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Abstract

Augmenting large language models (LLMs) with external tools is a promising
avenue for developing high-performance mathematical reasoning systems. Prior
tool-augmented approaches typically finetune an LLM to select and invoke a single
tool at each reasoning step and show promising results on simpler math reasoning
benchmarks such as GSM8K. However, these approaches struggle with more com-
plex math problems that require precise reasoning over multiple steps. To address
this limitation, in this work, we propose Multi-TAG, a Multi-Tool AGgregation-
based framework. Instead of relying on a single tool, Multi-TAG guides an LLM
to concurrently invoke multiple tools at each reasoning step. It then aggregates
their diverse outputs to verify and refine the reasoning process, enhancing solution
robustness and accuracy. Notably, Multi-TAG is a finetuning-free, inference-
only framework, making it readily applicable to any LLM backbone, including
large open-weight models which are computationally expensive to finetune and
proprietary frontier models which cannot be finetuned with custom recipes. We
evaluate Multi-TAG on four challenging benchmarks: MATH500, AIME, AMC,
and OlympiadBench. Across both open-weight and closed-source LLM backbones,
Multi-TAG consistently and substantially outperforms state-of-the-art baselines,
achieving average improvements of 6.0% to 7.5% over state-of-the-art baselines. E]

1 Introduction and Related Works

Large Language Models (LLMs) have demonstrated remarkable capabilities across many tasks, with
reasoning emerging as a core area of research (Jiang et al.,[2023; OpenAll 2023}, 2022; Yang et al.
2024). A particularly active challenge is enabling LLMs to perform complex mathematical reasoning
(Ahn et al.|, 2024). To tackle this, tool-augmented LLM (TALM) frameworks such as PAL (Gao
et al., [2023)), PoT (Chen et al., [2022), ToRA (Gou et al.| 2024), and MATHSENSEI (Das et al.|
2024) augment LLMs with external tools like Python execution or WolframAlpha queries. While
these frameworks show progress on simpler benchmarks such as GSM8K |Cobbe et al.| (2021), their
performance plateaus on more complex datasets including MATH500 (Lightman et al.|[2023), AIME,
AMC, and OlympiadBench (He et al.,|[2024)).

We propose Multi-TAG, a Multi-Tool AGgregation framework that addresses these limitations by
adopting the recently popularized inference-time scaling paradigm. Unlike prior TALMs that select a
single tool per reasoning step, Multi-TAG scales up inference-time compute by invoking multiple
tools per step and aggregating their outputs, using consensus across tools to improve reliability.

The core benefit of this approach is cross-validation: tools have complementary strengths and distinct
failure modes (see Section[4.2)), so agreement between them provides strong evidence of correctness.

*Work done during internship at ServiceNow
*Multi-TAG GitHub will be open-sourced soon.
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For example, if a natural language reasoning trace and a Python execution produce the same result, it
is unlikely both independently made errors aligned to their respective weaknesses (e.g., arithmetic
slips vs. logic bugs). By aggregating across diverse tools, Multi-TAG can self-validate intermediate
reasoning steps and improve overall accuracy.

Another strength of Multi-TAG is that it is purely inference-time based, making it broadly applicable
to instruction-tuned LLMs. In contrast, finetuning-based TALMs such as ToRA (Gou et al.| 2024)
and MathCoder (Wang et al., 2024) incur heavy finetuning costs and cannot be applied to proprietary
models lacking finetuning APIs. We demonstrate Multi-TAG’s transferability by evaluating it
across three different LLMs (open-weight and proprietary), consistently observing large performance
improvements over both simple and TALM baselines.

Our contributions are:

1. We introduce Multi-TAG, a TALM framework that solves complex math reasoning tasks by
aggregating multiple tool invocations at each reasoning step. The code will be open-sourced.

2. We present extensive evaluations of Multi-TAG, seven simple baselines, and five state-of-the-art
TALM baselines across three LLM backbones and four challenging benchmarks (MATHS500,
AIME, AMC, OlympiadBench). While the strongest TALM baseline for each model underper-
forms simple baselines by 1.3-6.2%, Multi-TAG achieves 6.0-7.5% higher accuracy than the
strongest simple baseline and 7.9-13.7% higher than the strongest TALM baseline.

3. We conduct comprehensive analyses of Multi-TAG’s strengths and cost-performance tradeoff.
Section 4] examines performance by problem difficulty and subject, while Appendix [C] studies
hyperparameter sensitivity and provides tuning insights under varying compute budgets.

