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ABSTRACT

Automatically detecting machine-generated text (MGT) is critical to maintain-
ing the knowledge integrity of user-generated content (UGC) platforms such as
Wikipedia. Existing detection benchmarks primarily focus on generic text gen-
eration tasks (e.g., “Write an article about machine learning.”). However, editors
frequently employ LLMs for specific writing tasks (e.g., summarisation). These
task-specific MGT instances tend to resemble human-written text more closely
due to their constrained task formulation and contextual conditioning. In this
work, we show that a range of MGT detectors struggle to identify task-specific
MGT reflecting real-world editing on Wikipedia. We introduce TSM-BENCH, a
multilingual, multi-generator, and multi-task benchmark for evaluating MGT de-
tectors on common, real-world Wikipedia editing tasks. Our findings demonstrate
that (i) average detection accuracy drops by 10–40% compared to prior bench-
marks, and (ii) a generalisation asymmetry exists: fine-tuning on task-specific
data enables generalisation to generic data—even across domains—but not vice
versa. We demonstrate that models fine-tuned exclusively on generic MGT overfit
to superficial artefacts of machine generation. Our results suggest that, in contrast
to prior benchmarks, most detectors remain unreliable for automated detection in
real-world contexts such as UGC platforms. TSM-BENCH therefore provides a
crucial foundation for developing and evaluating future models.

1 INTRODUCTION

Wikipedia serves as a vital source of reliable human-written text (HWT) for the artificial intelli-
gence (AI) community. As one of the largest high-quality multilingual corpora on the internet, it
features in the training data of most large language models (LLMs) (Deckelmann, 2023; Longpre
et al., 2024). However, the Wikimedia Foundation warns that the proliferation of machine-generated
text (MGT) across Wikipedia could undermine its knowledge integrity.1 The unchecked spread of
MGT risks degrading the very data underpinning much of recent progress in AI. Generative mod-
els trained on uncurated data may deteriorate over time, potentially resulting in fatal model col-
lapse (Shumailov et al., 2024). Therefore, differentiating MGT from HWT is an essential task with
wide-ranging downstream implications, resulting in automatic MGT detection becoming an active
area of research (Wu et al., 2025a).

Prior work on benchmarking MGT detectors (e.g. Guo et al., 2023; Macko et al., 2023; Li et al.,
2024; He et al., 2024; Wang et al., 2023; 2024a; Wu et al., 2024) has largely relied on simple
text generation prompts such as: “Write an article about machine learning.” In practice, however,
editors typically employ LLMs to support a range of specific writing tasks (Ford et al., 2023; Zhou
et al., 2025). Compared with earlier work’s free-form generic text generation, prompts in real-world
editing scenarios are narrower in scope and often contextually constrained (e.g., summarisation). We
refer to this as task-specific text generation. Crucially, generic and task-specific text differ in that
the former is often linguistically and semantically less similar to human text, whereas the latter—
because of its constraints—tends to align more closely in style and meaning. Figure 1 illustrates
this distinction across four metrics, comparing HWT, generic and the task-specific MGT generated
for the three Wikipedia editing tasks considered in this study. As detectors learn from such textual
patterns, it is well established that detection performance decreases as the total variation distance

1Wikipedia Community Call Notes 2023–24

1

https://meta.wikimedia.org/w/index.php?title=Wikimedia_Foundation_Annual_Plan/2023-2024/Draft/External_Trends/Community_call_notes&oldid=24785109
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Figure 1: Comparison of textual characteristics between human text, generic MGT, and three task-
specific English MGTs. Task-specific MGTs more closely resemble human text. The same pattern
is observed in other languages (see Appendix D.1).

between human and machine distributions narrows (Sadasivan et al., 2023). We therefore expect
detectors to face greater challenges on task-specific data than on prior benchmarks limited to generic
data. Assessing their reliability in more realistic MGT scenarios is critical, as detectors safeguard
the content integrity of UGC and thus ensure high-quality, uncontaminated data for downstream use
across diverse AI applications.
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Figure 2: Overview of TSM-Bench: 1⃝ We define four editing tasks informed by research on how
editors employ LLMs. 2⃝ For each task, we adopt two prompts from the natural language generation
literature and automatically evaluate them against a simple baseline. 3⃝ Using the highest-scoring
prompt, we generate MGT from eight LMs. 4⃝ Finally, we run five experiments on these data and
draw key conclusions about the effectiveness of detectors in identifying real-world MGT instances.

In this work, we introduce Task-Specific MGT Benchmark (TSM-BENCH), a multilingual, multi-
generator, and multi-task MGT detection benchmark (see Figure 2), designed to move beyond
generic MGT detection and evaluate detectors on text that more closely reflects how users em-
ploy LLMs in real-world workflows. Drawing on real-world accounts of how Wikipedia editors
use LLMs, we define four common editing tasks. For each task, we adopt two prompts from the
natural language generation literature and compare them with a minimal baseline using automatic
metrics. We then employ the highest-scoring prompts to generate MGT with eight LMs of vary-
ing sizes across three languages with different levels of resource availability (English, Portuguese,
and Vietnamese). On these data, we conduct extensive experiments benchmarking 12 detectors
from different model families, testing their out-of-domain and cross-task generalisability. Finally,
to strengthen our case for moving beyond generic MGT, we analyse feature importance in models
trained on generic versus task-specific data.

Our contributions are as follows:

• Benchmark We introduce TSM-BENCH, a multilingual, multi-generator, and multi-task bench-
mark for task-specific MGT detection on Wikipedia, comprising 152,910 MGTs. We are among

2
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the first to study task-specific MGT detection. We plan to maintain this benchmark by adding
more detectors, tasks, and languages. Code and data are available at GitHub (anonymised).

• Experiments We evaluate 12 detectors from different model families, assess their generalisability
across domains and tasks, and conduct a feature analysis to identify the linguistic cues detectors
exploit.

• Results We demonstrate that (i) accuracy decreases by up to 32%, 20%, and 10% for zero-shot,
off-the-shelf, and supervised detectors, respectively, compared to evaluations on generic data; and
(ii) a generalisation asymmetry exists: models fine-tuned on task-specific data generalise to
generic MGT both within and across domains, but not vice versa. Feature importance analysis
shows that models trained on generic data overfit to LLM artefacts, exposing a limitation of prior
benchmarks.

• Implications Compared with prior MGT benchmarks, our results suggest that earlier evaluations
likely overestimated detector performance due to simplified generation settings. In practice, our
findings indicate that most detectors cannot reliably support automated MGT detection in real-
world contexts such as UGC platforms. TSM-BENCH therefore provides a valuable foundation
for developing and evaluating more robust detectors, and we recommend training future models
on a diverse combination of task-specific data.

2 TSM-BENCH

TSM-BENCH is a multilingual, multi-generator, and multi-task MGT detection benchmark designed
to reflect real-world, task-specific LLM-generated text on Wikipedia. Our tasks are empirically
grounded in research on Wikipedia editors’ perceived use cases for LLM-assisted editing (Ford
et al., 2023; Zhou et al., 2025), ensuring their relevance to practical applications. Our benchmark
corpus comprises 152,910 parallel human- and machine-written texts across tasks, languages, and
generators. Appendix Table 3 presents dataset statistics.

2.1 TASK DEFINITIONS

MGT Detection We define MGT detection as a binary classification task. Given a dataset D =
{(xi, yi)}Ni=1, each instance consists of a text xi and a label yi ∈ {0, 1}, where 0 denotes a human-
written text and 1 a machine-generated text. A detector learns a function f : X → R that assigns a
real-valued score to each text x ∈ X . Using a threshold τ , the predicted label is defined as ŷ = 1 if
f(x) ≥ τ and ŷ = 0 otherwise.

Task-specific Generation Let fθ denote a language model with parameters θ that produces a tex-
tual output o. Let I = {i1, . . . , it} be a set of detailed user instructions for t natural language
generation tasks, and let Ct = {c1, . . . , cn} be a set of contexts associated with task t. For example,
Ct may consist of retrieved evidence passages used to generate a new paragraph. We define generic
generation as ogt = fθ(gt), where gt is an unconstrained, free-form prompt with minimal task
instruction for task t. We define task-specific generation as ots = fθ(it, Ct), where the model com-
pletes a constrained task using additional context Ct. This setting corresponds to the four Wikipedia
editing tasks we investigate.

Wikipedia Editing Tasks We consider three editing tasks grounded in Ford et al. (2023) and Zhou
et al. (2025), who survey Wikipedia editors about LLM-assisted editing practices. The three tasks
are: 1⃝ Paragraph Writing, which involves generating new multi-sentence content or extending
existing text. We define two subtasks: Introductory Paragraph, the task of writing the opening para-
graph of a new section; and Paragraph Continuation, which extends an incomplete human-written
paragraph. These subtasks allow us to test detection performance both on purely machine-written
text and on text blending HWT and MGT. 2⃝ Summarisation, where the model generates a lead
section of comparable length to a human-written reference, conditioned on the article’s content. We
frame this as a single-document abstractive summarisation task, following Wikipedia’s Manual of
Style4 and prior work on Wikipedia summarisation (Gao et al., 2021; Perez-Beltrachini & Lapata,
2022). 3⃝ Text Style Transfer, defined as neutralising revision-level NPOV violations (Pryzant
et al., 2020). We provide a biased sentence or paragraph as context and instruct the model to re-
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vise it in line with Wikipedia’s neutrality guidelines. Focusing on NPOV violations ensures direct
alignment with one of Wikipedia’s core content policies.2

2.2 BENCHMARK CONSTRUCTION

Data We use WikiPS, a collection of paragraphs and summary–article pairs, and
mWNC (Quaremba et al., 2025), an extension of WNC (Pryzant et al., 2020), as the human-
written corpus, available in English, Portuguese, and Vietnamese. We randomly sample 2,700
HWT per task and language from the corresponding subsets. For the Paragraph Writing and
Summarisation tasks, we balance each subset by length tertiles. For TST, we evaluate at the
sentence level for all languages and at the paragraph level for English only, due to limited data in
the other languages.

PROMPT EVALUATION

Language BLEU RougeL BERTScore QAFactEval Style Transfer

Introductory Paragraph → RAG

English 0.25 (+0.23) 0.47 (+0.29) 0.88 (+0.13) 0.38 (+0.33) -
Portuguese 0.25 (+0.23) 0.47 (+0.30) 0.92 (+0.06) 0.42 (+0.36) -
Vietnamese 0.30 (+0.26) 0.55 (+0.23) 0.92 (+0.07) 0.36 (+0.30) -

Paragraph Continuation → RAG

English 0.25 (+0.25) 0.49 (+0.34) 0.89 (+0.13) 0.42 (+0.39) -
Portuguese 0.25 (+0.25) 0.49 (+0.34) 0.92 (+0.06) 0.42 (+0.39) -
Vietnamese 0.32 (+0.30) 0.57 (+0.26) 0.92 (+0.07) 0.38 (+0.34) -

Summarisation → One-shot

English 0.17 (+0.11) 0.36 (+0.10) 0.83 (+0.04) 0.46 (+0.01) -
Portuguese 0.11 (+0.05) 0.29 (+0.06) 0.88 (+0.01) 0.47 (-0.01) -
Vietnamese 0.12 (+0.05) 0.38 (+0.03) 0.87 (+0.01) 0.46 (+0.00) -

TST → Five-shot

English 0.55 (+0.21) 0.78 (+0.12) 0.95 (+0.03) - 0.91 (+0.01)
Portuguese 0.55 (+0.14) 0.77 (+0.08) 0.96 (+0.02) - 0.91 (+0.05)
Vietnamese 0.55 (+0.12) 0.78 (+0.05) 0.96 (+0.01) - 0.84 (-0.01)
English P. 0.55 (+0.21) 0.78 (+0.12) 0.95 (+0.03) - 0.96 (-0.01)

Table 1: Prompt evaluation results. We report the highest-scoring prompt per language and task. For
each metric, we present the highest score achieved, with the improvement over the baseline shown
in percentage points (in parentheses).

