TTS coupe 2012 car parked on a sunny street
in front of a sport shop.",
"class_tags": ["sport coupe","four door coupe","17’’ alloy wheels"],
"other_tags": ["sunny street", "parked", "red", "sport shop"],
"is_image_class_explicit": true

}

Classification scope: {task_info}
Image label: {label}
Answer:
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