2  Multi-TAG

Figure |1 provides an overview of the Multi-TAG system, and Algorithm [I| provides an explicit
pseudocode implementation. Given a problem P and a set of tools 7 = {7}, Tz, ..., T;}, Multi-
TAG constructs a step-by-step solution s1, S2, ..., s, With each step invoking one of the tools in
T. At the p’th step, Multi-TAG starts by sequentially invoking a set of m x ¢ LLM executors. An
early stopping criteria is checked after each executor’s invocation to determine if executor invocation
should be terminated early; see the Consistency Threshold section below for details. The i’th executor
is assigned t0ol T (;_1) mod +)+1 and given P and the current partial solution s1, 52, ..., sp_1. Itis

prompted to propose a candidate 5; for the next reasoning step. The value of m X t is a tunable
hyperparameter which we call the max executors value, which can be tuned to adjust the amount of
inference compute utilized. After executor invocation is completed, each candidate s;, is appended to

the current partial solution, forming a candidate partial solution cand; = s1, S2,...,Sp—1, s;. An
LLM completer is then invoked for each candidate partial solution. The i’th completer is given
P and cand; and is prompted to generate a natural language solution completion comp;, which
when concatenated after cand; forms a complete solution to P. The final answer reached by this
concatenated solution serves as a quick “approximation” of the final answer assuming cand; is

accurate, and we call it the 7’th final answer estimate est;.

Finally, to select the best cand; to serve as the next step in the current partial solution, a two-step
selection procedure is employed. In the first step, the most frequent final answer estimate maxest =
mode({esty, esto, ..., est,«¢}) is identified, and all candidates cand; such that est; = maxest
are shortlisted. Similar to self consistency’s motivation, the more candidates that reach consistent
final answers, the more confident we can be about the candidates’ accuracy. In the second step, the
shortlisted candidate with the shortest solution completion (measured in number of LLM tokens) is
selected to be the next step in the current partial solution. Intuitively, selecting this step would lead to
the most concise solution, improving Multi-TAG’s compute efficiency. We perform ablation tests on
our two-step selection procedure in Appendix [B.3]and find empirically that both steps are necessary
to achieve maximum performance. Furthermore, we demonstrate that the second step additionally
improves inference efficiency, and removing it results in substantially higher inference costs.

Consistency Threshold And Early Termination Executors are invoked sequentially, with early
stopping based on a consistency threshold. After each invocation, we compute the consistency gap:
the difference between the frequencies of the most common and second most common final answer
estimates. If this gap exceeds the threshold, execution halts early, assuming the majority is correct.
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Figure 1: Visualization of the Multi-TAG framework with a consistency threshold value of 1. In the first step,
after the first four executors are invoked, candidates CoT (1), Python (2), WolframAlpha (3), and CoT (4) are
produced. Candidates (1), (3), (4) have final answer estimate 1, while executor (2) has final answer estimate
3. The frequency of the most frequent final answer estimate, 1, is 3, while the frequency of the second most
frequent final answer estimate, 3, is 1, so the consistency gap is 3 — 1 = 2, which is greater than the consistency
threshold value. Hence, executor invocation terminates. To select a candidate, first the candidates (1), (3), (4) are
shortlisted as they reach the most frequent final answer estimate of 1. Then, (4) is selected as it has the shortest
solution completion. In the second step, only two executors were invoked for the consistency gap to exceed the
consistency threshold value. Candidate (2) was selected due to having the shorter solution completion. This

process repeats until the selected step reaches a final answer for the problem. The full generated solution to the
problem is the concatenation of all the selected steps.

Ablation studies (Appendix [B.2)) show that this mechanism cuts inference cost substantially while
causing negligible accuracy loss.

3 Results

Following recent work on LLM reasoning, we evaluate Multi-TAG on challenging short-answer
math problems, chosen due to the availability of vetted ground-truth datasets and the ease of verifying
answers with symbolic checkers (e.g., SymPy). This ensures reliability and reproducibility. We
use four math datasets: MATH Hendrycks et al.|(2021) (MATHS500 subset|Lightman et al.| (2023)),
AMCﬂ AIMEﬂ and OlympiadBench He et al.| (2024) (two English text-only open-ended splits:

*https://huggingface.co/datasets/AI-M0/aimo-validation-amc
*https://huggingface.co/datasets/AI-M0/aimo-validation-aime
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Method MATHS500 AIME AMC OlympiadBench Average

LLaMA3 LLaMA33 LLaMA3 LLaMA33 LLaMA3 LLaMA33 LLaMA3 LLaMA33 LLaMA3 LLaMA-33
708 708 OPT40| "0 208 OPTH4o| "0 708 OPT40| "0 208 OPT4o| "0 708 OPT-o
CoT 522 758 796 | Ll 267 100 | 265 0 470 | 166 24 325 | 241 5 23
Python 452 670 662 | 77 89 22 | 277 470 506 | 179 300 302 | 246 $82 423
WolframAlpha 234 454 544 | 00 18.9 44 | 84 27 29 | 64 126 166 | 96 247 246
CoT MV 58.8 7290 818 | 22 89 122 | 277 s54 494 | 211 66 365 | 275 500 450
Python MV 520 730 742 | 100 356 289 | 265 602 590 | 214 326 M8 | 215 S04 492
WolframAlpha MV 25.2 456 562 | 00 200 56 | 120 29 29| 13 132 169 | 111 254 254
COT+Py+WAMV 606 7290 860 | 56 B3 22| B3 602 602 | 236 376 382 | 309 525 517
PAL 512 658 646 | 122 244 200 | 361 70 446 | 187 275 288 | 296 12 395
PoT 468 702 512 | 89 89 156 | 277 482 361 | 186 298 193 | 255 43 306
ToRA 540 772 730 | 44 300 178 | 277 sa2 42 | 212 388 321 | 268 S0 413
MATHSENSEI 564 674 734 | 33 15.6 56 | 205 300 434 | 145 248 289 | 237 M5 318
ReAct 394 78 752 | L 178 289 | 133 217 458 | 104 354 31 | 161 369 455
Multi-TAG (Ours) _ 68.6 842 820 | 133 389 344 | 3938 675 711 | 281 65 @1 | s 35 92

Table 1: Main results comparing Multi-TAG with various baselines. Best score for each model on each
benchmark is bolded and second best score is underlined. MV denotes majority voting.