For each task, we adapt prompts from the natural language generation literature shown to be most
effective (Zhang et al., 2024a; Mukherjee & Dušek, 2024; Gao et al., 2024), and automatically eval-
uate them against a simple baseline. We conduct the evaluation on a length-stratified 10% sample of
the target data using GPT-4o mini (Hurst et al., 2024), and select the highest-scoring prompt to gen-
erate MGT for our benchmark. Appendix B provides implementation details and prompt templates.
The prompts we consider are as follows:

Paragraph Writing Minimal provides the generic baseline, instructing the model to write or con-
tinue a paragraph given article and section titles. Content Prompts extend Minimal by including up
to ten content-related questions about the target HWT paragraph (e.g., “What are neural networks
inspired by?”), generated using GPT-4o. Naive retrieval-augmented generation (RAG) (Gao et al.,
2024) further augments Content Prompts with relevant retrieved content.

Summarisation & TST For Summarisation and TST, we use conceptually identical prompts.
Minimal is a simple zero-shot prompt that instructs the model to summarise the article content/neu-
tralise biased text. Instruction adds a detailed definition of the lead section/NPOV policy, alongside
the baseline instructions to compile the lead section/neutralise the input text. Few-shot includes
representative examples for each task in addition to the Instruction prompt.

Evaluation Metrics We use BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) for n-gram
overlap, and BERTScore (Zhang et al., 2020) for semantic similarity. For Paragraph Writing and
Summarisation, we assess factuality using QAFactEval (Fabbri et al., 2022).3 For TST, we fine-tune
pre-trained language models per language and report binary style classification accuracy.

2https://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
3For Portuguese and Vietnamese, we translate with GPT-4.
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Evaluation Table 1 presents our prompt evaluation results. For each task, we report the best-
performing prompt, along with the percentage improvement over the baseline (in parentheses).
Overall, prompts with richer context or more detailed instructions achieve greater gains across eval-
uation metrics: RAG substantially outperforms Minimal, while Few-shot prompts provide smaller
improvements. The results demonstrate that task-specific MGT is of higher quality than generic
MGT. For our benchmark, we select: Paragraph Writing → RAG, Summarisation → One-shot,
and TST → Five-shot.

MGT Generation For each task–language subset, we generate MGT with six generators using
their respective best-performing prompts. For LLMs, we use GPT-4o and GPT-4o Mini (Hurst
et al., 2024), Gemini 2.0 Flash (Team et al., 2023), and DeepSeek (Guo et al., 2025). We also in-
clude two small language models (SLMs): Qwen2.5-7B (Yang et al., 2024a) and Mistral-7B (Jiang
et al., 2023).

3 EXPERIMENTAL SETUP

We design five experiments to benchmark off-the-shelf, supervised, and zero-shot detectors, test
their out-of-domain generalisability, analyse their behaviour through feature analysis, and evalu-
ate cross-task transfer to inform future detector development. Further details on implementation,
detectors, data, and training are provided in Appendix C.

Experiment 1: Off-the-shelf detectors We evaluate the performance of widely used off-the-shelf
detectors on our tasks. For comparison, we also assess these detectors on generically generated
Wikipedia articles, reflecting the setups of prior work (e.g., Guo et al., 2023; Macko et al., 2023; Li
et al., 2024; He et al., 2024; Wang et al., 2023; 2024a; Wu et al., 2024). We generate these instances
using the prompt “Write a Wikipedia article about <title>”. We select RADAR (Hu et al., 2023),
Binoculars (Hans et al., 2024), Desklib, and e5-small (Dugan et al., 2024), as these models achieved
the strongest performance on the RAID shared task (Dugan et al., 2024). We restrict this analysis to
GPT-4o and English, as these detectors are primarily trained on English data.

Experiment 2: Zero-shot and supervised detectors We evaluate nine zero-shot and supervised
detectors across each task–language–generator configuration. For each configuration, we fine-tune
supervised models using hyperparameter search, and for zero-shot methods we calibrate the optimal
classification threshold with Youden’s J .

For supervised detectors, we use XLM-RoBERTa (Conneau et al., 2020) and mDeBERTa (He
et al., 2023). As zero-shot white-box detectors, we include Binoculars (Hans et al., 2024), LLR (Su
et al., 2023a), and FastDetectGPT (White-Box) (Hans et al., 2024). As zero-shot black-box detec-
tors, we use BiScope (Guo et al., 2024), Revise-Detect (Zhu et al., 2023), GECScore (Wu et al.,
2025b), and FastDetectGPT (Black-Box) (Hans et al., 2024).

Experiment 3: Out-of-domain generalisation We evaluate the generalisability of detectors
trained on task-specific versus generic MGT, both within Wikipedia and out-of-domain. We con-
sider two editor-driven domains where reliable MGT detection is equally important: social reviews
(Yelp (Zhang et al., 2015) (EN), B2W (Real et al., 2019) (PT), ABSA (Nguyen et al., 2018) (VI))
and news (CNN/DM (Nallapati et al., 2016) (EN), Folha (Emdemor, 2023) (PT), News25 (Quang,
2022) (VI)). For all domains, we generate MGT using generic prompts.

Experiment 4: Feature analysis As our central argument concerns task-specific MGT, we inves-
tigate what models learn when trained on generic versus task-specific data. To this end, we train our
best-performing model from Experiment 2 with the same configuration on each English dataset and
compute Shapley Additive Explanations (SHAP) (Lundberg & Lee, 2017). SHAP values highlight
which patterns models exploit to distinguish HWT from MGT.

Experiment 5: Cross-task generalisation Different writing tasks may leave different traces of
MGT. We examine how well detectors generalise across tasks by training a model on the full data
of one task and evaluating it on all others. This experiment is crucial for understanding how to train
future detectors for optimal performance.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We restrict Experiments 4 and 5 to GPT-4o and Qwen 2.5, using the best-performing model from
Experiment 2. Given the parallel structure of our benchmark data, we report accuracy as our primary
metric and additionally provide F1 scores for Experiment 2.

4 RESULTS

4.1 EXPERIMENT 1: OFF-THE-SHELF DETECTORS
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Figure 3: Comparison of off-the-shelf detectors on generic and task-specific MGT.

Off-the-shelf detectors underperform on task-specific MGT. Figure 3 shows the accuracy of
four off-the-shelf detectors on generic and task-specific data. All detectors achieve near-perfect
accuracy of >93% on generic data, including the zero-shot method Binoculars. However, across
tasks, accuracy drops to between 47% and 73%. This indicates that detectors which appear effective
on generic data are likely to underperform in real-world scenarios where users rely on LLMs for
specific tasks.

4.2 EXPERIMENT 2: ZERO-SHOT AND SUPERVISED DETECTORS

Most detectors struggle to detect task-specific MGT. Table 2 reports detection results by task
and language, averaged across the six generators. Overall, all tasks pose challenges to detectors
from every model family. Supervised models consistently outperform zero-shot methods, achiev-
ing average accuracies between 79.7% and 91.8% (excluding sentence-level TST), while zero-shot
models fail to exceed 64.7% on average.

For Introductory Paragraph, supervised detectors achieve an average accuracy of 85.9% across lan-
guages, whereas white-box (57.7%) and black-box (62.3%) methods perform considerably worse.
While both supervised detectors perform similarly, Binoculars achieves the highest average
accuracy among white-box methods (61.8%), and GECScore leads among black-box methods
(69.7%). For Paragraph Continuation, most zero-shot methods drop to near random-chance ac-
curacy, with the exception of BiScope. This likely reflects blurred statistical disparities caused
by the mixing of human and machine text, which undermines the signal on which these methods
rely. We also observe a slight increase in average accuracy across detector families from English
to Vietnamese, most pronounced for white-box detectors (e.g., Binoculars: 52.1 → 60). This
linear trend occurs only in this task.

Summarisation yields the highest detection scores across model families and languages. Compared
to Introductory Paragraph, both zero-shot families perform marginally better, while supervised mod-
els increase to or approach 90% accuracy across languages. Although most LLMs undergo extensive
post-training on summarisation tasks, Wikipedia lead sections follow a distinctive style that provides
strong cues for detectors. BiScope (69.7%) and Binoculars (64.8%) achieve the best perfor-
mance within their respective families. Across languages, supervised detectors maintain consistent

6
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Introductory Paragraph Paragraph Continuation
Detector English Portuguese Vietnamese English Portuguese Vietnamese -

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 - -

Binoculars 57.8 60.4 61.3 61.8 66.4 67.3 52.1 41.7 55.8 55.0 60.6 60.0 - -
LLR 50.9 63.2 52.6 56.0 55.4 30.9 50.6 23.5 51.6 45.2 52.2 25.1 - -
FDGPT (WB) 53.6 43.8 58.4 60.6 63.0 56.5 50.7 36.7 54.5 49.1 57.8 40.3 - -
Avg. White-box 54.1 55.8 57.4 59.4 61.6 51.6 51.1 34.0 54.0 49.8 56.8 41.8 - -

BiScope 69.1 68.7 65.1 64.5 69.0 68.9 61.8 60.6 61.9 59.4 68.3 66.9 - -
Revise 52.5 52.1 54.4 54.4 53.0 46.0 51.3 42.7 52.2 47.1 52.2 56.8 - -
GECScore 75.6 74.0 70.8 72.3 62.7 62.8 56.1 54.7 55.0 40.8 52.8 36.9 - -
FDGPT (BB) 53.6 41.7 58.7 55.3 62.2 56.8 51.3 17.2 55.7 41.6 59.1 43.1 - -
Avg. Black-box 62.7 59.1 62.3 61.6 61.7 58.6 55.1 43.8 56.2 47.2 58.1 50.9 - -

xlm-RoBERTa 84.6 84.2 82.2 81.3 85.5 84.7 84.3 84.2 85.2 84.8 88.1 88.0 - -
mDeBERTa 89.0 88.8 83.8 83.1 86.3 85.6 86.2 86.1 86.3 86.2 87.4 87.4 - -
Avg. Supervised 85.9 86.5 83.0 82.2 85.9 85.1 85.3 85.2 85.8 85.5 87.8 87.7 - -

Summarisation Text Style Transfer
English Portuguese Vietnamese English Portuguese Vietnamese English P.