OE_TO_maths_en_COMP, OE_TO_physics_en_COMP). Models evaluated include LLaMA-3-70B
Team| (2024), LLaMA-3.3-70B, and GPT-40 (05-13), covering weaker open, near-frontier open, and
frontier proprietary LLMs.

Multi-TAG Implementation Details — Unless noted, we use 12 executors per step, consistency
threshold 2, and three tools: CoT reasoning, Python execution, and WolframAlpha. Tool invocations
use temperature 0.7/top_p 0.9; partial solution completions use temperature 0.0. Grading is done
with Math-Verify (MATH500, AIME, AMC) or OlympiadBench’s autograder. LLM prompts are
available in Appendix

3.1 Baselines

Simple We compare against single-tool baselines, where the LLM solves each problem with
one tool. For WolframAlpha, we add a second step to reformat outputs (e.g., Unicode math) into
IATEX. We also implement four majority-voting baselines (12 traces/problem): one per tool and one
combining all tools (4 traces each).

Tool Augmented Frameworks We further compare against PAL (Gao et al.,|2023), PoT (Chen
et al.,[2022), ToRA (Gou et al.| 2024), MATHSENSEI (PG+WA+SG) (Das et al., [2024), and ReAct
(Yao et al., 2023). Since ToRA was finetuned on older models, we adapt its prompting to newer
LLMs using the original few-shot prompt. For ReAct, we provide the same three tools as Multi-TAG
. Non-voting baselines use temperature 0.0; voting baselines use temperature 0.7/top_p 0.9.

3.2 Main Results

Table [1| presents the results of the baselines and Multi-TAG and demonstrates the superior perfor-
mance of Multi-TAG at solving challenging math reasoning problems. Over the three LLMs, the
TALM baselines consistently underperform even the simple baselines, demonstrating the inability
of these frameworks to address complex math problems. In contrast, Multi-TAG outperforms all
baselines on all four benchmarks and all three LLMs, demonstrating the effectiveness of multi-tool
aggregation at improving the math reasoning abilities of LLMs. When compared to the strongest
baseline for each LLM, Multi-TAG achieves an average accuracy improvement of 6.6% with
LLaMA-3-70B, 6.0% with LLaMA-3.3-70B, and 7.5% with GPT-40. The improvements are even
more substantial when comparing only to the strongest TALM baselines, with improvements rising
to 7.9%, 8.4%, and 13.7%, respectively. Furthermore, the consistent improvements achieved by
Multi-TAG over both open-weight (LLaMA) and proprietary (GPT-40) models demonstrate its
generalizability to different LLM backbones.

4 Analysis

4.1 Problem Difficulty

Figure[2shows the performance of Multi-TAG and baseline methods on different MATH500 difficulty
levels. As shown, the improvements from Multi-TAG over baselines are especially prominent at
higher difficulty levels. At level 5, Multi-TAG outperforms all baselines on LLaMA-3-70B by 6.0%,
on LLaMA-3.3-70B by 9.7%, and on GPT-40 by 7.5%. These improvements over previous single-tool
TALM frameworks demonstrates the effectiveness of multi-tool aggregation as an inference scaling
technique for boosting complex math reasoning performance.
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Figure 3: Comparison of baseline methods and Multi-TAG on different MATH500 problem subjects. Multi-
TAG consistently performs well across subjects, outperforming all baselines on a majority of subjects. Fur-
thermore, simple multi-tool aggregation (CoT + Py + WA) also outperforms the three single-tool aggregation

baselines on a majority of subjects.
Figure [3] shows the performance of Multi-TAG and baseline methods on different MATH500
problem subjects. Multi-TAG outperforms all baselines in 12/21 subjects in total across the three
models, demonstrating its consistent effectiveness across a diverse range of math domains. Moreover,
comparing the four simple majority voting baselines, the multi-tool majority voting baseline (CoT
+ Py + WA) outperformed all three single-tool majority voting baselines in 12/21 subjects in total
across the three models. This highlights the synergistic benefits of aggregating different tools together,

improving upon the pefformance of aggregating each of the tools individually.

5 Conclusion
In this paper, we present Multi-TAG , a novel tool-augmented LLM framework for math reasoning

Unlike previous TALM frameworks, Multi-TAG scales inference-time compute by allowing the
LLM to invoke and aggregate multiple tools at each reasoning step. As a result, Multi-TAG achieves
superior results on four complex math reasoning benchmarks, outperforming the strongest baselines
by 6.0% to 7.5% across three backbone LLMs. Furthermore, Multi-TAG is broadly applicable,
enabling the use of any instruction-tuned LLM and allowing computational costs to be tuned according
to specific cost/performance requirements. Our results demonstrate that multi-tool aggregation is a

promising avenue for advancing LLM math reasoning capabilities
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A  Multi-TAG Algorithm Pseudocode

Algorithm|[T|provides the pseudo-code for the Multi-TAG framework.

Algorithm 1 Pseudocode for Multi-TAG algorithm

Require: Problem P, Toolset 7 = {T1,7T5,...,T:}, Max executors value m x t, Consistency
threshold value thresh
Ensure: Step-by-step solution S,, = [s1, $2,...,Sp] t0 P

1: Initialize current partial solution Sy <— ||

2: forp=0ton—1do

3: Initialize candidate pool C < |]

4: for k =1tom x tdo

5 Invoke k’th executor to generate candidate c’; 1 using tool T((x_1) mod ¢)+1- given P and

Sp
6: Append ¢, to C
7 Form candidate partial solution candy, < [S,, ¢k, |]
8: Use completer to generate natural language solution completion comp,, given P and
candy
9: Extract final answer estimate est;, from compy,,
10: if Consistency gap > thresh then
11: break
12: end if
13: end for
14: Identify most frequent final answer estimate maxest among all est;
15: Shortlist candidates Cgportlist = {c]; 41 | esty = maxest}
16: Select c; 11 from Cshortlist Whose comp,, is shortest
17: Append c;;,; to current partial solution: ;11 < [Sp, ¢4 1]
18: end for
19: return S, = [s1, S2,. .., Sp)

B Ablation Study

B.1 Token Consumption Cost

We verify that the improvements from Multi-TAG over baselines are not simply a result of Multi-
TAG utilizing more LLM inference compute (i.e. using more tokens). To do so, for each of our
simple majority voting baselines, we modify the number of sampled LLM traces per problem so that
each baseline and Multi-TAG have matching token consumption costs. Similarly, for each of our
TALM baselines, to increase the amount of tokens used to match Multi-TAG, we simply sample
multiple TALM traces for each problem and apply majority voting over the final answers reached by
the traces.

Token consumption cost is defined as 0.25P + O, where P is the number of prompt tokens and
O is the number of generated output tokens. The 0.25 weighting of prompt token cost is based on
OpenAT’s GPT-40 API pricing, which as of time of writing is $2.50 per million prompt tokens and
$10 per million output tokens.

We evaluated Multi-TAG and our token consumption-matched baselines and report the results
in Table @ For cost-related reasons, we only evaluate GPT-40 as the backbone LLLM for these
experiments. Multi-TAG continues to outperform the token-matched baselines, achieving superior
results on all four benchmarks and achieving a 7.7% average accuracy improvement over the strongest
baseline.

B.2 Consistency Threshold

To verify that Multi-TAG’s consistency threshold effectively reduces the token consumption cost
while incurring minimal performance degradation, we compare the results of running Multi-TAG with
a consistency threshold of 2 and the results of running Multi-TAG without a consistency threshold.



Method MATHS500 AIME AMC OlympiadBench Average

CoT (maj@19) 84.2% 10.0% 51.8% 37.7% 45.9%
Python (maj@35) 75.2% 30.0% 63.9% 35.4% 51.1%
WolframAlpha (maj@70) 55.6% 78%  22.9% 15.5% 25.5%
CoT + Python + WolframAlpha (maj@33) 84.2% 222%  60.2% 39.0% 51.4%
PAL (maj@34) 71.8% 27.8% 57.8% 32.5% 47.5%
PoT (maj@14) 75.4% 322% 61.4% 35.8% 51.2%
ToRA (maj@6) 82.2% 27.8% 55.4% 40.7% 51.5%
MATHSENSEI (maj@3) 78.4% 13.3% 44.6% 29.2% 41.4%
ReAct (maj@6) 81.0% 222% 62.7% 38.2% 51.0%
Multi-TAG (Ours) 87.0% 344% 71.1% 44.1% 59.2%

Table 2: Results of Multi-TAG and token consumption-matched baselines. The number of sampled traces per
problem used for each token consumption-matched baseline is given as maj@x. For simple multi-tool majority
voting (CoT + Python + WolframAlpha), the 33 traces are split evenly between CoT, Python, and WolframAlpha
traces. Best score in each category is bolded and second best score is underlined. GPT-40 is used as the LLM
for these experiments.

We also vary the max executors parameter and the backbone LLM to ensure the effectiveness of
the consistency threshold for all settings. We report the MATHS500 accuracy and average token
consumption cost (as defined in Section[B.T)) per problem for each of the settings in Table[3]

As shown, the accuracy degradation incurred by applying the consistency threshold is minimal,
with a maximum degradation of 2.0% and an average degradation of 0.1%. Meanwhile, the token
consumption cost is significantly reduced in all settings, with relative reductions ranging from 14.7%
to 63.6% and an average relative reduction of 43.8%. Thus, the consistency threshold effectively
reduces the computational cost of Multi-TAG without compromising its performance.