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Binoculars 60.4 61.4 67.6 69.2 66.4 69.6 51.9 30.7 55.8 52.2 55.9 45.7 57.1 45.3
LLR 54.5 65.9 54.7 60.3 54.1 57.2 50.1 2.2 51.9 21.5 51.7 35.8 52.6 26.9
FDGPT (WB) 57.8 59.2 64.7 65.4 64.5 56.6 52.5 60.8 54.6 44.5 55.9 45.5 59.3 42.0
Avg. White-box 57.6 62.2 62.3 65.0 61.7 61.1 51.5 31.2 54.1 39.4 54.5 42.3 56.4 42.0

BiScope 70.7 69.9 68.0 66.0 70.5 70.2 57.3 56.9 60.3 59.6 59.6 58.3 57.3 56.9
Revise 54.0 56.3 53.3 57.0 53.0 57.9 55.1 60.0 53.3 54.1 56.1 60.1 57.4 58.0
GECScore 75.8 76.5 68.5 70.1 62.3 64.3 64.2 61.1 61.4 59.8 58.6 44.1 73.8 73.6
FDGPT (BB) 58.2 60.0 63.8 64.8 62.7 53.9 52.0 37.7 53.6 36.0 55.3 40.4 57.9 51.0
Avg. Black-box 64.7 65.6 63.4 64.5 62.1 61.6 57.1 53.9 57.1 52.4 57.4 50.7 61.6 59.9

xlm-RoBERTa 91.5 91.4 91.2 91.1 90.2 89.9 64.6 63.0 64.5 63.5 63.4 61.8 78.8 77.9
mDeBERTa 90.4 90.2 92.5 92.4 89.3 89.0 63.4 61.8 68.2 66.4 66.2 65.2 80.6 79.4
Avg. Supervised 90.9 90.8 91.8 91.8 89.8 89.5 64.0 62.4 66.4 64.9 64.8 63.5 79.7 78.7

Table 2: Detector accuracies (ACC) and F1-scores (F1) on task-specific MGT for each task and
language, averaged across generators.

accuracy with a slight drop for Vietnamese; white-box methods perform best on Portuguese (62.3%),
while black-box models reach the highest accuracy on English (64.7%).

For sentence-level TST, supervised detectors achieve an average accuracy of 65.1%, considerably
lower than in the other tasks. Most zero-shot detectors perform only slightly above random chance
across languages, with the notable exception of GECScore, which performs comparably to su-
pervised detectors (e.g., 64.2% for English). We attribute the low detection scores in part to the
sentence-level setting. When comparing English sentence- to paragraph-level data (English P.), we
observe substantially higher average accuracies for the latter, most notably a 15.7% increase for
supervised detectors.

4.3 EXPERIMENT 3: OUT-OF-DOMAIN GENERALISATION

Our Wiki IO CNN/DM Yelp
Test

Ou
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Ye
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Tr

ai
n

90.7 92.8 88.8 87.5

50.2 100.0 79.7 61.0

68.2 81.5 100.0 72.8

73.3 72.3 88.0 99.3

English

Our Wiki IO FOLHA B2W
Test

82.6 92.3 75.8 98.8

50.8 99.6 99.3 96.6

51.0 98.8 100.0 99.0

53.2 50.7 52.2 99.6

Portuguese

Our Wiki IO News25 ABSA
Test

82.8 80.0 61.8 96.0

75.8 92.8 65.4 94.7

50.3 73.5 99.8 50.3

52.0 54.7 52.1 99.8

Vietnamese
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Figure 4: Out-of-domain accuracies of mDeBERTa by language with GPT-4o. Our dataset balances
Introductory Paragraphs and Summarisation. Wiki IO, news (CNN/DM, FOLHA, News25), and
social reviews (Yelp, B2W, ABSA) represent generic MGT.
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Fine-tuning on task-specific data generalises to generic data within and across domains, but
not vice versa. Figure 4 shows confusion matrix accuracies by language for the best-performing
model from our second experiment, mDeBERTa. We observe a generalisation asymmetry: when
fine-tuned on task-specific data, mDeBERTa generalises well to generic data both within and across
domains. However, when fine-tuned on generic data, the model fails to generalise to our data—even
within the same domain. For example, mDeBERTa fine-tuned on our English data achieves an
average accuracy of 89.7% across test sets (first matrix, first row). In contrast, when fine-tuned on
generic data, no domain yields more than 77.9% test set accuracy. This pattern is consistent across
most configurations, though most pronounced for English. Moreover, diagonal test set accuracies of
92.8–100% reinforce the findings of Experiments 1 and 2, underscoring that generic MGT is easy to
detect across domains. Appendix Figure 9 reports results for Qwen 2.5, showing the same pattern.

4.4 EXPERIMENT 4: FEATURE ANALYSIS

0 1 2 3 4
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4.7

3.6

Our
Generic

Figure 5: SHAP features for mDeBERTa.

Fine-tuning on generic data tends to overfit to
surface-level features. To analyse the results of
Experiments 1-3, we compare features learned by
mDeBERTa when trained on generic versus task-
specific English Wikipedia data. Figure 5 presents
the five features with the highest SHAP values in
each setting. mDeBERTa fine-tuned on our data
assigns greater weight to semantically meaningful
tokens, indicating stronger reliance on transferable
MGT patterns. In contrast, when fine-tuned on
generic data, SHAP values reveal heavy dependence
on superficial cues such as section formatting (e.g.,
"==" or "#").

4.5 EXPERIMENT 5: CROSS-TASK GENERALISATION
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FP PC SUMS TST
Test

81.3 69.9 69.7 60.0
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Figure 6: Cross-task accuracies of mDeBERTa by language with GPT-4o. IP = Introductory Para-
graph, PC = Paragraph Continuation, SUMS = Summarisation, TST = Text Style Transfer.

Cross-task performance is generally low. Figure 6 presents cross-task accuracies by language
for mDeBERTa. Overall, detection performance across tasks remains relatively low. For English,
the average cross-task accuracy is 72.1% for Summarisation, compared with 60.5% for Introductory
Paragraph and close to random chance for the other two tasks. The same trend holds for Portuguese
and Vietnamese, as well as when using Qwen 2.5 (Appendix Figure 10). These results suggest that
tasks exhibit distinct patterns that do not easily generalise across tasks. We therefore conclude that
future detectors should be trained on a combination of different tasks.

5 RELATED WORK

Wikipedia Editing Tasks Wikipedia articles consist of a lead section, a tabular infobox, and a
body organised into sections. Their content is written and maintained by volunteer editors who per-
form a wide range of tasks (Johnson et al., 2024). Paragraph Writing involves generating new en-
cyclopaedic content, which is central to expanding knowledge on Wikipedia. Research has focused
on expanding Wikipedia with agentic systems (Shao et al., 2024) or through RAG (Zhang et al.,
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2024b). Summarisation refers to producing the lead section of the article body, which introduces its
most important points.4 The literature treats lead section generation either as a multi-document (Liu
et al., 2018; Gholipour Ghalandari et al., 2020; Hayashi et al., 2021) or a single-document (Gao
et al., 2021; Perez-Beltrachini & Lapata, 2022) summarisation task. Text Style Transfer (TST) is
the task of modifying the style of a sentence while preserving its meaning (Toshevska & Gievska,
2022). On Wikipedia, maintaining a Neutral Point of View5 (NPOV) is a core content policy requir-
ing all content to be written from a neutral perspective. Pryzant et al. (Pryzant et al., 2020) introduce
the Wikipedia Neutrality Corpus (WNC), a large-scale collection of biased and neutralised sentence
pairs retrieved from NPOV-related revisions.

MGT Detection Benchmarks Extensive work has benchmarked MGT detectors across domains,
languages, and generators (Wu et al., 2025a). TuringBench (Uchendu et al., 2021) is one of the
first benchmarks to study the Turing test and authorship attribution, using multiple generators in
the news domain. MULTITuDE (Macko et al., 2023) expands MGT data beyond English, testing
detectors in multilingual settings. MAGE (Li et al., 2024) covers multiple domains, generators, and
detectors, benchmarking across eight increasingly challenging detection scenarios. M4 (Wang et al.,
2023) comprehensively includes various generators, languages, and domains, while M4GT (Wang
et al., 2024b) expands M4 by incorporating additional languages and introducing human–machine
mixed detection. Alongside the release of detection datasets (Guo et al., 2023; Su et al., 2023b;
Yu et al., 2025), recent work has increasingly focused on adversarial attacks to evade detectors (He
et al., 2024; Wu et al., 2024; Zheng et al., 2025).

6 DISCUSSION AND CONCLUSION

Discussion We find that most detectors struggle considerably on task-specific data. Through cross-
domain experiments and feature analysis, we demonstrate that models trained on generic data tend
to overfit to superficial MGT artefacts. This explains their strong in-domain but weak out-of-domain
performance. In contrast to prior benchmarks (e.g. Guo et al., 2023; Macko et al., 2023; Li et al.,
2024; He et al., 2024; Wang et al., 2023; 2024a; Wu et al., 2024), our results suggest that evaluations
on generic data likely overestimate detector performance. This conclusion aligns with the findings
of Doughman et al. (2024), who also highlight that classifier performance is often overestimated.
Because we ground our task setup in observed editing practices of LLM usage (Ford et al., 2023;
Zhou et al., 2025), we argue that most detectors are insufficient for supporting the automatic de-
tection of MGT in real-world contexts. Recent work on adversarial attacks (He et al., 2024; Wu
et al., 2024; Zheng et al., 2025) also reports reduced detection performance. However, our data are
more challenging as they more realistically capture real-world generation, rather than relying on
adversarial perturbations applied post-generation. For future work, we recommend developing and
evaluating detectors on a diverse combination of common writing tasks. TSM-BENCH provides rich
multilingual data to facilitate research in this direction. Future extensions could include additional
languages, tasks, detectors, new domains, and analyses of the effects of combining tasks.

Conclusion We present TSM-BENCH, a multilingual, multi-generator, and multi-task benchmark
for MGT detection, featuring diverse real-world LLM text generation tasks on Wikipedia. We show
that most detectors underperform on task-specific MGT and highlight the limitations of evaluating
detectors solely on generic MGT. Our findings suggest that existing benchmarks likely overestimate
detector performance on UGC platforms and indicate that automatic MGT detection in real-world
contexts remains unreliable.

Limitations First, we focus on three common editing tasks, although other equally important tasks
exist (e.g., translation). We base these tasks on qualitative evidence of editors’ LLM usage, although
we cannot guarantee that all editors employ LLMs in these ways. Second, some of our style classi-
fiers used for TST prompt evaluation perform poorly despite extensive fine-tuning. We address this
limitation in Appendix C.2.1, but note that NPOV style classification remains challenging. Third,
we stratify by length to avoid confounding effects, but we do not explore in detail how text length
influences task-specific MGT detection. We leave this to future work.

4https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style
5https://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
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ETHICS STATEMENT

Our work uses publicly available content from Wikipedia, licensed under CC BY-SA. No private
or sensitive information is included, and our experiments pose no risk to Wikipedia editors or the
Wikipedias under study. Sensitive data about individual contributors are not identifiable or exposed
in any way.