LLaMA-3-70B LLaMA-3.3-70B GPT-40
Max Executors ~ With Threshold = Without Threshold With Threshold Without Threshold With Threshold Without Threshold
6 67.0% 1 0.2% 66.8% 82.0% | 1.8% 83.8% 82.6% | 1.4% 84.0%
(5361 | 14.7%) (6286) (5967 | 37.6%) (9559) (6090 | 23.8%)  (7989)
9 66.2% | 0.4% 66.6% 85.8% 1 1.4% 84.4% 86.4% 1 1.4% 85.0%
(6746 | 25.8%)  (9091) (7766 | 44.0%)  (13859) (6157 | 40.9%)  (10425)
12 68.6% 1 0.2% 68.4% 84.2% | 2.0% 86.2% 87.0% *+ 0.8% 86.2%
(7916 | 34.7%) (12124) (7945 | 56.3%) (18190) (7952 | 48.3%)  (15376)
15 68.6% | 1.2% 69.8% 86.0% 1 0.6% 85.4% 87.6% * 1.2% 86.4%
(8891 | 40.4%)  (14922) (9274 | 58.8%)  (22501) (8214 | 52.0%)  (17127)
18 67.8% | 1.2% 69.0% 86.6% 1 1.0% 85.6% 85.6% | 0.4% 86.0%
(9918 | 56.7%) (17507) (9727 | 63.6%) (26743) (9005 | 58.8%)  (21883)

Table 3: MATHS500 scores and average token consumption costs (as defined in Section|B.1) per problem of
Multi-TAG with and without the consistency threshold. Token consumption costs are in (parentheses).

B.3 Candidate Step Selection

To verify the efficacy of the candidate step selection algorithm, we study the effects of simplifying
the procedure on performance and token consumption cost (as defined in Section[B.T). Recall that
the procedure consists of the following two steps:

(1) Identify the most frequent candidate final answer and mark all candidate steps reaching this final
answer.
(2) From the marked candidates, select the candidate with the shortest solution completion.

We compare four approaches: Full (the unmodified algorithm from Multi-TAG with both (1) and (2)),
Answer Only (replacing (2) with randomly selecting a marked candidate), Length Only (replacing (1)
with marking all candidates), and Random (select a random candidate without using either (1) or (2)).
We evaluate Multi-TAG with each of the modified candidate selection procedures on MATH500 and
report the results in Table



As shown, all of the simplified candidate selection procedures significantly underperform the Full
procedure. On average, the performance degradation is 2.6% for Answer Only, 5.5% for Length Only,
and 7.9% for Random. This demonstrates the necessity of both steps of the algorithm to maximize
performance. Furthermore, the results show the isolated contribution of (2) to computational efficiency.
The only difference between Full and Answer Only is the inclusion of (2) in the former, which reduces
the token consumption cost by 27.9% on average. Similarly, the only difference between Length
Only and Random is the inclusion of (2) in the former, which reduces the token consumption cost
by 25.5% on average. These results demonstrate that (2) additionally improves the computational
efficiency of Multi-TAG.

Next Step Selection Procedure = LLaMA-3-70B  LLaMA-3.3-70B GPT-4o0
Full 68.6% 84.2% 87.0%
4 (7916) (7945) (7952)
Answer Onl 64.8% | 3.8% 832% | 1.0%  84.0% | 3.0%
W y (94921 19.9%) (11538 1 45.2%) (9420 1 18.5%)
Length Only 56.8% | 11.8%  82.0% | 2.2%  84.6% | 2.4%

(7548 L 4.6%) (93251 17.4%) (7412 | 6.8%)
54.8% | 13.8%  788% ) 5.4%  82.4% | 4.6%
(10023 1 26.6%) (126351 59.0%) (9976 1 25.5%)

Table 4: MATHS500 scores and average token consumption cost (as defined in Section per problem of
Multi-TAG with the proposed and simplified candidate step selection procedures. Token consumption costs are
in (parentheses).

Random

C Hyperparameters Study

We investigated the influence of Multi-TAG’s two primary hyperparameters-the maximum number
of executors and the consistency threshold value-on its performance and computational cost. We
evaluate Multi-TAG with various hyperparameter configurations and with all three backbone LLMs
on MATH500. The results are reported in Table [5]

The results show a strong, statistically significant positive correlation between performance and the
max executors value. The Spearman correlation coefficients were .832 (p < .01), .535 (p = .04), and
.549 (p = .03) for LLaMA-3-70B, LLaMA-3.3-70B, and GPT-4o results, respectively. In contrast,
the consistency threshold value showed no statistically significant correlation with performance, with
coefficients of .057 (p = .84), .028 (p = .92), and .162 (p = .56). Thus, to increase performance, the
max executors value should be increased.

While increasing the max executors value boosts performance, it also significantly increases com-
putational costs. The results demonstrate the crucial role of the consistency threshold to mitigate
this increase. For instance, when increasing max executors from 6 to 18, the average increase in
token consumption cost across all models was only 49.3% with a consistency threshold of 1. This
cost increase was substantially higher for thresholds of 2 (65.3%) and 3 (70.4%). This demonstrates
that lower consistency threshold values effectively contain costs, especially for larger max executors
settings.

These findings suggest a simple heuristic for setting Multi-TAG hyperparameters: the max executors
value should be set as high as the compute budget allows to maximize performance, then the
consistency threshold value should be set to a low value, such as 1 or 2, to minimize the token
consumption cost.

D LLM Prompts

We provide the LLM prompts used for all components of Multi-TAG in Section and the prompts
used for all simple baselines in Section Prompts used for TALM baselines can be found in the
Multi-TAG GitHub[l

SWill be released soon
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Model Consistency Max Executors
Threshold 6 9 12 15 18
63.0% 67.2% 66.2% 67.8% 69.2%

S 1 4518)  (5592)  (6565)  (7272)  (7799)
o ) 67.0%  662%  68.6%  68.6%  67.8%
S (5361)  (6746)  (7916)  (8891)  (9918)
E 3 63.8%  66.6%  612%  68.0%  68.8%
s (5838)  (7380)  (9267)  (10074)  (11418)
@ . 84.0%  84.8%  83.6%  862%  85.0%
& (5023)  (5913)  (6400)  (6752)  (6793)
i 5 82.0%  85.8%  842%  86.0%  86.6%
< (5967)  (7766)  (7945)  (9274)  (9727)
= 3 83.8%  86.0%  84.6%  85.6%  84.4%
3 (6460)  (9061)  (9289)  (10497)  (10555)

. 86.0%  85.0%  86.0%  862%  86.6%
o @4711)  (4822)  (6098)  (6297)  (6594)
) ) 82.6%  864%  87.0%  87.6%  86.2%
e (6090)  (6157)  (7952)  (8214)  (9008)

3 850%  87.0%  862%  856%  87.2%

(7064) (7352) (9253) (9556) (10753)

Table 5: MATHS500 scores and average token consumption cost (as defined in Section per problem of
various max executor, consistency threshold configurations of Multi-TAG. Token consumption costs are in
(parentheses).

D.1 Multi-TAG Prompts

CoT Executor System Prompt

You are a math problem solving agent working on solving a problem iteratively . The
problem and the current progress will be given below. The current progress consists of a
sequence of steps separated by "———" which may consist of natural language reasoning,

Python scripts , and WolframAlpha queries. Python script execution outputs are given at
the bottom of a step within “‘‘ output ‘‘‘, and WolframAlpha query results are given at
the bottom of a step within result . Your task is to write the next step in the

solution in the form of natural language reasoning.

e e

If the solution is complete, you may give the final answer (NOTE: you may not give the
final answer if you also write a step. Only give the final answer if the solution is
complete without you writing an additional step). Express the answer using LaTeX
formatting and do not include units or other unnecessary text in the answer. It’s okay to
leave the final answer unsimplified , for example expressed as a decimal. Do not round
final answers that are decimals. Make sure to read the question carefully and answer
exactly what the problem is asking for. Format the answer by enclosing the answer within
<final_answer></final_answer> and putting the answer within \boxed{{}}. For example:
<final_answer>

The final answer is \boxed{{[final answer formatted using LaTeX]}}

</ final_answer >

Python Executor System Prompt

You are a math problem solving agent working on solving a problem iteratively . The
problem and the current progress will be given below. The current progress consists of a
sequence of steps separated by "———" which may consist of natural language reasoning,
Python scripts , and WolframAlpha queries. Python script execution outputs are given at
the bottom of a step within “*‘output ‘‘‘, and WolframAlpha query results are given at
the bottom of a step within result . Your task is to write the next step in the

X% %3
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solution in the form of a Python script and a brief explanation of what your script
calculates .

If the solution is complete, you may give the final answer (NOTE: you may not give the
final answer if you also write a step. Only give the final answer if the solution is
complete without you writing an additional step). Express the answer using LaTeX
formatting and do not include units or other unnecessary text in the answer. It’s okay to
leave the final answer unsimplified , for example expressed as a decimal. Do not round
final answers that are decimals. Make sure to read the question carefully and answer
exactly what the problem is asking for. Format the answer by enclosing the answer within
<final_answer></final_answer> and putting the answer within \boxed{{}}. For example:
<final_answer>

The final answer is \boxed{{[final answer formatted using LaTeX]}}

</ final_answer >

To write the next step, you must follow the following format:
“““ python
[Python script , assigning the desired output to the °result © global variable ]

X3

[Brief explanation of what your script calculates ]

WolframAlpha Executor System Prompt

You are a math problem solving agent working on solving a problem iteratively . The
problem and the current progress will be given below. The current progress consists of a

sequence of steps separated by "———" which may consist of natural language reasoning,
Python scripts , and WolframAlpha queries. Python script execution outputs are given at
the bottom of a step within ““‘ output ‘*‘, and WolframAlpha query results are given at
the bottom of a step within result . Your task is to write the next step in the
solution in the form of a WolframAlpha query and a brief explanation of what your query
calculates .