We obtain machine-generated data using four LLMs under their respective licences:

• GPT-4-mini: No specific license. OpenAI welcomes research publications.6

• Gemini 2.0: Apache 2.07

• Qwen 2.0: Apache 2.08

• Mistral: Apache 2.09

All other datasets used in our work are publicly available. The license details are as follows:

• CNN/Daily Mail (News): Apache 2.0 License10

• FOLHA: CC0: Public Domain11

• News25: CC0: Public Domain12

• Yelp Reviews: Licensed under the Yelp Dataset License Agreement.13 Permits usage for
academic and non-commercial research purposes only.

• B2W-Reviews01: CC BY-NC-SA 4.0 License14

• VLSP 2018 ABSA: No specific license is provided, but the dataset is intended for research
use.15

This study addresses limitations in previous evaluations of MGT detectors by assessing their per-
formance within realistic editorial contexts. The objective is to provide more accurate and practical
insights into the feasibility and utility of MGT detection in scenarios where humans employ LLMs
in diverse ways to generate text for specific tasks. The experiments aim to inform the potential of
MGT detectors as automated metrics or as tools to support users of UGC platforms in identifying
machine-generated content.

LLM Usage We use LLMs to correct spelling, grammar, and punctuation mistakes in our text.
We do not copy and paste the corrected text but instead prompt for a detailed list of errors and
incorporate them manually.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure that our benchmark is reproducible and usable for future
research. For data generation, we describe prompt design and evaluation in Section 2.2 and pro-
vide the full prompts alongside additional details on data generation in Appendix B. We outline our
experimental setup in Section 3 and include further information in Appendix C, such as hyperpa-
rameter settings and hardware configurations. All experiments are run with a fixed random seed to
guarantee full reproducibility of our results. We make all code and data publicly available.

6https://openai.com/policies/sharing-publication-policy/
7https://github.com/google-gemini
8https://github.com/QwenLM/Qwen2.5
9https://mistral.ai/news/announcing-mistral-7b

10https://huggingface.co/datasets/abisee/cnn_dailymail
11https://www.kaggle.com/datasets/marlesson/news-of-the-site-folhauol
12https://www.kaggle.com/datasets/haitranquangofficial/

vietnamese-online-news-dataset
13Yelp Dataset Agreement
14https://github.com/americanas-tech/b2w-reviews01
15https://vlsp.org.vn/vlsp2018/eval/sa
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A DATA SET STATISTICS

Corpus Subset Level Language Corpus N Eval N Experiment N MGT N

mWNC Text Style Transfer Sentences
EN 286,626 270 2,700 16,200
PT 7,877 270 2,700 16,200
VI 1,185 270 1,185 7,110

Paragraphs EN 4,671 270 2,700 16,200

WikiPS

Paragraph Writing
EN 96,860 270 2,700 16,200
PT 72,965 270 2,700 16,200
VI 98,315 270 2,700 16,200

Summarisation
EN 53,203 270 2700 16,200
PT 36,075 270 2,700 16,200
VI 45,500 270 2,700 16,200

Total 2,700 25,485 152,910

Table 3: TSM-Bench dataset statistics. Corpus denotes the size of the data; Experiment N denotes
the number of human-written texts; and MGT N denotes the total number of machine-generated
texts.

B TASK DESIGN DETAILS

Content Prompts We model editors’ LLM-assisted content generation through Content Prompts.
This prompt variant is motivated from the literature on Wikipedia article generation (Shao et al.,
2024), which models the process as information-seeking behaviour guided by asking questions. The
underlying idea is that editors construct content by iteratively posing questions about the subject.
Our Content Prompts are designed to simulate this cognitive process.

For instance, an editor aiming to expand a Wikipedia article might prompt a model to generate
a paragraph in response to factual questions about a specific topic (e.g., ”What is the difference
between supervised and unsupervised learning?”” or ”What is reinforcement learning used for?”),
within a given section. For each human-written paragraph in our dataset, we prompt GPT-4 to
generate a minimum of five content prompts for low-tertile paragraphs, and eight for medium- and
high-tertile paragraphs. Although this method does not exhaustively cover all factual content from
the HWT, it substantially improves the alignment of factual information between HWT and MGT.

When generating these prompts, a valid concern is that the resulting questions may contain halluci-
nations, which would deteriorate the quality of the generated texts. We rely on supportive evidence
from fact-checking literature (Chen et al., 2022; Min et al., 2023). Min et al. (2023), which uses
LLMs to generate atomic questions, finds that such questions are ”effective and close to human,”
consistent with findings from prior work (Chen et al., 2022). Additionally, as reported in Table 8
in the Appendix, we show that text generated via Content Prompts leads to significant gains in our
evaluation metrics, particularly in the factuality metric QAFactEval. Finally, our Content Prompts
include detailed instructions on how to generate questions, which helps minimise the risk of irrele-
vance and hallucination.

Naive RAG We implement a web-based Naive RAG setup to reflect an editing scenario in which
an editor, in addition to providing task instructions and content prompts, also supplies relevant con-
text to minimise factual inaccuracies. Our RAG pipeline follows the indexing, retrieval, and gener-
ation modules of the Naive variant (Gao et al., 2024), with two key modifications: we prepend the
pipeline with a Content Prompts and Web Search modules.

Content Prompts and Web Search For each paragraph, we generate diverse content prompts as de-
scribed above. Each content prompt is used to query the Google Custom Search API,16 retrieving
the top 10 most relevant URLs. This results in a minimum of 80 URLs for low-tertile paragraphs
and at least 100 URLs for medium- and high-tertile paragraphs.

Indexing We download the raw HTML of each scrappable web page and apply a series of prepro-
cessing and cleaning steps. Each page is then split into chunks using LangChain’s RecursiveChar-

16https://developers.google.com/custom-search/v1/overview
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acterTextSplitter.17 We compute BGE-M318 embeddings for each chunk and store them in a vector
database.

Retrieval and Generation Each content prompt is treated as a query, for which we compute an
embedding and retrieve the two most similar chunks from the vector database based on cosine sim-
ilarity. These retrieved chunks are appended to the content prompt as context, guiding the model’s
generation. For the Paragraph Continuation task, we apply RAG only to the second half of each.

In-context Learning For Summarisation, we include 1–3 high-quality lead–content pairs re-
trieved from the respective Wikipedia Featured Articles page.19 For TST, we include 1–5 randomly
sampled biased–neutralised examples.

B.1 PARAGRAPH WRITING

B.1.1 PROMPT TEMPLATES

For brevity, we present prompts in English only.

B.1.2 INTRODUCTORY PARAGRAPH PROMPTS

MINIMAL

Please write the first paragraph for the section "{section_title}" in the
Wikipedia article "{page_title}" using no more than {n_words} words.
Only return the paragraph.

CONTENT PROMPTS

Please write the first paragraph for the section "{section_title}" in the
Wikipedia article "{page_title}".

Address the following key points in your response:
{content_prompts}

Use no more than {n_words} words. Only return the paragraph.

RAG

Use the following context to ensure factual accuracy when writing:
{context}

--

Please write the first paragraph for the section "{section_title}" in the
Wikipedia article "{page_title}".

Address the following key points in your response:
{content_prompts}

Use the context above to inform your response, in addition to any
relevant knowledge you have. Use no more than {n_words} words. Only
return the paragraph in {language}.

17LangChain RecursiveCharacterTextSplitter documentation
18https://huggingface.co/BAAI/bge-m3
19https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
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B.1.3 PARAGRAPH CONTINUATION PROMPTS

MINIMAL

Please continue writing the following paragraph for the section "{
section_title}" in the Wikipedia article "{page_title}".

Existing paragraph: "{p_first}"

Use no more than {n_words} words. Please only return the continuation of
the paragraph.

CONTENT PROMPTS

Please continue writing the following paragraph for the section "{
section_title}" in the Wikipedia article "{page_title}".

Existing paragraph: "{p_first}"

Make sure that the continuation addresses these key points:
{content_prompts}

Use no more than {n_words} words. Please only return the continuation of
the paragraph.

RAG

Use the following context to ensure factual accuracy when writing:
{context}

---

Please continue writing the below paragraph for the section "{
section_title}" in the Wikipedia article "{page_title}".

Make sure that the continuation addresses these key points:
{content_prompts}

Existing paragraph:

"{trgt_first}"

Use the context above to inform your response, in addition to any
relevant knowledge you have. Use no more than {trgt_n_toks} words.
Only return the continuation of the paragraph in {language}.

B.2 SUMMARISATION

B.2.1 PROMPTS

MINIMAL

Your task is to summarize the below article with no more than {
n_toks_trgt} words. Article:

"""{src}"""

INSTRUCTION/FEW-SHOT
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Your task is to summarize an article to create a Wikipedia lead section.
- In Wikipedia, the lead section is an introduction to an article and a

summary of its most important contents.
- Apart from basic facts, significant information should not appear in

the lead if it is not covered in the remainder of the article.

Generate the lead for the article titled "{page_title}" using the article
’s body above with no more than {n_toks_trgt} words. Article:

"""{src}"""

B.3 TST

B.3.1 PROMPTS

MINIMAL

Please make this sentence/paragraph more neutral. **Make as few changes
as possible and use no more than {trgt_n_words} words for the
neutralised sentence/paragraph.** Sentence/Paragraph:

"""{src}"""

INSTRUCTION/FEW-SHOT

Please edit this biased Wikipedia sentence/paragraph to make it more
neutral, aligning with Wikipedia’s neutral point of view policy:

Achieving what the Wikipedia community understands as neutrality means
carefully and critically analyzing a variety of reliable sources and
then attempting to convey to the reader the information contained in
them fairly, proportionately, and as far as possible without
editorial bias. Wikipedia aims to describe disputes, but not engage
in them. The aim is to inform, not influence. Editors, while
naturally having their own points of view, should strive in good
faith to provide complete information and not to promote one
particular point of view over another. The neutral point of view does
not mean the exclusion of certain points of view; rather, it means

including all verifiable points of view which have sufficient due
weight. Observe the following principles to help achieve the level of
neutrality that is appropriate for an encyclopedia:

- Avoid stating opinions as facts.
- Avoid stating seriously contested assertions as facts.
- Avoid stating facts as opinions.
- Prefer nonjudgmental language.
- Do not editorialize.
- Indicate the relative prominence of opposing views.

**Make as few changes as possible and use no more than {trgt_n_words}
words for the neutralised sentence/paragraph.** Output only the
neutralized sentence/paragraph. Sentence/Paragraph:

"""{src}"""
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C ADDITIONAL EXPERIMENTAL DETAILS

C.1 DETECTOR DETAILS AND IMPLEMENTATIONS

We follow the taxonomy for detecting MGT proposed by Yang et al. (2024b), which categorises
detectors into three types: 1) zero-shot, 2) training-based, and 3) watermarking, although we exclude
the latter from our experiments. The taxonomy further divides zero-shot methods into white-box
and black-box, depending to whether the detector has access to the generator’s logits other model
internals. For all zero-shot models, when the originally used backbone LLM does not support one
of our languages, we replace it with a multilingual model of the comparable size.

ZERO-SHOT WHITE-BOX

LLR (Su et al., 2023a) The Log-Likelihood Log-Rank Ratio (LLR), intuitively leverages the ratio
of absolute confidence through log-likelihood to relative confidence through log rank about a
sequence. We implement this detector with Bloom-3B.20

Binoculars (Hans et al., 2024) Binoculars introduces a metric based on the ratio of perplex-
ity to cross-perplexity, where the latter measures how surprising the next-token predictions of one
model are to another. We implement this detectors using Qwen2.5-7B21 for the observer model and
and Qwen2.5-7B-Instruct22 for the performer model.

FastDetectGPT White-Box (Bao et al., 2024) DetectGPT (Mitchell et al., 2023) exploits
that MGT tends to be located at negative curvature regions of the log probability function, from
which a curvature-based detection criterion is defined. FastDetectGPT (WB) is an optimised version
of DetectGPT that builds on the conditional probability curvature. We implement the white-box
version with Bloom-3B.20

ZERO-SHOT BLACK-BOX

BiScope (Guo et al., 2024) BiScope measures cross-entropy losses beyween output logits and
original token and between output logitsaand the preceding input token. From statistics of these
losses, they train a classifier to predict whether the text is machine-generated. We implement this
detector as in the original paper with Llama 2-7B (Touvron et al., 2023).

Revise (Zhu et al., 2023) Revise builds on the hypothesis that ChatGPT23 performs fewer re-
visions when generating MGT, and thus bases its detection criterion on the similarity between the
original and revised articles. We implement this detector as in the original paper with GPT-3.5-
turbo.24

GECScore (Wu et al., 2025b) Grammar Error Correction Score assumes that HWT contain
more grammatical errors and calculates a Grammatical Error Correction score. We implement this
detectors as in the original paper with GPT-3.5-turbo.24

FastDetectGPT Black-Box (Hans et al., 2024): In the black-box version, the scoring model
is different from the reference model. We use BLOOM-3B for the reference model and BLOOM-
1.7B for the scoring model.

SUPERVISED

XLM-RoBERTa (Conneau et al., 2020): XLM-RoBERTa25 is the multilingual version of
RoBERTa (Liu et al., 2019) for 100 languages. RoBERTa is an improved version of BERT (Devlin

20https://huggingface.co/bigscience/bloom-3b
21https://huggingface.co/Qwen/Qwen2.5-7B
22https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
23https://openai.com
24https://platform.openai.com/docs/models/gpt-3.5-turbo
25https://huggingface.co/FacebookAI/xlm-roberta-base
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et al., 2019) through more and longer training and dynamic masking modelling.

mDeberTaV3 mDeberTaV326 is the multilingual version of DeBERTa (He et al., 2023) which
improves BERT and RoBERTa through disentangled attention and enhanced mask decoder.

C.2 EXPERIMENTAL SETUPS

C.2.1 TST STYLE CLASSIFIERS

We fine-tune four style classifiers: one for each language at the sentence level, and an additional
classifier for English at the paragraph level. The hyperparameter settings are provided in Table 4.

Language/Level Models Learning Rate Batch Sizes Epochs Weight Decay
EN/Sent. roberta-base 1e-6 32 15 0.01

PT/Sent. xlm-roberta-base,
mBERT 5e-5, 1e-5, 5e-6 16, 32 2, 5, 8 0, 0.01

VI/Sent. xlm-roberta-base,
mBERT

5e-5, 1e-5,
5e-6, 1e-6 16, 32 2, 4, 6 0, 0.01

EN/Para. roberta-base 5e-5, 1e-6,
5e-6 16, 32 3, 6, 9 0, 0.01

Table 4: Style Classifier Hyperparameter Settings.

For English, we adopt the hyperparameters from the best-performing neutrality classifier available
on Hugging Face.27 As the English data contain nearly a quarter million English sentence pairs, we
conduct fine-tuning on a smaller subset of the most recent 150k pairs, specifically filtered to include
the keyword NPOV in the revision content, in order to further enhance precision. For Portuguese,
we apply commonly used hyperparameter values, while for Vietnamese and English paragraphs, we
extend the search space, as initial experiments yielded low detection performance.

Level Language Pairs Test Accuracy

Sentences
English 300,000 73%
Portuguese 5738 63%
Vietnamese 2370 58%

Paragraphs English 9342 58%

Table 5: Style Transfer Classifier Performance. Pairs denote biased and neutralised samples.

Table 5 reports the style classifier hyperparamter fine-tuning results. While fine-tuned models for
English and Portuguese sentences yield satisfactory results, style accuracy for English paragraphs
and Vietnamese sentences is low. In the following, we provide a qualitative analysis of both subsets
and explain how we address these low performances.

Low Style Classifier Performance Analysis Table 6 presents two representative examples of
NPOV revisions from each subset. The first example in each case illustrates a clear NPOV vio-
lation. For instance, the phrase ”considered the best footballer” in Vietnamese and ”not as strong” in
English are both subjective. However, as illustrated with the second examples, NPOV filtering also
captures revisions related to political or historical content, which often rely on (subjectively) factual
corrections rather than systematic semantic cues.

As we observed this pattern consistently across both subsets, we conducted additional data pro-
cessing and hyperparameter tuning for the classifiers. We explored several strategies, including: (1)
extending the list of NPOV-related keywords, (2) allowing multiple edit chunks per revision, (3) per-
mitting multi-sentence edits within a single chunk, and (4) expanding the range of hyperparameter
settings and model types. However, none of these approaches significantly improved style classifier
performance.

26https://huggingface.co/microsoft/mdeberta-v3-base
27https://huggingface.co/cffl/bert-base-styleclassification-subjective-neutral
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Subset Biased Examples

Vietnamese

c coi là cu th xut sc nht th gii và là cu th vı̃ i nht mi thi i (Greatest of All
Time - GOAT), Ronaldo là ch nhân ca 5 Qu bóng vàng châu Âu vào các năm
2008, 2013, 2014, 2016, 2017 và cũng là ch nhân 4 Chic giày vàng châu Âu,
c hai u là k lc ca mt cu th châu Âu cùng nhiu danh hiu cao quý khác. (EN:
Considered the best football player in the world and the greatest of all time
(GOAT), Ronaldo has won 5 Ballon d’Or awards in the years 2008, 2013,
2014, 2016, and 2017, as well as 4 European Golden Shoes—both records for
a European player—along with many other prestigious titles.)

Ông tng phc v Lý Hoài Tiên, tng di quyn nghch tc S T Minh ca Ngy Yên. (EN:
He once served Lý Hoài Tiên, a general under the command of the rebel S T
Minh of Ngy Yên.)

English
Paragraphs

He is not as strong, although still an exceptional warrior. Agamemnon clearly
has a stubborn streak that one can argue makes him even more arrogant than
Achilles. Although he takes few risks in battle, Agamemnon still accomplishes
great progress for the Greeks.

The population of Bangladesh ranks seventh in the world, but its area of ap-
proximately is ranked ninety-fourth, making it one of the most densely pop-
ulated countries in the world, or the most densely populated country if small
island nations and city-states are not included. It is the third-largest Muslim-
majority nation, but has a smaller Muslim population than the Muslim minor-
ity in India. Geographically dominated by the fertile Ganges-Brahmaputra
Delta, the country has annual monsoon floods, and cyclones are frequent.

Table 6: NPOV Revision Examples. Parentheses contain English translations. Highlighted words
indicate words that were edited.

Therefore, we selected the configuration that yielded the highest precision, adopting a conservative
approach to extract NPOV-relevant revision pairs. Despite the relatively low classifier accuracy, we
are confident that our dataset includes a high proportion of true positives.

C.2.2 EXPERIMENT 2: ZERO-SHOT AND SUPERVISED DETECTORS

We fine-tune both training-based models per task and language on an 80/10/10 split with the hyper-
parameter choices displayed in Table 7.

Hyperparameter Values
Batch Size 16, 32
Learning Rate 1e-5, 5e-6, 1e-6
Epochs 3, 5
Seed 42
Resource 1x NVIDIA A100 40GB

Table 7: Hyperparameter settings for supervised-detectors.

For zero-shot detectors, we either use a single NVIDIA A100 80GB or two NVIDIA A100 40GB.

C.2.3 EXPERIMENT 3: GENERALISATION

For each language–generator–domain combination, we randomly sample 2,700 HWT from each
dataset to generate generic MGT instances. These data reflects MGT genera setups of prior
work (e.g., Guo et al., 2023; Macko et al., 2023; Li et al., 2024; He et al., 2024; Wang et al., 2023;
2024a; Wu et al., 2024) (see prompt templates below). For task-specific MGT, we randomly sample
an equal number of instances from our Introductory Paragraph and Summarisation tasks, excluding
text of the lowest length tertile.

Due to the open-ended nature of the test data, we truncate all outputs including our texts to 160
tokens to ensure comparable text lengths. All detectors are trained on the full training set (N =

22
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2, 700) and evaluated on 300 randomly drawn instances. We use the same hyperparameter settings
as for Experiment 2 (see Table 7).

We run this experiment on a single NVIDIA A100 40GB.

TEST DATA

We consider two additional domains—news and social reviews—for which reliable MGT detection
is equally important as on Wikipedia.

WIKIPEDIA

For all three languages, we randomly sample from our base WikiPS dataset to create full articles
consisting of the lead section and article body with minimal formatting.

NEWS

CNN/DM CNN/Daily Mail (Nallapati et al., 2016) is an English dataset containing over 300,000
news articles from CNN and the Daily Mail, each paired with a summary composed of bullet-pointed
highlight sentences. We use only the full article text in our experiments.

FOLHA Folha de São Paulo (FOLHA) (Emdemor, 2023) is a large-scale collection of 167,053
news titles and articles from the Brazilian newspaper of the same name. The dataset covers the
period from January 2015 to September 2017.

News25 The Vietnamese Online News Dataset (News25) (Quang, 2022) is a large-scale collection
of over 150,000 news articles from the 25 most popular Vietnamese news sites, collected in July
2022. Each entry includes a title and the main article body, along with additional metadata.

SOCIAL REVIEWS

Yelp The Yelp dataset (Zhang et al., 2015) is a large-scale collection of approximately 700,000
business reviews written on the Yelp platform. It covers businesses across eight metropolitan areas
in the United States and Canada.

B2W B2W-Reviews01 (Real et al., 2019) is a Portuguese dataset containing over 130,000 e-
commerce customer reviews. The reviews were collected from the Americanas.com website be-
tween January and May 2018.

ABSA The VLSP 2018 Aspect-Based Sentiment Analysis (ABSA) dataset (Nguyen et al., 2018)
includes 4,751 restaurant reviews and 5,600 hotel reviews in Vietnamese. We consider only the
restaurant domain, which consists of reviews collected from www.foody.vn.

PROMPT TEMPLATES

For brevity, we present prompts in English only.

WIKIPEDIA TST

Write a Wikipedia article with the title "{title}", the article should at
least have 250 words.