33 33

If the solution is complete, you may give the final answer (NOTE: you may not give the
final answer if you also write a step. Only give the final answer if the solution is
complete without you writing an additional step). Express the answer using LaTeX
formatting and do not include units or other unnecessary text in the answer. It’s okay to
leave the final answer unsimplified , for example expressed as a decimal. Do not round
final answers that are decimals. Make sure to read the question carefully and answer
exactly what the problem is asking for. Format the answer by enclosing the answer within
<final_answer></final_answer> and putting the answer within \boxed{{}}. For example:
<final_answer>

The final answer is \boxed{{[final answer formatted using LaTeX]}}

</ final_answer>

To write the next step, you must follow the following format:
“““ wolfram
[WolframAlpha query]

X%

[ Brief explanation of what your query calculates ]

Executor User Prompt

# Problem
{problem}

# Partial Solution
{ progress }

# Final Instructions

12




Above are the problem and potentially incomplete solution . Note that the partial
solution has already been verified for accuracy, so you should assume it is correct .
Write the next step or give the final answer if the partial solution is complete.
Remember that you must write a step of the specified form above (or give the final
answer using the specific format above). You must write a single logical step (or give
the final answer), and stop after completing a single step.

Solution Completion System Prompt

You are a math problem solver working on completing a partial solution to a problem.
The problem and partial solution will be given below. The partial solution consists of a
sequence of steps separated by "———" which may consist of natural language reasoning,
Python scripts , and WolframAlpha queries. Python script execution outputs are given at
the bottom of a step within ““‘output “‘‘, and WolframAlpha query results are given at
the bottom of a step within result . Your task is to continue the partial solution
to finish solving the problem. You may only use natural language reasoning in your
response (you may not use Python or WolframAlpha). Enclose the final answer within \
boxed{}. Express the answer using LaTeX formatting and do not include units or other
unnecessary text in the answer. It’s okay to leave the final answer unsimplified , for
example expressed as a decimal. Do not round final answers that are decimals. Make sure
to read the question carefully and answer exactly what the problem is asking for.

Y3 e

Solution Completion User Prompt

# Problem
{problem}

# Partial Solution
{ progress }

# Final Instructions

Above are the problem and partial solution to continue. Note that the partial solution

has already been verified for accuracy, so you should assume it is correct. Continue the
partial solution to finish solving the problem. You don’t need to follow any specific

format like the step—by—step format of the partial solution .

D.2 Baseline Prompts

CoT User Prompt

Solve the following problem step by step. Express the final answer using LaTeX
formatting and enclose it within \boxed{{}}. Do not include units or other unnecessary
text in the answer.

{problem}

Python User Prompt

Solve the following problem by writing a single Python script . Your script should be
enclosed within “‘‘python ‘‘‘. You may only write a single Python script in your
response. Do not include units or other unnecessary text in the answer. Your answer
should be submitted by assigning the answer to the "result" global variable .

{problem}

WolframAlpha User Prompt

Solve the following problem by writing a single WolframAlpha query. Your WolframAlpha
query must be enclosed within “‘‘ wolfram ‘. You may only write a single WolframAlpha
query in your response.

13




{problem}

Convert WolframAlpha Output to LaTeX User Prompt

Here is the output from your query:
“““ result
{ output }

X3

Now, give the final answer to the problem. Express the final answer using LaTeX
formatting and enclose it within \boxed{{}}. Do not include units or other unnecessary
text in the answer. Your response must only contain the final answer and nothing else.

E Costs Analysis

E.1 Main Results Token Consumption Cost

Table 6] reports the average token consumption cost (as defined in Section [B.T)) per problem for all
results in the main results (Table [T)).

E.2 Multi-TAG API Calls Consumption

Table [7]reports the average number of LLM API calls per step, average number of steps used per
problem, and average number of LLM API calls per problem for Multi-TAG results in Table

F Full Multi-TAG Trace

Below is a full Multi-TAG solution trace demonstrating Multi-TAG’s ability to effectively leverage
different tools to solve a challenging math problem. This solution trace is extracted from the GPT-40
MATHS500 main results.

Problem:

Find the maximum value of

fley) = aV/1—y2 +yV1-a?,
where —1 < z,y < 1.
Step 1 (CoT):
To find the maximum value of the function

fla,y) =2v/1—y? +yV/1 - 22,

we can start by using the method of Lagrange multipliers. We will define a new function

glz,y) =2 +y* — 1
to represent the constraint 2 + y? = 1.
The method of Lagrange multipliers states that we need to solve the system of equations given by
Vf=2AVyg
and the constraint equation g(x,y) = 0.

First, we will compute the gradients of f and g.

w:(*” (”f).