CNN/DM
Write a news article given the following highlights: """{highlights}"""

Yelp
Given the first few words of the review, continue the review with a

minimum of 20 words. Review beginning: "{beginning}"

23
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D ADDITIONAL RESULTS

D.1 LINGUISTIC DESCRIPTIVE ANALYSIS
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Figure 7: Comparison of textual characteristics between human, generic, and our task-specific MGT
in Portuguese.
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Figure 8: Comparison of textual characteristics between human, generic, and our task-specific MGT
in Portuguese.

D.2 PROMPT EVALUATION

Language Technique BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore QAFactEval

Introductory Paragraph

English
Minimal 0.02 0.29 0.06 0.17 0.76 0.06
Content Prompts 0.22 0.57 0.31 0.44 0.88 0.25
RAG 0.25 0.61 0.35 0.47 0.88 0.38

Portuguese
Minimal 0.02 0.31 0.06 0.17 0.86 0.06
Content Prompts 0.20 0.56 0.30 0.41 0.91 0.25
RAG 0.25 0.61 0.37 0.47 0.92 0.42

Vietnamese
Minimal 0.04 0.67 0.26 0.32 0.85 0.06
Content Prompts 0.28 0.78 0.52 0.54 0.91 0.27
RAG 0.30 0.79 0.54 0.55 0.92 0.36

Paragraph Continuation

English
Minimal 0.01 0.24 0.03 0.15 0.75 0.03
Content Prompts 0.21 0.58 0.32 0.45 0.88 0.30
RAG 0.25 0.60 0.36 0.49 0.89 0.42

Portuguese
Minimal 0.01 0.25 0.04 0.15 0.86 0.03
Content Prompts 0.20 0.57 0.32 0.44 0.92 0.27
RAG 0.25 0.60 0.38 0.49 0.92 0.42

Vietnamese
Minimal 0.01 0.62 0.21 0.31 0.85 0.04
Content Prompts 0.31 0.78 0.54 0.56 0.92 0.31
RAG 0.32 0.78 0.54 0.57 0.02 0.38

Table 8: Paragraph Writing Prompts Evaluation Results.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8 presents our prompting evaluation results. We find that our Naive RAG approach consis-
tently outperforms both Minimal and Content Prompts across subtasks and languages. The low
evaluation scores for Minimal prompts highlight that MGT produced in prior work is often synthet-
ically divergent from its human-written references. While Content Prompts substantially improve
performance, Naive RAG further enhances generation quality—particularly in terms of factual con-
sistency, which is critical for encyclopedic content.28 Based on these findings, we adopt Naive RAG
as the prompting strategy for the paragraph writing task in our MGT detection experiments.

Language Technique BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore QAFactEval

English Minimal 0.06 0.37 0.13 0.26 0.79 0.45
Instruction 0.13 0.44 0.21 0.33 0.82 0.46
One-shot 0.18 0.47 0.24 0.36 0.83 0.46
Two-shot 0.18 0.47 0.24 0.36 0.83 0.46
Three-shot 0.16 0.46 0.23 0.35 0.83 0.46

Portuguese Minimal 0.06 0.35 0.13 0.23 0.87 0.48
Instruction 0.11 0.42 0.19 0.30 0.88 0.48
One-shot 0.11 0.42 0.19 0.29 0.88 0.48
Two-shot 0.11 0.43 0.19 0.30 0.88 0.47
Three-shot 0.12 0.43 0.20 0.30 0.88 0.47

Vietnamese Minimal 0.07 0.63 0.28 0.35 0.86 0.45
Instruction 0.11 0.64 0.31 0.38 0.87 0.43
One-shot 0.12 0.65 0.32 0.38 0.87 0.45
Two-shot 0.12 0.66 0.32 0.38 0.87 0.44
Three-shot 0.11 0.65 0.32 0.38 0.87 0.42

Table 9: Summarisation Prompts Evaluation Results.

Table 9 presents the summarisation prompt evaluation results, showing that across languages, In-
struction and Few-shot achieve higher overlap and semantic similarity scores, although Few-shot
only marginally improves over Instruction. Factuality scores remain relatively stable across prompts,
presumably because summarisation is a core task in aligning LLMs through reinforcement learning
from human feedback Ouyang et al. (2022). Given that increasing the number of shots does not
yield further improvements, and considering the context window of smaller LLMs, we select one-
shot prompting for our experiments.

Language Technique BLEU ROUGE-1 ROUGE-2 ROUGE-L BERTScore ST
English Minimal 0.35 0.68 0.52 0.66 0.92 0.90

Instruction 0.36 0.68 0.52 0.66 0.92 0.94
One-shot 0.52 0.78 0.65 0.76 0.95 0.91
Two-shot 0.47 0.75 0.61 0.73 0.94 0.90
Three-shot 0.54 0.79 0.67 0.78 0.95 0.89
Four-shot 0.56 0.80 0.69 0.79 0.95 0.89
Five-shot 0.55 0.80 0.68 0.78 0.95 0.91

Portuguese Minimal 0.41 0.71 0.58 0.69 0.94 0.86
Instruction 0.40 0.70 0.57 0.67 0.94 0.88
One-shot 0.50 0.75 0.64 0.74 0.96 0.90
Two-shot 0.51 0.77 0.65 0.75 0.96 0.89
Three-shot 0.53 0.78 0.66 0.76 0.96 0.91
Four-shot 0.58 0.81 0.70 0.79 0.96 0.92
Five-shot 0.55 0.79 0.68 0.77 0.96 0.91

Vietnamese Minimal 0.43 0.78 0.65 0.73 0.95 0.84
Instruction 0.45 0.80 0.67 0.73 0.94 0.79
One-shot 0.44 0.78 0.66 0.71 0.95 0.88
Two-shot 0.51 0.82 0.70 0.76 0.95 0.87
Three-shot 0.50 0.81 0.70 0.75 0.95 0.85
Four-shot 0.51 0.82 0.70 0.76 0.95 0.85
Five-shot 0.55 0.83 0.73 0.78 0.96 0.84

English Para. Minimal 0.35 0.68 0.52 0.66 0.92 0.97
Instruction 0.36 0.68 0.52 0.66 0.92 0.99
One-shot 0.52 0.78 0.65 0.76 0.95 0.95
Two-shot 0.47 0.75 0.61 0.73 0.94 0.98
Three-shot 0.54 0.79 0.67 0.78 0.95 0.96
Four-shot 0.56 0.80 0.69 0.79 0.95 0.95
Five-shot 0.55 0.80 0.68 0.78 0.95 0.96

Table 10: TST Prompts Evaluation Results.

Table 10 presents the prompt evaluation metrics for the TST task, evaluated at the sentence level for
all languages, and additionally at the paragraph level for English. Across languages and levels, we

28https://en.wikipedia.org/wiki/Wikipedia:Verifiability
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find that four- and five-shot prompting consistently outperforms Minimal and Instruction prompts.
While differences in semantic similarity and style transfer are marginal across prompts, we observe
substantial improvements in overlap-based metrics as the number of few-shot examples increases.
These improvements can be attributed to the fact that neutralisation edits in mWNC tend to be
relatively minimal. For instance, in the English sentence subset, on average only 14% of words are
deleted and 7% added—similar trends hold for the other subsets. As a result, the model appears to
learn from the examples to apply similarly sparse edits, thereby producing outputs that match the
reference text more closely in terms of n-gram overlap. Based on these findings, we adopt five-shot
prompting to generate MGT in our subsequent experiments.

D.3 EXPERIMENT 2: RESULTS BY LANGUAGE, MODEL AND TASKS

Tables 11 and 12 present the full results of experiment 2.

Task Detector English Portuguese Vietnamese
GPT-4o GPT-4o mini Gemini 2.0 DeepSeek Qwen 2.5 Mistral Avg GPT-4o GPT-4o mini Gemini 2.0 DeepSeek Qwen 2.5 Mistral Avg GPT-4o GPT-4o mini Gemini 2.0 DeepSeek Qwen 2.5 Mistral Avg

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Introductory Paragraph

Binoculars 0.61 0.59 0.61 0.60 0.58 0.61 0.52 0.62 0.60 0.58 0.55 0.63 0.58 0.60 0.64 0.64 0.68 0.66 0.64 0.64 0.54 0.57 0.64 0.60 0.54 0.61 0.61 0.62 0.74 0.74 0.77 0.77 0.72 0.72 0.56 0.49 0.70 0.66 0.50 0.67 0.66 0.67
LLR 0.50 0.66 0.52 0.51 0.50 0.67 0.50 0.67 0.50 0.67 0.53 0.62 0.51 0.63 0.53 0.51 0.57 0.51 0.54 0.51 0.50 0.67 0.50 0.67 0.53 0.51 0.53 0.56 0.60 0.53 0.63 0.60 0.58 0.54 0.50 0.00 0.51 0.19 0.50 0.00 0.55 0.31
FDGPT (WB) 0.54 0.57 0.59 0.60 0.54 0.52 0.50 0.00 0.52 0.43 0.52 0.52 0.54 0.44 0.62 0.59 0.68 0.66 0.63 0.63 0.50 0.67 0.56 0.53 0.52 0.57 0.58 0.61 0.73 0.73 0.76 0.77 0.70 0.69 0.50 0.67 0.59 0.53 0.50 0.00 0.63 0.56
Avg. White-box 0.55 0.61 0.57 0.57 0.54 0.60 0.51 0.43 0.54 0.56 0.54 0.59 0.54 0.56 0.60 0.58 0.64 0.61 0.60 0.59 0.51 0.63 0.56 0.60 0.53 0.56 0.57 0.59 0.69 0.67 0.72 0.71 0.67 0.65 0.52 0.38 0.60 0.46 0.50 0.22 0.62 0.52
BiScope 0.73 0.72 0.69 0.69 0.67 0.67 0.76 0.75 0.65 0.66 0.65 0.63 0.69 0.69 0.69 0.69 0.67 0.67 0.66 0.65 0.71 0.68 0.59 0.60 0.58 0.57 0.65 0.64 0.72 0.71 0.73 0.73 0.67 0.66 0.61 0.60 0.62 0.63 0.80 0.80 0.69 0.69
Revise 0.54 0.55 0.53 0.41 0.53 0.50 0.51 0.49 0.52 0.55 0.52 0.62 0.52 0.52 0.57 0.52 0.55 0.58 0.56 0.50 0.53 0.54 0.54 0.53 0.52 0.59 0.54 0.54 0.55 0.56 0.53 0.50 0.54 0.56 0.52 0.54 0.54 0.59 0.50 0.00 0.53 0.46
GECScore 0.81 0.81 0.82 0.82 0.77 0.75 0.65 0.59 0.77 0.75 0.72 0.73 0.76 0.74 0.81 0.80 0.79 0.79 0.80 0.80 0.66 0.64 0.65 0.66 0.54 0.66 0.71 0.72 0.72 0.72 0.72 0.70 0.70 0.70 0.55 0.52 0.58 0.47 0.50 0.67 0.63 0.63
FDGPT (BB) 0.54 0.45 0.58 0.61 0.53 0.49 0.50 0.00 0.52 0.45 0.54 0.50 0.54 0.42 0.61 0.55 0.69 0.66 0.62 0.60 0.51 0.65 0.56 0.44 0.54 0.42 0.59 0.55 0.71 0.72 0.74 0.74 0.68 0.70 0.50 0.66 0.59 0.59 0.50 0.00 0.62 0.57
Avg. Black-box 0.66 0.63 0.65 0.63 0.62 0.60 0.60 0.46 0.62 0.60 0.61 0.62 0.63 0.59 0.67 0.64 0.68 0.68 0.66 0.64 0.60 0.63 0.59 0.56 0.54 0.56 0.62 0.62 0.67 0.68 0.68 0.67 0.65 0.66 0.54 0.58 0.58 0.57 0.58 0.37 0.62 0.59
xlm-RoBERTa 0.86 0.86 0.78 0.78 0.84 0.84 0.96 0.96 0.81 0.80 0.83 0.83 0.85 0.84 0.83 0.82 0.76 0.75 0.80 0.79 0.96 0.96 0.83 0.82 0.76 0.74 0.82 0.81 0.78 0.76 0.75 0.72 0.82 0.81 0.92 0.92 0.89 0.89 0.98 0.98 0.86 0.85
mDeBERTa 0.91 0.91 0.86 0.86 0.84 0.83 0.98 0.98 0.86 0.85 0.90 0.89 0.89 0.89 0.83 0.82 0.76 0.74 0.80 0.79 0.96 0.96 0.84 0.83 0.85 0.85 0.84 0.83 0.79 0.77 0.77 0.76 0.82 0.81 0.94 0.94 0.87 0.87 0.98 0.98 0.86 0.86
Avg. Supervised 0.89 0.88 0.82 0.82 0.84 0.84 0.97 0.97 0.83 0.82 0.86 0.86 0.87 0.87 0.83 0.82 0.76 0.75 0.80 0.79 0.96 0.96 0.83 0.83 0.80 0.79 0.83 0.82 0.78 0.77 0.76 0.74 0.82 0.81 0.93 0.93 0.88 0.88 0.98 0.98 0.86 0.85

Paragraph Continuation

Binoculars 0.51 0.48 0.54 0.51 0.51 0.46 0.50 0.00 0.54 0.46 0.52 0.60 0.52 0.42 0.56 0.60 0.61 0.62 0.57 0.56 0.51 0.49 0.56 0.45 0.54 0.59 0.56 0.55 0.66 0.64 0.69 0.68 0.64 0.64 0.51 0.39 0.63 0.59 0.51 0.65 0.61 0.60
LLR 0.50 0.67 0.50 0.01 0.50 0.01 0.50 0.00 0.50 0.16 0.53 0.55 0.51 0.23 0.50 0.67 0.52 0.47 0.51 0.18 0.50 0.67 0.51 0.20 0.56 0.54 0.52 0.45 0.53 0.40 0.57 0.52 0.53 0.45 0.50 0.01 0.51 0.13 0.50 0.00 0.52 0.25
FDGPT (WB) 0.50 0.67 0.51 0.46 0.50 0.67 0.50 0.00 0.51 0.19 0.52 0.22 0.51 0.37 0.54 0.49 0.61 0.61 0.56 0.53 0.50 0.67 0.53 0.26 0.53 0.39 0.54 0.49 0.62 0.60 0.67 0.68 0.62 0.62 0.50 0.00 0.55 0.49 0.51 0.03 0.58 0.40
Avg. White-box 0.50 0.60 0.52 0.32 0.50 0.38 0.50 0.00 0.52 0.27 0.52 0.46 0.51 0.34 0.53 0.58 0.58 0.56 0.54 0.42 0.50 0.61 0.53 0.30 0.54 0.50 0.54 0.50 0.60 0.54 0.65 0.63 0.59 0.57 0.50 0.13 0.56 0.40 0.51 0.23 0.57 0.42
BiScope 0.63 0.63 0.58 0.58 0.59 0.58 0.66 0.66 0.64 0.64 0.61 0.56 0.62 0.61 0.61 0.60 0.62 0.62 0.59 0.57 0.57 0.56 0.63 0.62 0.68 0.59 0.62 0.59 0.63 0.61 0.68 0.68 0.62 0.61 0.61 0.60 0.69 0.68 0.85 0.84 0.68 0.67
Revise 0.51 0.36 0.52 0.50 0.52 0.58 0.51 0.36 0.52 0.49 0.51 0.27 0.51 0.43 0.54 0.55 0.53 0.50 0.52 0.60 0.52 0.42 0.52 0.50 0.50 0.25 0.52 0.47 0.52 0.61 0.54 0.58 0.53 0.57 0.53 0.53 0.51 0.48 0.50 0.65 0.52 0.57
GECScore 0.54 0.63 0.57 0.60 0.59 0.53 0.55 0.44 0.56 0.47 0.56 0.62 0.56 0.55 0.55 0.64 0.59 0.64 0.61 0.58 0.55 0.58 0.50 0.00 0.50 0.00 0.55 0.41 0.54 0.61 0.56 0.65 0.56 0.47 0.51 0.48 0.50 0.00 0.50 0.00 0.53 0.37
FDGPT (BB) 0.50 0.00 0.52 0.43 0.50 0.00 0.50 0.00 0.52 0.20 0.54 0.39 0.51 0.17 0.53 0.54 0.61 0.63 0.56 0.57 0.50 0.00 0.54 0.22 0.60 0.54 0.56 0.42 0.61 0.62 0.68 0.66 0.62 0.62 0.50 0.00 0.56 0.35 0.58 0.34 0.59 0.43
Avg. Black-box 0.54 0.40 0.55 0.53 0.55 0.42 0.55 0.36 0.56 0.45 0.55 0.46 0.55 0.44 0.56 0.58 0.59 0.60 0.57 0.58 0.54 0.39 0.55 0.33 0.57 0.34 0.56 0.47 0.58 0.61 0.61 0.64 0.58 0.57 0.54 0.40 0.56 0.38 0.61 0.46 0.58 0.51
xlm-RoBERTa 0.90 0.90 0.78 0.78 0.80 0.80 0.87 0.87 0.82 0.82 0.89 0.89 0.84 0.84 0.96 0.96 0.71 0.69 0.79 0.79 0.85 0.85 0.86 0.86 0.94 0.94 0.85 0.85 0.90 0.90 0.76 0.76 0.84 0.84 0.88 0.88 0.91 0.91 0.99 0.99 0.88 0.88
mDeBERTa 0.93 0.93 0.84 0.84 0.78 0.78 0.90 0.90 0.82 0.82 0.89 0.89 0.86 0.86 0.93 0.93 0.77 0.77 0.81 0.81 0.91 0.91 0.84 0.84 0.92 0.92 0.86 0.86 0.89 0.89 0.76 0.76 0.80 0.80 0.88 0.88 0.91 0.91 0.99 0.99 0.87 0.87
Avg. Supervised 0.91 0.91 0.81 0.81 0.79 0.79 0.89 0.89 0.82 0.82 0.89 0.89 0.85 0.85 0.94 0.94 0.74 0.73 0.80 0.80 0.88 0.88 0.85 0.85 0.93 0.93 0.86 0.85 0.89 0.89 0.76 0.76 0.82 0.82 0.88 0.88 0.91 0.91 0.99 0.99 0.88 0.88

Summarisation

Binoculars 0.60 0.62 0.60 0.60 0.62 0.58 0.57 0.58 0.62 0.62 0.62 0.69 0.60 0.61 0.69 0.70 0.72 0.73 0.70 0.72 0.61 0.62 0.71 0.72 0.62 0.66 0.68 0.69 0.72 0.72 0.72 0.72 0.70 0.71 0.61 0.63 0.72 0.73 0.50 0.67 0.66 0.70
LLR 0.54 0.66 0.52 0.65 0.52 0.64 0.53 0.66 0.54 0.66 0.61 0.68 0.55 0.66 0.54 0.52 0.58 0.57 0.56 0.54 0.51 0.66 0.54 0.65 0.55 0.67 0.55 0.60 0.55 0.52 0.58 0.47 0.55 0.47 0.50 0.66 0.54 0.65 0.51 0.67 0.54 0.57
FDGPT (WB) 0.58 0.63 0.60 0.59 0.60 0.59 0.54 0.63 0.55 0.51 0.61 0.60 0.58 0.59 0.69 0.69 0.72 0.70 0.69 0.69 0.58 0.62 0.65 0.63 0.56 0.58 0.65 0.65 0.71 0.72 0.73 0.72 0.71 0.71 0.59 0.62 0.64 0.62 0.50 0.00 0.64 0.57
Avg. White-box 0.58 0.63 0.57 0.61 0.58 0.61 0.55 0.62 0.57 0.60 0.61 0.66 0.58 0.62 0.64 0.64 0.67 0.67 0.65 0.65 0.57 0.64 0.63 0.67 0.58 0.64 0.62 0.65 0.66 0.65 0.68 0.64 0.66 0.63 0.57 0.64 0.64 0.67 0.50 0.45 0.62 0.61
BiScope 0.74 0.73 0.72 0.70 0.65 0.64 0.72 0.70 0.70 0.68 0.72 0.74 0.71 0.70 0.70 0.64 0.69 0.67 0.63 0.62 0.72 0.70 0.66 0.65 0.68 0.68 0.68 0.66 0.71 0.70 0.71 0.70 0.65 0.64 0.69 0.69 0.68 0.69 0.79 0.80 0.71 0.70
Revise 0.60 0.33 0.53 0.61 0.53 0.58 0.53 0.63 0.53 0.62 0.53 0.61 0.54 0.56 0.57 0.61 0.54 0.51 0.53 0.57 0.53 0.56 0.53 0.55 0.51 0.63 0.53 0.57 0.55 0.54 0.53 0.57 0.54 0.56 0.52 0.59 0.54 0.56 0.50 0.66 0.53 0.58
GECScore 0.80 0.82 0.80 0.81 0.71 0.70 0.75 0.75 0.75 0.75 0.74 0.76 0.76 0.76 0.79 0.80 0.78 0.79 0.73 0.72 0.61 0.57 0.68 0.70 0.52 0.64 0.69 0.70 0.68 0.68 0.71 0.70 0.67 0.66 0.55 0.51 0.63 0.64 0.50 0.67 0.62 0.64
FDGPT (BB) 0.58 0.59 0.59 0.58 0.59 0.63 0.53 0.58 0.56 0.60 0.63 0.62 0.58 0.60 0.66 0.66 0.71 0.69 0.67 0.70 0.57 0.61 0.65 0.66 0.57 0.57 0.64 0.65 0.67 0.66 0.70 0.68 0.68 0.66 0.57 0.60 0.64 0.61 0.50 0.01 0.63 0.54
Avg. Black-box 0.68 0.62 0.66 0.67 0.62 0.64 0.63 0.67 0.63 0.66 0.66 0.68 0.65 0.66 0.68 0.68 0.68 0.66 0.64 0.65 0.61 0.61 0.63 0.64 0.57 0.63 0.63 0.64 0.65 0.64 0.66 0.66 0.64 0.63 0.58 0.60 0.62 0.62 0.57 0.54 0.62 0.62
xlm-RoBERTa 0.92 0.92 0.92 0.92 0.86 0.85 0.94 0.94 0.95 0.95 0.90 0.90 0.91 0.91 0.87 0.87 0.91 0.91 0.84 0.84 1.00 1.00 0.91 0.91 0.94 0.94 0.91 0.91 0.90 0.90 0.86 0.86 0.78 0.77 1.00 1.00 0.94 0.93 0.94 0.94 0.90 0.90
mDeBERTa 0.91 0.90 0.91 0.91 0.83 0.83 0.94 0.94 0.93 0.93 0.91 0.90 0.90 0.90 0.93 0.93 0.89 0.89 0.86 0.85 1.00 1.00 0.94 0.93 0.94 0.94 0.92 0.92 0.88 0.88 0.84 0.84 0.77 0.76 1.00 1.00 0.90 0.90 0.96 0.96 0.89 0.89
Avg. Supervised 0.91 0.91 0.91 0.91 0.84 0.84 0.94 0.94 0.94 0.94 0.90 0.90 0.91 0.91 0.90 0.90 0.90 0.90 0.85 0.85 1.00 1.00 0.92 0.92 0.94 0.94 0.92 0.92 0.89 0.89 0.85 0.85 0.78 0.76 1.00 1.00 0.92 0.92 0.95 0.95 0.90 0.89