The gradient of f is:
oz’ dy
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Model Method MATH500 AIME AMC OlympiadBench Average

CoT 348 790 583 521 561
Python 97 153 128 135 128
m WolframAlpha Query 130 194 158 168 163
=) CoT MV 3757 6220 5127 5922 5257
o Python MV 1160 1832 1629 1644 1566
@ WolframAlpha MV 1584 2318 1939 2049 1973
§ CoT + Python + WolframAlpha MV 2236 3928 2868 3203 3059
< PAL 280 355 379 318 333
- PoT 566 621 610 613 603
ToRA 1261 1437 1299 1420 1354
MATHSENSEI 2730 3298 3049 3139 3054
ReAct 1386 2242 1784 1883 1824
Multi-TAG (Ours) 7916 14448 12125 12567 11764
CoT 610 929 885 886 828
Python 206 457 319 250 308
/M WolframAlpha 148 231 184 197 190
[C\> CoT MV 7303 11813 10877 10558 10138
h Python MV 2448 4326 3946 3049 3442
dl‘; WolframAlpha MV 1808 3167 2329 2330 2409
< CoT + Python + WolframAlpha MV 3845 6381 5572 5286 5271
% PAL 386 677 585 475 531
— PoT 609 817 753 697 719
— ToRA 2149 3824 2610 2913 2874
MATHSENSEI 3974 5247 5174 5099 4874
ReAct 1436 2627 3181 2295 2385
Multi-TAG (Ours) 7945 17809 11756 14186 12924
CoT 582 992 909 837 830
Python 287 521 353 390 388
WolframAlpha Query 129 234 233 197 198
CoT MV 6485 9889 9306 8885 8641
o Python MV 3195 5375 5142 4373 4521
~ WolframAlpha MV 1614 2847 2466 2205 2283
E CoT + Python + WolframAlpha MV 3519 5854 5096 5193 4916
o PAL 328 442 426 394 398
PoT 837 1140 1013 1006 999
ToRA 1520 3801 2686 2329 2584
MATHSENSEI 3915 5579 4948 5009 4863
ReAct 1518 3355 2857 2496 2557
Multi-TAG (Ours) 7952 18650 12285 13823 13178

Table 6: Average token consumption cost (as defined in Section[B.1)) per problem for all results in Table

Model MATHS00 AIME AMC OlympiadBench
Calls Steps Calls Calls Steps Calls Calls Steps Calls Calls Steps Calls
per per per per per per per per per per per per

Step Problem Problem Step Problem Problem Step Problem Problem Step Problem Problem
LLaMA-3-70B 9.99 2.85 28.49 13.56 2.79 37.82 11.86 2.93 34.72 12.09 2.96 35.79

LLaMA-3.3-70B  7.31 2.52 18.41 9.67 2.72 26.31 8.21 2.58 21.16 9.20 2.66 24.52
GPT-40 7.98 2.39 19.11 11.47 2.69 30.84 9.44 2.47 23.33 10.25 2.56 26.25

Table 7: Average number of LLM API calls per step, average number of steps per problem, and average number
of LLM API calls per problem for Multi-TAG results in Table T]

The gradient of g is:
99 Oy
Vg=| =, ).
I (aw ay)
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Let’s find these partial derivatives.
Step 2 (Python):

Python Code

import sympy as sp

# Define the wvariables

X, y = sp.symbols(’x y’)

# Define the function f and the constraint g

f =x % sp.sqrt(l — y*%2) +y % sp.sqrt (1 — x#x2)
g = Xx#%2 4+ yxx2 — 1

# Calculate the gradient of f
grad_f = [sp. diff (f, var) for var in (X, y)]

# Calculate the gradient of g
grad_g = [sp. diff (g, var) for var in (x, y)]

result = (grad_f, grad_g)

This script calculates the gradients of the functions f and g. The gradients are essential for setting up
the system of equations for the method of Lagrange multipliers.

Python Code Output

([—x=xy/sqrt (1 — x#x2) 4+ sqrt (1 — y=x2), —xxy/sqrt(l — y#=2) + sqrt (1l — x*%2)], [2%X, 2xy
D

Step 3 (WolframAlpha):

WolframAlpha Query

solve [—xxy/sqrt(l — x#x2) + sqrt(l — y*%2) = 2xx lambda, —xxy/sqrt(1 — y**2) + sqrt(1 —
x#%2) = 2xy lambda, x"2 + y"2 = 1]

This query solves the system of equations derived from the gradients of f and g using the method of
Lagrange multipliers, along with the constraint equation 2 + y? = 1.

WolframAlpha Result

y = —sqrt(l — x\*2), lambda= 0, y = sqrt(1 — x\*2), lambda =0

Step 4 (CoT):

Given the solutions y = /1 — 22 and y = —v/1 — x2 from the Lagrange multipliers method, we
need to evaluate the function f(z,y) at these points to find the maximum value.

First, consider y = v/1 — z2:
Fla,V1—22) =2\/1— (V1 —22)2 + V1 — 221 — 22

=21 — (1 —22)+ (1 —2?)
=2Va? + (1 - a?)
= z|z| 4+ (1 — %)

Since —1 <z < 1, z|z| = 2%

flz, /1 —22) =2+ (1 —2?)

16




Next, consider y = —v/1 — z2:
f(z, 1—:152 —:1:\/1— - 1—;102)24—(—\/1—352)\/1—:1:2

T - (1)
= 2V2? — (1 —2?)

— afe| - (1 —2?)

Again, since —1 < z < 1, z|z| = 2%

fla,—/T—22) =2 — (1-2?)
=2? —1+2°
=227 -1

The maximum value of 222 — 1 over the interval —1 < z < 1is 1, which occurs at z = +1.

Thus, the maximum value of f(x,y) is .
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