Text Style Transfer

Binoculars 0.53 0.45 0.53 0.46 0.52 0.33 0.50 0.01 0.50 0.05 0.53 0.54 0.52 0.31 0.65 0.59 0.56 0.55 0.55 0.51 0.54 0.51 0.53 0.49 0.52 0.48 0.56 0.52 0.60 0.67 0.59 0.55 0.57 0.52 0.57 0.53 0.53 0.47 0.50 0.00 0.56 0.46
LLR 0.50 0.00 0.50 0.02 0.50 0.05 0.50 0.01 0.50 0.02 0.50 0.04 0.50 0.02 0.60 0.67 0.51 0.25 0.50 0.03 0.50 0.00 0.50 0.02 0.50 0.32 0.52 0.21 0.55 0.64 0.52 0.29 0.51 0.16 0.50 0.13 0.51 0.26 0.50 0.67 0.52 0.36
FDGPT (WB) 0.55 0.69 0.54 0.55 0.53 0.54 0.50 0.67 0.50 0.67 0.53 0.54 0.52 0.61 0.65 0.67 0.56 0.53 0.54 0.51 0.50 0.03 0.51 0.44 0.51 0.49 0.55 0.44 0.65 0.53 0.58 0.57 0.55 0.55 0.54 0.55 0.53 0.52 0.50 0.00 0.56 0.45
Avg. White-box 0.53 0.38 0.52 0.34 0.52 0.31 0.50 0.23 0.50 0.25 0.52 0.37 0.52 0.31 0.63 0.64 0.54 0.44 0.53 0.35 0.51 0.18 0.51 0.32 0.51 0.43 0.54 0.39 0.60 0.61 0.56 0.47 0.54 0.41 0.54 0.40 0.52 0.42 0.50 0.22 0.54 0.42
BiScope 0.55 0.56 0.55 0.55 0.58 0.57 0.66 0.65 0.56 0.55 0.54 0.53 0.57 0.57 0.56 0.57 0.58 0.59 0.64 0.63 0.66 0.64 0.58 0.56 0.61 0.58 0.60 0.60 0.58 0.57 0.57 0.57 0.63 0.62 0.65 0.61 0.54 0.54 0.60 0.58 0.60 0.58
Revise 0.70 0.57 0.53 0.63 0.52 0.60 0.52 0.53 0.52 0.65 0.52 0.62 0.55 0.60 0.60 0.67 0.53 0.56 0.52 0.59 0.52 0.32 0.52 0.53 0.51 0.59 0.53 0.54 0.75 0.74 0.53 0.59 0.54 0.49 0.53 0.47 0.51 0.66 0.51 0.66 0.56 0.60
GECScore 0.70 0.62 0.65 0.64 0.62 0.59 0.61 0.58 0.64 0.62 0.62 0.60 0.64 0.61 0.65 0.70 0.66 0.63 0.62 0.59 0.59 0.53 0.61 0.60 0.55 0.54 0.61 0.60 0.70 0.70 0.63 0.57 0.57 0.47 0.55 0.43 0.56 0.48 0.50 0.00 0.59 0.44
FDGPT (BB) 0.55 0.69 0.53 0.55 0.51 0.49 0.50 0.00 0.50 0.01 0.53 0.52 0.52 0.38 0.60 0.33 0.55 0.57 0.53 0.52 0.50 0.20 0.51 0.22 0.52 0.32 0.54 0.36 0.65 0.46 0.57 0.53 0.53 0.46 0.54 0.46 0.52 0.51 0.50 0.00 0.55 0.40
Avg. Black-box 0.62 0.61 0.56 0.59 0.56 0.56 0.57 0.44 0.55 0.46 0.55 0.57 0.57 0.54 0.60 0.57 0.58 0.59 0.58 0.58 0.57 0.42 0.56 0.48 0.54 0.51 0.57 0.52 0.67 0.62 0.58 0.57 0.57 0.51 0.57 0.49 0.53 0.55 0.53 0.31 0.57 0.51
xlm-RoBERTa 0.60 0.58 0.64 0.60 0.59 0.57 0.77 0.77 0.64 0.64 0.64 0.61 0.65 0.63 0.55 0.55 0.63 0.60 0.66 0.65 0.76 0.76 0.58 0.58 0.68 0.67 0.65 0.64 0.65 0.65 0.63 0.62 0.68 0.68 0.78 0.78 0.54 0.52 0.52 0.45 0.63 0.62
mDeBERTa 0.59 0.54 0.65 0.62 0.60 0.60 0.76 0.75 0.59 0.58 0.62 0.62 0.63 0.62 0.63 0.58 0.64 0.58 0.68 0.68 0.80 0.79 0.66 0.66 0.69 0.69 0.68 0.66 0.65 0.65 0.62 0.58 0.69 0.69 0.76 0.76 0.61 0.60 0.64 0.64 0.66 0.65
Avg. Supervised 0.59 0.56 0.64 0.61 0.60 0.59 0.76 0.76 0.61 0.61 0.63 0.62 0.64 0.62 0.59 0.57 0.63 0.59 0.67 0.67 0.78 0.77 0.62 0.62 0.68 0.68 0.66 0.65 0.65 0.65 0.63 0.60 0.69 0.68 0.77 0.77 0.57 0.56 0.58 0.54 0.65 0.63

Table 11: Detector accuracies (ACC) and F1-scores (F1) on task-specific MGT for each task, lan-
guage, and generator.

Detector English Text Style Transfer
GPT-4o GPT-4o mini Gemini 2.0 DeepSeek Qwen 2.5 Mistral Avg

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Binoculars 0.70 0.62 0.58 0.53 0.55 0.47 0.50 0.19 0.52 0.39 0.57 0.51 0.57 0.45
LLR 0.60 0.71 0.52 0.25 0.51 0.22 0.50 0.00 0.50 0.03 0.53 0.40 0.53 0.27
FDGPT (WB) 0.80 0.78 0.60 0.63 0.56 0.60 0.50 0.00 0.52 0.60 0.58 0.61 0.59 0.54
Avg (White-box) 0.70 0.71 0.57 0.47 0.54 0.43 0.50 0.06 0.52 0.34 0.56 0.51 0.56 0.42
BiScope 0.55 0.56 0.55 0.55 0.58 0.57 0.66 0.65 0.56 0.55 0.54 0.53 0.57 0.57
Revise 0.80 0.80 0.53 0.62 0.52 0.56 0.54 0.54 0.53 0.42 0.52 0.55 0.57 0.58
GECScore 0.85 0.86 0.83 0.82 0.64 0.67 0.70 0.69 0.73 0.69 0.67 0.69 0.74 0.74
FDGPT (BB) 0.75 0.71 0.59 0.62 0.54 0.55 0.50 0.00 0.51 0.63 0.58 0.54 0.58 0.51
Avg (Black-box) 0.74 0.73 0.63 0.65 0.57 0.59 0.60 0.47 0.58 0.57 0.58 0.58 0.62 0.60
xlm-RoBERTa 0.76 0.74 0.78 0.77 0.78 0.77 0.91 0.91 0.78 0.77 0.71 0.71 0.79 0.78
mDeBERTa 0.82 0.81 0.83 0.83 0.77 0.76 0.92 0.92 0.81 0.81 0.67 0.64 0.81 0.79
Avg (Supervised) 0.79 0.77 0.81 0.80 0.78 0.77 0.92 0.92 0.80 0.79 0.69 0.67 0.80 0.79

Table 12: Detector accuracies (ACC) and F1-scores (F1) on task-specific MGT for TST of English
paragraphs.

Mistral Error Analysis We observe anomalous evaluation metrics for Vietnamese texts written by
Mistral. While both zero-shot detectors achieve random chance accuracy and often zero F1-scores,
training-based detectors achieve almost perfect metrics. After checking the data, we observe that
Mistral—in contrast to the other models—does not follow the instructions in our prompts. Typical
errors include outputting text mid-sentence or returning English text, despite the last sentences of
our prompt emphasizing to return text in Vietnamese. These flaws explain the strong performance of
training-based detectors, as they pick up these syntactic imperfections, whereas zero-shot detectors
seem unable to find clearly distinctive patterns based on model internals or token patterns.
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D.4 EXPERIMENT 3: RESULTS FOR QWEN 2.5

Our Wiki IO CNN/DM Yelp
Test
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59.5 99.6 97.2 55.9

57.7 62.8 100.0 59.0

50.7 49.3 49.9 96.7

English

Our Wiki IO FOLHA B2W
Test

83.0 91.0 87.2 92.8

65.9 99.4 99.4 93.2

63.1 82.9 100.0 91.1

54.2 38.0 53.5 97.5

Portuguese

Our Wiki IO News25 ABSA
Test

80.2 85.8 76.7 76.8

72.2 96.1 74.2 92.0

50.4 93.1 99.8 70.4

65.8 82.6 85.9 98.1

Vietnamese
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Figure 9: Out-of-domain accuracies of mDeBERTa by language with Qwen 2.5. Our dataset bal-
ances Introductory Paragraphs and Summarisations. Wiki IO, news (CNN/DM, FOLHA, News25),
and social reviews (Yelp, B2W, ABSA), are generic MGT.

D.5 EXPERIMENT 5: RESULTS FOR QWEN 2.5
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FP PC SUMS TST
Test

81.7 64.0 69.6 62.8

65.3 86.3 53.0 57.4

58.8 49.2 93.1 56.7

66.4 56.1 69.2 65.9

Portuguese

FP PC SUMS TST
Test

86.9 65.6 75.1 58.1

77.8 90.0 53.4 54.3

60.6 48.2 93.1 51.9

50.8 50.7 47.3 59.5
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Figure 10: Cross-task domain accuracies of mDeBERTa by language with Qwen 2.5.
IP=Introductory Paragraph, PC=Paragraph Continuation, SUMS=Summarisation, TST=Text Style
Transfer.
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